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Abstract

TaintTrace is a high performance flow tracing tool that
protects systems against security exploits. It is based on
dynamic execution binary rewriting empowering our tool
with fine-grained monitoring of system activities such as
the tracking of the usage and propagation of data origi-
nated from the network. The challenge lies in minimizing
the run-time overhead of the tool. TaintTrace uses a number
of techniques such as direct memory mapping to optimize
performance. In this paper, we demonstrate that TaintTrace
is effective in protecting against various attacks while main-
taining a modest slowdown of 5.5 times, offering significant
improvements over similar tools.

1 Introduction

Critical vulnerabilities and security exploits are the

norms in today’s computer systems. While the Internet has

enhanced our communication, it is a primarily unregulated

infrastructure where users are susceptible to malicious at-

tacks. Worms like CodeRed and CodeRedII are capable

of spreading to thousands of victims within minutes[14].

Signature-based scanning is often too slow to respond to

these attacks. Hence, a protection mechanism should pro-

vide immunity to known as well as unknown attacks.

Dynamic taint tracing has been proposed to counter ex-

ploits from most critical vulnerabilities. This technique

keeps track of the propagation of untrusted (tainted) data

during program execution. Tainted data may represent any

untrusted source such as user input, packets from a network

socket, or data read from specific files/devices. Taint trac-

ing is based on a program’s dynamic behavior without the

need of a priori knowledge of a signature, and is therefore

effective even against future attacks.

In a summary of vulnerabilities in the Red Hat operating

system, buffer overflow and overwrite attacks were identi-

fied as the dominant culprits [1]. Attacks on these vulner-

abilities can be easily avoided with data flow tracing. For

example, a buffer overflow vulnerability in ATPhttpd [11]

allows an attacker to overwrite the return address of a func-

tion when a maliciously-crafted string is entered as the file

name. The attacker can then direct program execution to

gain control of the host machine. However, if the execution

is monitored using dynamic taint tracing, the use of tainted

data as the return target can easily be detected.

Currently, there are three ways to track taint information

on data:

Interpreter-based approach: Perl, an interpreted lan-

guage, provides a taint mode to keep track of untrusted

data [2].

Architecture-based approach: [15] and [7] monitor taint

information propagation by adding architectural fea-

tures to processors.

Instrumentation-based approach: Different from the

previous two approaches, TaintCheck[10] inserts

additional code into original application to trace and

maintain information about the propagation.

However, these approaches have various drawbacks. For

instance, interpreter-based approaches can protect only

against vulnerabilities in language-specific code. An

architecture-based approach requires custom hardware sup-

port. Furthermore, hardware approach makes it difficult for

system administrators to tailor security policies for individ-

ual software applications. Instrumentation-based approach

suffers from significant performance overhead prohibiting

their use in real-time applications. For example, TaintCheck

[10] demonstrated a slowdown of over 30 times when com-

pared against native execution. The overhead is primarly

due to the way taint information on data is maintained and

propagated.

TaintTrace uses an instrumentation approach to dynami-

cally trace the propagation of taint data. It is based on Dy-

namoRIO [5] and consists of a number of optimizations to
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keep the overhead low. It is able to protect against a broad

set of exploits such as format string and buffer overflow.

Our approach has the following attractive properties:

• Language independence. Our tool operates at the bi-

nary level and can be used for applications written in

any programming language. Moreover, no source code

modification or recompilation is needed. This is espe-

cially useful in protecting legacy software from being

attacked.

• Comprehensive tracing. Our instrumentation can be

performed on all binary code in user mode, hence our

tool can trace data during the execution of the applica-

tion code as well as of all shared libraries.

• Real-time usage. By applying optimizations like di-

rect mapping, our tool is the first of its class to achieve

acceptable performance for practical use.

The remainder of the paper is organized as follows. Sec-

tion 2 gives an overview of our system. Section 3 describes

the details of our design decisions and implementation tech-

niques. Experimental results are discussed in Section 4.

Section 5 gives an overview of related work and previous

attempts at the problem. Finally, Section 6 concludes our

work and addresses potential issues to be explored as future

work.

