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ABSTRACT
We present discrete stochastic mathematical models for the
growth curves of synchronous and asynchronous evolution-
ary algorithms with populations structured according to a
random graph. We show that, to a good approximation, ran-
domly structured and panmictic populations have the same
growth behavior. Furthermore, we show that global selec-
tion intensity depends on the update policy. The validity of
the models is confirmed by a comparison with experimental
results of simulations. We also present experimental results
on small-world and scale-free population graph topologies.
We show that they lead to qualitatively similar results. How-
ever, the different nature of the nodes can be exploited to
obtain a more varied evolutionary behavior.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search

General Terms
Algorithms

Keywords
Evolutionary algorithms, Takeover times, Structured popu-
lations, Small-World networks

1. INTRODUCTION
Spatially structured populations have been proposed in

evolutionary computation as a means for improving the search
properties of EAs. In fact, it has often been experimentally
shown that topology affects population dynamics and that
spatially structured populations have distinctive advantages
over panmictic (mixing) ones (two recent reviews of the field
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are [1, 4]). Although many topologies are in principle pos-
sible, the simplest and those that are best known both ex-
perimentally and theoretically are the so-called island or
multipopulation models, and the cellular models. System-
atic studies, both experimental and theoretical, of the cellu-
lar model of EAs (cEAs) have been published in the last few
years. In particular, models for the selection intensity in reg-
ular one-dimensional and two-dimensional grids have been
proposed in [8, 7, 9]. These models correctly predict the ex-
perimental growth curves in synchronous and asynchronous
cellular EAs. Being able to understand, and possibly con-
trol, selection intensity is important since selection strength
is related to the exploration vs. exploitation trade-off of the
algorithm.
In this paper we study irregular topologies for the cellu-

lar model, in order to understand the behavior of the global
selection intensity with respect to the known bounding pan-
mictic and regular lattice cases. The most general irregular
topology is the random graph, which is why we concentrate
on this kind of structure in the first part of the paper. While
the random graph is a well-studied structure in mathemat-
ics, biology, and the social sciences, it has not, to our know-
ledge, been investigated in cEAs. For example, models of
infection transmission over a population of individuals with
random links among them have been known for years [12].
Likewise, information transmission in society has been some-
times modeled using a random graph structure [12].
Recently, families of graphs, collectively called small world
that are not regular nor completely random have attracted
a lot of interest [12] because of their striking topological and
dynamical properties. In the second part of the paper we
study selection intensity on populations structured accord-
ing to small-world topologies for the first time, as far as we
know.
Most propagation models are based on differential equa-
tions. Here we propose instead a discrete model, which
seems to us more suitable for finite evolving spatial pop-
ulations.
After a brief introduction to cEAs, we describe their syn-

chronous and asynchronous variants and the concept of take-
over time. Next, we present our models, and specialize them
for the random graph cases, comparing them with simulation
data. Then small-world population topologies are briefly in-
troduced and experiments are conducted to investigate the
behavior of the global selection pressure on these structures.
Finally, we present our conclusions and ideas for future work.
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2. TAKEOVER TIMES IN CEAS
Synchronous and Asynchronous cEAs. In the cellular
model individuals are structured according to a given spatial
topology, e.g. a ring or a grid, and each individual only
interacts with a limited number of surrounding individuals
called its neighborhood.
Updating a cell (individual) in a cEA means selecting two

parents in the individual’s neighborhood (including the in-
dividual itself), applying genetic operators to them, and fi-
nally replacing the individual with the best offspring. The
replacement could also be probabilistic. In a conventional
synchronous cEA, all the individuals in the grid are updated
simultaneously. This step makes up a generation, and the
process is repeated until a termination condition is reached.
There exist potentially many ways for asynchronously up-

dating the cells of a cEA (see, for instance, [16]). The most
general update scheme is independent random ordering in
time, which consists of randomly choosing the cell to be up-
dated next with replacement. This update policy will be
called uniform choice (UC) in the following. We also con-
sider another update method, new random sweep (NRS), in
which the next cell to be updated is chosen with uniform
probability without replacement; this will produce a certain
update sequence (cj

