
1

Taking the Human Out of the Loop:

A Review of Bayesian Optimization
Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams and Nando de Freitas

Abstract—Big data applications are typically associated with
systems involving large numbers of users, massive complex
software systems, and large-scale heterogeneous computing and
storage architectures. The construction of such systems involves
many distributed design choices. The end products (e.g., rec-
ommendation systems, medical analysis tools, real-time game
engines, speech recognizers) thus involves many tunable config-
uration parameters. These parameters are often specified and
hard-coded into the software by various developers or teams.
If optimized jointly, these parameters can result in significant
improvements. Bayesian optimization is a powerful tool for
the joint optimization of design choices that is gaining great
popularity in recent years. It promises greater automation so as
to increase both product quality and human productivity. This
review paper introduces Bayesian optimization, highlights some
of its methodological aspects, and showcases a wide range of
applications.

I. INTRODUCTION

Design problems are pervasive in scientific and industrial

endeavours: scientists design experiments to gain insights into

physical and social phenomena, engineers design machines

to execute tasks more efficiently, pharmaceutical researchers

design new drugs to fight disease, companies design websites

to enhance user experience and increase advertising revenue,

geologists design exploration strategies to harness natural re-

sources, environmentalists design sensor networks to monitor

ecological systems, and developers design software to drive

computers and electronic devices. All these design problems

are fraught with choices, choices that are often complex and

high-dimensional, with interactions that make them difficult

for individuals to reason about.

For example, many organizations routinely use the popular

mixed integer programming solver IBM ILOG CPLEX1 for

scheduling and planning. This solver has 76 free parameters,

which the designers must tune manually – an overwhelming

number to deal with by hand. This search space is too vast

for anyone to effectively navigate.

More generally, consider teams in large companies that de-

velop software libraries for other teams to use. These libraries

have hundreds or thousands of free choices and parameters

that interact in complex ways. In fact, the level of complexity

is often so high that it becomes impossible to find domain

experts capable of tuning these libraries to generate a new

product.

As a second example, consider massive online games in-

volving the following three parties: content providers, users,

1http://www.ibm.com/software/commerce/optimization/cplex-optimizer/

and the analytics company that sits between them. The analyt-

ics company must develop procedures to automatically design

game variants across millions of users; the objective is to

enhance user experience and maximize the content provider’s

revenue.

The preceding examples highlight the importance of au-

tomating design choices. For a nurse scheduling application,

we would like to have a tool that automatically chooses the

76 CPLEX parameters so as to improve healthcare delivery.

When launching a mobile game, we would like to use the data

gathered from millions of users in real-time to automatically

adjust and improve the game. When a data scientist uses a

machine learning library to forecast energy demand, we would

like to automate the process of choosing the best forecasting

technique and its associated parameters.

Any significant advances in automated design can result in

immediate product improvements and innovation in a wide

area of domains, including advertising, health-care informat-

ics, banking, information mining, life sciences, control engi-

neering, computing systems, manufacturing, e-commerce, and

entertainment.

Bayesian optimization has emerged as a powerful solution

for these varied design problems. In academia, it is impacting

a wide range of areas, including interactive user-interfaces

[26], robotics [101], [110], environmental monitoring [106],

information extraction [158], combinatorial optimisation [79],

[159], automatic machine learning [16], [143], [148], [151],

[72], sensor networks [55], [146], adaptive Monte Carlo [105],

experimental design [11] and reinforcement learning [27].

When software engineers develop programs, they are often

faced with myriad choices. By making these choices explicit,

Bayesian optimization can be used to construct optimal pro-

grams [74]: that is to say, programs that run faster or compute

better solutions. Furthermore, since different components of

software are typically integrated to build larger systems, this

framework offers the opportunity to automate integrated prod-

ucts consisting of many parametrized software modules.

Mathematically, we are considering the problem of finding

a global maximizer (or minimizer) of an unknown objective

function f :

x⋆ = argmax
x∈X

f(x) , (1)

where X is some design space of interest; in global op-

timization, X is often a compact subset of R
d but the

Bayesian optimization framework can be applied to more

unusual search spaces that involve categorical or conditional

inputs, or even combinatorial search spaces with multiple

2

categorical inputs. Furthermore, we will assume the black-

box function f has no simple closed form, but can be

evaluated at any arbitrary query point x in the domain. This

evaluation produces noise-corrupted (stochastic) outputs y ∈ R

such that E[y | f(x)] = f(x). In other words, we can only

observe the function f through unbiased noisy point-wise

observations y. Although this is the minimum requirement

for Bayesian optimization, when gradients are available, they

can be incorporated in the algorithm as well; see for example

Sections 4.2.1 and 5.2.4 of [99]. In this setting, we consider

a sequential search algorithm which, at iteration n, selects a

location xn+1 at which to query f and observe yn+1. After N
queries, the algorithm makes a final recommendation x̄N ,

which represents the algorithm’s best estimate of the optimizer.

In the context of big data applications for instance, the func-

tion f can be an object recognition system (e.g., deep neural

network) with tunable parameters x (e.g., architectural choices,

learning rates, etc) with a stochastic observable classification

accuracy y = f(x) on a particular dataset such as ImageNet.

Because the Bayesian optimization framework is very data

efficient, it is particularly useful in situations like these where

evaluations of f are costly, where one does not have access

to derivatives with respect to x, and where f is non-convex

and multimodal. In these situations, Bayesian optimization is

able to take advantage of the full information provided by the

history of the optimization to make this search efficient.

Fundamentally, Bayesian optimization is a sequential

model-based approach to solving problem (1). In particular, we

prescribe a prior belief over the possible objective functions

and then sequentially refine this model as data are observed via

Bayesian posterior updating. The Bayesian posterior represents

our updated beliefs – given data – on the likely objective func-

tion we are optimizing. Equipped with this probabilistic model,

we can sequentially induce acquisition functions αn : X 7→ R

that leverage the uncertainty in the posterior to guide explo-

ration. Intuitively, the acquisition function evaluates the utility

of candidate points for the next evaluation of f ; therefore xn+1

is selected by maximizing αn, where the index n indicates the

implicit dependence on the currently available data. Here the

“data” refers to previous locations where f has been evaluated,

and the corresponding noisy outputs.

In summary, the Bayesian optimization framework has two

key ingredients. The first ingredient is a probabilistic surrogate

model, which consists of a prior distribution that captures our

beliefs about the behavior of the unknown objective function

and an observation model that describes the data generation

mechanism. The second ingredient is a loss function that

describes how optimal a sequence of queries are; in practice,

these loss functions often take the form of regret, either simple

or cumulative. Ideally, the expected loss is then minimized

to select an optimal sequence of queries. After observing the

output of each query of the objective, the prior is updated

to produce a more informative posterior distribution over the

space of objective functions; see Figure 1 and Algorithm 1 for

an illustration and pseudo-code of this framework. See Section

4 of [64] for another introduction.

One problem with this minimum expected risk framework

is that the true sequential risk, up to the full evaluation

Algorithm 1 Bayesian optimization

1: for n = 1, 2, . . . do

2: select new xn+1 by optimizing acquisition function α

xn+1 = argmax
x

α(x;Dn)

3: query objective function to obtain yn+1

4: augment data Dn+1 = {Dn, (xn+1, yn+1)}
5: update statistical model

6: end for

budget, is typically computationally intractable. This has led

to the introduction of many myopic heuristics known as

acquisition functions, e.g., Thompson sampling, probability

of improvement, expected improvement, upper-confidence-

bounds, and entropy search. These acquisition functions trade

off exploration and exploitation; their optima are located where

the uncertainty in the surrogate model is large (exploration)

and/or where the model prediction is high (exploitation).

Bayesian optimization algorithms then select the next query

point by maximizing such acquisition functions. Naturally,

these acquisition functions are often even more multimodal

and difficult to optimize, in terms of querying efficiency, than

the original black-box function f . Therefore it is critical that

the acquisition functions be cheap to evaluate or approximate:

cheap in relation to the expense of evaluating the black-box f .

Since acquisition functions have analytical forms that are easy

to evaluate or at least approximate, it is usually much easier

to optimize them than the original objective function.

A. Paper overview

In this paper, we introduce the ingredients of Bayesian

optimization in depth. Our presentation is unique in that we

aim to disentangle the multiple components that determine the

success of Bayesian optimization implementations. In partic-

ular, we focus on statistical modelling as this leads to general

algorithms to solve a broad range tasks. We also provide an

extensive comparison among popular acquisition functions.

We will see that the careful choice of statistical model is often

far more important than the choice of acquisition function

heuristic.

We begin in Sections II and III, with an introduction

to parametric and non-parametric models, respectively, for

binary- and real-valued objective functions. In Section IV,

we will introduce many acquisition functions, compare them,

and even combine them into portfolios. Several practical and

implementation details, including available software packages,

are discussed in Section V. A survey of theoretical results and

a brief history of model-based optimization are provided in

Sections VI and VII, respectively. Finally, we introduce more

recent developments in Section VIII.

B. Applications of Bayesian optimization

Before embarking on a detailed introduction to Bayesian

optimization, the following sections provide an overview of

the many and varied successful applications of Bayesian

optimization that should be of interest to data scientists.

3

acquisition max

acquisition function (u(·))

observation (x)
objective fn (f (·))

n= 2

new observation (xn)

n= 3

posterior mean (µ(·))

posterior uncertainty
(µ(·) ±σ(·))

n= 4

Fig. 1. Illustration of the Bayesian optimization procedure over three
iterations. The plots show the mean and confidence intervals estimated with a
probabilistic model of the objective function. Although the objective function
is shown, in practice it is unknown. The plots also show the acquisition
functions in the lower shaded plots. The acquisition is high where the model
predicts a high objective (exploitation) and where the prediction uncertainty
is high (exploration). Note that the area on the far left remains unsampled,
as while it has high uncertainty, it is correctly predicted to offer little
improvement over the highest observation [27].

1) A/B testing: Though the idea of A/B testing dates back

to the early days of advertising in the form of so-called focus

groups, the advent of the internet and smartphones has given

web and app developers a new forum for implementing these

tests at unprecedented scales. By redirecting small fractions

of user traffic to experimental designs of an ad, app, game,

or website, the developers can utilize noisy feedback to

optimize any observable metric with respect to the product’s

configuration. In fact, depending on the particular phase of a

product’s life, new subscriptions may be more valuable than

revenue or user retention, or vice versa; the click-through rate

might be the relevant objective to optimize for an ad, whereas

for a game it may be some measure of user engagement.

The crucial problem is how to optimally query these subsets

of users in order to find the best product with high probability

within a predetermined query budget, or how to redirect traffic

sequentially in order to optimize a cumulative metric while

incurring the least opportunity cost [88], [135], [38].

2) Recommender systems: In a similar setting, online con-

tent providers make product recommendations to their sub-

scribers in order to optimize either revenue in the case of

e-commerce sites, readership for news sites, or consumption

for video and music streaming websites. In contrast to A/B

testing, the content provider can make multiple suggestions to

any given subscriber. The techniques reviewed in this work

have been successfully used for the recommendation of news

articles [97], [38], [153].

3) Robotics and Reinforcement learning: Bayesian opti-

mization has also been successfully applied to policy search.

For example, by parameterizing a robot’s gait it is possible to

optimize it for velocity or smoothness as was done on the Sony

AIBO ERS-7 in [101]. Similar policy parameterization and

search techniques have been used to navigate a robot through

landmarks, minimizing uncertainty about its own location and

map estimate [110], [108]. See [27] for an example of applying

Bayesian optimization to hierarchical reinforcement learning,

where the technique is used to automatically tune the parame-

ters of a neural network policy and to learn value functions at

higher levels of the hierarchy. Bayesian optimization has also

been applied to learn attention policies in image tracking with

deep networks [44]

4) Environmental monitoring and sensor networks: Sen-

sor networks are used to monitor environmentally relevant

quantities: temperature, concentration of pollutants in the

atmosphere, soil, oceans, etc. Whether inside a building or at

a planetary scale, these networks make noisy local measure-

ments that are interpolated to produce a global model of the

quantity of interest. In some cases, these sensors are expensive

to activate but one can answer important questions like what

is the hottest or coldest spot in a building by activating a

relatively small number of sensors. Bayesian optimization was

used for this task and the similar one of finding the location of

greatest highway traffic congestion [146]. Also, see [55] for a

meteorological application.

When the sensor is mobile, there is a cost associated with

making a measurement which relates to the distance travelled

by a vehicle on which the sensor is mounted (e.g., a drone).

This cost can be incorporated in the decision making process

as in [106].

5) Preference learning and interactive interfaces: The

computer graphics and animation fields are filled with appli-

cations that require the setting of tricky parameters. In many

cases, the models are complex and the parameters unintuitive

for non-experts. In [28], [26], the authors use Bayesian opti-

mization to set the parameters of several animation systems

by showing the user examples of different parametrized an-

imations and asking for feedback. This interactive Bayesian

optimization strategy is particulary effective as humans can be

very good at comparing examples, but unable to produce an

objective function whose optimum is the example of interest.

6) Automatic machine learning and hyperparameter tuning:

In this application, the goal is to automatically select the best

model (e.g., random forests, support vector machines, neural

networks, etc.) and its associated hyperparameters for solving

a task on a given dataset. For big datasets or when considering

many alternatives, cross-validation is very expensive and hence

it is important to find the best technique within a fixed budget

of cross-validation tests. The objective function here is the

generalization performance of the models and hyperparameter

settings; a noisy evaluation of the objective corresponds to

training a single model on all but one cross-validation folds

and returning, e.g., the empirical error on the held out fold.

The traditional alternatives to cross-validation include rac-

ing algorithms that use conservative concentration bounds to

rule out underperforming models [107], [113]. Recently, the

4

Bayesian optimization approach for the model selection and

tuning task has received much attention in tuning deep belief

networks [16], Markov chain Monte Carlo methods [105],

[65], convolutional neural networks [143], [148], and au-

tomatically selecting among WEKA and scikit-learn

offerings [151], [72].

7) Combinatorial optimization: Bayesian optimization has

been used to solve difficult combinatorial optimization prob-

lems in several applications. One notable approach is called

empirical hardness models (EHMs) that use a set of problem

features to predict the performance of an algorithm on a

specific problem instance [96]. Bayesian optimization with an

EHM amounts to finding the best algorithm and configuration

for a given problem. This concept has been applied to e.g., tun-

ing mixed integer solvers [78], [159], and tuning approximate

nearest neighbour algorithms [109]. Bayesian optimization has

also been applied to fast object localization in images [163].