2 System Overview

Our system consists of four components. A configura-
tion file is used to specify the security policy. The shadow
memory is a data structure used to maintain the taint infor-

mation of application data. Program monitor is the core

module used to perform the instrumentation, intercept sys-

tem calls, and enforce security policies. A customized

loader is used to load the application binary, shadow mem-

ory, and program monitor into different memory spaces.

To start an application, our loader first loads the various

components into specific memory spaces and then passes

control to the program monitor. The program monitor reads

the configuration file and sets up the tracing policy. It also

initializes the shadow memory, that is, it marks the un-

trusted sources specified by the configuration file as tainted,

and other sources as clear.

After initialization, the application executes under our

program monitor. All the code to be executed in user mode

is first copied into the code cache. This includes applica-

tion code and shared libraries. The program monitor inserts

additional code for maintaining, propagating, and check-

ing taint status before executing the code. In this way, we

achieve comprehensive information flow tracing. At crit-

ical program points specified by our policy (e.g. indirect

branch), run-time condition checking is performed to re-

strict sensitive data usage.

3 Design and Implementation

3.1 Policy

A configuration file is used to specify security policies

enforced by the program monitor. It is write-protected, re-

stricting modification privileges to system administrators.

The administrator can define data origins that should be

marked as untrusted. The origins may be network sockets,

specific input devices, or memory locations. In addition, ad-

ministrator can activate a set of tracing policies and enable

certain alerts.

We define the residence of tainted data to be a a mem-

ory location or a register. The taint tracing policy defines

how information flow is tracked as tainted data propagates

among different residences. This can happen in four ways:

1. Copy Propagation: Tainted data is copied from one

residence to another residence.

2. Arithmetic Propagation: The tainted data is the input

operand of a mathematical or logical transformation.

3. Address Propagation: Tainted data can be used to cal-

culate a memory address and hence, can propagate

sensitive data through a table lookup approach.

4. Control Propagation: Tainted data may also be

propagated through deliberate control transfer. For

instance, code like if(x == 1) y = 1; else
if(x == 2) y = 2; ... uses tainted data x to

influence the value of y.

Our default tracing policy covers propagation types 1

and 2. It maintains the invariant: the output (destination)
data is tagged as tainted if and only if any of the input
(source) data is tainted. This default policy does not trace

propagation type 3 because it is a rare source of attack in

practice. However, our tool can easily be extended to pro-

vide this as an option. Naive taint propagation of control-

dependent data (type 4) can lead to a large number of false

positives. This is a fundamental problem faced by previous

approaches [10, 6]. Instead, our tool allows users to specify

critical places in their program where control flow should

not be influenced by tainted data.

3.1.1 Taint tracing

Similar to Memcheck [12], we associate each general pur-

pose register and each byte of memory with a shadow mem-

ory byte to maintain its taint status: 1 represents tainted and

0 represents untainted. This information is propagated as

instructions are executed.
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3.1.2 Performance Challenges

Although the concept of taint tracing is simple, a similar ap-

proach described in [10] reports a slowdown of greater than

30 times when compared against native execution. Mini-

mizing the overhead is a challenging task.

There are two types of overhead. One is instrumenta-
tion overhead. This is the overhead caused by performing

the code instrumentation. The other is tracing overhead.

This is the overhead incurred by executing the instrumented

code to propagate taint status. We expect the tracing over-

head to be much larger than the instrumentation overhead.

This is because instrumentation is performed once for each

application instruction while the instrumented code may be

executed many times. This agrees with our experimental

findings. Therefore, our optimization focuses on the trac-

ing overhead, that is, reducing the number of instrumented

instructions for each application instruction.

The tracing overhead can be divided into 3 parts:

1. Shadow memory mapping. This is the overhead in

mapping operands of application instructions to their

shadow memory.

2. Register spilling. As a result of the dynamic insertion

of flow tracing instructions, some general purpose reg-

isters need to be saved and restored to avoid disrupting

the intended execution of the application code. For ex-

ample, if the instrumented code modifies the EFLAGs

register, this register must be saved prior to the exe-

cution of the instrumented code and the saved value

restored later.