1, c
k
2 , . . . , c

m
n ), where cp

q means that cell
number p is updated at time q and (j, k, . . . ,m) is a per-
mutation of the n cells. A new random cell permutation is
generated for each sweep through the array. A time step is
defined as updating n times sequentially, which corresponds
to updating all the n cells in the grid for the synchronous
and the asynchronous NRS, and possibly less than n differ-
ent cells in the asynchronous UC method, since some cells
might be updated more than once during a single time step.
Takeover Time. In order to study the induced selection
pressure without introducing the perturbing effect of recom-
bination or mutation operators, a standard technique is to
let selection be the only active operator, and then moni-
tor the growth rate of an initial copy of the best individual
over time [10, 5]. The takeover time is the time it takes
for the single best individual to conquer the whole popula-
tion. A shorter takeover time thus means a higher selection
pressure. The shape of the growth curve, representing the
percentage of the best individual in the population with re-
spect to time is also of interest. It has been shown that
going from a panmictic population to one that is spatially
structured as a lattice of the same size, the global selection
pressure induced on the entire population is qualitatively
similar but weaker [14]. Sarma and De Jong [15] performed
a more detailed empirical analysis of the effects of the neigh-
borhood’s size and shape on the local selection algorithms.
They were able to show that propagation times are closely
related to the neighborhood size, with larger neighborhoods
giving rise to stronger selection pressures. Gorges-Schleuter
studied growth curves for local Evolution Strategies in [11]
with similar results for populations structured as a ring or
a torus. Quantitative models for the growth curves for the
ring and the torus, both for synchronous as well as asyn-
chronous updates, have recently been presented in [13, 8,
7]. In the following sections we present general models for
the propagation of the best individual and then we examine
the random graph case in detail. Small-world graphs will be
dealt with in section 6.

3. DIFFERENCE EQUATION MODELS
Let us consider the random variables Vi(t) ∈ {0, 1} indi-

cating the presence in cell i (1 ≤ i ≤ n) of a copy of the
best individual (Vi(t) = 1) or of a worse one (Vi(t) = 0) at
time step t, where n is the the population size. The random
variable

N(t) =
nX

i=1

Vi(t)

denotes the number of copies of the best individual in the
population at time step t. Initially Vi(1) = 1 for some indi-
vidual i, and Vj(1) = 0 for all j �= i.
Following Rudolph’s definition [13], if the selection mech-

anism is non-extinctive, the expectation E[T ] with T =
min{t ≥ 1 : N(t) = n} is called the takeover time of the
selection method. In the case of spatially structured pop-
ulations the quantity Ei[T ], denoting the takeover time if
cell i contains the best individual at time step 1, is termed
the takeover time with initial cell i. Assuming a uniformly
distributed emergence of the best individual among all cells,
the takeover time is therefore given by

E[T ] =
1

n

nX
i=1

Ei[T ].

In the following sections we give the recurrences describing
the growth of the random variable N(t) in cEA evolving
populations structured on graphs for the synchronous and
the two asynchronous update policies described in Section 2.
In general, such recurrences take the common form

E[N(t)] =
nX

i=1

P [N(t− 1) = i] (i+∆i(t− 1)) , (1)

where ∆i(t− 1) = N(t)−N(t− 1), given N(t− 1) = i, is a
random variable as well. This random variable will depend
on the update method. Let’s suppose that at time step t−1
there are i copies of the best individuals. At the next time
step each of the other n− i individuals will contain a copy
of the best with a probability depending on its number of
neighbors, the number of its neighbors containing a copy of
the best and the selection operator. The first two conditions
can be seen as random variables, both depending on the
topology of the population.
Therefore, in Equation 1 we have

∆i(t− 1) =

n−iX
r=1

n−1X
j=1

P [K = j]

jX
l=0

P [Bj = l]psel(j, l), (2)

where K denotes the number of neighbors of an individual,
Bj the number of copies of the best individual in a neigh-
borhood of j individuals, and psel(j, l) is the probability of
selecting a copy of the best individual among the l best of j
neighbors.