8) Natural language processing and text: Bayesian opti-

mization has been applied to improve text extraction in [158]

and to tune text representations for more general text and

language tasks in [162].

II. BAYESIAN OPTIMIZATION WITH PARAMETRIC MODELS

The central idea of Bayesian optimization is to build a

model that can be updated and queried to drive optimization

decisions. In this section, we cover several such models, but for

the sake of clarity, we first consider a generic family of models

parameterized by w. Let D denote the available data. We will

generalize to the non-parametric situation in the proceeding

section.

Since w is an unobserved quantity, we treat it as a la-

tent random variable with a prior distribution p(w), which

captures our a priori beliefs about probable values for w

before any data is observed. Given data D and a likelihood

model p(D |w), we can then infer a posterior distribu-

tion p(w | D) using Bayes’ rule:

p(w | D) =
p(D |w) p(w)

p(D)
. (2)

This posterior represents our updated beliefs about w after

observing data D. The denominator p(D) is the marginal

likelihood, or evidence, and is usually computationally in-

tractable. Fortunately, it does not depend on w and is therefore

simply a normalizing constant. A typical modelling choice

is to use conjugacy to match the prior and likelihood so

that the posterior (and often the normalizing constant) can be

computed analytically.

A. Thompson sampling in the Beta-Bernoulli bandit model

We begin our discussion with a treatment of perhaps the

simplest statistical model, the Beta-Bernoulli. Imagine that

there are K drugs that have unknown effectiveness, where

we define “effectiveness” as the probability of a successful

cure. We wish to cure patients, but we must also identify

which drugs are effective. Such a problem is often called

a Bernoulli (or binomial) bandit problem by analogy to a

group of slot machines, which each yield a prize with some

unknown probability. In addition to clinical drug settings, this

formalism is useful for A/B testing [135], advertising, and

recommender systems [97], [38], among a wide variety of

applications. The objective is to identify which arm of the

bandit to pull, e.g., which drug to administer, which movie

to recommend, or which advertisement to display. Initially,

we consider the simple case where the arms are independent

insofar as observing the success or failure of one provides no

information about another.

Returning to the drug application, we can imagine the

effectiveness of different drugs (arms on the bandit) as being

determined by a function f that takes an index a ∈ 1, . . . ,K
and returns a Bernoulli parameter in the interval (0, 1).
With yi ∈ {0, 1}, we denote the Bernoulli outcome of the

treatment of patient i, and this has mean parameter f(ai)
if the drug administered was ai. Note that we are assuming

stochastic feedback, in contrast to deterministic or adver-

sarial feedback [9], [10]. With only K arms, we can fully

describe the function f with a parameter w ∈ (0, 1)K so

that fw(a) := wa.

Over time, we will see outcomes from different patients

and different drugs. We can denote these data as a set of

tuples Dn = {(ai, yi)}ni=1, where ai indicates which of the K
drugs was administered and yi is 1 if the patient was cured

and 0 otherwise. In a Bayesian setting, we will use these data

to compute a posterior distribution over w. A natural choice

for the prior distribution is a product of K beta distributions:

p(w |α, β) =
K
∏

a=1

Beta(wa |α, β) , (3)

as this is the conjugate prior to the Bernoulli likelihood, and

it leads to efficient posterior updating. We denote by na,1 the

number of patients cured by drug a and by na,0 the number

of patients who received a but were unfortunately not cured;

that is

na,0 =

n
∑

i=1

I(yi = 0, ai = a) (4)

na,1 =

n
∑

i=1

I(yi = 1, ai = a) . (5)

The convenient conjugate prior then leads to a posterior

distribution which is also a product of betas:

p(w | D) =

K
∏

a=1

Beta(wa |α+ na,1, β + na,0) . (6)

Note that this makes it clear how the hyperparameters α, β > 0
in the prior can be interpreted as pseudo-counts. Figure 2

provides a visualization of the posterior of a three-armed Beta-

Bernoulli bandit model with a Beta(2, 2) prior.

In Section IV, we will introduce various strategies for

selecting the next arm to pull within models like the Beta-

Bernoulli, but for the sake of illustration, we introduce Thomp-

son sampling [150], the earliest and perhaps the simplest non-

trivial bandit strategy. This strategy is also commonly known

as randomized probability matching [135] because it selects

the arm based on the posterior probability of optimality, here

5

Buy now!
A

Purchase
B

Check out
C

0 1

Fig. 2. Example of the Beta-Bernoulli model for A/B testing. Three different
buttons are being tested with various colours and text. Each option is given 2
successes (click-throughs) and 2 failures as a prior (top). As data are observed,
each option updates its posterior over w. Option A is the current best with 5
successes and only 1 observed failure.

given by a beta distribution. In simple models like the Beta-

Bernoulli, it is possible to compute this distribution in closed

form, but more often it must be estimated via, e.g., Monte

Carlo.

After observing n patients in our drug example, we can

think of a bandit strategy as being a rule for choosing which

drug to administer to patient n+ 1, i.e., choosing an+1 among

the K options. In the case of Thompson sampling, this can

be done by drawing a single sample w̃ from the posterior and

then maximizing the resulting surrogate fw̃, i.e.,

an+1 = argmax
a

fw̃(a) where w̃ ∼ p(w | Dn). (7)

For the Beta-Bernoulli, this corresponds to simply drawing w̃

from (6) and then choosing the action with the largest w̃a.

This procedure, shown in pseudo-code in Algorithm 2, is also

commonly called posterior sampling [127]. It is popular for

several reasons: 1) there are no free parameters other than the

prior hyperparameters of the Bayesian model, 2) the strategy

naturally trades off between exploration and exploitation based

on its posterior beliefs on w; arms are explored only if they

are likely (under the posterior) to be optimal, 3) the strategy is

relatively easy to implement as long as Monte Carlo sampling

mechanisms are available for the posterior model, and 4) the

randomization in Thompson sampling makes it particularly

appropriate for batch or delayed feedback settings where many

selections an+1 are based on the identical posterior [135], [38].

B. Linear models

In many applications, the designs available to the exper-

imenter have components that can be varied independently.

For example, in designing an advertisement, one has choices

such as artwork, font style, and size; if there are five choices

for each, the total number of possible configurations is 125.

Algorithm 2 Thompson sampling for Beta-Bernoulli bandit

Require: α, β: hyperparameters of the beta prior

1: Initialize na,0 = na,1 = i = 0 for all a
2: repeat

3: for a = 1, . . . ,K do

4: w̃a ∼ Beta(α+ na,1, β + na,0)
5: end for

6: ai = argmaxa w̃a

7: Observe yi by pulling arm ai
8: if yi = 0 then

9: nai,0 = nai,0 + 1
10: else

11: nai,1 = nai,1 + 1
12: end if

13: i = i+ 1
14: until stopping criterion reached

In general, this number grows combinatorially in the number

of components. This presents challenges for approaches such

as the independent Beta-Bernoulli model discussed in the

previous section: modelling the arms as independent will

lead to strategies that must try every option at least once.

This rapidly becomes infeasible in the large spaces of real-

world problems. In this section, we discuss a parametric

approach that captures dependence between the arms via a

linear model. For simplicity, we first consider the case of real-

valued outputs y and generalize this model to binary outputs

in the succeeding section.

As before, we begin by specifying a likelihood and a prior.

In the linear model, it is natural to assume that each possible

arm a has an associated feature vector xa ∈ R
d. We can then

express the expected payout (reward) of each arm as a function

of this vector, i.e., f(a) = f(xa). Our objective is to learn

this function f : Rd 7→ R for the purpose of choosing the

best arm, and in the linear model we require f to be of the

form fw(a) = xT
aw, where the parameters w are now feature

weights. This forms the basis of our likelihood model, in

which the observations for arm a are drawn from a Gaussian

distribution with mean xT
aw and variance σ2.

We use X to denote the n× d design matrix in which row i
is the feature vector associated with the arm pulled in the ith
iteration, xai

. We denote by y the n-vector of observations. In

this case, there is also a natural conjugate prior for w and σ2:

the normal-inverse-gamma, with density given by

NIG(w, σ2 | w0,V0, α0, β0) =

|2πσ2V0|−
1
2 exp

{

− 1

2σ2
(w −w0)

TV−1
0 (w −w0)

}

× βα0
0

Γ(α0)(σ2)α0+1
exp

{

−β0

σ2

}

. (8)

There are four prior hyperparameters in this case, w0, V0,

α0, and β0. As in the Beta-Bernoulli case, this conjugate

prior enables the posterior distribution to be computed easily,

leading to another normal-inverse-gamma distribution, now

6

with parameters

wn = Vn(V
−1
0 w0 +XTy) (9)

Vn = (V−1
0 +XTX)−1 (10)

αn = α0 + n/2 (11)

βn = β0 +
1

2

(

wT
0 V

−1
0 w0 + yTy −wT

nV
−1
n wn

)

. (12)

Integrating out the weight parameter w leads to coupling

between the arms and makes it possible for the model to

generalize observations of reward from one arm to another.

In this linear model, Thompson sampling draws a w̃ from

the posterior p(w | Dn) and selects the arm with the highest

expected reward under that parameter, i.e.,

an+1 = argmax
a

xT
a w̃ where w̃ ∼ p(w | Dn). (13)

After arm an+1 is pulled and yn+1 is observed, the posterior

model can be readily updated using equations (9–12).

Various generalizations can be immediately seen. For ex-

ample, by embedding the arms of a multi-armed bandit into

a feature space denoted X , we can generalize to objective

functions f defined on the entire domain X , thus unifying

the multi-armed bandit problem with that of general global

optimization:

maximize f(x) s.t. x ∈ X . (14)

In the multi-armed bandit, the optimization is over a discrete

and finite set {xa}Ka=1 ⊂ X , while global optimization seeks

to solve the problem on, e.g., a compact set X ⊂ R
d.

As in other forms of regression, it is natural in increase the

expressiveness of the model with non-linear basis functions.

In particular, we can use J basis functions φj : X 7→ R,

for j = 1, . . . , J , and model the function f with a linear

combination

f(x) = Φ(x)Tw, (15)

where Φ(x) is the column vector of concatenated fea-

tures {φj(x)}Jj=1. Common classical examples of such φj

include radial basis functions such as

φj(x) = exp
{

− 1
2 (x− zj)

TΛ(x− zj)
}

, (16)

where Λ and {zj}Jj=1 are model hyperparameters, and Fourier

bases

φj(x) = exp
{

−ixT
ωj

}

, (17)

with hyperparameters {ωj}Jj=1.

Recently, such basis functions have also been learned from

data by training deep belief networks [71], deep neural net-

works [93], [144], or by factoring the empirical covariance

matrix of historical data [146], [72]. For example, in [34]

each sigmoidal layer of an L layer neural network is de-

fined as Lℓ(x) := σ(Wℓx+Bℓ) where σ is some sigmoidal

non-linearity, and Wℓ and Bℓ are the layer parameters.

Then the feature map Φ : R
d 7→ R

J can be expressed

as Φ(x) = LL ◦ · · · ◦ L1(x), where the final layer LL has J
output units. In [144], the weights of the last layer of a

deep neural network are integrated out to result in a tractable

Bayesian model with flexible learned basis functions.

Regardless of the feature map Φ, when conditioned on

these basis functions, the posterior over the weights w can

be computed analytically using (9-12). Let Φ(X) denote

the n× J matrix where [Φ(X)]i,j = φj(xi); then the posterior

is as in Bayesian linear regression, substituting Φ(X) for the

design matrix X.

C. Generalized linear models

While simple linear models capture the dependence between

bandit arms in a straightforward and expressive way, the model

as described does not immediately apply to other types of

observations, such as binary or count data. Generalized linear

models (GLMs) [119] allow more flexibility in the response

variable through the introduction of a link function. Here we

examine the GLM for binary data such as might arise from

drug trials or AB testing.

The generalized linear model introduces a link function g
that maps from the observation space into the reals. Most

often, we consider the mean function g−1, which defines

the expected value of the response as a function of the

underlying linear model: E[y |x] = g−1(xTw) = f(x). In the

case of binary data, a common choice is the logit link

function, which leads to the familiar logistic regression model

in which g−1(z) = 1/(1 + exp{z}). In probit regression, the

logistic mean function is replaced with the CDF of a standard

normal. In either case, the observations yi are taken to be

Bernoulli random variables with parameter g−1(xT
i w).

Unfortunately, there is no conjugate prior for the parame-

ters w when such a likelihood is used and so we must resort to

approximate inference. Markov chain Monte Carlo (MCMC)

methods [4] approximate the posterior with a sequence of

samples that converge to the posterior; this is the approach

taken in [135] on the probit model. In contrast, the Laplace

approximation fits a Gaussian distribution to the posterior by

matching the curvature of the posterior distribution at the

mode. For example in [38], Bayesian logistic regression with

a Laplace approximation was used to model click-throughs

for the recommendation of news articles in a live experi-

ment. In the generalized linear model, Thompson sampling

draws a w̃ from the posterior p(w | Dn) using MCMC or

a Laplace approximation, and then selects the arm with the

highest expected reward given the sampled parameter w̃,

i.e., an+1 = argmaxa g
−1(xT

a w̃).

D. Related literature

There are various strategies beyond Thompson sampling for

Bayesian optimization that will be discussed in succeeding

sections of the paper. However, before we can reason about

which selection strategy is optimal, we need to establish what

the goal of the series of sequential experiments will be. His-

torically, these goals have been quantified using the principle

of maximum expected utility. In this framework, a utility func-

tion U is prescribed over a set of experiments X := {xi}ni=1,

their outcomes y := {yi}ni=1, and the model parameter w. The

unknown model parameter and outcomes are marginalized out

to produce the expected utility

α(X) := EwEy |X,w [U(X,y,w)] , (18)

7

which is then maximized to obtain the best set of experiments

with respect to the given utility U and the current posterior.

The expected utility α is related to acquisition functions in

Bayesian optimization, reviewed in Section IV. Depending

on the literature, researchers have focussed on different goals

which we briefly discuss here.