3. Propagation overhead. This overhead is incurred in

order to propagate the taint information as data flow

from different residences.

l2 = l1[(addr >> 16) & 0xffff];
shadow = &l2[addr & 0xffff];

(a) C code for mapping addr to shadow.

01. mov addr → eax
02. sar eax, 10h → eax
03. and eax, 0ffffh → eax
04. mov [eax*4+l1] → eax
05. mov eax → l2
06. movzx word addr → eax
07. lea [eax*4+l2] → eax
08. mov eax → shadow

(b) Instructions generated by gcc for (a).

Figure 1. Shadow memory mapping with
page-table-like structure

3.1.3 Optimizations

We apply optimization techniques to reduce all of the above

tracing overheads. First, we realize the large mapping over-

head of page-table-like shadow memory structure used in

[10]. In Figure 1, it takes 8 instructions to locate the shadow

memory (shadow) for the operand (addr). We use a sim-

ple addressing strategy that maps the shadow memory byte

by adding a constant offset, shadow base, to the appli-

cation memory byte address. Our customized loader parti-

tions the memory space to support this mapping. This byte-

to-byte mapping makes taint propagation simple and effi-

cient. Second, we minimize register spilling with two tech-

niques. We use dead registers whenever possible. Also, we

check whether an application instruction will overwrite the

EFLAGs. If so, we need not save and restore the EFLAGs,

for example, in arithmetic instructions.

3.1.4 Implementation

We implemented our tool in Linux on x86 architecture us-

ing DynamoRIO to perform instrumentation. As a proof of

concept, our tool instruments all instructions except special-

ized instructions.

Our loader is implemented by modifying the source code

of Valgrind 2.4.0 [3]. It consists of two stages. In stage

1, it loads the code of stage 2 into the monitor space
(0xb0000000 to 0xbfffffff) and transfers control to

stage 2. In stage 2, the application and its shared libraries

are loaded into the application space (0x000000000 to

0x57f00000). It also loads DynamoRIO into the monitor

space and transfers control to DynamoRIO. DynamoRIO

loads our program monitor, dr-instrument.so, im-

plemented as a shared library, into the monitor space.

DynamoRIO constructs basic blocks for execution and

dr-instrument.so is used to perform the instrumen-

tation and intercept system calls.

We intercept system calls for several purposes: al-

locating shadow memory, marking taint status for data

read from files or socket, and modifying temporary file

operations. In Linux, a system call is implemented

by the soft interrupt instruction int80. The system

call ID and its parameters are passed through the gen-

eral purpose registers. dr-instrument.so inserts in-

structions to call our functions before syscall and

after syscall immediately before and after int80.

Function before syscall examines the system call ID.

If the system call is mmap or mmap2 requesting allocation

of memory, its parameters are modified to request memory

from the application space. Function after syscall ex-

amines the result returned from Linux, to check if the mem-

ory request is successful. If so, the corresponding shadow

memory is also allocated and initialized.

Another task of dr-instrument.so is to perform

the instrumentation. Due to the complexity of x86 instruc-

tion, instrumentation is difficult and tedious. Valgrind [9]

first translates x86 instruction to RISC-like Ucode, per-
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forms transformation and instrumentation on the Ucode,

and then translates Ucode back to x86 instructions. In this

way, it is easy to perform code transformation. However,

it cannot produce optimal instrumented code. For perfor-

mance reasons, we perform the instrumentation on the x86

instruction set directly using DynamoRIO. We focus mainly

on the following two types of instructions for tracing taint

data propagation: data movement instructions (e.g. mov,

push, and cmov) and arithmetic instructions (e.g. add
and sar).

The instrumented code for each application instruc-

tion performs the following tasks in sequence: (1) spill a

few registers for storing taint status, (2) map the original

operand (register or memory address) to its shadow mem-

ory, (3) load the taint status from shadow memory into the

spilled registers, (4) store the status into the destination’s

shadow memory, and (5) restore the spilled registers. If the

instrumented instructions modify the EFLAGs register, we

need extra instructions to save and restore the EFLAGs reg-

ister.

Our optimizations can reduce the number of instructions

for (1), (2) and (5) to zero in most situations. Also, the byte-

to-byte mapping between application memory and shadow

memory simplifies (3) and (4) significantly. Figure 2 and

Figure 3 show two examples of our instrumentation for

load and store, respectively. Here, the shadow base is

0x57f00000.