4. THE RANDOM GRAPH TOPOLOGY
A random graph with n vertices can be constructed by

taking all possible pairs of vertices and connecting each pair
with probability q (and thus not connecting it with proba-
bility 1 − q) [12]. In the general case of a cEA evolving a
population structured as a random graph with probability
0 < q < 1 of having an edge between any pair of vertices, the
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random variables K and Bj of equation 2 have the following
probability functions:

P [K = j] = qj(1− q)n−1−j ;

P [Bj = l] =


1 if l = ij

n−1
,

0 otherwise,

since any of the j neighbors of an individual has a probability
i/(n− 1) of containing a copy of the best individual.
Cellular evolutionary algorithms are good candidates for

using selection methods that are easily extensible to small
local pools such as ranking and tournament. The equations
for individual growth in the case of those customary local
selection policies are mathematically rather complicated, in-
volving higher moments of the distribution. We therefore
use a simplified selection policy, called Uniform Selection,
which gives rise to a useful and interesting model.
This selection mechanism randomly selects an individual

in the selection pool (i.e. the neighborhood of a given indi-
vidual). The selected individual then replaces the considered
individual if it has a better fitness. Such operator is similar
to the local parent selection introduced by Gorges-Schleuter
in [11], except that a (µ + λ/µ, ν)-LES is used instead of a
(µ, λ/µ, ν)-LES, with κ = ∞ (κ being the upper limit for
the life span) and ρ = 1 (ρ being the number of selected
ancestors).
In a cEA whose population is structured as a random

graph, since the number of edges incident on a given edge
is a binomial random variable, we can use the mean field
hypothesis, which consists in taking for all vertices the aver-
age number of neighbors q(n − 1). In this way, any vertex
“sees” the same isotropic average environment. Under this
hypothesis, the expected number of copies of the best indi-
vidual in a neighborhood not containing a copy of the best
at time step t is E[Bq(n−1)] = qN(t). We will see that this
approximation is good unless the probability q is very low.
In the case of uniform selection, the probability that a copy
of the best is selected at time step t is

prnd
sel (q(n− 1), qN(t)) =

qN(t)

q(n− 1)
=

N(t)

n− 1
. (3)

This approximation, valid when the mean field hypothesis
can be used, gives a probability equal to the panmictic case,
where the graph describing the topology of a population is a
complete graph. In fact, for this structure, each individual
has exactly K = n− 1 neighbors, and the number of copies
of the best individual in a neighborhood not containing a
copy of the best at time step t is Bn−1 = N(t). In the case
of uniform selection, the probability that a copy of the best
is selected at time step t is

ppan
sel (n− 1, N(t)) =

N(t)

n− 1
. (4)

Therefore, the selection pressure for a randomly structured
population is similar to that of a panmictic one, when the
mean field hypothesis can be applied.
For synchronous update, using equations 1 and 4, the re-

currence for N(t) can be written as
N(0) = 1

E[N(t)] = E[N(t− 1)] + (n− E[N(t− 1)])E[N(t−1)]
n

,

which is a typical form of a discrete logistic recurrence.
In the asynchronous new random sweep case, the n −

E[N(t − 1)] individuals not containing a copy of the best

in the previous time step will contain a copy of the best
following the recurrence8<

:
E[M(1)] = E[N(t− 1)]

`
1 + 1

n
)
´

E[M(τ )] = E[N(t− 1)]
`
1 + 1

n

´τ
,

where M(τ ) is the probability that individual at position τ
in the sweep, among those not containing the best, will be
taken over. Therefore, the growth of N(t) can be described
by the following recurrence:

N(0) = 1

E[N(t)] = E[N(t − 1)] +
`
1 + 1

n

´n−E[N(t−1)]
.

When employing an asynchronous uniform choice update
policy, the growth of random variable N(u) in terms of single
update step u can be described by the recurrence:

N(0) = 1

E[N(u)] = E[N(u− 1)] + n−E[N(u−1)]
n

E[N(u−1)]
n−1

.

