
TAJ: Effective Taint Analysis of Web Applications

Omer Tripp Marco Pistoia Stephen Fink Manu Sridharan Omri Weisman

IBM Software Group IBM T. J. Watson Research Center IBM Software Group

omert@il.ibm.com {pistoia,sjfink,msridhar}@us.ibm.com weisman@il.ibm.com

Abstract

Taint analysis, a form of information-flow analysis, establishes
whether values from untrusted methods and parameters may flow
into security-sensitive operations. Taint analysis can detect many
common vulnerabilities in Web applications, and so has attracted
much attention from both the research community and industry.
However, most static taint-analysis tools do not address criti-
cal requirements for an industrial-strength tool. Specifically, an
industrial-strength tool must scale to large industrial Web applica-
tions, model essential Web-application code artifacts, and generate
consumable reports for a wide range of attack vectors.

We have designed and implemented a static Taint Analysis for
Java (TAJ) that meets the requirements of industry-level applica-
tions. TAJ can analyze applications of virtually any size, as it em-
ploys a set of techniques designed to produce useful answers given
limited time and space. TAJ addresses a wide variety of attack vec-
tors, with techniques to handle reflective calls, flow through con-
tainers, nested taint, and issues in generating useful reports. This
paper provides a description of the algorithms comprising TAJ,
evaluates TAJ against production-level benchmarks, and compares
it with alternative solutions.

Categories and Subject Descriptors D.2.4 [Software Engineer-

• Cross-site scripting (XSS) attacks (the most common vulnera-
bility) may occur when a Web application accepts data originat-
ing from a user and sends it to another user’s browser without
first validating or encoding it. For example, suppose an attacker
embeds malicious JavaScript code into his or her profile on a
social Web site. If the site fails to validate such input, that code
may execute in the browser of any other user who visits that
profile.

• Injection flaws (the second most frequent vulnerability) arise
when a Web application accepts input from a user and sends it
to an interpreter as part of a command or query, without first
validating it. Via this vulnerability, an attacker can trick the
interpreter into executing unintended commands or changing
data. The most common attack of this type is Structured Query
Language injection (SQLi).

• Malicious file executions (the third most common vulnerability)
happen when a Web application improperly trusts input files or
uses unverified user data in stream functions, thereby allowing
hostile content to be executed on the server.

• Information leakage and improper error-handling attacks (the
sixth most common vulnerability) take place when a Web ap-
plication leaks information about its own configuration, mech-



Reality Check

• Anyone read this 
paper?

• Taint Analysis

• Thin Slicing

• Flow-sensitive 
Analysis

• Context-sensitive 
Pointer Analysis



Taint Analysis Problem

Source Sink

Sanitizer

Sanitizer

All paths from a source to a sink
should pass “Sanitizer” function

2



Taint Analysis Problem

Source Sink

Sanitizer

Sanitizer

All paths from a source to a sink
should pass “Sanitizer” function

input comment save comment to DB
escape function

escape function

Example

2



Taint Analysis Problem

Source Sink

Sanitizer

Sanitizer

All paths from a source to a sink
should pass “Sanitizer” function

input comment save comment to DB
escape function

escape function

Example

2



Taint Analysis Problem

Source Sink

Sanitizer

Sanitizer

All paths from a source to a sink
should pass “Sanitizer” function

input comment save comment to DB
escape function

escape function

Example

2



Taint Analysis Problem

Source Sink

Sanitizer

Sanitizer

All paths from a source to a sink
should pass “Sanitizer” function

input comment save comment to DB
escape function

escape function

Example

2



Taint Analysis Problem

Source Sink

Sanitizer

Sanitizer

XSS is #1 Vulnerability
(even more than Buffer Overflow)