� load data from [edx+0x8] to eax
– mov [edx+0x8] → eax

(a) Before instrumentation.

� load taint status from shadow memory of [edx+0x8]
– mov [edx+0x57f00008] → eax
� store taint status into shadow memory of eax
– mov eax → [0xb11f1460]
� original instruction
– mov [edx+0x8] → eax

(b) After instrumentation.

Figure 2. Instrumentation for load

� store data from eax to [edx+0x8]
– mov eax → [edx+0x8]

(a) Before instrumentation.

� original instruction
– mov eax → [edx+0x8]
� load taint status from shadow memory of eax
– mov [0xb11f1460] → eax
� store taint status to shadow memory of [edx+0x8]
– mov eax → [edx+0x57f00008]
� restore eax
– mov [edx+0x8] → eax

(b) After instrumentation.

Figure 3. Instrumentation for store

We implemented four types of taint status checking.

First, for the printf routine family, we check whether the

format string argument is tainted or not. Second, we check

the taint status of the jump target, such as a return address or

function pointer. This is similar to program shepherding [8].

Third, we check, in the case of indirect jump, whether the

data storing the jump target is tainted. Finally, we examine

the taint status of some critical policy-specified variables or

control points.

3.1.5 Discussion

There is a trade-off between the efficiency of our direct

shadow memory mapping and the usage of memory space.

Our design reduces the number of instrumented code at

the cost of halving the effective application memory us-

age. Using a page-table-like shadow memory structure as in

TaintCheck [10] can keep the shadow memory usage mini-

mal since memory usage for maintaining taint status grows

on-demand. Therefore, our tool is more suitable for large

servers with sufficient memory and in cases where the ap-

plication performance is a concern.

With our design, the shadow memory becomes a crit-

ical area that must be protected from malicious access.

Our shadow memory mapping strategy can prevent at-

tackers from directly modifying the shadow memory as

long as the attackers’ code is under the control of Dy-

namoRIO. The reason is that when attackers issue an in-

struction to access an address addr in the shadow mem-

ory area, the instrumented code will access memory at

addr+shadow base, which is beyond the boundary of

the shadow memory area. This will cause an invalid mem-

ory access exception.

4 Experimental Evaluation

4.1 Effectiveness

We evaluated our taint tracing tool with synthetic ex-

ploits based on published vulnerabilities. Here, we present

the results for format string, buffer overflow, and critical

variable vulnerabilities.

4.1.1 Detecting format string attack

A sample program that mimics a real-world format string

attack was written to evaluate TaintTrace’s ability to de-

tect the attack. The program accepts a user-supplied format

string as the argument to printf(). The string has been

maliciously crafted to reveal sensitive program data. When

the same program was run through our tool, TaintTrace cor-

rectly detected that the printf() argument was tainted.
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4.1.2 Detecting buffer overflow attack

Buffer overflow vulnerabilities allow attackers to write be-

yond allocated addresses into memory that may be used to

store the return address of a function. Our test program

copies input from a file to an unchecked local buffer in

such a way that the return address is overwritten to point to

the sensitive function grant access(). TaintTrace cor-

rectly identified the occurrence of the tainted return address.

In addition, it successfully detected all the buffer overflow

attacks described in [16].

4.1.3 Detecting critical variable attack

We also ran TaintTrace against a malicious program in

which a variable that determines the control flow of the

program is overwritten by some maliciously devised input,

causing the program to grant unauthorized rights to the at-

tacker. Our taint tracing tool successfully determined that

the critical variable was tainted.

4.2 Performance

We benchmarked the performance of TaintTrace using a

subset of the industry-standard SPEC2000 INT. Our evalua-

tion is done on a system with 2.8GHz Pentium 4 processor,

1024K L2 Cache, 1024MB of RAM, and 2048M swap, run-

ning Fedora Core 3.

First, we profiled the distribution of execution time of ap-

plications running with our tracing tool. The result shows

that more than 95% of time is spent executing applica-

tion code and instrumented code for almost all benchmarks.

This justifies our earlier claim that tracing overhead is the

dominant factor.