5. EXPERIMENTAL RESULTS
We report experimental data averaged over 100 indepen-

dent runs for the three update policies and for panmictic and
randomly structured populations, using uniform selection
described and modeled in Section 4. Although, as stated in
that section, we do not provide mathematical models for lin-
ear ranking and binary tournament selection, experiments
using those selection methods, not shown here for lack of
space, give qualitatively similar results. Note also that, al-
though the curves are represented as being continuous for
the sake of clarity, they are obviously discrete. In all the
curves of Figure 1 the population grows exponentially at
first and then saturates, giving the usual sigmoidal shape
for the growth curves. However, one can clearly distinguish
the three update policies with NRS being faster than syn-
chronous. The UC policy starts similar to NRS and then
joins the synchronous case when saturation sets in.
Figure 1 (a) depicts the theoretical curves correspond-

ing to the three update modes given in the previous sec-
tion. Of course, according to the mean field approximation,
the panmictic and the random graph cases are actually the
same. This is clearly confirmed by Figures 1 (b) and (c),
which show, respectively, the panmictic experimental curves
and the random graph case with probability q = 0.1. Fig-
ure 1 (d) shows the experimental random graph case with
q = 0.01: we observe that for low probabilities the mean field
hypothesis gives a worse approximation of the experimental
results. It should be noted that for low q values there is a
non-negligible probability that the generated random graph
is disconnected. To avoid these cases, we only consider con-
nected graphs in our experiments, randomly sampled among
the family Gn,q of all possible random graphs with n vertices
and edge probability q.
Table 1 gives the predicted and the experimental average
takeover times for the three update modes for panmictic
and randomly structured populations.
In Figures 2 and 3 we provide a direct comparison by su-

perposing on the same graph the theoretical curves for the
synchronous (a), asynchronous NRS (b), and asynchronous
UC (c) updates, and ten randomly chosen corresponding
experimental curves. This is more informative than a com-
parison with the average experimental curves since the the-
oretical result is an expectation curve.
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Figure 1: Theoretical growth curves for the three update policies (a). Experimental growth curves for pan-
mictic (b), random graph with q = 0.05 (c), and random graph with q = 0.01 (d), for the three updates policies.
Population size is 1024. The experimental curves in (b), (c), and (d) are averages over 100 independent runs.

Synchronous Asynchronous NRS Asynchronous UC
Predicted Takeover Time 14 11 16

Panmictic Mean Takeover Time 14.65 (1.43) 11.47 (1.28) 16.6 (1.73)
Random (q=0.05) Mean Takeover Time 15.49 (1.46) 12.2 (1.2) 17.07 (1.9)
Random (q=0.01) Mean Takeover Time 19.5 (2.55) 15.56 (2.01) 20.2 (2.09)

Table 1: Predicted takeover times and experimental mean takeover times (with corresponding standard
deviations) for the three update methods. The experimental results are obtained over 100 independent runs.
Population size is 1024 in all cases.
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Figure 2: Theoretical curve (black) and ten randomly chosen experimental curves (gray) for a random graph
population with q = 0.05 using synchronous update (a), asynchronous NRS (b), asynchronous UC (c).

Figure 2 reports results for the random graph with q =
0.1; it is clear that there is a very good agreement between
the prediction of the models and experiments. As stated

above, we cannot hope that such an agreement also holds
for random graphs with very low probability q. In fact,
Figure 3 shows that the approximation is much worse. This
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Figure 3: Theoretical curve (black) and ten randomly chosen experimental curves (gray) for a random graph
population with q = 0.01 using synchronous update (a), asynchronous NRS (b), asynchronous UC (c).

is understandable qualitatively on the following grounds. In
a random graph the node degree is binomially distributed
by construction. Therefore, for 1024 vertices, the average
number of neighbors of an individual is about 50 for q = 0.05
and about 10 for q = 0.01. The standard deviation in the
latter case is around 3, while it is around 7 in the former
in absolute terms; however, in terms of relative deviation
(i.e., σ/µ), we have around 1/3 for q = 0.01, ca. 228% more
than around 1/7 for q = 0.05. This means that a significant
number of nodes will have much fewer edges than the average
in the q = 0.01 case, which will slow down the propagation
rate of the best individual.