1) Active learning and experimental design: In this setting,

we are usually concerned with learning about w, which can

be framed in terms of improving an estimator of w given

the data. One popular approach is to select points that are

expected to minimize the differential entropy of the posterior

distribution p(w |X,y), i.e., maximize:

α(X) = EwEy |X,w

[

∫

p(w′ |X,y) log p(w′ |X,y)dw′

]

.

In the Bayesian experimental design literature, this criterion is

known as the D-optimality utility and was first introduced by

Lindley [98]. Since this seminal work, many alternative utili-

ties have been proposed in the experimental design literature.

See [37] for a detailed survey.

In the context of A/B testing, following this strategy would

result in exploring all possible combinations of artwork, font,

and sizes, no matter how bad initial outcomes were. This is

due to the fact that the D-optimality utility assigns equal

value to any information provided about any advertisement

configuration, no matter how effective.

In contrast to optimal experimental design, Bayesian opti-

mization explores uncertain arms a ∈ {1, . . . ,K}, or areas of

the search space X , only until they can confidently be ruled

out as being suboptimal. Additional impressions of suboptimal

ads would be a waste of our evaluation budget. In Section IV,

we will introduce another differential entropy based utility that

is better suited for the task of optimization and that partially

bridges the gap between optimization and improvement of

estimator quality.

2) Multi-armed bandit: Until recently, the multi-armed

bandit literature has focussed on maximizing the sum of

rewards yi, possibly discounted by a discount factor γ ∈ (0, 1]:

α(X) = EwEy |X,w

[

n
∑

i=1

γi−1yi

]

. (19)

When γ < 1, a Bayes-optimal sequence X can be computed

for the Bernoulli bandit via dynamic programming, due to

Gittins [59]. However, this solution is intractable for general

reward distributions, and so in practice sequential heuristics are

used and analyzed in terms of a frequentist measure, namely

cumulative regret [92], [135], [146], [38], [127].

Cumulative regret is a frequentist measure defined as

Rn(w) =
n
∑

i=1

f⋆
w − fw(xai

), (20)

where f⋆
w := maxa fw(xa) denotes the best possible expected

reward. Whereas the D-optimality utility leads to too much

exploration, the cumulative regret encourages exploitation by

including intermediate selections ai in the final loss func-

tion Rn. For certain tasks, this is an appropriate loss function:

for example, when sequentially selecting ads, each impression

incurs an opportunity cost. Meanwhile, for other tasks such as

model selection, we typically have a predetermined evaluation

budget for optimization and only the performance of the final

recommended model should be assessed by the loss function.

Recently, there has been growing interest in the best arm

identification problem, which is more suitable for the model

selection task [104], [30], [7], [51], [50], [72]. When using

Bayesian surrogate models, this is equivalent to performing

Bayesian optimization on a finite, discrete domain. In this so-

called pure exploration settings, in addition to a selection strat-

egy, a recommendation strategy ρ is specified to recommend

an arm (or ad or drug) at the end of the experimentation based

on observed data. The experiment is then judged via the simple

regret, which depends on the recommendation ā = ρ(D):

rn(w) = f⋆
w − fw(xā) . (21)

III. NON-PARAMETRIC MODELS

In this section, we show how it is possible to marginalize

away the weights in Bayesian linear regression and apply the

kernel trick to construct a Bayesian non-parametric regression

model. As our starting point, we assume the observation

variance σ2 is fixed and place a zero-mean Gaussian prior

on the regression coefficients p(w |V0) = N (0,V0). In this

case, we notice that it possible to analytically integrate out the

weights, and in doing so we preserve Gaussianity:

p(y |X, σ2) =

∫

p(y |X,w, σ2) p(w | 0,V0) dw

=

∫

N (y |Xw, σ2I)N (w | 0,V0) dw

= N (y | 0,XV0X
T + σ2I) . (22)

As noted earlier, it can be useful to introduce basis func-

tions φ and in the context of Bayesian linear regression we

in effect replace the design matrix X with a feature mapping

matrix Φ = Φ(X). In Equation (22), this results in a slightly

different Gaussian for weights in feature space:

p(y |X, σ2) = N (y | 0,ΦV0Φ
T + σ2I) (23)

Note that ΦV0Φ
T ∈ R

n×n is a symmetric positive semi-

definite matrix made up of pairwise inner products between

each of the data in their basis function representations. The

celebrated kernel trick emerges from the observation that these

inner products can be equivalently computed by evaluating

the corresponding kernel function k for all pairs to form the

matrix K

Ki,j = k(xi,xj) = Φ(xi)V0Φ(xj)
T (24)

= 〈Φ(xi),Φ(xj)〉V0
. (25)

The kernel trick allows us to specify an intuitive similarity

between pairs of points, rather than a feature map Φ, which

in practice can be hard to define. In other words, we can either

think of predictions as depending directly on features Φ, as in

the linear regression problem, or on kernels k, as in the lifted

variant, depending on which paradigm is more interpretable or

computationally tractable. Indeed, the former requires a J × J
matrix inversion compared to the latter’s n× n.

8

Note also that this approach not only allows us to compute

the marginal likelihood of data that have already been seen,

but it enables us to make predictions of outputs y⋆ at new

locations X⋆. This can be done by observing that

p(y⋆ |X⋆,X,y, σ2) =
p(y⋆,y |X⋆,X, σ2)

p(y |X, σ2)
. (26)

Both the numerator and the denominator are Gaussian with the

form appearing in Equation (23), and so the predictions are

jointly Gaussian and can be computed via some simple linear

algebra. Critically, given a kernel k, it becomes unnecessary

to explicitly define or compute the features Φ because both

the predictions and the marginal likelihood only depend on K.

A. The Gaussian process

By kernelizing a marginalized version of Bayesian linear

regression, what we have really done is construct an object

called a Gaussian process. The Gaussian process GP(µ0, k) is

a non-parametric model that is fully characterized by its prior

mean function µ0 : X 7→ R and its positive-definite kernel, or

covariance function, k : X×X 7→ R [126]. Consider any finite

collection2 of n points x1:n, and define variables fi := f(xi)
and y1:n to represent the unknown function values and noisy

observations, respectively. In Gaussian process regression, we

assume that f := f1:n are jointly Gaussian and the observa-

tions y := y1:n are normally distributed given f , resulting in

the following generative model:

f |X ∼ N (m,K) (27)

y | f , σ2 ∼ N (f , σ2I) , (28)

where the elements of the mean vector and covariance matrix

are defined as mi := µ0(xi) and Ki,j := k(xi,xj), respec-

tively. Equation (27) represents the prior distribution p(f)
induced by the GP.

Let Dn = {(xi, yi)}ni=1 denote the set of observations and x

denote an arbitrary test point. As mentioned when kernelizing

linear regression, the random variable f(x) conditioned on

observations Dn is also normally distributed with the following

posterior mean and variance functions

µn(x) = µ0(x) + k(x)
T
(K+ σ2I)−1(y −m) (29)

σ2
n(x) = k(x,x)− k(x)

T
(K+ σ2I)−1k(x) , (30)

where k(x) is a vector of covariance terms between x

and x1:n.

The posterior mean and variance evaluated at any point x

represent the model’s prediction and uncertainty, respectively,

in the objective function at the point x. These posterior

functions are used to select the next query point xn+1 as

detailed in Section IV.

B. Common kernels

In Gaussian process regression, the covariance function k
dictates the structure of the response functions we can fit. For

instance, if we expect our response function to be periodic,

2We use the notation zi:j = {zi, . . . , zj}.

Kernel profile Samples from prior Samples from posterior

MATÉRN1

MATÉRN3

MATÉRN5

SQ-EXP

Fig. 3. Left: Visualization of various kernel profiles. The horizontal axis
represents the distance r > 0. Middle: Samples from GP priors with the
corresponding kernels. Right: Samples from GP posteriors given two data
points (black circles). Note the sharper drop in the Matérn1 kernel leads to
rough features in the associated samples, while samples from a GP with the
Matérn3 and Matérn5 kernels are increasingly smooth.

we can prescribe a periodic kernel. In this review, we focus

on stationary kernels, which are shift invariant.

Matérn kernels are a very flexible class of stationary kernels.

These kernels are parameterized by a smoothness parame-

ter ν > 0, so called because samples from a GP with such a

kernel are differentiable ⌊ν − 1⌋ times [126]. The exponential

kernel is a special case of the Matérn kernel with ν = 1
2 ,

and the squared exponential kernel is the limiting kernel

when ν → ∞. The following are the most commonly used

kernels, labelled by the smoothness parameter, omitting the

factor of 1
2 .

kMATÉRN1(x,x
′) = θ20 exp(−r) (31)

kMATÉRN3(x,x
′) = θ20 exp(−

√
3r)(1 +

√
3r) (32)

kMATÉRN5(x,x
′) = θ20 exp(−

√
5r)(1 +

√
5r + 5

3r
2) (33)

kSQ-EXP(x,x
′) = θ20 exp(− 1

2r
2), (34)

where r2 = (x− x′)
T
Λ(x− x′) and Λ is a diagonal matrix

of d squared length scales θ2i . This family of covariance

functions are therefore parameterized by an amplitude and d
length scale hyperparameters, jointly denoted θ. Covariance

functions with learnable length scale parameters are also

known as automatic relevance determination (ARD) kernels.

Figure 3 provides a visualization of the kernel profiles and

samples from the corresponding priors and posteriors.

C. Prior mean functions

While the kernel function controls the smoothness and

amplitude of samples from the GP, the prior mean provides

a possible offset. In practice, this function is set to a con-

stant µ0(x) ≡ µ0 and inferred from data using techniques

covered in Section V-A. Unless otherwise specified, in what

follows we assume a constant prior mean function for conve-

nience. However, the prior mean function is a principled way

of incorporating expert knowledge of the objective function,

if it is available, and the following analysis can be readily

applied to non-constant functions µ0.

D. Marginal likelihood

Another attractive property of the Gaussian process model

is that it provides an analytical expression for the marginal

likelihood of the data, where marginal refers to the fact that the

9

unknown latent function f is marginalized out. The expression

for the log marginal likelihood is simply given by:

log p(y|x1:n, θ) = −1

2
(y −mθ)

T
(Kθ + σ2I)−1(y −mθ)

− 1

2
log |Kθ + σ2I| − n

2
log(2π), (35)

where in a slight abuse of notation we augment the vec-

tor θ := (θ0:d, µ0, σ
2); and the dependence on θ is made

explicit by adding a superscript to the covariance matrix Kθ.

The marginal likelihood is very useful in learning the hyper-

parameters, as we will see in Section V-A. The right hand

side of (35) can be broken into three terms: the first term

quantifies how well the model fits the data, which is simply

a Mahalanobis distance between the model predictions and

the data; the second term quantifies the model complexity –

smoother covariance matrices will have smaller determinants

and therefore lower complexity penalties; finally, the last term

is simply a linear function of the number of data points n,

indicating that the likelihood of data tends to decrease with

larger datasets.

Conveniently, as long as the kernel is differentiable with

respect to its hyperparameters θ, the marginal likelihood can

be differentiated and can therefore be optimized in an off-the-

shelf way to obtain a type II maximum likelihood (MLII) or

empirical Bayes estimate of the kernel parameters. When data

is scarce this can overfit the available data. In Section V-A we

will review various practical strategies for learning hyperpa-

rameters which all use the marginal likelihood.

E. Computational costs and other regression models

Although we have analytic expressions, exact inference in

Gaussian process regression is O(n3) where n is the number

of observations. This cost is due to the inversion of the

covariance matrix. In practice, the Cholesky decomposition

can be computed once and saved so that subsequent predictions

are O(n2). However, this Cholesky decomposition must be re-

computed every time the kernel hyperparameters are changed,

which usually happens at every iteration (see Section V-A).

For large datasets, or large function evaluation budgets in the

Bayesian optimization setting, the cubic cost of exact inference

is prohibitive and there have been many attempts at reducing

this computational burden via approximation techniques. In

this section we review two sparsification techniques for Gaus-

sian processes and the alternative random forest regression.

1) Sparse pseudo-input Gaussian processes (SPGP): One

early approach to modelling large n with Gaussian processes

considered using m < n inducing pseudo-inputs to reduce

the rank of the covariance matrix to m, resulting in a

significant reduction in computational cost [137], [140]. By

forcing the interaction between the n data points x1:n and

any test point x to go through this set of m inducing pseudo-

inputs, these methods can compute an approximate posterior

in O(nm2+m3) time. Pseudo-input methods have since been

unified in a single theory based on the following overarching

approximation.

Let f and f⋆ denote two sets of latent function values, com-

monly representing the function at training and test locations,

respectively. The simplifying assumption is that f and f⋆ are

independent given a third set of variables u, such that

p(f⋆, f) =

∫

p(f⋆, f ,u) du (36)

≈
∫

q(f⋆ |u) q(f |u) p(u) du = q(f , f⋆) (37)

where u is the vector of function values at the pseudo-

inputs. All sparse pseudo-input GP approximations can be

specified in terms of the form used for the training and test

conditionals, q(f |u) and q(f⋆ |u), respectively [124].

In the seminal works on pseudo-input methods, the locations

of the pseudo-inputs were selected to optimize the marginal

likelihood of the SPGP [137], [140]. In contrast, a variational

approach has since been proposed to marginalize the pseudo-

inputs to maximize fidelity to the original exact GP [152]

rather than the likelihood of the approximate GP.

The computational savings in the pseudo-input approach

to approximating the GP comes at the cost of poor variance

estimates. As can be observed in Figure 4, the uncertainty

(blue shaded area) exhibits unwanted pinching at pseudo-

inputs, while it is overly conservative in between and away

from pseudo-inputs. In this instance, the 10 inducing points,

indicated with black crosses, were not optimized to emphasize

the potential pathologies of the method. Since in Bayesian

optimization we use the credible intervals to guide exploration,

these artefacts can mislead our search.