input comment save comment to DB
escape function

escape function

2



Key Idea : Thin Slicing

Source1

Source2

Source3

Sink1

Sink2

Source4

Sink3

Sanitizer1

Sanitizer3

Sanitizer4

Sanitizer5

Sanitizer2

Thin Slicing Program 
with Each Source

3



Source1

Sink1

Sink2 Sink3

Sanitizer1

Sanitizer3

Sanitizer2

Thin Slicing Program 
with Each Source

Key Idea : Thin Slicing

3



Source2

Sink1

Sink2

Sanitizer3

Sanitizer2

Thin Slicing Program 
with Each Source

Key Idea : Thin Slicing

3



Source3

Sink1

Sink2 Sink3

Sanitizer1

Sanitizer4

Sanitizer2

Thin Slicing Program 
with Each Source

Key Idea : Thin Slicing

3



Sink1

Source4

Sanitizer5

Thin Slicing Program 
with Each Source

Key Idea : Thin Slicing

3



Thin Slice from a source 
= Statements data-dependent on the source
=> Much smaller and more understandable

Sink1

Source4

Sanitizer5

temp1 := source4 + "\n"

ret := ret + ret

Key Idea : Thin Slicing

3



Source1

Source2

Source3

Sink1

Sink2

Source4

Sink3

Sanitizer1

Sanitizer3

Sanitizer4

Sanitizer5

Sanitizer2

Key Idea : Hybrid Thin Slicing

Source1

Sink1

Sink2 Sink3

Sanitizer1

Sanitizer3

Sanitizer2

Source3

Sink1

Sink2 Sink3

Sanitizer1

Sanitizer4

Sanitizer2

Sink1

Source4

Sanitizer5

Source2

Sink1

Sink2

Sanitizer3

Sanitizer2

Call Graph

Slice

Slice

Slice

Slice

4



Source1

Source2

Source3

Sink1

Sink2

Source4

Sink3

Sanitizer1

Sanitizer3

Sanitizer4

Sanitizer5

Sanitizer2

Key Idea : Hybrid Thin Slicing

Source1

Sink1

Sink2 Sink3

Sanitizer1

Sanitizer3

Sanitizer2

Source3

Sink1

Sink2 Sink3

Sanitizer1

Sanitizer4

Sanitizer2

Sink1

Source4

Sanitizer5

Source2

Sink1

Sink2

Sanitizer3

Sanitizer2

Program

Call Graph

Slice

Slice

Slice

Slice

Graph
Construction

via

Pointer Analysis

4



Key Idea : Hybrid Thin Slicing

Precision

Scalab
ility CI(Context-insensitive)

Thin Slicing

CS(Context-sensitive)
Thin Slicing

5



Key Idea : Hybrid Thin Slicing

Precision

Scalab
ility CI(Context-insensitive)

Thin Slicing

CS(Context-sensitive)
Thin Slicing

Hybrid Thin Slicing

flow-insensitive about heap
flow- and context-sensitive about local variable

5



Key Idea : Hybrid Thin Slicing

Precision

Scalab
ility CI(Context-insensitive)

Thin Slicing

CS(Context-sensitive)
Thin Slicing

<
better

precision

<
better

scalability

Hybrid Thin Slicing

flow-insensitive about heap
flow- and context-sensitive about local variable

5



Key Idea : Hybrid Thin Slicing

* Flow- and context-sensitive about local variable

6

* Flow-insensitive about heap
• For a statement x.f := e, we add an edge to each statement

with an expression w.f on its right-hand side, such that the pre-
computed points-to analysis indicates x may-alias w.

x.f := e

_ := ... w1 ...

_ := ... w2 ...

x may alias w1 and w2

call5

call1

entry

exit

return4

return6

(1)

(2)

(3)

(4)

(5)

(6)

f

context-insensitive

call5

call1

entry

exit

return4

return6

(1)

(2)

(3)

(4)

(5)

(6)

f

1-level call-string 
context-sensitive

c1

c1

c5
c5



Other Contributions

• Effective Model for Static Analysis of Web Applications

• Bounded Analysis Techniques

Support reflection, tainted flow through containers, detection of taint 
in the internal state of objects, JSP, EJB, Struts and Spring frameworks.

Support a prioritization policy that focuses the analysis on portions of 
the Web application that are likely to participate in taint propagation.

7



Thank You