6. SMALL-WORLD GRAPH TOPOLOGIES
It has been shown in recent years that graphs that occur

in many social, biological, and man-made systems are often
neither completely regular, such as lattices, nor completely
random [18, 17]. They have instead what has been called
a small-world topology, in which nodes are highly clustered
yet the path length between them is small. This behavior is
due to the presence of shortcuts i.e., a few direct links be-
tween nodes that would otherwise be far removed. Following
Watts’ and Strogatz’s discovery, Barabasi et al. [3] found
that several important networks such as the World Wide
Web, Internet, author citation networks, and metabolic net-
works among others, also have the small world property but
their degree distribution function differs: they have more
nodes of high degree that are likely in a random graph of
the same size and edge density. These graphs have been
called scale-free because the degree probability distribution
function follows a power law. In the next sections we briefly
describe how small-world and scale-free graphs can be con-
structed, more details can be found in [2, 12].

6.1 The Watts-Strogatz Model
Although this model has been a real breakthrough in the

technical sense when it appeared, today it is clear that it is
not a good representation of real networks as it retains many
features of the random graph model. In fact, scale-free and
other types of graphs have been successively proposed as
more faithful description of the kind of big technological,
human, and biological networks we observe. In spite of this,
the Watts-Strogatz model, because of its simplicity of con-
struction and the richness of behavior, is still an interesting
topology in artificial systems where there is no “natural”
constraint on the type of connectivity.
According to Watts and Strogatz [18], a small-world graph

can be constructed starting from a regular ring of nodes in
which each node has k neighbors (k 	 N) by simply syste-
matically going through successive nodes and “rewiring” a
link with a certain probability β. When the edge is deleted,
it is replaced with an edge to a randomly chosen node. If
rewiring an edge would lead to a duplicate edge, it is left
unchanged. This procedure will create a number of shortcuts
that join distant parts of the lattice. Figure 4 schematically
depicts this process for a small ring with k = 4.

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

(a) (b)

Figure 4: (a) regular one-dimensional lattice with
k = 4. (b) a small-world graph obtained by randomly
rewiring some of the nearest neighbor links.

Shortcuts are the hallmark of small worlds. While the av-
erage path length 1 between nodes scales logarithmically in
the number of nodes for a random graph, in Watts-Strogatz
graphs it scales approximately linearly for low rewiring prob-
ability but goes down very quickly and tends to the ran-
dom graph limit as β increases. This is due to the progres-
sive appearance of shortcut edges between distant parts of
the graph, which obviously contract the path lengths be-
tween many vertices. However, small worlds typically have
a higher clustering coefficient 2 than random graphs. Small-
world networks have a degree distribution P (k) i.e., the
probability that that a randomly selected vertex has degree
k, that is close to binomial for intermediate and large values
of the rewiring probability β as for a random graph. P (k)

1The average path length L of a graph is the average value
of all pair shortest paths.
2The clustering coefficient C of a node is a mesure of the
probability that two nodes that are its neighbors are also
neighbors among themselves. The average 〈C〉 is the average
of the Cs of all nodes in the graph.
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tends to a delta function for β → 0 since in this case we
recover the regular lattice.

6.2 The Barabási-Albert Model
Albert and Barabási were the first to realize that real net-

works grow incrementally and that their evolving topology is
determined by the way in which new nodes are added to the
network. They proposed an extremely simple model that is
still useful based on these ideas [3]. At the beginning one
starts with a small clique (a completely connected graph) of
m0 nodes. At each successive time step a new node is added
such that its m ≤ m0 edges link it to m nodes already in the
graph. When choosing the nodes to which the new nodes
connects, it is assumed that the probability π that a new
node will be connected to node i depends on the degree ki

of i such that nodes that have already many links are more
likely to be chosen over those that have few. This is called
preferential attachment and is an effect that can be observed
in real networks. The probability π is given by:

π(ki) =
kiP
j kj

,

where the sum is over all nodes already in the graph. Barabási
and Albert have shown that the model evolves into a sta-
tionary scale-free network with a power-law probability dis-
tribution for the vertex degree P (k) ∼ k−γ , with γ ∼ 3.
There exist other more general and more refined models that
are capable of producing graphs with a power law degree dis-
tribution (see, e.g. [6]). However, the basic Barabási-Albert
model is enough for our initial investigation.