2) Sparse spectrum Gaussian processes (SSGP): While

inducing pseudo-inputs reduce computational complexity by

using a fixed number of points in the search space, sparse

spectrum Gaussian processes (SSGP) take a similar approach

to the kernel’s spectral space [94]. Bochner’s theorem states

that any stationary kernel k(x,x′) = k(x− x′) has a positive

and finite Fourier spectrum s(ω), i.e.,

k(x) =
1

(2π)d

∫

e−iωTxs(ω) dω . (38)

Since the spectrum is positive and bounded, it can be normal-

ized such that p(ω) := s(ω)/ν is a valid probability density

function. In this formulation, evaluating the stationary kernel is

equivalent to computing the expectation of the Fourier basis

with respect to its specific spectral density p(ω) as in the

following,

k(x,x′) = ν Eω[e
−iωT (x−x′)]. (39)

As the name suggests, SSGP approximates this expectation

via Monte Carlo estimation using m samples drawn from the

spectral density so that

k(x,x′) ≈ ν

m

m
∑

i=1

e−iω(i)Txeiω
(i)Tx′

(40)

where ω
(i) ∼ s(ω)/ν. The resulting finite dimensional prob-

lem is equivalent to Bayesian linear regression with m basis

functions and the computational cost is once again reduced

to O(nm2 +m3).
As with the pseudo-inputs, the spectral points can also

be tuned via marginal likelihood optimization. Although this

violates the Monte Carlo assumption and introduces a risk of

10

Fig. 4. Comparison of surrogate regression models. Four different surrogate model posteriors are shown in blue (shaded area delimits 95% credible intervals),
given noisy evaluations (red crosses) of a synthetic function (dashed line). The 10 pseudo-inputs for the SPGP method are shown as black crosses. The SSGP
model used a basis of 80 Fourier features.

overfitting, it allows for a smaller number of basis functions

with good predictive power [94]. Once again, in Figure 4 we

have not tuned the 80 spectral points in this way. Whereas

around observed data (red crosses) the uncertainty estimates

are smoother than the pseudo-inputs method, away from ob-

servations both the prediction and uncertainty regions exhibit

spurious oscillations. This is highly undesirable for Bayesian

optimization where we expect our surrogate model to fall back

on the prior away from observed data.

3) Random forests: Finally, as an alternative to Gaussian

processes, random forest regression has been proposed as

an expressive and flexible surrogate model in the context of

sequential model-based algorithm configuration (SMAC) [79].

Introduced in 2001 [24], random forests are a class of scalable

and highly parallelizable regression models that have been

very successful in practice [42]. More precisely, the random

forest is an ensemble method where the weak learners are

decision trees trained on random subsamples of the data [24].

Averaging the predictions of the individual trees produces an

accurate response surface.

Subsampling the data, and the inherent parallelism of the

random forest regression model give SMAC the ability to

readily scale to large evaluation budgets, beyond where the

cubic cost of an exact GP would be infeasible. Similarly, at

every decision node of every tree, a fixed-sized subset of

the available dimensions is sampled to fit a decision rule;

this subsampling also helps the random forest scale to high-

dimensional search spaces. Perhaps most importantly, random

forests inherit the flexibility of decision trees when dealing

with various data types; they can easily handle categorical

and conditional variables. For example, when considering

a decision node, the algorithm can exclude certain search

dimensions from consideration when the path leading up to

said node includes a particular boolean feature that is turned

off.

The exploration strategy in SMAC still requires an uncer-

tainty estimate for predictions at test points. While the random

forest does not provide an estimate of the variance of its

predictions, Hutter et al. proposed using the empirical variance

in the predictions across trees in the ensemble [79]. Though

these are not principled uncertainty estimates, this heuristic has

been shown to work well in practice for the SMAC algorithm.

Although random forests are good interpolators in the sense

that they output good predictions in the neighbourhood of

training data, they are very poor extrapolators. Indeed, far from

the data, the predictions of all trees could be identical, resulting

in a poor prediction; more importantly, using the variance

estimate of SMAC results in extremely confident intervals. In

Figure 4 for example, away from data the shaded area is very

narrow around a very poor constant prediction. Even more

troubling is the fact that in areas of missing data multiple

conflicting predictions can cause the empirical variance to

blow up sharply, as can be seen in Figure 4. While Gaussian

processes are also poor extrapolators (when used with local

kernels), they produce relatively uncertain predictions away

from the data by reverting to the prior – a more desirable

behavior when trading off exploration and exploitation.

Finally, another drawback of random forests for Bayesian

optimization is that the response surface is discontinuous and

non-differentiable so gradient based optimization methods are

not applicable. SMAC relies on a combination of local and

random search when maximizing the acquisition function.

IV. ACQUISITION FUNCTIONS

Thus far, we have described the statistical model used to

represent our belief about the unknown function f at itera-

tion n. We have not described the exact mechanism or policy

for selecting the sequence of query points x1:n. One could

select these arbitrarily but this would be wasteful. Instead,

there is a rich literature on selection strategies that utilize

the posterior model to guide the sequential search, i.e., the

selection of the next query point xn+1 given Dn.

Consider the utility function U : Rd × R×Θ 7→ R which

maps an arbitrary query point x, its corresponding function

value v = f(x), and a setting of the model hyperparameters θ
to a measure of quality of the experiment, e.g., how much

information this query will provide as in [98]. Given some

data accumulated thus far, we can marginalize the unseen

outcome y and the unknown model hyperparameters θ to

obtain the expected utility of a query point x:

α(x;Dn) = EθEv |x,θ[U(x, v, θ)] (41)

For simplicity, in this section we will mostly ignore the θ
dependence and we will discuss its marginalization in Sec-

tion V-A.

Whereas in experimental design and decision theory, the

function α is called the expected utility, in Bayesian opti-

mization it is often called the acquisition or infill function.

These acquisition functions are carefully designed to trade off

11

exploration of the search space and exploitation of current

promising areas. We first present traditional improvement-

based and optimistic acquisition functions, followed by more

recent information-based approaches.

A. Improvement-based policies

Improvement-based acquisition functions favour points that

are likely to improve upon an incumbent target τ . An early

strategy in the literature, probability of improvement (PI) [91],

measures the probability that a point x leads to an improve-

ment upon τ . Since the posterior distribution of v = f(x)
is Gaussian, we can analytically compute this probability as

follows:

αPI(x;Dn) := P[v > τ] = Φ

(

µn(x)− τ

σn(x)

)

, (42)

where Φ is the standard normal cumulative distribution func-

tion. Recall that αPI is then maximized to select the next

query point. For this criterion, the utility function is simply

an indicator of improvement U(x, v, θ) = I[v > τ], where the

utility function is expressed (and marginalized) with respect to

the latent variable v. Therefore, all improvements are treated

equal and PI simply accumulates the posterior probability mass

above τ at x.

Although probability of improvement can perform very well

when the target is known, in general the heuristic used for an

unknown target τ causes PI to exploit quite aggressively [81].

One could instead measure the expected improvement

(EI) [115] which incorporates the amount of improvement.

This new criterion corresponds to a different utility that is

called the improvement function, denoted by I(x). Formally,

the improvement function I is defined as follows

I(x, v, θ) := (v − τ) I(v > τ). (43)

Note that I > 0 only if there is an improvement. Once again,

because the random variable v is normally distributed, the

expectation can be computed analytically as follows

αEI(x;Dn) :=E [I(x, v, θ)]

= (µn(x)− τ)Φ

(

µn(x)− τ

σn(x)

)

+ σn(x)φ

(

µn(x)− τ

σn(x)

)

, (44)

when σn > 0 and vanishes otherwise. Here, not to be confused

with the previous section, φ is the standard normal probability

density function. These improvement strategies have been em-

pirically studied in the literature [82], [81], [27] and recently

convergence rates have been proven for EI [32].

Finally, although the target objective value (i.e., the best

reachable objective value) is often unknown, in practice τ is

adaptively set to the best observed value y+ = maxi=1:n yi.
Whereas for PI this heuristic can lead to an overly greedy op-

timization [81], it works reasonably with EI in practice [143].

When the objective function being minimized is very noisy,

using the lowest mean value as the target is reasonable [157].

PI

EI

UCB

TS

PES

Fig. 5. Visualization of the surrogate regression model and various acquisition
functions. (Top) The true objective function is shown as a dashed line and the
probabilistic regression model is shown as a blue line with a shaded region
delimiting the 2σn credible intervals. Finally, the observations are shown as
red crosses. (Bottom) Four acquisition functions are shown. In the case of PI,
the optimal mode is much closer to the best observation as in the alternative
methods, which explains its greedy behaviour. In contrast, the randomization
in TS allows it to explore more aggressively.

B. Optimistic policies

Dating back to the seminal work of Lai & Robbins [92] on

the multi-armed bandit problem, the upper confidence bound

criterion has been a popular way of negotiating exploration and

exploitation, often with provable cumulative regret bounds.

The guiding principle behind this class of strategies is to be

optimistic in the face of uncertainty. Indeed, using the upper

confidence for every query point x corresponds to effectively

using a fixed probability best case scenario according to

the model. Originally, the upper confidence was given by

frequentist Chernoff–Hoeffding bounds [8].

More recently, the Gaussian process upper confidence bound

(GP-UCB [146]) algorithm was proposed as a Bayesian op-

timistic algorithm with provable cumulative regret bounds. In

the deterministic case, a branch-and-bound extension to GP-

UCB was proven to have exponentially vanishing instanta-

neous regret [43]. The GP-UCB algorithm has since been

generalized to other Bayesian models by considering upper

quantiles [84] instead of Equation (45) defined below, which

is more reminiscent of frequentist concentration bounds. In

the GP case, since the posterior at any arbitrary point x is a

Gaussian, any quantile of the distribution of f(x) is computed

with its corresponding value of βn as follows:

αUCB(x;Dn) := µn(x) + βnσn(x). (45)

There are theoretically motivated guidelines for setting and

scheduling the hyperparameter βn to achieve optimal re-

gret [146] and, as with τ in the improvement policies, tuning

this parameter within these guidelines can offer a performance

boost.

Finally, there also exist variants of these algorithms for

the contextual bandits [153] (see Section VIII-D) and parallel

querying [45] (see Section V-E).

C. Information-based policies

In contrast to the acquisition functions introduced so far,

information-based policies consider the posterior distribution

12

over the unknown minimizer x⋆, denoted p⋆(x | Dn). This

distribution is implicitly induced by the posterior over objec-

tive functions f . There are two policies in this class, namely

Thompson sampling and entropy search.

Though it was introduced in 1933 [150], Thompson sam-

pling has attracted renewed interest in the multi-armed bandit

community, producing empirical evaluations [135], [38] as

well as theoretical results [85], [2], [127]. Thompson sam-

pling (TS) is a randomized strategy which samples a reward

function from the posterior and selects the arm with the

highest simulated reward. Therefore the selection made by

TS can be expressed as the randomized acquisition func-

tion xn+1 ∼ p⋆(x | Dn).
However, in continuous search spaces, the analog of Thomp-

son sampling is to draw a continuous function f (n) from

the posterior GP and optimize it to obtain xn+1. In order to

be optimized, the sample f (n) needs to be fixed so it can

be queried at arbitrary points; unfortunately, it is not clear

how to fix an exact sample from the GP. However, using

recent spectral sampling techniques [20], [125], [94], we can

draw an approximate sample from the posterior that can be

evaluated at any arbitrary point x [69], which extends TS to

continuous search spaces. As an acquisition function, TS can

be formulated as

αTS(x;Dn) := f (n)(x)

where f (n) s.s.∼ GP(µ0, k | Dn) (46)

where
s.s.∼ indicates approximate simulation via spectral sam-

pling. Empirical evaluations show good performance which,

however, seems to deteriorate in high dimensional problems,

likely due to aggressive exploration [139].

Instead of sampling the distribution p⋆(x | Dn), entropy

search (ES) techniques aim to reduce the uncertainty in

the location x⋆ by selecting the point that is expected to

cause the largest reduction in entropy of the distribution

p⋆(x | Dn) [156], [67], [69]. In terms of utility, entropy search

methods use the information gain defined as follows

U(x, y, θ) = H(x⋆ | Dn)−H(x⋆ | Dn ∪ {(x, y)}), (47)

where the θ implicitly parameterizes the distribution of y.

In other words, ES measures the expected information gain

from querying an arbitrary point x and selects the point

that offers the most information about the unknown x⋆. The

acquisition function for ES can be expressed formally as

αES(x;Dn) := H(x⋆ | Dn)− Ey|Dn,xH(x⋆ | Dn ∪ {(x, y)})

where H(x⋆ | Dn) denotes the differential entropy of

the posterior distribution p⋆(x | Dn), and the expec-

tation is over the distribution of the random vari-

able y ∼ N (µn(x), σ
2
n(x) + σ2).

Once again, this function is not tractable for continuous

search spaces X so approximations must be made. Early work

discretized the space X and computed the conditional entropy

via Monte Carlo sampling [156]. More recent work uses a

discretization of the X to obtain a smooth approximation

to p⋆ and its expected information gain [67]. This method

is unfortunately O(M4) where M is the number of discrete

so-called representer points.

Finally, predictive entropy search (PES) removes the need

for a discretization and approximates the acquisition function

in O((n + d)3) time, which, for d < n is of the same order

as EI [69]. This is achieved by using the symmetric property

of mutual information to rewrite αES(x) as

αPES(x;Dn) := H(y | Dn,x)−Ex⋆ | Dn

[

H(y | Dn,x,x
⋆)
]

The expectation can be approximated via Monte Carlo with

Thompson samples; and three simplifying assumptions are

made to compute H(y | Dn,x,x
⋆). Empirically, this algorithm

has been shown to perform as well or better than the dis-

cretized version without the unappealing quartic term [69],

making it arguably the state of the art in entropy search

approximation.

D. Portfolios of acquisition functions

No single acquisition strategy provides better performance

over all problem instances. In fact, it has been empirically

observed that the preferred strategy can change at various

stages of the sequential optimization process. To address this

issue, [73] proposed the use of a portfolio containing multiple

acquisition strategies. At each iteration, each strategy in the

portfolio provides a candidate query point and meta-criterion

is used to select the next query point among these candidates.

The meta-criterion is analogous to an acquisition function at

a higher level; whereas acquisition functions are optimized

in the entire input space, a meta-criterion is only optimized

within the set of candidates suggested by its base strategies.

The earlier approach of Hoffman et al. is based on a

modification of the well-known Hedge algorithm [9], de-

signed for the full-information adversarial multi-armed bandit.

This particular portfolio algorithm relies on using the past

performance of each acquisition function to predict future

performance, where performance is measured by the objective

function. However, this performance metric does not account

for valuable information that is gained through exploration.

