
Taintscope: A Checksum-Aware Directed Fuzzing
Tool for Automatic Software Vulnerability

Detection

Tielei Wang Tao Wei Guofei Gu Wei Zou

March 12, 2014

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Taintscope is:

I A Fuzzing tool

I Checksum-Aware

I Directed

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Why a new fuzzing tool?

Fuzzing tools already exist. They can be sorted in two categories:
I Mutation based

I Not very efficient
I Cannot generate valid input if a checksum mechanism is used

I Generation based
I Better performances
I Often implies having input specification, or source code.
I Tools exist to automatically get input format, but cannot

reverse engineer checksum algorithms.

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Why a new fuzzing tool?

Fuzzing tools already exist. They can be sorted in two categories:
I Mutation based

I Not very efficient

I Cannot generate valid input if a checksum mechanism is used

I Generation based
I Better performances
I Often implies having input specification, or source code.
I Tools exist to automatically get input format, but cannot

reverse engineer checksum algorithms.

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Why a new fuzzing tool?

Fuzzing tools already exist. They can be sorted in two categories:
I Mutation based

I Not very efficient
I Cannot generate valid input if a checksum mechanism is used

I Generation based
I Better performances
I Often implies having input specification, or source code.
I Tools exist to automatically get input format, but cannot

reverse engineer checksum algorithms.

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Why a new fuzzing tool?

Fuzzing tools already exist. They can be sorted in two categories:
I Mutation based

I Not very efficient
I Cannot generate valid input if a checksum mechanism is used

I Generation based

I Better performances
I Often implies having input specification, or source code.
I Tools exist to automatically get input format, but cannot

reverse engineer checksum algorithms.

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Why a new fuzzing tool?

Fuzzing tools already exist. They can be sorted in two categories:
I Mutation based

I Not very efficient
I Cannot generate valid input if a checksum mechanism is used

I Generation based
I Better performances

I Often implies having input specification, or source code.
I Tools exist to automatically get input format, but cannot

reverse engineer checksum algorithms.

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Why a new fuzzing tool?

Fuzzing tools already exist. They can be sorted in two categories:
I Mutation based

I Not very efficient
I Cannot generate valid input if a checksum mechanism is used

I Generation based
I Better performances
I Often implies having input specification, or source code.
I Tools exist to automatically get input format, but cannot

reverse engineer checksum algorithms.

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Why a new fuzzing tool?
Example of input using checksum:

int format

int fileSize

int width

int height

...

int checksum

void decode_input(File * f){

int recomputed_checksum = checksum(f);

int checksum_in_file = get_checksum(f);

if (recomputed_checksum != checksum_in_file)

exit();

width = get_width(f);

...

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Contributions

Taintscope offers several major contributions:
I Checksum-aware

I Detect checksum test in tested program
I Bypass checksum test when fuzz-testing
I Reconstruct input with valid checksum

I Directed
I Reduces the space of parameters to mutate

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Contributions

Taintscope offers several major contributions:
I Checksum-aware

I Detect checksum test in tested program
I Bypass checksum test when fuzz-testing
I Reconstruct input with valid checksum

I Directed
I Reduces the space of parameters to mutate

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Checksum-awareness

Checksum-aware fuzz-testing is done in 3 steps:

1. Pre-processing: locate checksum check points in the program

2. Fuzz-testing: mutate input without touching the checksum
data

3. Post-processing: for a crashing input, rebuild valid checksum

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Checksum-awareness

Checksum-aware fuzz-testing is done in 3 steps:

1. Pre-processing: locate checksum check points in the program

2. Fuzz-testing: mutate input without touching the checksum
data

3. Post-processing: for a crashing input, rebuild valid checksum

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Checksum-awareness

Checksum-aware fuzz-testing is done in 3 steps:

1. Pre-processing: locate checksum check points in the program

2. Fuzz-testing: mutate input without touching the checksum
data

3. Post-processing: for a crashing input, rebuild valid checksum

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Checksum-awareness

Checksum-aware fuzz-testing is done in 3 steps:

1. Pre-processing: locate checksum check points in the program

2. Fuzz-testing: mutate input without touching the checksum
data

3. Post-processing: for a crashing input, rebuild valid checksum

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Checksum-awareness
How to locate checksum test in program?

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Checksum-awareness
How to locate checksum test in program?

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Checksum-awareness
How to locate checksum test in program?

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Checksum-awareness
How to locate checksum test in program?

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Checksum-awareness
How to locate checksum test in program?

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Checksum-awareness
How to locate checksum test in program?