6.3 Experimental Results on Small Worlds
In all the experiments described below we have used a

population size of 1024, and a total number of edges of the
same order of that of a random graph with q = 0.01. The
selection mechanism employed has been uniform selection
in all cases. All the curves are averages of 100 independent
runs.

6.3.1 Watts-Strogatz Model
We have used Watts’ small world construction with 1024

individuals starting from a ring with k = 10 neighbors i.e., a
regular radius-five one-dimensional lattice. In this way the
mean number of neighbors (10.24) is equal to that of random
graphs with q = 0.01.
Figure 5 shows the growth curves with synchronous up-

date for different values of the rewiring probability β and
for the ring. The trend is clear: increasing β from 0 (the
ring case), to 0.8 (topologies approaching that of a random
graph), the selection pressure increases slowly at first and
then very quickly around β = 0.005. This can be easily
understood if one takes into account how the mean path
length and the clustering coefficient vary in a small-world
graph. From Figure 6 (redrawn from [17]) one can see that
for β around 0.005 there is a sudden drop in the average
path length from values that pertain to the lattice to val-
ues that are close to those of a random graph. This means
that, suddenly, many short paths become available through
the network between most nodes, which explains the higher
growth rate.
Figure 7 depicts the growth curves for synchronous up-

date, and for the two asynchronous policies in small worlds
with β = 0.005. As for panmictic populations and random
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Figure 5: Growth curves for synchronous update for
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graphs, new random sweep is faster than uniform choice,
which is in turn faster than synchronous. The experimen-
tal takeover time values are to be compared with those of
random graphs with the same average number of edges i.e.,
figure 1 (d). Clearly, the corresponding small-world graphs
induce a lower global selection pressure.

6.3.2 Barabási-Albert Model
Scale-free graphs have been generated according to the

Barabási-Albert model of section 6.2. We start from a clique
of m0 = 14 nodes, and we add 1024−14 = 1010 individuals,
each creating m = 10 edges with preferential attachment,
following the algorithm.
Figure 8 shows the behavior of the growth curves for the
three update policies used here. For the position of the
initial best individual any vertex is equally likely. The order
of the curves is the same as that observed for random graphs
and Watts-Strogatz small-world networks. The inversion in
the last part of the uniform choice curve is due to the fact
that cells are chosen with replacement, and thus the last
few non-conquered individuals are increasingly unlikely to
be chosen. Apart from this effect, the takeover times are
very close to those observed in the corresponding random
graphs. This confirms that scale-free graphs are a topology
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Figure 7: Growth curves for synchronous, new ran-
dom sweep, and uniform choice asynchronous up-
date. The rewiring probability is β = 0.05. Please
note the change of horizontal axis scale with respect
to Figure 5.

in which propagation is at least as fast as for random graphs
which, for example, has important consequences in infection
rates [12].
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Figure 8: Growth curves for synchronous, new ran-
dom sweep, and uniform choice asynchronous up-
date in scale-free graphs. Initial best individual uni-
formly distributed at random among the nodes.

But scale-free graphs have other surprising properties. In
particular, those networks are extremely tolerant to attacks
to randomly chosen target nodes, which is due to the fact
that there are few important (highly connected) nodes and
many unimportant (sparsely connected) ones. On the other
hand, deliberate suppression of highly connected nodes is
likely to produce a lot of damage [2]. The different status of
highly connected nodes is demonstrated in the following ex-
periment, where the initial best individual has always been
placed in a “hub” node (see Figure 9).
The takeover time is very short; shorter than the random

graph case (see Figure 1 and Table 1). This is also known
to happen in infectious processes, where scale-free commu-
nication patterns have the effect of eliminating the so-called
infection threshold [12].
Table 2 summarizes numerical results of the takeover times

in Watts-Strogatz and scale-free topologies for the synchronous
and the two asynchronous updates.
One could probably exploit the effect of small-world topolo-

gies on the dynamical properties of evolutionary computa-
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Figure 9: Growth curves for synchronous evolution
in scale-free graphs when the initial best individual
is placed on a highly connected node.

tion processes by letting the topology dynamically adapt or
self-organize in order to control the selection pressure, and
thus the explorative or exploitative characteristics of the al-
gorithm.

