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We study a stochastic model of infection spreading on a network. At each time step a node is chosen at
random, along with one of its neighbors. If the node is infected and the neighbor is susceptible, the neighbor
becomes infected. How many time steps T does it take to completely infect a network of N nodes, starting from a
single infected node? An analogy to the classic “coupon collector” problem of probability theory reveals that the
takeover time T is dominated by extremal behavior, either when there are only a few infected nodes near the start
of the process or a few susceptible nodes near the end. We show that for N ≫ 1, the takeover time T is distributed
as a Gumbel distribution for the star graph, as the convolution of two Gumbel distributions for a complete graph
and an Erdős-Rényi random graph, as a normal for a one-dimensional ring and a two-dimensional lattice, and as
a family of intermediate skewed distributions for d-dimensional lattices with d � 3 (these distributions approach
the convolution of two Gumbel distributions as d approaches infinity). Connections to evolutionary dynamics,
cancer, incubation periods of infectious diseases, first-passage percolation, and other spreading phenomena in
biology and physics are discussed.

DOI: 10.1103/PhysRevE.96.012313

I. INTRODUCTION

Contagion is a topic of broad interdisciplinary interest.
Originally studied in the context of infectious diseases [1–4],
contagion has now been used as a metaphor for diverse
processes that spread by contact between neighbors. Examples
include the spread of fads and fashions [5,6], scientific ideas
[7], bank failures [8–12], computer viruses [13], gossip [14],
rumors [15,16], and yawning [17]. Closely related phenomena
arise in probability theory and statistical physics in the
setting of first-passage percolation [18,19], and in evolutionary
dynamics in connection with the spread of mutations through a
resident population [20–24]. We use the language of contagion
throughout, but bear in mind that everything could be refor-
mulated in the language of the other fields mentioned above.

In the simplest mathematical model of contagion, the mem-
bers of the population can be in one of two states: susceptible or
permanently infected. When a susceptible individual meets an
infected one, the susceptible immediately becomes infected.
Even in this idealized setting, interesting theoretical questions
remain, whose answers could have significant real-world
implications, as we argue below.

For example, consider the following model, motivated by
cancer biology. Imagine a two-dimensional lattice of cells in a
tissue, where each cell is either normal or mutated. At each time
step a random cell is chosen, along with one of its neighbors,
also chosen uniformly at random. If the first cell is mutated and
its neighbor is normal, the mutated cell (which is assumed to
reproduce much faster than its normal neighbor) makes a copy
of itself that replaces the normal cell. In effect, the mutation has
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spread; it behaves as if it were an infection. This deliberately
simplified model was introduced in 1972 to shed light on the
growth and geometry of cancerous tumors [25].

Here, we study this model on a variety of networks. Our
question is, given a single infected node in a network of size
N , how long does it take for the entire network to become
infected? We call this the takeover time T . It is conceptually
related to the fixation time in population genetics, defined
as the time for a fitter mutant to sweep through a resident
population. It is also reminiscent of the incubation period of an
infectious disease, defined as the time lag between exposure
to the pathogen and the appearance of symptoms; this lag
presumably reflects the time needed for infection to sweep
through a large fraction of the resident healthy cells.

For the model studied here, the calculation of the network
takeover time is inherently statistical because the dynamics are
random. At each time step, we choose a random node in the
network, along with one of its neighbors, also at random. If
neither of the nodes is infected, nothing happens and the time
step is wasted. Likewise, if both are infected, the state of the
network again does not change and the time step is wasted.
Only if the first node is infected and its neighbor is susceptible
does the infection progress, as shown in Fig. 1.

The time course of the infection is interesting to contem-
plate. Intuitively, when the network is large, it seems that the
dynamics should be very stochastic at first and take a long
time to get rolling, because it is exceedingly unlikely that we
will randomly pick the one infected node, given that there are
so many other nodes to choose from. Similarly we expect a
dramatic slowing down and enhancement of fluctuations in
the endgame. When a big network is almost fully infected, it
becomes increasingly difficult to find the last few susceptible
individuals to infect.

These intuitions led us to suspect that the problem of cal-
culating the distribution of takeover times might be amenable
to the techniques used to study the classic “coupon collector”
problem in probability theory [26,27]. If you want to collect
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(a) Current network (b) Select a node (c) Select neighbor (d) Update

FIG. 1. Simple model of infection spreading on a network. (a) A typical current state of the network. Solid dots represent infected nodes,
and open dots represent susceptible nodes. Links represent potential interactions. (b) At each time step, a random node is selected. (c) One of
the node’s neighbors is also selected at random. The infection spreads only if the node chosen in (b) happens to be infected and its neighbor
chosen in (c) happens to be susceptible, as is the case here; then the state of the network is updated accordingly as in (d). Otherwise, if the node
is not infected or the neighbor is not susceptible, nothing happens and the state of the network remains unchanged. In that case the time step is
wasted.

N distinct coupons, and at each time step you are given one
coupon at random (with replacement), what is the distribution
of the time required to collect all the coupons? Like the
endgame of the infection process, the coupon collection
process slows down and suffers large fluctuations when almost
all the coupons are in hand and one is waiting in exasperation
for that last coupon. Erdős and Rényi proved that for large
N , the distribution of waiting times for the coupon collection
problem approaches a Gumbel distribution [28]. This type of
distribution is right skewed and is one of the three universal
extreme value distributions [29,30].

In what follows, we show that for N ≫ 1, the takeover time
T is distributed as a Gumbel distribution for the star graph, and
as the convolution of two Gumbel distributions for a complete
graph and an Erdős-Rényi random graph. For d-dimensional
cubic lattices, the dependence on d is intriguing: we find that
T is normally distributed for d = 1 and d = 2, then becomes
skewed for d � 3 and approaches the convolution of two
Gumbel distributions as d approaches infinity. We conclude
by discussing the many simplifications in our model, with
the aim of showing how the model relates to more realistic
models. We also discuss the possible relevance of our results to
fixation times in evolutionary dynamics, population genetics,
and cancer biology, and to the longstanding (yet theoretically
unexplained) clinical observation that incubation periods for
infectious diseases frequently have right-skewed distributions.

II. ONE-DIMENSIONAL LATTICE

We start with a one-dimensional (1D) lattice. In this paper,
we always take lattices to have periodic boundary conditions,
so imagine N nodes arranged into a ring.

Suppose that m nodes are currently infected. Let pm denote
the probability that a susceptible node gets infected in the next
time step. Notice that for a more complicated graph, pm might
not be a well-defined concept, because it could depend on
more than m alone: the probability of infecting a new node
could depend on the positions of the currently infected nodes,
as well as on the susceptible node being considered. In such
cases, we would need to know the entire current state of the

network, not just the value of m, to calculate the probability
that the infection will spread.

The 1D lattice, however, is especially tractable. Assuming
that only one node is infected initially, at later times the
infected nodes are guaranteed to form a contiguous chain.
So for this simple case the graph state is indeed determined
by m alone. The only places where the infection can spread
are from the two ends of the infected chain. (Even on more
complicated networks, the dynamics of our model imply that
the infected nodes always form contiguous regions, but few
are as simple as this.)

The spread of infection involves two events. First, the
node chosen at random must lie on the boundary of the
infected cluster. Then, one of its neighbors that happens to
be susceptible must be picked. So

pm = (probability of selecting node on boundary)

×(probability of selecting susceptible neighbor). (1)

Hence, for the ring, the probability that the infection spreads
on the next time step reduces to pm = (2/N )(1/2) = 1/N

for all m.
Next, define the random variable Xm = X(pm) as the

number of time steps during which the network has exactly
m infected nodes. The probability that this state lasts for k

time steps is then given by

P (Xm = k) = qk−1
m pm,

for k = 1,2, . . ., where qm := 1 − pm. To see this, note that
P (Xm = k) is the probability that no new infection occurs on
the first k − 1 steps, times the probability that infection does
occur on step k.