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Checksum-awareness
How to locate checksum test in program?

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Checksum-awareness
How to fuzz-test knowing the checksum-point?

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Checksum-awareness
How to fuzz-test knowing the checksum-point?

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Checksum-awareness

Using the checksum locator it is possible to:

I Bypass checksum test by modifying the program

I Test input on the modified program to find crashing cases

But how to use those inputs on the real program?

I Need to reconstruct valid checksum

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Checksum-awareness

Using the checksum locator it is possible to:

I Bypass checksum test by modifying the program

I Test input on the modified program to find crashing cases

But how to use those inputs on the real program?

I Need to reconstruct valid checksum

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Checksum-awareness
Using our previous example:

int format

int fileSize

int width

int height

...

int checksum

void decode_input(File * f){

int recomputed_checksum = checksum(f);

int checksum_in_file = get_checksum(f);

if (recomputed_checksum != checksum_in_file)

exit();

width = get_width(f);

...
Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Checksum-awareness
Using our previous example:

int format

int fileSize

int width

int height

...

int checksum

void decode_input(File * f){

int recomputed_checksum = checksum(f);

int checksum_in_file = get_checksum(f);

if (recomputed_checksum != checksum_in_file)

exit();

width = get_width(f);

...
Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Checksum-awareness

Why not use that checksum everytime instead of modifying the
program?

I In practice, finding back the checksum is more complicated

I That step is too expensive to do it thousands of time

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Checksum-awareness

So Taintscope is a checksum-aware fuzzing tool:

I Detects checksum tests

I Bypasses them for fuzz-testing

I Corrects input so they can work on original program

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Directed fuzzing

Fuzz-testing is expensive

I Large size of input

I Hundreds or thousands of bytes to mutate

I Very likely to generate rejected input

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Directed fuzzing

Directed fuzzing allows to find hot bytes in the input, which are:

I Are more likely to trigger bugs or crashes

I Are less likely to be the cause of rejected input

What is a hot byte?

I An input byte that will be used in a security-sensitive call
(such as malloc or strcpy)

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Directed fuzzing

How to find hot bytes?

I Start from a valid input

I Give all byte in the input a unique label

I Use a taint-tracer to see where the input bytes are used

If an input byte is used (directly or indirectly) in a sensitive
function call, this byte is a hot byte.

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Directed fuzzing

Taintscope finds those hot bytes and focuses on them for
fuzz-testing.

The hot-byte detection can be done simultaneously with the
checksum pre-processing step, leading to less overhead.

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Evaluation and results

Taintscope was evaluated on real-world applications such as:
I Image viewer

I Google Picasa
I Adobe Acrobat
I Image magick

I Media Players
I MPlayer
I Winamp

I Web Browsers

I libtiff

I XEmacs

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Evaluation and results

First test on hot bytes identification.

Application Input size # Hot bytes Run time

ImageMagick (png) 5149 9 1m54s

ImageMagick (jpg) 6617 11 1m13s

Picasa (png) 2730 18 5m16s

Acrobat (png) 770 21 3m8s

Acrobat (jpg 1012 13 4m14s

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Evaluation and results

Second test on Checksum localization

Application # points (1st) # points (2nd) Detected

Picasa (png) 830 1 Yes

Acrobat (png) 5805 1 Yes

TCPDump (pcap) 5 2 Yes

Tar 9 1 Yes

In practice : Around twenty runs to find the checksum location.
Done in tens of minutes.

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Evaluation and results

Third test on checksum reconstruction:

Format # checksum size time

PNG 4 4 271.9

PCAP 8 2 455.6

TAR 3 8 572.8

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Evaluation and results

Out of those tests, Taintscope has found 27 severe vulnerabilities
in common applications caused by:

I Buffer overflow

I Integer overflow

I Double free

I Null pointer dereference

I Infinite loop

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Conclusion

I Only few bytes are hot in most input files, making directed
fuzzing essential in fuzz testing

I Taintscope is able to detect checksum check points in
programs, and checksum fields in input

I Taintscope is able to automatically create valid input passing
the checksum check

I Taintscope can be used on real-world application to find
serious vulnerabilities

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Conclusion

However:

I Taintscope cannot handle signed inputs.
I It can bypass the check and find vulnerabilities
I But cannot recreate valid input afterwards

I All benefits of directed fuzzing are lost when data is
encrypted, as every input byte will be detected as hot.

I Checksum location depends heavily on the availability of
well-formed and malformed inputs

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope



Questions?

Tielei Wang, Tao Wei, Guofei Gu, Wei Zou

Taintscope