7. CONCLUSIONS
In the first part of this study we presented general stochas-

tic models for individual growth that are valid for any graph-
structured population, including the classical panmictic EA
as a limiting case. We have given discrete difference equa-
tions for the synchronous and two typical asynchronous cell
update mechanisms, which are new, as far as we can tell, at
least for the asynchronous cases. These discrete logistic re-
currence equations seem to us more adequate for finite pop-
ulations than the usual continuous logistic fitting. Although
finding closed forms for the recurrences appears to be math-
ematically very difficult, the comparison of predicted growth
curves with experimental ones confirms that the models are
a good description of the propagation phenomena. We have
used a selection method that lends itself to an approximate
mathematical treatment in terms of the mean-field hypothe-
sis. Under this hypothesis, we found that the panmictic and
random graph cases have the same behavior, unless the edge
probability of the random graph is very small. A practical
consequence of our results is that it appears unnecessary
to use the whole population as a selection pool, given that
the random graph case using a fraction of the population
shows the same behavior as the panmictic one. The models
and the experiments also confirm previous results for regular
lattices [8, 7] i.e. that the selection pressure can be varied
using different updating schemes. In the future we intend
to pursue the study of propagation under classical selection
schemes such as linear ranking and tournament.
In the second part of the paper we presented an experimental
investigation of individual growth in a couple of families of
networks that are neither regular nor random: the Watts-
Strogatz model and the scale-free Barabási-Albert model.
We have empirically shown that the individual propaga-
tion properties and the global induced selection pressure
are qualitatively similar to those found in panmictic pop-
ulations and random graphs. However, the inhomogeneity
of these small-world networks opens-up new possibilities for
evolutionary computation when the nature of a given node
is taken into account. Thus, for example, hubs in scale-
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Synchronous Asynchronous NRS Asynchronous UC
Ring (β = 0) 279.64 (9.35) 201.51 (9.03) 229.30 (10.54)

WS (β = 0.001) 168.89 (45.93) 116.50 (27.12) 135.15 (35.10)
WS (β = 0.005) 80.16 (14.47) 60.18 (8.75) 70.43 (12.08)
WS (β = 0.02) 45.96 (4.32) 36.58 (4.15) 41.31 (4.27)
WS (β = 0.8) 19.16 (1.69) 15.43 (1.76) 20.50 (2.46)

BA 17.94 (2.59) 14.60 (2.66) 19.77 (3.55)

Table 2: Experimental mean takeover times (with corresponding standard deviations) for the three update
methods and for the small-world topologies discussed in the text. WS stands for Watts-Strogatz and BA
stands for Barabási-Albert. The experimental results are obtained over 100 independent runs. Population
size is 1024 in all cases.

free networks largely determine the dynamical properties of
the population. By controlling these features, or letting the
population network to self-organize, it is possible to change
the selection pressure and thus the algorithm characteristics
within a wide range. Future work along these lines includes
using small-world structured populations together with se-
lection and variation operators on benchmarks and real-life
problems.
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of the Seventh International Conference on Genetic
Algorithms, pages 181–186. Morgan Kaufmann, 1997.

[16] B. Schönfisch and A. de Roos. Synchronous and
asynchronous updating in cellular automata.
BioSystems, 51:123–143, 1999.

[17] D. J. Watts. Small worlds: The Dynamics of Networks
between Order and Randomness. Princeton University
Press, Princeton NJ, 1999.

[18] D. J. Watts and S. H. Strogatz. Collective dynamics of
’small-world’ networks. Nature, 393:440–442, 1998.

1340