A more recent approach, the so-called entropy search port-

folio (ESP), considers the use of an information-based metric

instead [139]. In contrast to the GP-Hedge portfolio, ESP

selects among different candidates by considering the gain

of information towards the optimum. Removing the constant

entropy at the current time, the ESP meta-criterion reduces to

αESP(x;Dn) = −Ey | Dn,x

[

H
[

x⋆ | Dn ∪ {(x, y)}
]

]

(48)

xn = argmax
x1:K,n

αESP(x;Dn), (49)

where x1:K,n represent the candidates provided by the K base

acquisition functions. In other words the candidate selected by

this criterion is the one that results in the greatest expected

reduction in entropy about the minimizer x⋆. If the meta-

criterion αESP(x|Dn) were minimized over the entire space X ,

ESP reduces to the acquisition functions proposed by [156],

[67], [69]. However, ESP restricts this minimization to the set

of candidates made by each portfolio member.

13

0 20 40 60 80 100

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

A
b

s
o
lu

te
 e

rr
o
r

Branin

0 20 40 60 80 100

Function evaluations

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

A
b

s
o
lu

te
 e

rr
o
r

Hartmann 3

EI

PI

Thompson

RP

Hedge

ESP

Fig. 6. Absolute error of the best observation for the Branin and Hartmann 3
synthetic functions. Plotting the mean and standard error (shaded area) over
25 repeated runs.

V. PRACTICAL CONSIDERATIONS

In this section, we discuss some implementation details

and more advanced topics. In particular, we first describe

how the unknown hyperparameters θ are dealt with, we then

provide a survey of techniques used to optimize the acquisition

functions, followed by a discussion of non-stationarity and

Bayesian optimization with parallelizable queries.

A. Handling hyperparameters

Thus far in the discussion we have mostly ignored the

kernel hyperparameters and assumed they were given. In

this section we describe two data-driven ways of handling

hyperparameters, namely point estimation and approximate

marginalization. Consider a generic function α : X ×Θ 7→ R,

where θ ∈ Θ represents the hyperparameters of our GP. In the

context of Bayesian optimization, this function could be our

objective function or any function derived from the Gaussian

process, but for concreteness, it may help to think of it

specifically as the acquisition function, hence the symbol α.

We wish to marginalize out our uncertainty about θ with the

following expression

αn(x) := Eθ|Dn
[α(x; θ)] =

∫

α(x; θ)p(θ | Dn)dθ. (50)

This integral is over our posterior belief over θ given obser-

vations Dn, which can be decomposed via Bayes’ rule as

p(θ | Dn) =
p(y |X, θ)p(θ)

p(Dn)
. (51)

The simplest approach to tackling (50) is to fit the hy-

perparameter to observed data using a point estimate θ̂ML
n

or θ̂MAP
n , corresponding to type II maximum likelihood or

maximum a posteriori estimates, respectively. The posterior

is then replaced by a delta measure at the corresponding θ̂n
which yields

α̂n(x) = α(x; θ̂n). (52)

The estimators θ̂ML
n and θ̂MAP

n can be obtained by optimiz-

ing the marginal likelihood or the unnormalized posterior,

respectively. For certain priors and likelihoods, these quan-

tities as well as their gradients can be computed analytically.

For example, the GP regression model yields the following

marginal likelihood defined in (35), which we denote here

by Ln. Therefore it is common to use multi-started quasi-

Newton hill-climbers (e.g., the limited-memory Broyden-

Fletcher-Goldfarb-Shanno (L-BFGS) method) on objectives

such as the likelihood Ln or the unnormalized posterior.

In Bayesian optimization, our uncertainty about the response

surface plays a key role in guiding exploration and therefore

it is important to incorporate our uncertainty about θ in the re-

gression model. Naturally, these point estimates cannot capture

this uncertainty. For this reason we consider marginalizing out

the hyperparameters using either quadrature or Monte Carlo

[120], [26], [143].

The common component in Monte Carlo (MC) methods

is that they approximate the integral in (50) using M sam-

ples
{

θ
(i)
n

}M

i=1
from the posterior distribution p(θ | Dn):

Eθ|Dn
[α(x; θ)] ≈ 1

M

M
∑

i=1

α(x; θ(i)n). (53)

However, in practice it is impossible to sample directly from

the posterior so Markov chain Monte Carlo (MCMC) and

sequential Monte Carlo (SMC) techniques are used to produce

a sequence of samples that are marginally distributed accord-

ing to p(θ | Dn) in the limit of infinitely long chains. Once

the M hyperparameter samples are obtained, the acquisition

function is evaluated and averaged over all samples; this

marginal acquisition function incorporates the uncertainty in

θ. In addition to MC methods, one could also use quadrature

as shown in [120]. Here, samples (not necessarily drawn from

the posterior) are combined using a weighted mixture:

Eθ|Dn
[α(x; θ)] ≈

M
∑

i=1

ωiα(x; θ
(i)
n). (54)

We could do away with samples entirely and approximately in-

tegrate out the hyperparameters as shown in [53]. To make the

integral tractable, the authors adopted a linear approximation

to the likelihood which enables them to derive an approximate

posterior. This method, however, has not been demonstrated

in the setting of Bayesian optimization.

Estimating the hyperparameters of GP kernels with very few

function evaluations is a challenging task, often with disastrous

14

consequences as illustrated by a simple example in [15]. The

typical estimation of the hyperparameters by maximizing the

marginal likelihood [126], [82] can easily fall into traps, as

shown in [32]. Several authors have proposed to integrate out

the hyperparameters using quadrature or Monte Carlo methods

[120], [26], [143]. These more advanced techniques can still

fall in traps as illustrated with a simple simulation example

in [157], where theoretical bounds are used to ensure that

Bayesian optimization is robust with respect to the choice of

hyperparameters.

B. Optimizing acquisition functions

A central step of the Bayesian optimization framework is

the maximization of the acquisition function. Naturally, an

acquisition function is only useful if it is cheap to evaluate rel-

ative to the objective function f . Nevertheless, the acquisition

function is often multimodal and maximizing it is not a trivial

task. In practice, the community has resorted to using various

techniques such as discretization [143] and adaptive grids [13],

or similarly, the divided rectangles approach of [83], which

was used in [28], [110], [105]. When gradients are available,

or can be cheaply approximated, one can use a multi-started

quasi-Newton hill-climbing approach [100], [143]. Alterna-

tively, [16] and [159] use the CMA-ES method of [66], and

[79] apply multi-start local search.

Unfortunately, these auxiliary optimization techniques can

be problematic for several reasons. First, in practice it is

difficult to assess whether the auxiliary optimizer has found

the global maximizer of the acquisition function. This raises

important concerns about the convergence of Bayesian opti-

mization algorithms because theoretical guarantees are only

valid with the assumption that the exact optimizer is found

and selected; see for example [146], [154] and [32]. Second,

between any two consecutive iterations of the Bayesian opti-

mization algorithm, the acquisition function may not change

dramatically. Therefore, rerunning the auxiliary optimizer can

be unnecessarily wasteful.

Recent proposed optimistic optimization methods provide

an alternative to Bayesian optimization [87], [31], [116].

These methods sequentially build space-partitioning trees by

splitting leaves with high function values or upper confidence

bounds; the objective function is then evaluated at the centre

of the chosen leaves. Simultaneous optimistic optimization

(SOO) can reach the global optimum without knowledge of

the function’s smoothness [116]. Since SOO is optimistic at

multiple scales (i.e., it expands several leaves simultaneously,

with at most one leaf per level) it has also been referred to as

multi-scale optimistic optimization [158].

Though these optimistic optimization methods do not re-

quire any auxiliary optimization, these methods are not as

competitive as Bayesian optimization in practical domains

where prior knowledge is available. The Bayesian multi-scale

SOO (BamSOO) algorithm combines the tree partitioning

idea of SOO with the surrogate model of Bayesian optimiza-

tion [158], eliminating the need for auxiliary optimization.

BamSOO also boasts some theoretical guarantees that do not

depend on the exact optimization of an acquisition function.

f+

True Objective.
Discarded Region.
Confidence Region.
Sampled Points.

Fig. 7. Conditioned on the unknown objective function (red) lying between
the surrogate confidence bounds (green region) with high probability, we can
discard regions of the space where the upper bound is lower than the best
lower bound encountered thus far. Figure from [43].

Intuitively, the method implements SOO to optimize the

objective function directly, but avoids querying points that

are deemed unlikely to be optimal by the surrogate model’s

confidence bounds.

In other words, BaMSOO uses the surrogate model to

reduce the number of function evaluations, increasing sample

efficiency. This work is also reminiscent of the theoretical

work in [43], which proposes to only search in regions where

the upper bound on the objective is greater than the best lower

bound encountered thus far. Figure 7 illustrates how regions

are discarded. Guided by the probabilistic model, the most

promising regions are explored first, which avoids covering

the entire space. Figure 8 compares SOO and BaMSOO on a

simple one-dimensional example. Incorporating the surrogate

model leads to better more refined optimization for the same

number of query points.

C. Conditional Spaces

It is often the case that some variables will only influence

the function being optimized when other variables take on

certain values. These are called conditional variables and

are said to be active or inactive. For example, when the

function involves selecting between different algorithms as

well as optimizing their hyperparameters, then certain sets

of hyperparameters belonging to a given algorithm will be

inactive if that algorithm is not selected [79], [16].

More formally, consider a variable x1 ∈ X2 and another

variable x2 ∈ X2. x1 is said to be a child of x2 if it is only

active when x2 takes on certain values in X2. This conditional

structure can be extended with multiple variables to form

more complicated tree or directed acyclic graph structures.

This greatly extends the capabilities of the Bayesian opti-

mization framework, allowing it to chain together individual

algorithms to form sophisticated pipelines that can be jointly

optimized [151], [19].

15

SOO

Queried points

BamSOO

Fig. 8. Comparison of SOO (top) and BamSOO (bottom) on f(x) =
1

2
sin(15x) sin(27x) in [0, 1]. Blue dots represent nodes where the objec-

tive was evaluated. BaMSOO does not evaluate f at points that are sub-
optimal with high probability under the surrogate model (not shown). Figure
from [158].

Models such as random forests or the tree Parzen estimator

(TPE) are naturally tailored to handle conditional spaces.

Random forests are constructed using ensembles of decision

trees that can learn to ignore inactive variables and the TPE

itself is a graph-structured generative model that follows the

conditional structure of the search space.

Gaussian processes are not immediately suitable for con-

ditional spaces because standard kernels are not defined over

variable-length spaces. A simple approach is to define a sepa-

rate GP for each group of jointly active hyperparameters [16],

however this ignores dependencies between groups. Recent

work has focused on defining a fixed-length embedding of

conditional spaces where a standard kernel using Euclidean

distance can be applied [147]. This is currently a very new

area of research and more work needs to be done before GPs

can work in conditional spaces as well as tree-based models.

D. Non-stationarity

A major assumption made by GP regression using the

kernels suggested in Section III-B is that the underlying

process is stationary. Formally, this assumption means that

the kernel k(x,x′) can be equivalently written as a function

of x− x′. Intuitively, a function whose length-scale does not

change throughout the input space will be well modelled by

a GP with a stationary kernel.

In real world problems we often expect that the true

underlying process will be non-stationary. In these cases, the

GP prior is misspecified, which means that it will require more

data in order to produce reasonable posterior estimates. For

Bayesian optimization this is an issue, as the entire goal is

to minimize the function in as few evaluations as possible.

Here, we will discuss some of the ways in which Bayesian

optimization can be modified to deal with non-stationarity.

a) Non-stationary kernels: One way to create a non-

stationary process is to use a non-stationary kernel. One

strategy is to convert a stationary kernel into a non-stationary

one by transforming x using a parametric warping func-

tion x(w) = w(x) and then applying a stationary kernel

to x(w) [129], [145]. If w is chosen appropriately, the data

will follow a stationary process in the transformed space.

In Bayesian optimization, the inputs are traditionally pro-

jected onto the unit hypercube and this fact was exploited in

[145], who chose the warping function to be the cumulative

distribution function (CDF) of the beta distribution,

wd(x) =
xα−1
d (1− xd)

β−1

B(α, β)
, (55)

where α and β are the shape parameters, and the B is the

beta function. In this case, wd(x) is a warping function for

the dth dimension of x, and a separate warping is applied to

each dimension.

Examples of functions before and after applying beta

warping are shown in Figure 9. Despite having only two

parameters, the beta CDF is able to express a wide variety

of transformations. These transformations contract portions of

the input space, and expand others, which has the effect of

decreasing and increasing the length scale in those portions,

respectively. The beta warping approach has been shown to be

highly effective on several benchmark problems as well as hy-

perparameter optimization for machine learning models [145],

[18].

While the beta CDF is not the only choice, it is appealing

for a number of reasons. For hyperparameter optimization, it

mimics the kind of transformations practitioners tend to apply

when applying a grid search, such as searching over learning

rates in the log-domain. It is compactly parameterized, so

that learning the shape parameters is not too much more

expensive than learning other kernel parameters. Finally, it is

an invertible transformation so that once the maximum of the

acquisition function is found, it can easily be mapped back

into the original space. For α = β = 1, the transformation is

the identity and the original, stationary GP is recovered.

Learning α and β via point estimates can be difficult when

using gradient based optimization as the beta function and

its derivatives with respect to α and β do not have simple

closed-form solutions. An appealing alternative in this case is

the Kumaraswamy distribution, whose CDF takes the form

wd(x) = 1− (1− xα
d)

β . (56)

16

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Original Objective Function Warping Function Post-Warping

Fig. 9. Left: Examples of beta CDF warpings under different settings of the shape parameters α and β. Right: Examples of functions after applying a beta
CDF warping (originally from [145]). The regions where the CDF has a slope greater than 1 are expanded along the horizontal axis, while regions where the
CDF has slope less than 1 are contracted.

There are many other examples of non-stationary covariance

functions [70], [121], [132], [126], [118], [22], [3], [54] that

have been proposed for GP regression along with closely

related output warping techniques [141] that can also model

certain kinds of non-stationary processes.
b) Partitioning: An alternative approach to modelling

non-stationarity that has been useful in practice is to partition

the space into distinct regions and then to model each region as

a separate stationary process. In a random forest model [79],

[27], this is achieved by finer partitioning in regions of the

space where the function changes rapidly, and more granular

partitioning in regions where the function changes slowly.