Thus, for any network where pm is well defined, the time
spent with m infected nodes is a geometric random variable,
with mean 1/pm and variance 1/p2

m − 1/pm. In particular,
since the ring has pm = 1/N for all m, we find that Xm has
mean N and variance N2 − N in this case.

012313-2
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FIG. 2. Distribution of takeover times for 1D lattices with N =
750 nodes, obtained from 1×106 simulations. The mean takeover
time is μ = N (N − 1) and its variance is σ 2 = N (N − 1)2, both
found analytically. The simulation results are well approximated by
a normal distribution, as expected. The diagram in the upper left
schematically shows a 1D lattice.

The takeover time for any network is

T =
N−1
∑

m=1

Xm,

the sum of all the individual times required to go from m to
m + 1 infected nodes, for m = 1, . . . ,N − 1. (Equality, in this
case, means equality in distribution, as it does for all the other
random variables considered throughout this paper.)

In the case of the 1D lattice, all the Xm are identical.
However, their means and variances depend on N , which
prevents us from invoking the usual central limit theorem to
deduce the limiting distribution of T . However, we can invoke
a generalization of it known as the Lindeberg-Feller theorem.
See Appendix A for more details.

After normalizing T by its mean, μ = N (N − 1), and its
standard deviation, σ = (N − 1)

√
N , we find

T − N (N − 1)

(N − 1)
√

N

d−→ Normal(0,1), (2)

where the symbol
d−→ means convergence in distribution as

N gets large. Figure 2 confirms that the takeover times are
normally distributed in the limit of large rings.

III. STAR GRAPH

A star graph is another common example for infection
models. Here, N separate “spoke” nodes all connect to a single
“hub” node and to no others, as illustrated in the upper left
of Fig. 3. We assume the initial infection starts at the hub,
since starting it in a spoke node would require only a trivial
adjustment to the calculations below.

Let m be the number of spoke nodes that are currently
infected. As in the ring case, pm (the probability to go from
m to m + 1 in the next time step) is a well-defined quantity
that depends on m alone, and not on any other details of the
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FIG. 3. Distribution of takeover times for a star graph with N =
120 spoke nodes, obtained from 1×106 simulation runs. The mean μ

and characteristic width L are given by μ = (N + 1)(N )
∑N

m=1 1/m

and L = N (N + 1). The numerically generated histogram of takeover
times closely follows the predicted Gumbel distribution, even for the
small N used here. The schematic diagram in the upper left shows a
star network.

network state. Using the logic of Eq. (1), we get

pm =
1

N + 1

N − m

N
(3)

for m = 0,1, . . . ,N − 1. Here, 1/(N + 1) is the probability of
choosing the infected hub as the first node, and (N − m)/N
is the probability of selecting one of the N − m currently
susceptible spoke nodes, out of the N spoke nodes in total, as
its neighbor.

Now that pm is in hand for the star graph, we can define the
random variable Xm and the takeover time T just as we did
for the one-dimensional ring. The only difference is that the
m dependence of pm is now controlled entirely by the factor
(N − m)/N .

That same factor turns up in a classic probability puzzle
called the coupon collector’s problem [26,27]. At the time of
this writing, millions of children are experiencing it firsthand
as they desperately try to complete their collection of pocket
monsters in the Pokémon video game series.

To see the connection, suppose you are trying to collect
N distinct items, and you have m of them so far. If you are
given one of the N items at random (with replacement), the
probability it is new to your collection is (N − m)/N , the same
factor we saw above, and precisely analogous to the probability
pm of adding a new node to the infected set. Likewise, the
waiting time to collect all N items is precisely analogous to
the time T needed to take over the whole star graph. The only
difference is the constant factor 1/(N + 1) in Eq. (3).

The limiting distribution of the waiting time for the coupon
collector’s problem is well known. Although it resembles a
lognormal distribution [31], in fact it is a Gumbel distribution
in the limit of large N , given the right scaling [27,28,32,33].
We now show that the same is true for our problem.

The first move is to approximate the geometric random
variables X(pm) by exponential random variables E(pm), with
density

P (E(pm) = x) dx = pme−pmx dx, x � 0.

012313-3
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From here we define the random variable F :=
∑N−1

m=0 E(pm),

which has mean μ =
∑N−1

m=0 1/pm.
It can be shown (see Appendix B) for a large class of pm

and normalizing factors L := L(N ) that

T − μ

L
∼

F − μ

L
, (4)

where the symbol “∼” means the ratio of characteristic
functions goes to 1 as N gets large. That is, the random
variables on both sides converge to each other in distribution
as N gets large.

In the traditional coupon collector’s problem we would
take L = N ; but because of that (N + 1) factor, what we
want is L = N (N + 1). Thanks to the fact we are now using
exponential variables, we now know

F/L =
N−1
∑

m=0

E(pm/L) =
N

∑

k=1

E(k)

(using k = N − m = 1,2, . . . ,N ). A nice closed form for the
probability distribution function of the sum of a collection of
N distinct exponential variables, gN (x), is known [24,33], but
for the sake of convenience we rederive it in Appendix C. For
our choice of pm and L, the distribution function gN (x) is
given by

gN (x) =
N

∑

k=1

ke−kx

N
∏

r �=k

r

r − k
,

which can be manipulated into

gN (x) = Ne−x(1 − e−x)N−1,

for x � 0. From here, we can find the distribution for
(F − μ)/L, and (T − μ)/L by extension. Therefore, taking
the limit of large N and using the standard approximation of
the harmonic sum for μ gives us

f (x) = e−(x+γ ) exp(−e−(x+γ )) (5)

as the density, where γ ≈ 0.5772 is the Euler-Mascheroni
constant. The density in Eq. (5) is a special case of the Gumbel
distribution, denoted Gumbel(α,β) and defined to have the
density

h(x) = β−1e−(x−α)/β exp(−e−(x−α)/β ). (6)

Specifically, we find

T − μ

N (N + 1)

d−→ G, (7)

where G is a Gumbel random variable distributed according
to Gumbel(−γ,1).

This distribution can be tested against simulation, and it
works nicely as seen in Fig. 3. Gumbel distributions have arisen
previously in infection and birth-death models [24,34,35] and
are well known in extreme-value theory [26,29,30], but the
fact that they show up here as a result of a network topology
is unexpected.

IV. COMPLETE GRAPH

The complete graph on N nodes corresponds to a “well-
mixed population” and is one of the most common topologies

in infection models. This network consists of N mutually
connected nodes, so the location of the initial infection does
not matter.

Given m infected nodes, we once again have a well-defined
pm. Using the concept behind Eq. (1), we find

pm =
m

N

(

1 −
m − 1

N − 1

)

=
m

N

N − m

N − 1
(8)

for m = 1, . . . ,N − 1. For the sake of convenience, we collect
these probabilities into a vector p = (pm)Nm=1. As in the case
of the star graph, we can approximate the takeover time T by
summing exponential random variables instead of geometric
ones. So

T − μ

N
∼

N−1
∑

m=1

E(pm) − 1/pm

N
=: S(p). (9)

To compress notation, we defined S(p) to be the normalized
sum of exponential random variables across the entries of the
vector p.

