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Taintscope is:

I A Fuzzing tool

I Checksum-Aware

I Directed
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Why a new fuzzing tool?

Fuzzing tools already exist. They can be sorted in two categories:
I Mutation based

I Not very efficient
I Cannot generate valid input if a checksum mechanism is used

I Generation based
I Better performances
I Often implies having input specification, or source code.
I Tools exist to automatically get input format, but cannot

reverse engineer checksum algorithms.
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Why a new fuzzing tool?
Example of input using checksum:

int format

int fileSize

int width

int height

...

int checksum

void decode_input(File * f){

int recomputed_checksum = checksum(f);

int checksum_in_file = get_checksum(f);

if (recomputed_checksum != checksum_in_file)

exit();

width = get_width(f);

...
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Contributions

Taintscope offers several major contributions:
I Checksum-aware

I Detect checksum test in tested program
I Bypass checksum test when fuzz-testing
I Reconstruct input with valid checksum

I Directed
I Reduces the space of parameters to mutate
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Checksum-awareness

Checksum-aware fuzz-testing is done in 3 steps:

1. Pre-processing: locate checksum check points in the program

2. Fuzz-testing: mutate input without touching the checksum
data

3. Post-processing: for a crashing input, rebuild valid checksum
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Checksum-awareness
How to locate checksum test in program?
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Checksum-awareness
How to fuzz-test knowing the checksum-point?
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Checksum-awareness

Using the checksum locator it is possible to:

I Bypass checksum test by modifying the program

I Test input on the modified program to find crashing cases

But how to use those inputs on the real program?

I Need to reconstruct valid checksum
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Checksum-awareness
Using our previous example:

int format

int fileSize

int width

int height

...

int checksum

void decode_input(File * f){

int recomputed_checksum = checksum(f);

int checksum_in_file = get_checksum(f);

if (recomputed_checksum != checksum_in_file)

exit();
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Checksum-awareness

Why not use that checksum everytime instead of modifying the
program?

I In practice, finding back the checksum is more complicated

I That step is too expensive to do it thousands of time
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Checksum-awareness

So Taintscope is a checksum-aware fuzzing tool:

I Detects checksum tests

I Bypasses them for fuzz-testing

I Corrects input so they can work on original program
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Directed fuzzing

Fuzz-testing is expensive

I Large size of input

I Hundreds or thousands of bytes to mutate

I Very likely to generate rejected input
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Directed fuzzing

Directed fuzzing allows to find hot bytes in the input, which are:

I Are more likely to trigger bugs or crashes

I Are less likely to be the cause of rejected input

What is a hot byte?

I An input byte that will be used in a security-sensitive call
(such as malloc or strcpy)
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Directed fuzzing

How to find hot bytes?

I Start from a valid input

I Give all byte in the input a unique label

I Use a taint-tracer to see where the input bytes are used

If an input byte is used (directly or indirectly) in a sensitive
function call, this byte is a hot byte.
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Directed fuzzing

Taintscope finds those hot bytes and focuses on them for
fuzz-testing.

The hot-byte detection can be done simultaneously with the
checksum pre-processing step, leading to less overhead.
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Evaluation and results

Taintscope was evaluated on real-world applications such as:
I Image viewer

I Google Picasa
I Adobe Acrobat
I Image magick

I Media Players
I MPlayer
I Winamp

I Web Browsers

I libtiff

I XEmacs
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Evaluation and results

First test on hot bytes identification.

Application Input size # Hot bytes Run time

ImageMagick (png) 5149 9 1m54s

ImageMagick (jpg) 6617 11 1m13s

Picasa (png) 2730 18 5m16s

Acrobat (png) 770 21 3m8s

Acrobat (jpg 1012 13 4m14s
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Evaluation and results

Second test on Checksum localization

Application # points (1st) # points (2nd) Detected

Picasa (png) 830 1 Yes

Acrobat (png) 5805 1 Yes

TCPDump (pcap) 5 2 Yes

Tar 9 1 Yes

In practice : Around twenty runs to find the checksum location.
Done in tens of minutes.
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Evaluation and results

Third test on checksum reconstruction:

Format # checksum size time

PNG 4 4 271.9

PCAP 8 2 455.6

TAR 3 8 572.8
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Evaluation and results

Out of those tests, Taintscope has found 27 severe vulnerabilities
in common applications caused by:

I Buffer overflow

I Integer overflow

I Double free

I Null pointer dereference

I Infinite loop
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Conclusion

I Only few bytes are hot in most input files, making directed
fuzzing essential in fuzz testing

I Taintscope is able to detect checksum check points in
programs, and checksum fields in input

I Taintscope is able to automatically create valid input passing
the checksum check

I Taintscope can be used on real-world application to find
serious vulnerabilities
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Conclusion

However:

I Taintscope cannot handle signed inputs.
I It can bypass the check and find vulnerabilities
I But cannot recreate valid input afterwards

I All benefits of directed fuzzing are lost when data is
encrypted, as every input byte will be detected as hot.

I Checksum location depends heavily on the availability of
well-formed and malformed inputs
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Questions?
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