Partitioning can also be an effective strategy for GPs. For

example, [63] proposed the treed GP model, which partitions

the data and then applies a separate GP to each region.
c) Heteroscedasticity: Heteroscedasticity is a close ana-

logue of non-stationarity, but refers to non-stationary be-

haviour in the noise process governing the observation model,

instead of the true process that we wish to capture. Standard

GP regression using an isotropic noise kernel assumes by

default that the noise process is constant everywhere, and is

therefore stationary by definition. In practice, it is possible to

have non-stationarity in both the true process and the noise

process. Heteroscedasticity has been widely addressed in the

GP literature, see e.g., [95], [86], [103].

For Bayesian optimization in particular, one approach to

handling heteroscedastic noise was proposed in [5] using a

partitioning approach. The idea is to build a partition using

classification and regression trees (CART) [25]; however,

splitting was restricted to occur at data points rather than

between them. This ensured that the variance estimates of the

GP would remain smooth between partitions.

Another form of non-stationarity that is closely related

to heteroscedasticity is a non-stationary amplitude [1], [54].

This is where the magnitude of the output process changes

as a function of the input. To our knowledge this has not

been directly addressed in the Bayesian optimization literature.

There have however been attempts to be robust to this effect by

integrating out the amplitude parameter of the GP kernel. This

was done numerically in [143] and analytically using conju-

gate priors in [138], resulting in a latent GP with t-distributed

predictions and an input-dependent noise covariance.

E. Parallelization

Bayesian optimization is conventionally posed as a sequen-

tial problem where each experiment is completed before a

new one is proposed. In practice it may be possible and

advantageous to run multiple function evaluations in parallel.

Even if the number of experiments required to reach the

minimum does not change, parallel approaches can yield a

substantial reduction in terms of wall-clock time [80], [143].

Ginsbourger et al. [57] proposed several approaches based

on imputing the results of currently running experiments. The

idea is that given the current observations Dn = {(xn, yn)}
and pending experiments Dp = {xp}, one can impute a set

of set of experimental outcomes D̃p = {(xp, ỹp)} and then

perform a step of Bayesian optimization using the augmented

dataset Dt ∪ D̃p.

One simple strategy is the constant liar, where a constant L
is chosen such that ỹp = L, ∀p. Another strategy is the Kriging

believer, which uses the GP predictive mean ỹp = µn(xp).
[143] used an approach where a set of S fantasies are sampled

for each unfinished experiment from the full GP posterior

predictive distribution. These are then combined to estimate

the following parallel integrated acquisition function,

α(x;Dn,Dp) =

∫

RJ

α(x;Dn ∪ D̃p)P (ỹ1:J ;Dn)dyp1:J , (57)

≈ 1

S

S
∑

s=1

α(x;Dn ∪ D̃(s)
p), (58)

D̃(s)
p ∼ P (ỹ1:J ;Dn), (59)

where J is the number of currently pending experiments. This

approach has been shown to be very effective in practice

when α is chosen to be EI. Similar approaches are proposed

in [58], [40] and a similar parallel extension to GP-UCB is

proposed [45].

Although the imputation approaches deal with parallel ex-

periments, the nature in which they propose candidates is

still inherently sequential. A truly parallel approach would

17

simultaneously propose a set of candidates. Jones [81] and

Hutter et al. [80] proposed an approach based on GP-UCB

where αUCB is optimized using a range of βn values, which

produces a set of points that favour a range of exploration and

exploitation.

F. Software implementations

As of this writing, there are several open source packages

implementing various forms of Bayesian optimization. We

highlight several popular libraries in Table I.

VI. THEORY OF BAYESIAN OPTIMIZATION

There exist a vast literature on the theoretical properties

of bandit algorithms in general. Theoretical properties of

Bayesian optimization, however, have only been established

recently. In this section, we focus on the results concern-

ing Gaussian process based Bayesian optimization and defer

detailed discussions of bandit algorithms to other dedicated

surveys [29], [117].

There exist several early consistency proofs for Gaussian

process based Bayesian optimization algorithms, in the one-

dimensional setting [102] and one for a simplification of the

algorithm using simplicial partitioning in higher dimensions

[164]. The consistency of the algorithm using multivariate

Gaussian processes has been established in [155].

More recently, [146] provided the first finite sample bound

for Gaussian process based Bayesian optimization. In this

work, the authors showed that the GP-UCB algorithm suffers

from sub-linear cumulative regret in the stochastic setting. The

regret bounds, however, allow only fixed hyperparameters. In

[32], Bull provided both upper and lower bounds of simple

regret for the EGO algorithm [82] in the deterministic setting.

In addition to regret bounds concerning fixed hyperparameters,

the author also provided simple regret bounds while allowing

varying hyperparameters.

Since the pioneering work of [146] and [32], there emerged

a large body of results on this topic including, exponentially

vanishing simple regret bounds in the deterministic setting

[43]; bounds for contextual Gaussian process bandits [89];

Bayes regret bounds for Thompson sampling [85], [127];

bounds for high-dimensional problems with a underlying low-

rank structure [46]; bounds for parallel Bayesian optimization

[45]; and improved regret bounds using mutual informa-

tion [41].

Despite the recent surge in theoretical contributions, there

is still a wide gap between theory and practice. Regret bounds

or even consistency results, for example, have not been es-

tablished for approaches that use a full Bayesian treatment of

hyperparameters [143]. Such theoretical results could advance

the field of Bayesian optimization and provide insight for

practitioners.

VII. HISTORY OF BAYESIAN OPTIMIZATION AND RELATED

APPROACHES

Arguably the earliest work related to Bayesian optimization

was that of William Thompson in 1933 where he considered

the likelihood that one unknown Bernoulli probability is

greater than another given observational data [150]. In his

article, Thompson argues that when considering, for example,

two alternative medical treatments one should not eliminate the

worst one based on a single clinical trial. Instead, he proposes,

one should estimate the probability that one treatment is

better than the other and weigh future trials in favour of the

seemingly better treatment while still trying the seemingly

suboptimal one. Thompson rightly argues that by adopting

a single treatment following a clinical trial, there is a fixed

chance that all subsequent patients will be given suboptimal

treatment. In contrast, by dynamically selecting a fraction of

patients for each treatment, this sacrifice becomes vanishingly

small.

In modern terminology, Thompson was directly addressing

the exploration–exploitation trade-off, referring to the tension

between selecting the best known treatment for every future

patient (the greedy strategy) and continuing the clinical trial

for longer in order to more confidently assess the quality of

both treatments. This is a recurring theme not only in the

Bayesian optimization literature, but also the related fields

of sequential experimental design, multi-armed bandits, and

operations research.

Although modern experimental design had been developed

a decade earlier by Ronald Fisher’s work on agricultural

crops, Thompson introduced the idea of making design choices

dynamically as new evidence becomes available; a general

strategy known as sequential experimental design or, in the

multi-armed bandit literature, adaptive or dynamic allocation

rules [92], [59].

The term Bayesian optimization was coined in the seventies

[115], but a popular version of the method has been known

as efficient global optimization in the experimental design

literature since the nineties [134]. Since the approximation of

the objective function is often obtained using Gaussian process

priors, the technique is also referred to as Gaussian process

bandits [146].

In the nonparametric setting, Kushner [91] used Wiener pro-

cesses for unconstrained one-dimensional optimization prob-

lems. Kushner’s decision model was based on maximizing

the probability of improvement. He also included a pa-

rameter that controlled the trade-off between ‘more global’

and ‘more local’ optimization, in the same spirit as the

exploration–exploitation trade-off. Meanwhile, in the former

Soviet Union, Močkus and colleagues developed a multidi-

mensional Bayesian optimization method using linear combi-

nations of Wiener fields [115], [114]. Both of these methods,

probility of and expected improvement, were in studied in

detail in [81].

At the same time, a large, related body of work emerged

under the name kriging, in honour of the South African student

who developed this technique at the University of the Witwa-

tersrand [90], though largely popularized by Matheron and

colleagues (e.g., [111]). In kriging, the goal is interpolation of

a random field via a linear predictor. The errors on this model

are typically assumed to not be independent, and are modelled

with a Gaussian process.

Kriging has been applied to experimental design under

the name DACE, after design and analysis of computer ex-

18

TABLE I
A LIST OF SEVERAL POPULAR OPEN SOURCE SOFTWARE LIBRARIES FOR BAYESIAN OPTIMIZATION AS OF MAY, 2015.

Package License URL Language Model

SMAC Academic non-commercial license. http://www.cs.ubc.ca/labs/beta/Projects/SMAC Java Random forest
Hyperopt BSD https://github.com/hyperopt/hyperopt Python Tree Parzen estimator
Spearmint Academic non-commercial license. https://github.com/HIPS/Spearmint Python Gaussian process
Bayesopt GPL http://rmcantin.bitbucket.org/html C++ Gaussian process
PyBO BSD https://github.com/mwhoffman/pybo Python Gaussian process
MOE Apache 2.0 https://github.com/Yelp/MOE Python / C++ Gaussian process

periments, the title of a paper by Sacks et al. [128] (and

more recently a book by Santner et al. [130]). In DACE, the

regression model is a best linear unbiased predictor (BLUP),

and the residual model is a noise-free Gaussian process.

The goal is to find a design point or points that optimizes

some criterion. Experimental design is usually non-adaptive:

the entire experiment is designed before data is collected.

However, sequential design is an important and active subfield

(e.g., [160], [33].

The efficient global optimization (EGO) algorithm is the

combination of DACE model with the sequential expected

improvement acquisition criterion. It was published in a paper

by Jones et al. [82] as a refinement of the SPACE algorithm

(stochastic process analysis of computer experiments) [133].

Since EGO’s publication, there has evolved a body of work

devoted to extending the algorithm, particularly in adding

constraints to the optimization problem [6], [131], [23], and

in modelling noisy functions [14], [75], [76].

In the bandits setting, Lai and Robbins [92] introduced

upper confidence bounds (UCB) as approximate alternatives

to Gittins indices in 1985. Auer studied these bounds using

frequentist techniques, and in adversarial multi-armed bandit

settings [9], [8].

The literature on multi-armed bandits is vast. The book of

Cesa-Bianchi [36] is a good reference on the topic of online

learning with experts and bandits in adversarial settings. There

are many results on exploration [30], [51], [50] and contextual

bandits [97], [112], [2]. These contextual bandits, may also be

seen as myopic approximations to Markov decision processes.

VIII. EXTENSIONS AND OPEN QUESTIONS

A. Constrained Bayesian optimization

In [56] a scenario was outlined in which a food company

wished to design the best tasting cookie subject to the number

of calories being below a certain level. This is an example of

constrained optimization, where certain regions of the design

space X are invalid. In machine learning, this can arise when

certain hyperparameter configurations result in models that

diverge during training, or that run out of computer memory.

When the constraints are known a priori, they can be incor-

porated into the optimization of the acquisition function. The

more challenging case arises when it is not known in advance

which configurations will result in a constraint violation.

Several approaches deal with this problem by altering the

acquisition function itself.

Gramacy and Lee [62] proposed the integrated expected

conditional improvement (IECI) acquisition function:

αIECI(x) =

∫

x′

(αEI(x
′,Dn)− αEI(x

′,Dn ∪ x)|x))h(x′)dx.

(60)

This gives the change in expected improvement from observ-

ing x under the density h. Choosing h to model the probability

of satisfying the constraint encourages IECI to favor regions

with a high probability of being valid.

Snoek [142] and Gelbart et al. [56] proposed the weighted

expected improvement criterion (wEI) that multiplies EI by

the probability of satisfying the constraints:

αwEI(x) = αEI(x,Dn)h(x,Dn). (61)

Where h(x,Dn) is a Gaussian process with a Bernoulli

observation model. This reduces EI in regions that are likely

to violate constraints.

A variant of wEI was proposed in [52] to deal with

the case where the function is constrained to be less than

some value λ. They used h(x,Dt) = P(f(x) < λ | Dt), the

posterior probability of satisfying this constraint under the

Gaussian process model of the function.

Hernández-Lobato et al. [68] recently proposed a variation

of the predictive entropy search acquisition function to deal

with the decoupled case, where the function and constraints

can be evaluated independently.

In a different approach, Gramacy et al. [61] adapted the

augmented Lagrangian approach to the Bayesian optimization

setting, with unconstrained Bayesian optimization approxi-

mately solving the inner loop of the algorithm.

B. Cost-sensitivity

In some cases, each function evaluation may return both a

value along with an associated cost. In other words, it may

be more expensive to evaluate the function in some parts of

the design space than others. If there is a limited budget, then

the search should be biased toward low-cost areas. In [143],

the goal was to train a machine learning model and the cost

was the time it took to train the model. They used expected

improvement per second, EI(x,Dn)/c(x) in order to bias the

search toward good models with fast training times. Here, c(x)
was the estimated cost of querying the objective at x and was

modelled using a Gaussian process with response log(c(x)).

19

C. High-dimensional problems

Despite many success stories, Bayesian optimization is

restricted to problems of moderate dimension. To advance the

state of the art, Bayesian optimization should be scaled to

high-dimensional parameter spaces. This is a difficult problem:

to ensure that a global optimum is found, we require good

coverage of X , but as the dimensionality increases, the number

of evaluations needed to cover X increases exponentially.

For linear bandits, Carpentier et al. [35] recently proposed

a compressed sensing strategy to attack problems with a

high degree of sparsity. Also recently, Chen et al. [39] made

significant progress by introducing a two stage strategy for

optimization and variable selection of high-dimensional GPs.

In the first stage, sequential likelihood ratio tests with a couple

of tuning parameters are used to select the relevant dimensions.

This, however, requires the relevant dimensions to be axis-

aligned with an ARD kernel. Chen et al. provide empirical

results only for synthetic examples (of up to 400 dimensions),

but they provide key theoretical guarantees.

Hutter et al. [79] used Bayesian optimization with ran-

dom forests based on frequentist uncertainty estimates. Their

method does not have theoretical guarantees for continuous

optimization, but it achieved state-of-the-art performance for

tuning up to 76 parameters of algorithms for solving com-

binatorial problems. Note that in constructing the trees that

make the forest, one samples and selects the most promising

features (dimensions). That is, random forests naturally select

the relevant dimensions of the problem, and so not surprisingly

have worked well in practice.