The specific p in Eq. (8) has some helpful symmetry. Notice
that if k = N − m, then

pk =
k

N

N − k

N − 1
=

N − m

N

m

N − 1
= pm.

This symmetry means that the second half of the takeover
looks just like the first half played backwards. If we set p(f )

to be the front half of the p vector and p(b) to be the back half
of p, then we know

S(p) = S(p(f )) + S(p(b)). (10)

Because we have a symmetry and the order we add the
individual exponential variables will not matter, the random
variables S(p(f )) and S(p(b)) should be equal in distribution.
Although N being odd or even may seem to be distinct cases,
we find that the distinction does not matter.

The basic concept here is to compare p(f ) and p(b) to
r , where r = (m/N )Nm=1. The sequence of rm represents the
probabilities corresponding to a coupon collector’s problem.
It is therefore known that

S(r)
d−→ G, (11)

where G is distributed as Gumbel(−γ,1), as described in
Sec. III.

On the complete graph, we can rewrite pm (the probability
of going from m infected nodes to m + 1 on the next time step)
as pm = rm(1 − ǫm), where ǫm = (m − 1)/(N − 1). So for
N ≫ m, the pm’s resemble the rm’s quite closely. Therefore,
both the front tail of p(f ) and the back tail of p(b) look
suspiciously like coupon collector’s processes. By this logic,
we expect the total time to take over the complete graph should
be just the sum of two coupon collector’s times. That is, we
suspect that T is the sum of two Gumbel random variables.

There are a few hang-ups with this intuitive argument:
(1) p(f ) and p(b) are about half the length of r .
(2) pm does not quite equal rm at small m.

Addressing the first hang-up involves, once again, the front
tails of these vectors. Each E(pm) has a standard deviation of
1/pm, which tells us that the smallest values of pm are the
strongest drivers of the final distribution.
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The fact that the events at low populations (of either
infected or susceptible types) strongly determine most of the
random fluctuations is something that has shown up in other
evolutionary models, especially with selective sweeps [36]. So
if we were to just truncate both p(f ) and r at some point, we
should expect the limiting distributions of S(p(f )) or S(r) to not
substantially change. We formalize this idea in Appendix D,
and find that it works out nicely.

We have a lot of options about where to truncate, but a useful
truncation point is B := B(N ) = ⌊

√
N − 1⌋. The expression

⌊z⌋ simply means we round z down to the nearest integer. If
we define

p(T ) = (pm)Bm=1 and r (T ) = (rm)Bm=1,

then we have

S(p(f )) ∼ S(p(T )), S(p(b)) ∼ S(p(T )) (12)

and

S(r) ∼ S(r (T )). (13)

Addressing the second hang-up mostly involves formaliz-
ing ǫm as a rather small number. The details are outlined in
Appendix E, where we find that

S(r (T )) ∼ S(p(T )). (14)

From here we can daisy-chain the previous numbered equa-
tions in this section together and find that

T − μ

N

d−→ G + G. (15)

This means that we successfully built on the result for star
graphs to find that the resulting takeover time for the complete
graph is just a sum of two Gumbel random variables. The sum
of two Gumbel random variables has appeared previously in
mathematically analogous places [18,37]. However, our use of
the coupon collector’s problem makes for a quick conceptual
justification.

Figure 4 compares the takeover time distribution seen in
simulations against the predicted distribution Gumbel(−γ,1) ⋆
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FIG. 4. Distribution of takeover times for a complete graph with
N = 450 nodes. The histogram is based on 1×106 simulation runs.
The mean takeover time is μ =

∑N−1
m=1 1/pm exactly. Here, the

numerically generated distribution fits closely to the convolution
of two Gumbel distributions, produced using 5×106 samples. The
schematic diagram in the upper left shows a complete graph.

Gumbel(−γ,1), and we see that this double-coupon logic
works out well.

V. d-DIMENSIONAL LATTICE

As we did with the one-dimensional lattice, in our anal-
ysis of d-dimensional lattices we assume periodic boundary
conditions. The side length of the d-dimensional cube of N

nodes is denoted by n = N1/d . We are also taking 1 < d < ∞,
since we have already covered the 1D lattice and the infinite-
dimensional lattice is a somewhat special case.

Unlike every previous case we have examined, we cannot
consistently define pm. The probability of infecting a new
node will almost always depend on the specific location of
all currently infected nodes. This means that all our previous
approaches will not work well here. However, this does not bar
us from making guesses based on reasonable approximations.

Although we could potentially get all kinds of weirdly
shaped clusters of infected nodes, that should not happen
in expectation. Think back to the definition of our infection
dynamics and Eq. (1). New infectees are added when a node
on the boundary of the infected cluster gets randomly selected,
and then one of its susceptible neighbors gets randomly
selected and catches the infection.

Intuitively, it sounds like we have an expanding blob
of infected nodes, with the expansion happening uniformly
outward on every unit of surface area. This is a recipe for
making spherelike blobs in d dimensions, at least at the start
of the dynamics. As seen from the top half of Fig. 5, this looks
plausible in two dimensions.

The exact nature of this shape is actually a notoriously
difficult unsolved question. As we pointed out, there is a link
between our infection model and first-passage percolation on a
lattice [19]. In that context, there is a rich literature surrounding
questions about the nature of this cluster, but formal proofs of
many of its properties have turned out to be difficult. However,
convexity appears to be typical in the large size limit, and
surface fluctuations should be relatively small [19]. Moreover,
there is good reason to believe that on the two-dimensional
(2D) lattice, the boundary of the expanding cluster is a one-
dimensional curve, which comes in handy later [38].

In any case, since the lattice is periodic, this infected cluster
will keep expanding. This means that at the end of the dynamics
we should expect the majority of susceptible nodes to also be in
a single cluster, with insignificant enclaves elsewhere. This is
borne out in simulations, as shown in the bottom half of Fig. 5.
If we focus on this majority susceptible cluster, we see that the
end of the dynamics looks like a uniformly shrinking cluster
of susceptible nodes, which is approximately the reverse of
the uniformly growing infected cluster at the start. So, the
beginning and end of the dynamics look similar once again, as
they did for the complete graph.

More importantly, since this is a d-dimensional lattice, we
can guess the surface area of these blobs. For a shape with a
length scale of R, we typically expect volume to scale as Rd

and surface area to go as Rd−1. So given an infected cluster
of m nodes, we expect it to have a surface area proportional
to m(d−1)/d . Assuming some uniformity, we should get that
the typical probability of infecting a new node should be
proportional to mη/N at the start of the dynamics, where the
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(a)

(b)

FIG. 5. Snapshots of our infection dynamics on a two-
dimensional (2D) periodic cubic lattice. Black pixels show infected
nodes, and grey pixels show susceptible nodes. (a) Snapshot near the
beginning of the dynamics and (b) snapshot near the end. Notice how
the blob of infected nodes in the top panel has a fairly simple shape,
and most of the susceptible nodes lie in a single cluster in the bottom
panel.

exponent η is given by

η =
d − 1

d
. (16)

And just as in the case of the complete graph, this process at
the start gets repeated backwards at the end.

This heuristic argument suggests that the total time to
takeover should look like the sum of geometric variables
X(pm), where

pm ≈
mη

N

(

1 −
mη

N

)

. (17)

The fact that we only got a grip on pm up to a proportionality
should not worry us. After all, that did not stop us when we
worked through the star graph case earlier; back then we argued
that such a proportionality constant would simply show up
in the scaling factor in the denominator. If we treat this as
a numerical problem, we do not need to explicitly find the
scaling factor. Instead, we can examine (T − μ)/σ , where

μ and σ are empirically obtained values for the average and
standard deviation of T , respectively. Then any proportionality
constants just get absorbed by the anonymous σ .