In order to evaluate the overhead of taint tracing, we

ran TaintTrace with all security checks switched off. For

each workload, we measured the running time of native

execution, execution with our tracing tool, and execution

with Valgrind Memcheck. Memcheck uses page-table-like

shadow memory and traces status propagation in shadow

memory. Figure 4 compares the relative slowdown between

Valgrind Memcheck and our tracing tool under different

workloads.

As can be observed from the figure, TaintTrace outper-

forms Valgrind Memcheck greatly on most workloads. The

average relative slowdown of our tracing tool over all the

workloads is 5.53. It is much smaller than Valgrind Mem-

check’s average slowdown of 29.62. We did not compare

our tracing tool with TaintCheck [10] due to the lack of their

source code. However, as reported in their paper, their per-

formance is worse than Valgrind Memcheck.

The slowdown of our tracing tool is below 10 for most

workloads. Twolf with test input is the exception because its

native execution is already very fast, using only about 0.4s,

in which case our tracing tool spent a large portion of time

in initialization (about 80% according to our experiment).

Under those workloads with ref input, the slowdown of our

taint tracing tool is much smaller than those with test input.

It is important to note that most of the workloads we tested

are CPU-bounded and we expect the overhead of TaintTrace

to be even smaller with I/O-bound workloads.

Figure 4. Relative slow down

5 Related Work

5.1 Program Monitoring

Program Shepherding [8] is a run-time monitoring sys-

tem that keeps track of whether code has been modified

since it was loaded, and checks each control transfer to de-

termine if the destination basic block has been modified or

not. However, it cannot prevent attacks that exploit vulner-

abilities in existing code.

5.2 Taint Tracing and Analysis

One of the most familiar work on data tainting is Perl’s

taint mode which can prevent both obvious and subtle traps

in code execution. While in taint mode, data from poten-

tially untrusted sources, such as network sockets, is tagged

as tainted. The interpreter then vigilantly checks for mali-

cious behavior based on these taint tags.

TaintBochs [6], Information Flow Tracking [15] and Mi-

nos [7] all perform taint tracing at the hardware level. Taint-

Bochs [6] is built on top of the open source IA-32 sim-

ulator Bochs. It is a tool based on whole-system simula-

tion analyzing how sensitive data are handled in large pro-

grams. The information flow tracking project [15] designs a

hardware mechanism for tracking information flow dynam-

ically. It identifies spurious information flows and restricts
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their usage. Minos [7], is a micro-architecture that imple-

ments Biba’s low-water-mark integrity checking on individ-

ual words to detect attacks at run-time.

The main limitation of these three systems is that they re-

quire specialized hardware. Without this custom hardware,

hardware emulators can be used but performance becomes

unacceptable. Moreover, such designs are unable to offer

enough flexibility in configuring user-specific security poli-

cies.

TaintCheck [10] is the most similar to our work. It in-

struments code using Valgrind [3]. As mentioned before,

its page-table-like structure contributes to its over 30 times

slowdown when compared against native execution.

There are also a variety of related work in static program

analysis. [13] developed a static analysis system for auto-

matically detecting format string bugs at compile-time. [4]

adds system-specific extensions to the compiler and uses

tainting-style analysis to find security errors. Due to the

lack of run-time information, most of them are overly con-

servative and inaccurate.

6 Conclusion and Future Work

In this paper, we present TaintTrace, an efficient infor-

mation flow tracing and program monitoring security sys-

tem. Our system is able to protect against various forms of

attacks including the most widely exploited buffer overflow

and format string attacks. Our evaluation demonstrated that

TaintTrace is more efficient and practical than similar tools.

Currently, the taint tracing performs instrumentation

without knowledge of any global information and hence

produces some redundant code. By analyzing the data flow

of an entire basic block, we can further minimize the regis-

ter spilling overhead. This information can also help reduce

the overhead on redundant taint propagation. We will be

investigating these techniques as future work. Also, it is de-

sirable to provide system logging features and TaintTrace

can be extended to log system calls and other run-time in-

formation. If an intrusion is detected later, the logged in-

formation can help an administrator in analyzing the attack

and revealing vulnerabilities.
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