Many researchers have noted that for certain classes of prob-

lems most dimensions do not change the objective function

significantly; examples include hyperparameter optimization

for neural networks and deep belief networks [17] and auto-

matic configuration of state-of-the-art algorithms for solving

NP-hard problems [77]. That is to say these problems have

low effective dimensionality. To take advantage of this prop-

erty, Bergstra and Bengio [17] proposed to simply use random

search for optimization – the rationale being that points

sampled uniformly at random in each dimension can densely

cover each low-dimensional subspace. As such, random search

can exploit low effective dimensionality without knowing

which dimensions are important. In [159], the authors exploit

the same property, while still capitalizing on the strengths

of Bayesian optimization. By combining randomization with

Bayesian optimization, they were able to derive a new ap-

proach that outperforms each of the individual components.

Figure 10 illustrates the approach in a nutshell. Assume

we know that a given D = 2 dimensional black-box func-

tion f(x1, x2) only has d = 1 important dimensions, but we

do not know which of the two dimensions is the important

one. We can then perform optimization in the embedded

1-dimensional subspace defined by x1 = x2 since this is

guaranteed to include the optimum. This idea enables us to

perform Bayesian optimization in a low-dimensional space

to optimize a high-dimensional function with low intrinsic

dimensionality. Importantly, it is not restricted to cases with

axis-aligned intrinsic dimensions.

xx
1

2

x

1

2

x

Em
bed

din
g

Unimportant

Im
p

o
rt

a
n

t

x

x*

*

Fig. 10. This function in D = 2 dimesions only has d = 1 effective

dimension: the vertical axis indicated with the word important on the right
hand side figure. Hence, the one-dimensional embedding includes the two-
dimensional function’s optimizer. It is more efficient to search for the optimum
along the one-dimensional random embedding than in the original two-
dimensional space.

To make the discussion more precise, a func-

tion f : RD 7→ R will have effective dimensionality de,

with de < D, if there exists a linear effective subspace T
of dimension de such that for all x⊤ ∈ T ⊂ R

D

and x⊥ ∈ T ⊥ ⊂ R
D, and f(x) = f(x⊤ + x⊥) = f(x⊤),

where the so-called constant subspace T ⊥ denotes the

orthogonal complement of T . This definition simply states

that the function does not change along the coordinates x⊥,

and hence the name for T ⊥.

Given this definition, Theorem 1 of [159] shows that

problems of low effective dimensionality can be solved via

random embedding. The theorem assumes we are given a

function f : RD 7→ R with effective dimensionality de and a

random matrix A ∈ R
D×d with independent entries sampled

according to N (0, 1) and d ≥ de. It then shows that, with

probability 1, for any x ∈ R
D, there exists a z ∈ R

d such

that f(x) = f(Az).
Effectively, the theorem says that given any x ∈ R

D

and a random matrix A ∈ R
D×d, with probability 1, there

is a point z ∈ R
d such that f(x) = f(Az). This implies

that for any optimizer x⋆ ∈ R
D, there is a point z⋆ ∈ R

d

with f(x⋆) = f(Az⋆). Therefore, instead of optimizing in

the high dimensional space, we can optimize the func-

tion g(z) = f(Az) in the lower dimensional space. This obser-

vation gives rise to an algorithm called Bayesian optimization

with random embedding (REMBO), described in Algorithm 3.

REMBO first draws a random embedding (given by A) and

then performs Bayesian optimization in this embedded space.

Algorithm 3 REMBO

1: Generate a random matrix A

2: Choose the set Z
3: for n = 1, 2, . . . do

4: select zn+1 by optimizing the acquisition function α:

zn+1 = argmax
z∈Z

α(z|Dn)

5: augment the data Dn+1 = {Dn, (zn+1, f(Azn+1)}
6: update the kernel hyperparameters

7: end for

An important detail is how REMBO chooses the bounded

region Z , inside which it performs Bayesian optimization. This

is important because its effectiveness depends on the size of Z .

20

(1)

(2)

(3)

Fig. 11. Left: Three correlated functions drawn from a multi-output GP.
Middle: The GP posterior predictive distribution of function (3) when the
functions are assumed to be independent. This is equivalent to ignoring
observations from functions (1) and (2). Right: Posterior predictive distri-
bution of function (3) when the correlations are taken into account. Here, the
observations from functions (1) and (2) act as weak observations for function
(3). This results in a much more accurate prediction.

Locating the optimum within Z is easier if Z is small, but

if we set Z too small it may not actually contain the global

optimizer. We refer the readers to the original paper for details.

D. Multi-Task

When tuning the hyperparameters of a machine learning

model on some data, it is unlikely that the hyperparameters

will change very much if new data is added to the original

data, especially if the new data represents a small fraction

of the total amount. Likewise, if one were to train a model

for object recognition, then good hyperparameter settings are

likely to also be good on other object recognition datasets.

Experts often exploit this property when applying their models

to new datasets.

There have been several attempts to exploit this property

within the Bayesian optimization framework [89], [79], [12],

[148], [161], [49]. The idea is that there are several correlated

functions, T = {1, 2, . . . ,M}, called tasks and that we are

interested in optimizing some subset of these tasks. In essence,

the data from one task can provide information about another

task.

One way to share information between tasks in a Bayesian

optimization routine is to modify the underlying Gaussian

process model. There has been a great deal of work on

extending Gaussian processes to the multi-task scenario. These

extensions are also known as multi-output Gaussian processes.

The key is to define a valid covariance over input and task

pairs, k((x,m), (x′,m′)). One method is to use the intrinsic

model of coregionalization (ICM) [60], [136], [21] that utilizes

the product kernel,

k((x,m), (x′,m′)) = kX (x,x′)kT (m,m′). (62)

Where m, m′ ∈ T . kT defines the covariance between tasks.

There are many ways to parameterize the task covariance func-

tion [123]. Figure 11 illustrates how knowledge of correlations

between tasks can be used with a multi-output GP to make

more accurate predictions.

An alternative view of the ICM model is that it defines a

latent process that is rotated and scaled to produce each of the

individual tasks. The problem of defining a multi-output GP

can then be viewed as learning a latent function, or a set of

latent functions, that can be transformed to produce the output

tasks. [12] proposed an approach that learns a latent ranking

function at each iteration using pairs of observations from

within each task. By learning a single ranking function that

works across tasks, the tasks are effectively jointly embedded

in a latent space that is invariant to potentially different output

scales across tasks.

Each task may come with additional side information, or

context features. In this case, it is possible to define a joint

model that uses this context. This was considered for algorithm

configuration in [79] using a random forest model. When

starting a new task, [49] uses task features to find similar

tasks. The best inputs from the most similar tasks are then

used as the initial design for the new task.

E. Freeze-Thaw

In some cases, the experiments selected by Bayesian op-

timization themselves require an inner loop of iterative opti-

mization. For example, in the case of tuning machine learning

hyperparameters, each experiment consists of training a model

before evaluating it. It is often possible to evaluate the model

during training in order to get an estimate of how it is perform-

ing. When tuning hyperparameters by hand, experts can use

this information in order to estimate model performance at the

end of training and can halt training early if this estimate looks

unsatisfactory. This allows a far greater number of models to

be trained in a given amount of time.

An attempt to incorporate this into the Bayesian optimiza-

tion framework is given in [149]. They identify that many

loss functions in machine learning follow an exponential

decay pattern during training, and construct a basis set of

exponentially decaying functions of the form f(t, λ) = e−λt,

where λ represents the rate of decay over time, represented

by t, in order to forecast model performance. It is possible to

construct a nonstationary kernel from this basis set:

k(t, t′) =
βα

(t+ t′ + β)α
, (63)

where α and β are hyperparameters that control the shape of

the kernel. This kernel is used within a Gaussian process to

jointly model (x, t) pairs. Given the ability to forecast curves,

[149] then uses an entropy search-based acquisition function

in order to determine whether to freeze a currently running

experiment, thaw a previous experiment in order to resume

training, or start a new experiment.

Rather than constructing a kernel, [48], [47] built a basis set

manually based on previously collected training curves. This

basis set is then used with Bayesian linear regression in order

to forecast training curves, and an early stopping rule is given

based on the probability of improvement using the forecasted

value.

An alternative view of this procedure is to consider Gaussian

process models that incorporate partial feedback. This view

is used in [122], where they construct a Gaussian process

with non-stationary noise process that starts high when the

experiment begins, and decays over time.

IX. CONCLUDING REMARKS

In this paper we have introduced Bayesian optimization

from a modelling perspective. Beginning with the Beta-

Bernoulli and linear models, and extending them to non-

parametric models, we recover a wide range of approaches

21

to Bayesian optimization that have been introduced in the

literature. There has been a great deal of work that has

focussed heavily on designing acquisition functions, however

we have taken the perspective that the importance of this plays

a secondary role to the choice of the underlying surrogate

model.

In addition to outlining different modelling choices, we

have considered many of the design decisions that are used to

build Bayesian optimization systems. We further highlighted

relevant theory as well as practical considerations that are used

when applying these techniques to real-world problems. We

provided a history of Bayesian optimization and related fields

and surveyed some of the many successful applications of

these methods. We finally discussed extensions of the basic

framework to new problem domains, which often require new

kinds of surrogate models.

Although the underpinnings of Bayesian optimization are

quite old, the field itself is undergoing a resurgence, aided by

new problems, models, theory, and software implementations.

In this paper, we have attempted to summarize the current state

of Bayesian optimization methods; however, it is clear that the

field itself has only scratched the surface and that there will

surely be many new problems, discoveries, and insights in the

future.

REFERENCES

[1] R. P. Adams and O. Stegle. Gaussian process product models for
nonparametric nonstationarity. In International Conference on Machine

Learning, pages 1–8, 2008.

[2] S. Agrawal and N. Goyal. Thompson sampling for contextual bandits
with linear payoffs. In International Conference on Machine Learning,
2013.

[3] E. B. Anderes and M. L. Stein. Estimating deformations of isotropic
Gaussian random fields on the plane. The Annals of Statistics,
36(2):719–741, 2008.

[4] C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan. An introduction
to MCMC for machine learning. Machine Learning, 50(1-2):5–43,
2003.

[5] J.-A. M. Assael, Z. Wang, and N. de Freitas. Heteroscedastic treed
Bayesian optimisation. arXiv preprint arXiv:1410.7172, 2014.

[6] C. Audet, J. Jr, Dennis, D. W. Moore, A. Booker, and P. D.
Frank. Surrogate-model-based method for constrained optimization.
In AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis

and Optimization, 2000.

[7] J. Audibert, S. Bubeck, and R. Munos. Best arm identification in
multi-armed bandits. In Conference on Learning Theory, 2010.

[8] P. Auer. Using confidence bounds for exploitation-exploration trade-
offs. Journal of Machine Learning Research, 3:397–422, 2003.

[9] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. Gambling
in a rigged casino: The adversarial multi-armed bandit problem. In
Symposium on Foundations of Computer Science, pages 322–331, 1995.

[10] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The non-
stochastic multiarmed bandit problem. SIAM Journal on Computing,
32(1):48–77, 2002.

[11] J. Azimi, A. Jalali, and X. Fern. Hybrid batch Bayesian optimization.
In International Conference on Machine Learning, 2012.

[12] R. Bardenet, M. Brendel, B. Kégl, and M. Sebag. Collaborative
hyperparameter tuning. In International Conference on Machine

Learning, 2013.

[13] R. Bardenet and B. Kégl. Surrogating the surrogate: accelerating
Gaussian-process-based global optimization with a mixture cross-
entropy algorithm. In International Conference on Machine Learning,
pages 55–62, 2010.

[14] T. Bartz-Beielstein, C. Lasarczyk, and M. Preuss. Sequential parameter
optimization. In Proc. CEC-05, 2005.

[15] R. Benassi, J. Bect, and E. Vazquez. Robust Gaussian process-based
global optimization using a fully Bayesian expected improvement
criterion. In C. Coello, editor, Learning and Intelligent Optimization,
volume 6683 of Lecture Notes in Computer Science, pages 176–190.
Springer Berlin / Heidelberg, 2011.

[16] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-
parameter optimization. In Advances in Neural Information Processing

Systems, pages 2546–2554, 2011.

[17] J. Bergstra and Y. Bengio. Random search for hyper-parameter
optimization. Journal of Machine Learning Research, 13:281–305,
2012.

[18] J. Bergstra, B. Komer, C. Eliasmith, and D. Warde-Farley. Preliminary
evaluation of hyperopt algorithms on HPOLib. International Confer-

ence on Machine Learning AutoML Workshop, 2014.

[19] J. Bergstra, D. Yamins, and D. D. Cox. Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for
vision architectures. In International Conference on Machine Learning,
2013.

[20] S. Bochner. Lectures on Fourier integrals. Princeton University Press,
1959.

[21] E. V. Bonilla, K. M. A. Chai, and C. K. I. Williams. Multi-task
Gaussian process prediction. In Advances in Neural Information

Processing Systems, 2008.

[22] L. Bornn, G. Shaddick, and J. V. Zidek. Modeling nonstationary
processes through dimension expansion. Journal of the American

Statistical Society, 107(497), 2012.

[23] P. Boyle. Gaussian Processes for Regression and Optimisation. PhD
thesis, Victoria University of Wellington, Wellington, New Zealand,
2007.

[24] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[25] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and

Regression Trees. Wadsworth and Brooks, 1984.

[26] E. Brochu, T. Brochu, and N. de Freitas. A Bayesian interactive
optimization approach to procedural animation design. In Proceedings

of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer

Animation, pages 103–112, 2010.

[27] E. Brochu, V. M. Cora, and N. de Freitas. A tutorial on Bayesian
optimization of expensive cost functions, with application to active user
modeling and hierarchical reinforcement learning. Technical Report
UBC TR-2009-23 and arXiv:1012.2599v1, Dept. of Computer Science,
University of British Columbia, 2009.

[28] E. Brochu, N. de Freitas, and A. Ghosh. Active preference learning with
discrete choice data. In Advances in Neural Information Processing

Systems, pages 409–416, 2007.

[29] S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and
nonstochastic multi-armed bandit problems. Foundations and Trends

in Machine Learning, 5(1):1–122, 2012.

[30] S. Bubeck, R. Munos, and G. Stoltz. Pure exploration in multi-armed
bandits problems. In International Conference on Algorithmic Learning

Theory, 2009.

[31] S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvari. X-armed bandits.
Journal of Machine Learning Research, 12:1655–1695, 2011.

[32] A. D. Bull. Convergence rates of efficient global optimization algo-
rithms. Journal of Machine Learning Research, 12:2879–2904, 2011.