This reasoning further suggests that, for N sufficiently
large,

T − μ

σ
∼

N
∑

m=1

X(pm) − 1/pm

σX

, (18)

where σ 2
X :=

∑N
m=1(p−2

m − p−1
m ) is just the variance of the

sum of geometric variables. But we already know how to
approximate sums of geometric random variables. We can
follow a similar procedure of truncation and perturbation as in
the case of the complete graph. Assuming Eq. (18) is correct,
we get

T − μ

σ
∼

1
√

2
(F ′ + F ′), (19)

where we define

F ′ :=
M

∑

m=1

E(mη) − 1/mη

√
H

(20)

and

H := H (2η; M) =
M

∑

m=1

1/m2η (21)

for the sum of variances.
The truncation point M is some increasing function of N ,

which can normally just be set to M = N . In the limit of large
N , the distinction does not really matter. However, it seems
frequently possible to tune M to get a good fit on finite-N
cases, as the simulations of the three-dimensional (3D) lattices
in Fig. 6 suggest.

In principle, we could try to use Eq. (C1) to get a finite-N
estimate for this distribution. However, we do not expect any
of these distributions to have a large-N limit as easy as in the
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FIG. 6. Distribution of takeover times T for a 3D lattice with a
side length of n = 15. The numerically generated distribution is based
on 1×106 simulation runs. The solid line shows the distribution of
(F ′ + F ′)/

√
2, with F ′ being summed up to M = 40 and using 5×106

repetitions. The empirical quantities μ and σ 2 are the numerically
calculated mean and variance of T . The schematic diagram in the
upper left shows a 3D lattice.
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case of the star graph, nor for any of these distributions to have
a name. For practical purposes, we can just simulate the right
hand side of Eq. (20) directly, since generating and adding a
large number of exponential variables is rather fast.

The critical dimension

Naively, we might expect the limiting distribution of F ′

to always be something between a Gumbel and a normal
distribution. After all, d = 1 implies η = 0, which returns us
to identical variables and the 1D ring, giving us the standard
normal. Meanwhile, d → ∞ implies η → 1, which returns us
to the coupon collector’s problem and the star graph, giving us
the Gumbel distribution. Incidentally, this argument suggests
that the infinite-dimensional lattice has similar behavior as
the complete graph under these dynamics. In between these
extreme cases, we might expect the intermediate d’s to
correspond to a family of intermediate distributions.

While this is generally true, there is a surprising caveat to be
made about the case of d = 2. Even though all the summands
(E(mη) − 1/mη)/

√
H are distinct, they start to resemble each

other once N gets sufficiently large.
For d = 2, Eq. (16) gives η = 1/2, which means that H in

Eq. (21) is the harmonic series. This H diverges with N , giving
each summand (E(mη) − 1/mη)/

√
H a large denominator,

and thus a small variance about a mean of zero. So, even though
the summands are not identical random variables, they will
become rather similar as we take N to be large, suggesting that
an improved version of the central limit theorem may apply.
This intuition is confirmed by a careful analysis in Appendix F,
showing that the Lindeberg-Feller theorem applies in this case.

Thus we predict a normal limiting distribution of F ′ in the
specific case of the 2D lattice: as N → ∞,

T − μ

σ

d−→ Normal(0,1) (22)

for d = 2. This prediction is borne out in simulation, as shown
in Fig. 7.
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FIG. 7. Distribution of takeover times T for a 2D lattice with
a side length of n = 100. The numerical results are obtained from
1.5×105 simulations. The solid line is the standard normal distribu-
tion. The empirical quantities μ and σ 2 are the numerically calculated
mean and variance of T . The schematic diagram in the upper left
shows a 2D lattice.

However, no dimension higher than d = 2 can yield nor-
mally distributed takeover times. For each of d = 3,4,5, . . .,
the distribution of F ′ will converge to a distinct limiting
distribution between a normal and a Gumbel distribution, as we
initially suspected. The important distinction between d = 2
and d > 2 is that, in the latter, H always converges to a finite
number. Because of that, F ′ will always have a nonzero third
moment, preventing it from converging to a standard normal.
For more details, see Appendix G.

VI. ERDŐS-RÉNYI RANDOM GRAPH

Unlike all the previous graphs we have seen, an Erdős-Rényi
graph is randomly constructed. We start off with N nodes, and
add an edge between any two with some probability 0 < ρ � 1.
In this section, we condition on the graph being connected, so
that complete takeover is always possible.

There is a good history of using generating functions to
analyze desired properties on a random graph, including for
various infection models [39–41]. But since we just finished
analyzing the general lattice case, we can take another road.

Recall the central observation that let us recast T as a sum
of geometric random variables. That train of logic only really
involved the graph having a well-defined dimension d. If we
could define the dimension for other kinds of graphs, then
all our observations from the previous section would simply
carry over.

Imagine taking a cluster of m nodes on an Erdős-Rényi
graph. What is the surface area of said cluster? Well, in
expectation, the m nodes are externally connected to O(ρN )
nodes, for m ≪ N or N − m ≪ N [or O(ρm(N − m)) in
general]. So as N gets large, the number of external neighbors
in any cluster gets large as well, for both very small and very
large m. This is suggestive of an infinite-dimensional topology.

So, by collecting results from Eqs. (15) and (19), we
can guess the limiting distribution of the takeover times T .
Defining μ and σ to be the empirical mean and standard
deviation of T , we find

T − μ

σ
∼ G′ + G′, (23)

where G′ is a Gumbel random variable with a mean of zero
and a variance of 1/2. One can check that the corresponding
distribution for G′ is Gumbel(−γ

√
3/π,

√
3/π ).

We experimentally tested Eq. (23) by fixing a randomly
generated Erdős-Rényi random graph, along with a seed
at which the infection always started. Then we ran 1×106

simulations of the stochastic infection process and compiled
the observed distribution of takeover times. (The reason we
fixed the graph beforehand was to avoid sampling multiple
different values of μ and σ over different realizations of the
random graph.) The results of the experiment were consistent
with our prediction, as shown in Fig. 8.

VII. DISCUSSION

A. Relation to other models

1. Infection models

The model studied in this paper is intentionally simplified
in several ways, compared to the most commonly studied
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FIG. 8. Distribution of takeover times T for an Erdős-Rényi
random graph on N = 600 nodes with an edge probability of ρ = 0.5.
Simulation results were compiled from 1×106 runs, all using the
same realization of the random graph and all with the initial infection
starting at the same node. The solid line was generated numerically by
adding 5×106 pairs of Gumbel(−γ

√
3/π,

√
3/π ) random variables

together. Similarly, μ and σ 2 are the numerically calculated mean
and variance of T .

models of infection. The purpose of the simplifications is to
highlight how one aspect of the infection process—its network
topology—affects the distribution of takeover times. However,
the update rule also plays an important role. The assumptions
we have made about it therefore deserve further comment.

Assumption 1. The infection is infinitely transmissible.
When an infected node interacts with a susceptible node, the
infection spreads with probability 1. In a more realistic model,
infection would be transmitted with a probability less than 1.

Assumption 2. The infection lasts forever. Once infected,
a node never goes back to being susceptible, or converts to
an immune state, or gets removed from the network by dying.
The dynamics of these more complicated models, known as
susceptible-infected-susceptible (SIS) or susceptible-infected-
recovered (SIR) models, have been studied on lattices and
networks by many authors; for reviews, see Refs. [3,4].

Assumption 3. The update rule is asynchronous. In other
words, only one link is considered at a time. By contrast, in
a model with synchronous updating, every link is considered
simultaneously.

If the infection is further assumed to be infinitely transmis-
sible, then at each time step every infected node passes the
infection to every one of its susceptible neighbors. Such an
infection, akin to the spreading of a flood or a wildfire, would
behave even more simply than the process studied here. In
fact, it would be too simple. The calculation of the network
takeover time would reduce to a breadth-first search and its
value would be bounded above by the network’s diameter.
Note, however, that if the infection has a probability less than
1 of being transmitted to susceptible neighbors (such as in the
original 1-type Richardson model [42]), the system becomes
nontrivial to analyze [19,42].

Interestingly, the asynchronous assumption may not have as
much impact as it first appears. We may build a continuous time
model based on our discrete time model, by interpreting the
discrete time T as counting the number of events, and assigning
random variables tk to measure the “true” time between events

k and k + 1. But if these intermediate times tk have finite
moments, then they will become infinitesimal compared to T

as the system size gets large. In fact, using cumulant generating
functions, it is easily possible to show that the skew of the
combined continuous time distribution exactly converges to
the skew of the discrete time distribution.

2. Models of evolutionary dynamics

About a decade ago, the field of evolutionary dynamics
[43] was extended to networks, and the field of evolutionary
graph theory was born [20]. In general, the results in this field
depend on modeling the spread of a mutant population using
the Moran process [43,44]. (Our model can be viewed as a
limiting variation of the Moran birth-death process, in the limit
as the mutant fitness tends to infinity.) A number of important
and interesting results have come from these studies of Moran
dynamics, including the existence of network topologies that
act as amplifiers of selection [45], increasing the probability
of takeover, and also topologies that shift the takeover times
we are considering [46].

For example, working in the framework of evolutionary
graph theory, Ashcroft, Traulsen, and Galla recently explored
how network structure affects the distribution of “fixation
times” for a population of N individuals evolving by birth-
death dynamics [24]. The fixation time is defined as the
time required for a fitter mutant (think of a precancerous
cell in a tissue) to sweep through a population of less fit
wild-type individuals (normal cells). Initially, a single mutant
is introduced at a random node of the network. At each time
step, one individual is randomly chosen to reproduce. With
probability proportional to its fitness, it gives birth to one
offspring, and one of its network neighbors is randomly chosen
to die and be replaced by that offspring. The natural questions
are as follows: What is the probability that the lineage of the
mutant will eventually take over the whole network? And if it
does, how long does it take for this fixation to occur?

The calculations are difficult because there is no guarantee
of mutant fixation (in contrast to our model, where the network
is certain to become completely infected eventually). In the
birth-death model, sometimes by chance a normal individual
will be chosen to give birth, and its offspring will replace a
neighboring mutant. If this happens often enough, the mutant
population can go extinct and wild-type fixation will occur.
Using Markov chains, Hindersin and colleagues provided
exact calculations of the fixation probability and average
fixation times for a wide family of graphs, as well as an
investigation of the dependence on microscopic dynamics
[22,23,47,48]. A challenge for this approach is that the size of
the state space becomes intractable quickly: even with sparse
matrix methods, it grows like N2N [47]. For networks of size
N < 23, their computations showed that the distributions of
mutant fixation times were skewed to the right, much like the
Gumbel distributions, convolutions of Gumbel distributions,
and intermediate distributions found analytically and discussed
here in Secs. III–VI.

3. First-passage percolation

Our infection model is also closely related to first-passage
percolation [18,19]. The premise behind this family of models
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can be described as follows. Given a network, assign a random
weight to each edge. By interpreting that weight as the time for
an infection to be transmitted across that edge, and by choosing
properly tuned geometric (or, more commonly, exponential)
random variables as the edge weights, we can recreate our
infection model.

Notice that percolation defines a random metric on the
network, meaning that internode distances change from one
realization to another. This leads to a number of natural
questions. The most extensively studied is the “typical dis-
tance,” quantified by the total weight and number of edges on
the shortest path between a pair of random nodes [49–51].
It is also possible to analyze the “flooding time” [37,52],
defined as the time to reach the last node from a given
source node chosen at random. This quantity is the closest
analog, within first-passage percolation, of our takeover time.
Indeed, a counterpart of our result for two Gumbel distributions
in the Erdős-Rényi random graph was obtained previously
using these techniques [37]. However, we are unaware of
flooding-time counterparts of our results about the takeover
times for d-dimensional lattices.

Another natural question in first-passage percolation in-
volves finding the long-time and large-N limiting shape of
the infected cluster. More precisely, given a fixed origin
node, we can identify all nodes that can be reached from
the origin within a total path weight of t or less. This
amounts to finding all the nodes that have been infected by
the origin within time t , a problem that percolation theorists
have typically studied in d-dimensional lattices. We saw
an instance of such an expanding cluster in Sec. V. In a
general number of dimensions, the provable nature of this
shape may be complicated; the fluctuations of its boundary
are thought to depend on the Kardar-Parisi-Zhang (KPZ)
equations [19,53,54]. The limiting shape is not typically a
Euclidean ball, but it has been proven to be convex; see
Refs. [18,19] for an introductory discussion of these issues.
In Fig. 5, the nature of this cluster’s complement in a large
torus was of concern to us, but that issue has not yet attracted
mathematical attention, as far as we know.

B. Applications to medicine: Epidemic and disease
incubation times and cancer mortality

For more than a hundred years, there have been intriguing
empirical observations of “right-skewed” distributions in a
remarkably wide range of phenomena related to disease
[55–59]. Examples include within-patient incubation periods
for infectious diseases like typhoid fever [55,56], polio [58],
measles [60], and acute respiratory viruses [61]; exposure-
based outbreaks like anthrax [62] (see Refs. [61,63] for more
recent reviews); rates of cancer incidence after exposure to
carcinogens [64]; and times from diagnosis to death for
patients with various cancers [65] or leukemias [66].

The relationship between these phenomena and our model
is intuitive: most of these processes depend on some sort of
agent (a mutant cell, a virus, or a bacterium) invading and
taking over a population, something which typically proceeds
one “interaction” at a time. And as we have seen, our simple
infection model automatically generates right-skewed distri-
butions like Gumbel distributions, convolutions of Gumbel

distributions, and intermediate distributions via a coupon-
collection mechanism, for many kinds of population structures.
Although the model studied here does not quite emulate
real-world disease incubation (because of its assumptions of
asynchronous update, zero latency periods, etc.), this is still
a striking comparison. So could it be that the right-skewed
distributions so often seen clinically are, at bottom, a reflection
of this same mathematical mechanism—a manifestation of an
invasive, pathogenic agent spreading through a network of
cells or people?

To test the plausibility of this idea, we need to amend
our model slightly. Until now we have focused exclusively
on the time T to total takeover of a network. But in
most scenarios related to disease, total takeover is not the
relevant consideration. Sufficient takeover is what matters. For
example, a patient need not have every single one of their bone
marrow stem cells replaced by leukemic cells before they die
from leukemia. Death presumably occurs as soon as some
critical threshold is crossed—which is probably the case for
diseases with infectious etiologies as well. So let us now check
whether changing the criterion from total takeover to partial
takeover changes our results, or not.

Times to partial takeover: Truncation

Define Tθ to be the time for ⌊θN⌋ out of N members to
be infected, with the interesting range of θ ’s being 0.5 � θ <

1.0. For the sake of example, consider the complete graph as
our network topology, so we have pm = (m/N )(1 − (m − 1)/
(N − 1)).

As in the analysis for the complete takeover times, we can
split Tθ into a front and back part T (f ) and T (b), with the front
covering up to about N/2 and the back covering the remainder.
Then

Tθ − μθ

N
=

T (f ) − μ(f )

N
+

σ(b)

N

T (b) − μ(b)

σ(b)
,

where μ(f ) is the mean of T (f ), and μ(b) and σ(b) are the mean
and standard deviation of T (b). However, it is easy to show
that σ 2

(b)/N
2 converges to zero as N gets large, regardless of

θ . So we expect the distribution of Tθ in this case to asymp-
totically approach a Gumbel distribution. As seen in Fig. 9,
similar results hold for Erdős-Rényi random graphs, even for
θ = 0.90.

Thus, for complete graphs and Erdős-Rényi random graphs,
the right-skewed distributions for complete takeover persist
when we relax the criterion to partial takeover. In that respect
our results seem to be robust.

The resilience of the Gumbel distribution is important to
appreciate. As pointed out by Read [31], a Gumbel distribution
can be impersonated by a properly tuned three-parameter
lognormal distribution; see Appendix H for further details. A
three-parameter lognormal distribution has a density function

h(x) =
1

(x − c)
√

2πb2
exp

{

−[log(x − c) − a]2

2b2

}

,

provided x > c.
It is this three-parameter lognormal distribution that has

been frequently noted in empirical studies of disease incu-
bation times. Originally proposed and elaborated by Sartwell
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FIG. 9. Normalized distribution of takeover times for an Erdős-Rényi random graph on N = 600 nodes with an edge probability of ρ = 0.5,
obtained from 1×106 simulation runs. For the sake of convenience, each T is rescaled to have a mean of zero and a variance of 1. (a) Normalized
times required to infect 90% of the population, and (b) times for complete takeover. Here, the convolution of two Gumbel distributions plotted
on the right was generated using 5×106 samples.

[57–59] as a curve-fitting model, its seeming generality has
led to it being called “Sartwell’s law.” But it has always lacked
a theoretical underpinning. Even recent reviews consider the
origin of lognormal incubation times to be unresolved [63]. In
contrast, Gumbel and related distributions arise very naturally
from the model studied here and from other infection models
[34,35] and may provide a more suitable theoretical foundation
than lognormals in that sense.

C. Future directions

In conclusion, we have presented distributions for takeover
times of a simple infection model across many different
networks, including complete graphs, stars, d-dimensional
lattices, and Erdős-Rényi random graphs. While heteroge-
neous networks are outside the scope of this work, our initial
results suggest that the takeover times there too are distributed
in a right-skewed fashion resembling a Gumbel distribution
(see Appendix I). In the future, we hope to link our model
to more concrete real-world phenomena and experimental
data, connecting our abstract “step-based” takeover times with
physically meaningful times on time scales appropriate for the
situation in question.
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APPENDIX A: THE LINDEBERG CONDITION
(ONE DIMENSION)

When we were analyzing the 1D lattice, we could not
quite make use of the classical central limit theorem, since
our variables X have a dependence on N , being Geo(1/N ).

Fortunately, there is the Lindeberg-Feller variant of the
central limit theorem, which lets us get the desired normal
convergence (see Ref. [67], p. 98, for more details). However,
we must first satisfy some special conditions before we can
cite it.

For the sake of convenience, let us define

Y :=
X − N

(N − 1)
√

N
.

So E[Y ] = 0, and
∑N−1

m=1 E[Y 2] = 1, which satisfies two of
the three conditions. However, there is still the matter of the
titular Lindeberg condition on the restricted second moments,
which says, for any fixed ǫ > 0,

lim
N→∞

N−1
∑

m=1

E[Y 2; |Y | > ǫ] = 0.

To verify this, first notice that |Y | > ǫ means that we need
either X > N + ǫ(N − 1)

√
N or X < N − ǫ(N − 1)

√
N .

However, the minus case will not come up in the limit; as
N gets large it would require X to be negative, which is not
possible.

Letting c := ⌊N +
√

N (N − 1)ǫ⌋, we get

E[Y 2; Y > ǫ]

=
∞

∑

k=c+1

(

k − N

(N − 1)
√

N

)2 1

N

(

1 −
1

N

)k−1

=
1

(N − 1)N2

(

1 −
1

N

)c

N [c2 + N (N − 1)].

And so,

lim
N→∞

N−1
∑

m=1

E[Y 2; |Y | > ǫ]

= lim
N→∞

1

N (N − 1)

(

1 −
1

N

)c

[c2 + N (N − 1)]

= lim
N→∞

(

1 −
1

N

)c

+ lim
N→∞

c2

N (N − 1)

(

1 −
1

N

)c

.
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Here, the first limit looks like

lim
N→∞

(

1 −
1

N

)N−ǫN1/2+ǫN3/2

= 0.

Meanwhile, the second limit can be bounded above (with some
constant C) by

lim
N→∞

CN

(

1 −
1

N

)ǫN3/2

= 0.

So the total sum of conditional expectations converges to zero
as N gets large, and so the Lindeberg condition is satisfied.
This allows us to cite the theorem, and confirms that in the
limit we get

N−1
∑

m=1

X − N

(N − 1)
√

N

d−→ Normal(0,1). (A1)

APPENDIX B: GEOMETRIC VARIABLES CONVERGING
TO EXPONENTIAL VARIABLES

Proposition. Say we have a positive sequence (pm)Mm=1, and
some function L := L(M) such that limM→∞ L = ∞ and

lim
M→∞

M
∑

m=1

1

pmL2
= 0.

Then if T :=
∑M

m=1 X(pm), F :=
∑M

m=1 E(pm), and μ :=
∑M

m=1 1/pm, we have

T − μ

L
∼

F − μ

L
. (B1)

Proof. This is proven by finding the characteristic functions
for both sides, and showing that the ratio of these functions
goes to 1 as M gets large. The characteristic function of a
random variable uniquely determines its distribution, so this is
a rather powerful statement.

Let us define

� := E

[

exp

(

it
T − μ

L

)]

.

If we split T into the sum of geometric random variables and
rearrange, we eventually get

� =
M
∏

m=1

pm exp [(it/L)(1 − 1/pm)]

1 − qm exp (it/L)
. (B2)

Similarly, if we set

φ := E

[

exp

(

it
F − μ

L

)]

,

then after we proceed through some more algebra, we find that

φ =
M
∏

m=1

exp [−it/(pmL)]

1 − it/(pmL)
. (B3)

Let us fix t so that we can pointwise consider the ratio of
the characteristic functions. After some manipulation, we find

φ/� =
M
∏

m=1

exp(−it/L) − qm

pm[1 − it/(pmL)]
.

We assumed that L gets large, so there is some function R1 :=
R1(M) that has vanishing magnitude with large M such that

exp(−it/L) = 1 + (−it/L) + R1t
2/L2.

So then we have

φ/� =
M
∏

m=1

(

1 +
t2

pmL2

R1

1 − it/(pmL)

)

.

Notice that |1 − it/(pmL)| � 1. In addition, we already know
the sum of 1/(pmL2) goes to zero, so it must be that each
individual pmL2 gets large for all m. This ensures the second
term is small, and therefore it can be rewritten exactly as an
appropriate exponential.

So

φ/� =
M
∏

m=1

exp[R2t
2/(pmL)]

= exp

[

t2R2

M
∑

m=1

1

pmL2

]

→ 1,

where the final limit comes from our assumption on
∑M

m=1
1

pmL2 . The limit converges to 1, which establishes the
proposition.

APPENDIX C: SUM OF EXPONENTIALS

Proposition. If we have exponential random variables
E(pm) for m = 1, . . . ,n, with pm distinct, then

∑n
m=1 E(pm)

is distributed according to the density

gn(x) =
n

∑

k=1

pke
−pkx

n
∏

r=1,r �=k

pr

pr − pk

(C1)

on x � 0.
Proof. This is a straightforward induction for the most part.

The base case is simply checked by plugging in n = 1. To get
the inductive step down, we just convolve the previous step
with a new exponential distribution, so

gn+1(x) =
∫ x

0
pn+1e

−pn+1(x−y)gn(y) dy.

After calculating for a bit, we find

gn+1(x) =
n

∑

k=1

pke
−pkx

n+1
∏

r �=k

pr

pr − pk

+
n

∑

k=1

pkpn+1

pk − pn+1
e−pn+1x

n
∏

r �=k

pr

pr − pk

.

The first term is in the desired form, but the second term
requires some work. After some further manipulation, we can
get

second term = e−pn+1x

(

n
∏

k=1

pk

pk − pn+1

)

b(pn+1),
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where we define

b(z) :=
n

∑

k=1

n
∏

r �=k

pr − z

pr − pk

.

We can interpret b(z) as a polynomial of at most degree n − 1
in z (a Lagrange polynomial, to be specific).

But notice that for l = 1, . . . ,n, b(pl) = 1. This means that
b(z) − 1 is a polynomial with n distinct roots, which is more
than what its maximum degree should normally allow. The
only way that is possible is if b(z) − 1 is a constant zero, so
b(z) ≡ 1. Plugging this in and simplifying gives

gn+1(x) =
n+1
∑

k=1

pke
−pkx

n+1
∏

r=1,r �=k

pr

pr − pk

,

which is the desired result.

APPENDIX D: TRUNCATION OF SEQUENCES

Proposition. Let L := L(M), B := B(M) with
limM→∞ L(M) = limM→∞ B(M) = ∞. Further say that
B is integer valued with 1 � B � M . Given a positive
sequence p(M) = (pm)Mm=1, assume

lim
M→∞

M
∑

m=1

1

(pmL)2
= A < ∞,

and limM→∞ 1/[pk(M)L] = 0 given that M � k(M) > B.
Then

B
∑

m=1

E(pm) − 1/pm

L
∼

M
∑

m=1

E(pm) − 1/pm

L
. (D1)

Proof. As before, the proof involves showing the ratio of
characteristic functions converges to 1. The full series on the
right has the function

φ =
M
∏

m=1

exp[−it/(pmL)]

1 − it/(pmL)
,

and the truncated series on the left has

φ̂ =
B

∏

m=1

exp[−it/(pmL)]

1 − it/(pmL)
.

So naturally, we fix a t and get the ratio

φ/φ̂ =
M
∏

m=B+1

exp[−it/(pmL)]

1 − it/(pmL)
.

Because of our last condition, we know that 1/(pmL) is
small for all m in this range. So we can do a Taylor expansion
and make a function R1 which is small in magnitude so that

φ/φ̂ =
M
∏

m=B+1

(

1 +
t2

(pmL)2

R1

1 − it/(pmL)

)

.

Again, |1 − it/(pmL)| > 1 and pmL is large, so we can again
shift to an exponential to get

φ/φ̂ = exp

[

M
∑

m=B+1

R2t
2

(pmL)2

]

,

where R2 is small in magnitude again. But notice that this is
based on the tail of a convergent sum. So

lim
M→∞

M
∑

m=B+1

1

(pmL)2

= lim
M→∞

(

M
∑

m=1

1

(pmL)2
−

B
∑

m=1

1

(pmL)2

)

= A − A = 0.

And so limM→∞ φ/φ̂ = 1.

APPENDIX E: EDGE PERTURBATIONS

In principle we could show a more general statement here,
but we are only going to directly calculate the effect of a
perturbation once in this paper. So, for the sake of readability,
we are just going to do this specific example.

Recall that for the complete graph Npm = m(1 − (m − 1)/
(N − 1)) = Nrm(1 − ǫm) with rm = m/N . Also recall that
p(T ) and r (T ) are the truncated sequences up to B =
⌊
√

N − 1⌋. Let φ̂ be the characteristic function associated
with the normalized sum S(p(T )), and φ is the characteristic
function associated with S(T ). Then

φ/φ̂ =
B

∏

m=1

exp

[

−it

rmN
+

it

pmN

]

1 − it/(pmN )

1 − it/(rmN )

=
B

∏

m=1

exp

[

−it

m

(

1 −
1

1 − ǫm

)]

1 − it(1 − ǫm)−1/m

1 − it/m
.

Notice ǫm = (m − 1)/(N − 1) = O(N−1/2) in the range of
m’s in the product and is therefore small. We go through some
Taylor expansions and cancellations and, using Rj to represent
functions of small magnitude, we find

φ/φ̂ =
B

∏

m=1

(

1 +
itR2ǫm

m

)

exp

(

itR1ǫm

m

)

.

The first term can be once again turned into an exponential
(thanks to the smallness of ǫ), and so we get

φ/φ̂ = exp

(

2itR3

B
∑

m=1

ǫm

m

)

.

Therefore, we get convergence to 1 if the sum converges to
zero as N gets large. But this sum is easy to bound from above.
That is,

B
∑

m=1

ǫm

m
=

⌊
√

N−1⌋
∑

m=1

1

m

m − 1

N − 1

�

⌊
√

N−1⌋
∑

m=1

1

m

m

N − 1
� (N − 1)−1/2 N→∞−−−→ 0.

This means we get that φ/φ̂ → 1, implying that the
truncated sum for the complete graph converges to the
truncated distribution for the coupon collector’s problem.
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APPENDIX F: THE LINDEBERG CONDITION
(TWO DIMENSIONS)

Much like in the 1D lattice case, we are unable to directly
use the typical central limit theorem, because the variables are
not identical and have a dependence on N . But once again,
we can apply the Lindeberg-Feller theorem. We are going to
focus on the 2D case, so we have η = 1 − 1/d = 1/2. Let

YN,m =
E(

√
m) − 1/

√
m

√
H

.

Because we are only looking at the special 2D case, H =
H (N,2(1/2)) =

∑N
k=1 1/k.

Notice that for any higher dimension d > 2 we would
get H =

∑N
k=1 1/k2−2/d , which quickly converges to a finite

number as N gets large, whereas with d = 2, we have that H

gets large for large N . This distinction is what lets us apply
the theorem to the 2D case, but not the rest.

Anyway, it is easy to check that E[YN,m] = 0 and
E[Y 2

N,m] = m−2η/H . So then

N
∑

m=1

E
[

Y 2
N,m

]

=
1

H

N
∑

m=1

1

m
= 1.

So in order to apply the theorem, we only need to check if, for
any fixed ǫ > 0, we have

Lind. := lim
N→∞

N
∑

m=1

E
[

Y 2
N,m; |YN,m| > ǫ

] ?= 0. (F1)

If this final condition holds, then we can cite the theorem and
conclude that

∑N
m=1 YN,m is distributed as a normal as N gets

large.
We need not care about the YN,m < −ǫ case, because this is

equivalent to asking for E(
√

m) < 1/
√

m − ǫ
√

H . However,
H scales as log(N ) in the limit of large N whereas 1/

√
m �

1, so this quantity will always eventually become negative,
whereas exponential variables are always positive.

Therefore, let us focus on the positive half. Letting c :=
1/

√
m + ǫ

√
H and integrating, we get

E
[

Y 2
N,m; YN,m > ǫ

]

=
∫ ∞

c

√
me−

√
mx

(

x − 1/
√

m
√

H

)2

dx

=
1

Hm
(1 + (

√
mc)2)e−

√
mc.

Substituting in gives us

E
[

Y 2
N,m; YN,m > ǫ

]

= e−1

(

2

Hm
+

2ǫ
√

m
√

H
+ ǫ2

)

exp(−ǫ
√

m
√

H ).

That last term will be the dominant term as N gets large, so
we can choose some positive constant C1 (which may depend
on ǫ) such that

E
[

Y 2
N,m; YN,m > ǫ

]

� C1 exp(−ǫ
√

m
√

H ).

So, we have

Lind. = lim
N→∞

N
∑

m=1

E
[

Y 2
N,m; YN,m > ǫ

]

� lim
N→∞

N
∑

m=1

C1 exp(−ǫ
√

m
√

H ).

We can bound the harmonic sum H from below with a constant
times log(N ), so there is some positive C2 such that

Lind. � lim
N→∞

N
∑

m=1

C1 exp(−C2

√

log(N )
√

m).

We can approximate this sum from above by interpreting it as
a Riemann sum. By taking the appropriate integral, we get

∫ N

0
C1 exp(−C2

√

log(N )
√

x)dx

=
2C1

C2 log(N )
[1 − exp ( − C2

√

N log(N ))

− C2

√

N log(N ) exp ( − C2

√

N log(N ))]

�
2C1

C2 log(N )
.

Second moments are always non-negative, which means

0 � Lind. � lim
N→∞

2C1

C2 log(N )
= 0.

So Eq. (F1) is finally confirmed. As a consequence, we can
finally cite the Lindeberg-Feller theorem, and know that

N
∑

m=1

E(
√

m) − 1/
√

m
√

H

d−→ Normal(0,1). (F2)

APPENDIX G: NON-NORMALITY OF d > 2

There are a lot of possible ways to show a distribution
does not converge to a normal in a limit. But to show that
the distribution of F ′ for a (d > 2)-dimensional lattice [as
defined in Eq. (20)] is not normal, it will suffice to consider
the moments. We already know that F ′ has a mean of zero and
a variance of 1; so if F ′ went like a normal, then we should
expect that limN→∞ E[F ′3] = 0 by symmetry.

We can reuse Eq. (B3) to find the characteristic function φ of
F ′ by plugging in pm = mη and L2 = H (2η) =

∑N
m=1 m−2η.

Because d > 2, then 2η > 1. By the definition of the character-
istic function, we know that if we expand φ in powers of t , then

φ = 1 − itE[F ′] −
t2

2
E[F ′2] + i

t3

6
E[F ′3]

+ higher order terms

= 1 −
t2

2
− i

t3

6
E[F ′3] + higher order terms.

So we can get the third moment by just reading off the
coefficient of the t3 term.
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FIG. 10. A properly chosen three-parameter lognormal distribution can closely approximate (a) a Gumbel distribution or (b) a convolution
of two Gumbel distributions. The parameters in these lognormals were chosen to fit the first three moments of the Gumbel or Gumbel+Gumbel
distributions.

Returning to Eqs. (20) and (B3), let xm = itm−ηH (2η)−1/2.
Using the standard expansions for ex and 1/(1 − x), we find

φ =
N

∏

m=1

exp(−xm)

1 − xm

=
N

∏

m=1

1 − xm +
∑∞

k=2(−xm)k/k!

1 − xm

=
N

∏

m=1

[

1 +

( ∞
∑

l=0

x l
m

)( ∞
∑

k=2

(−xm)k/k!

)]

=
N

∏

m=1

[

1 +
x2

m

2
+

x3
m

3
+ higher order terms

]

.

If we do not care about high order terms in t , then this is an
easy product to take. In fact, if we collect terms and plug in
for xm, we get

φ = 1 −
t2

2H (2η)

N
∑

m=1

1

m2η

+
−it3

3H (2η)3/2

N
∑

m=1

1

m3η
+ higher order terms

= 1 −
t2

2
− i

t3

3

H (3η)

H (2η)3/2
+ higher order terms.

This means, for any finite N , the third moment of F ′ is simply

E[F ′3] = 2
H (3η)

H (2η)3/2
.

Although H is a function that depends on N , this quantity
will never get large. In fact, since 1 � η > 1/2, then we know
in the limit of large N that

E[F ′3] → 2
ζ (3η)

ζ (2η)3/2
, (G1)

where ζ is the Riemann zeta function. In the range of η’s
presented, ζ neither diverges nor hits zero, so the above will
never be zero. In fact, the right hand side of Eq. (G1) is

monotone, so each distinct 1 � η > 1/2 will produce a distinct
third moment and therefore a distinct distribution. As a side
note, if we take η → 1, we get 12

√
6ζ (3)/π3, which is the

correct value for the third moment of a normalized Gumbel
distribution, as expected. However, since the rest are distinct,
that means we only transition to an exact Gumbel distribution
in the extreme limit.

In summary: given d > 2, we never expect F ′ to have a
zero third moment in the limit of large N , and so F ′ can
never converge to a normal distribution. Moreover, because
their third moments depend on η = 1 − 1/d, we expect F ′ to
converge to a different distribution for each d > 2. Hence we
expect there is no upper critical dimension.

APPENDIX H: LOGNORMAL DISTRIBUTIONS CAN
MASQUERADE AS GUMBEL DISTRIBUTIONS

In Sec. VII B we noted that the distribution of disease incu-
bation periods and other times of medical interest have often
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FIG. 11. Distribution of takeover times T for a Barabasi-Albert
scale-free network with a minimum degree of 3 and N = 75
nodes. Simulation results were compiled from 1×106 runs, all
using the same realization of the random graph and all with the
initial infection starting at the same node. The solid line is the
Gumbel(−γ

√
3/π,

√
3/π ) distribution for reference. μ and σ 2 are

the numerically calculated mean and variance of T .
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been fit by a lognormal. However, given the noise in real data, it
is entirely possible that the true distribution should have been a
Gumbel distribution (or a convolution of two Gumbel distribu-
tions) and was impersonated by a similar-looking lognormal.

Moreover, since most studies used three-parameter
lognormals, it would always be possible to match the first
three moments of the data. We do as such in Fig. 10, producing
a very close fit to both a Gumbel distribution and a convolution
of two Gumbel distributions. We can compare these densities
using the Kolmogorov metric, given by the maximum
difference between their cumulative distribution functions.
Using this, we find that the normalized Gumbel distribution
is ≈0.0034 away from its corresponding lognormal in this
metric. For the convolution of two Gumbel distributions, we

can numerically estimate that its corresponding lognormal is
�10−2 away in the Kolmogorov metric.

APPENDIX I: NETWORK RESILIENCE OF RIGHT SKEWS

Our theory thus far has addressed homogeneous networks,
primarily. However, our results show an amount of numerical
robustness. For example, when takeover times are measured
for certain more complicated heterogeneous networks (e.g.,
a Barabasi-Albert scale-free network; see Fig. 11), we still
obtain nearly Gumbel distributions. However, due to the lack of
theory, we cannot say that this convergence occurs in the limit
of large N . Rigorous understanding of these heterogeneous
networks remains an open question.
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