[33] D. Busby. Hierarchical adaptive experimental design for Gaussian pro-
cess emulators. Reliability Engineering and System Safety, 94(7):1183–
1193, July 2009.

[34] R. Calandra, J. Peters, C. E. Rasmussen, and M. P. Deisen-
roth. Manifold Gaussian processes for regression. arXiv preprint

arXiv:1402.5876, 2014.

[35] A. Carpentier and R. Munos. Bandit theory meets compressed sensing
for high dimensional stochastic linear bandit. In AI and Statistics, pages
190–198, 2012.

[36] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games.
Cambridge University Press, New York, 2006.

[37] K. Chaloner and I. Verdinelli. Bayesian experimental design: A review.
Statistical Science, pages 273–304, 1995.

[38] O. Chapelle and L. Li. An empirical evaluation of Thompson sampling.
In Advances in Neural Information Processing Systems, pages 2249–
2257, 2011.

[39] B. Chen, R. Castro, and A. Krause. Joint optimization and variable
selection of high-dimensional Gaussian processes. In International

Conference on Machine Learning, 2012.

[40] S. Clark. Parallel Machine Learning Algorithms In Bioinformatics And

Global Optimization. PhD thesis, Cornell University, 2012.

22

[41] E. Contal, V. Perchet, and N. Vayatis. Gaussian process optimization
with mutual information. In International Conference on Machine

Learning, 2013.

[42] A. Criminisi, J. Shotton, and E. Konukoglu. Decision forests: A unified
framework for classification, regression, density estimation, manifold
learning and semi-supervised learning. Foundations and Trends in

Computer Graphics and Vision, (7):81–227, 2011.

[43] N. de Freitas, A. Smola, and M. Zoghi. Exponential regret bounds
for Gaussian process bandits with deterministic observations. In
International Conference on Machine Learning, 2012.

[44] M. Denil, L. Bazzani, H. Larochelle, and N. de Freitas. Learning
where to attend with deep architectures for image tracking. Neural

Computation, 24(8):2151–2184, 2012.

[45] T. Desautels, A. Krause, and J. Burdick. Parallelizing exploration-
exploitation tradeoffs with Gaussian process bandit optimization. Jour-

nal of Machine Learning Research, 2014.

[46] J. Djolonga, A. Krause, and V. Cevher. High dimensional Gaussian
process bandits. In Advances in Neural Information Processing

Systems, pages 1025–1033, 2013.

[47] T. Domhan, J. T. Springenberg, and F. Hutter. Speeding up automatic
hyperparameter optimization of deep neural networks by extrapolation
of learning curves. In Proceedings of the 24th International Joint

Conference on Artificial Intelligence (IJCAI), July 2015.

[48] T. Domhan, T. Springenberg, and F. Hutter. Extrapolating learning
curves of deep neural networks. In International Conference on

Machine Learning AutoML Workshop, 2014.

[49] M. Feurer, T. Springenberg, and F. Hutter. Initializing Bayesian
hyperparameter optimization via meta-learning. In National Conference

on Artificial Intelligence (AAAI), 2015.

[50] V. Gabillon, M. Ghavamzadeh, and A. Lazaric. Best arm identification:
A unified approach to fixed budget and fixed confidence. In Advances

in Neural Information Processing Systems, pages 3212–3220, 2012.

[51] V. Gabillon, M. Ghavamzadeh, A. Lazaric, and S. Bubeck. Multi-bandit
best arm identification. In Advances in Neural Information Processing

Systems, pages 2222–2230, 2011.

[52] J. R. Gardner, M. J. Kusner, Z. Xu, K. Q. Weinberger, and J. P.
Cunningham. Bayesian optimization with inequality constraints. In
International Conference on Machine Learning, pages 937–945, 2014.

[53] R. Garnett, M. A. Osborne, and P. Hennig. Active learning of
linear embeddings for Gaussian processes. In Uncertainty in Artificial

Intelligence, 2014.

[54] R. Garnett, M. A. Osborne, S. Reece, A. Rogers, and S. J. Roberts.
Sequential Bayesian prediction in the presence of changepoints and
faults. The Computer Journal, 53(9):1430–1446, 2010.

[55] R. Garnett, M. A. Osborne, and S. J. Roberts. Bayesian optimization
for sensor set selection. In ACM/IEEE International Conference on

Information Processing in Sensor Networks, pages 209–219. ACM,
2010.

[56] M. A. Gelbart, J. Snoek, and R. P. Adams. Bayesian optimization with
unknown constraints. In Uncertainty in Artificial Intelligence, 2014.

[57] D. Ginsbourger, R. Le Riche, and L. Carraro. Kriging is well-suited
to parallelize optimization. In Computational Intelligence in Expensive

Optimization Problems, pages 131–162. Springer, 2010.

[58] D. Ginsbourger and R. L. Riche. Dealing with asynchronicity
in parallel Gaussian process based global optimization. http://hal.
archives-ouvertes.fr/hal-00507632, 2010.

[59] J. C. Gittins. Bandit processes and dynamic allocation indices. Journal

of the Royal Statistical Society. Series B (Methodological), pages 148–
177, 1979.

[60] P. Goovaerts. Geostatistics for natural resources evaluation. Oxford
University Press, 1997.

[61] R. B. Gramacy, G. A. Gray, S. L. Digabel, H. K. Lee, P. Ranjan,
G. Wells, and S. M. Wild. Modeling an augmented Lagrangian
for improved blackbox constrained optimization. arXiv preprint

arXiv:1403.4890, 2014.

[62] R. B. Gramacy and H. K. Lee. Optimization under unknown con-
straints. arXiv preprint arXiv:1004.4027, 2010.

[63] R. B. Gramacy, H. K. H. Lee, and W. G. Macready. Parameter space
exploration with Gaussian process trees. In International Conference

on Machine Learning, pages 45–52, 2004.

[64] S. Grunewalder, J. Audibert, M. Opper, and J. Shawe-Taylor. Regret
bounds for Gaussian process bandit problems. In AI and Statistics,
pages 273–280, 2010.

[65] F. Hamze, Z. Wang, and N. de Freitas. Self-avoiding random dynamics
on integer complex systems. ACM Transactions on Modeling and

Computer Simulation (TOMACS), 23(1):9, 2013.

[66] N. Hansen and A. Ostermeier. Completely derandomized self-
adaptation in evolution strategies. Evol. Comput., 9(2):159–195, 2001.

[67] P. Hennig and C. Schuler. Entropy search for information-efficient
global optimization. The Journal of Machine Learning Research,
13(1):1809–1837, 2012.

[68] J. M. Hernández-Lobato, M. A. Gelbart, M. W. Hoffman, R. P.
Adams, and Z. Ghahramani. Predictive entropy search for Bayesian
optimization with unknown constraints. In International Conference

on Machine Learning, 2015.

[69] J. M. Hernández-Lobato, M. W. Hoffman, and Z. Ghahramani. Pre-
dictive entropy search for efficient global optimization of black-box
functions. In Advances in Neural Information Processing Systems.
2014.

[70] D. Higdon, J. Swall, and J. Kern. Non-stationary spatial modeling.
Bayesian Statistics, 6, 1998.

[71] G. E. Hinton and R. Salakhutdinov. Using deep belief nets to learn
covariance kernels for Gaussian processes. In Advances in Neural

Information Processing Systems, pages 1249–1256, 2008.

[72] M. Hoffman, B. Shahriari, and N. de Freitas. On correlation and
budget constraints in model-based bandit optimization with application
to automatic machine learning. In AI and Statistics, pages 365–374,
2014.

[73] M. W. Hoffman, E. Brochu, and N. de Freitas. Portfolio allocation for
Bayesian optimization. In Uncertainty in Artificial Intelligence, pages
327–336, 2011.

[74] H. H. Hoos. Programming by optimization. Communications of the

ACM, 55(2):70–80, 2012.

[75] D. Huang, T. Allen, W. Notz, and N. Zeng. Global optimization of
stochastic black-box systems via sequential Kriging meta-models. J.

of Global Optimization, 34(3):441–466, 2006.

[76] F. Hutter. Automated Configuration of Algorithms for Solving Hard

Computational Problems. PhD thesis, University of British Columbia,
Vancouver, Canada, 2009.

[77] F. Hutter, H. Hoos, and K. Leyton-Brown. Identifying key algorithm
parameters and instance features using forward selection. In LION,
2013.

[78] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Automated configuration
of mixed integer programming solvers. In CPAIOR, pages 186–202,
2010.

[79] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based
optimization for general algorithm configuration. In LION, pages 507–
523, 2011.

[80] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Parallel algorithm
configuration. In LION, pages 55–70, 2012.

[81] D. Jones. A taxonomy of global optimization methods based on
response surfaces. J. of Global Optimization, 21(4):345–383, 2001.

[82] D. Jones, M. Schonlau, and W. Welch. Efficient global optimization of
expensive black-box functions. J. of Global optimization, 13(4):455–
492, 1998.

[83] D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian
optimization without the Lipschitz constant. Journal of Optimization

Theory and Applications, 79(1):157–181, 1993.

[84] E. Kaufmann, O. Cappé, and A. Garivier. On bayesian upper confidence
bounds for bandit problems. In International Conference on Artificial

Intelligence and Statistics, pages 592–600, 2012.

[85] E. Kaufmann, N. Korda, and R. Munos. Thompson sampling: An
asymptotically optimal finite-time analysis. In Algorithmic Learning

Theory, volume 7568 of Lecture Notes in Computer Science, pages
199–213. Springer Berlin Heidelberg, 2012.

[86] K. Kersting, C. Plagemann, P. Pfaff, and W. Burgard. Most likely het-
eroscedastic Gaussian process regression. In International Conference

on Machine Learning, pages 393–400, 2007.

[87] L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo planning. In
European Conference on Machine Learning, pages 282–293. 2006.

[88] R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne.
Controlled experiments on the web: survey and practical guide. Data

mining and knowledge discovery, 18(1):140–181, 2009.

[89] A. Krause and C. S. Ong. Contextual Gaussian process bandit
optimization. In Advances in Neural Information Processing Systems,
pages 2447–2455, 2011.

[90] D. G. Krige. A statistical approach to some basic mine valuation
problems on the witwatersrand. Journal of Chemical, Metallurgical,

and Mining Society of South Africa, 1951.

[91] H. J. Kushner. A new method of locating the maximum point of an
arbitrary multipeak curve in the presence of noise. Journal of Fluids

Engineering, 86(1):97–106, 1964.

23

[92] T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation
rules. Advances in applied mathematics, 6(1):4–22, 1985.

[93] M. Lázaro-Gredilla and A. R. Figueiras-Vidal. Marginalized neural
network mixtures for large-scale regression. Neural Networks, IEEE

Transactions on, 21(8):1345–1351, 2010.

[94] M. Lázaro-Gredilla, J. Quiñonero-Candela, C. E. Rasmussen, and A. R.
Figueiras-Vidal. Sparse spectrum Gaussian process regression. The

Journal of Machine Learning Research, 11:1865–1881, 2010.

[95] Q. V. Le, A. J. Smola, and S. Canu. Heteroscedastic Gaussian process
regression. In International Conference on Machine Learning, pages
489–496, 2005.

[96] K. Leyton-Brown, E. Nudelman, and Y. Shoham. Learning the
empirical hardness of optimization problems: The case of combinatorial
auctions. In Principles and Practice of Constraint Programming, pages
556–572. Springer, 2002.

[97] L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit
approach to personalized news article recommendation. In World Wide

Web, pages 661–670, 2010.

[98] D. V. Lindley. On a measure of the information provided by an
experiment. The Annals of Mathematical Statistics, pages 986–1005,
1956.

[99] D. Lizotte. Practical Bayesian Optimization. PhD thesis, University
of Alberta, Canada, 2008.

[100] D. Lizotte, R. Greiner, and D. Schuurmans. An experimental method-
ology for response surface optimization methods. J. of Global Opti-

mization, pages 1–38, 2011.

[101] D. Lizotte, T. Wang, M. Bowling, and D. Schuurmans. Automatic
gait optimization with Gaussian process regression. In Proc. of IJCAI,
pages 944–949, 2007.

[102] M. Locatelli. Bayesian algorithms for one-dimensional global opti-
mization. J. Global Optimization, 1997.

[103] M. Lzaro-gredilla and M. K. Titsias. Variational heteroscedastic
Gaussian process regression. In International Conference on Machine

Learning, pages 841–848. ACM, 2011.

[104] O. Madani, D. Lizotte, and R. Greiner. Active model selection. In
Conference on Uncertainty in Artificial Intelligence (UAI), 2004.

[105] N. Mahendran, Z. Wang, F. Hamze, and N. de Freitas. Adaptive MCMC
with Bayesian optimization. Journal of Machine Learning Research -

Proceedings Track, 22:751–760, 2012.

[106] R. Marchant and F. Ramos. Bayesian optimisation for intelligent en-
vironmental monitoring. In NIPS workshop on Bayesian Optimization

and Decision Making, 2012.

[107] O. Maron and A. W. Moore. Hoeffding races: Accelerating model
selection search for classification and function approximation. Robotics

Institute, page 263, 1993.

[108] R. Martinez–Cantin, N. de Freitas, E. Brochu, J. Castellanos, and
A. Doucet. A Bayesian exploration-exploitation approach for optimal
online sensing and planning with a visually guided mobile robot.
Autonomous Robots, 27(2):93–103, 2009.

[109] J. Martinez, J. J. Little, and N. de Freitas. Bayesian optimization with
an empirical hardness model for approximate nearest neighbour search.
In IEEE Winter Conference on Applications of Computer Vision, 2014.

[110] R. Martinez-Cantin, N. de Freitas, A. Doucet, and J. A. Castellanos.
Active policy learning for robot planning and exploration under uncer-
tainty. Robotics Science and Systems, 2007.

[111] G. Matheron. The theory of regionalized variables and its applications.
Cahier du Centre de Morphologie Mathematique, Ecoles des Mines,
1971.

[112] B. C. May, N. Korda, A. Lee, and D. S. Leslie. Optimistic Bayesian
sampling in contextual bandit problems. Technical Report 11:01,
Statistics Group, School of Mathematics, University of Bristol, 2011.

[113] V. Mnih, C. Szepesvári, and J.-Y. Audibert. Empirical Bernstein
stopping. In International Conference on Machine Learning, pages
672–679. ACM, 2008.

[114] J. Močkus. Application of Bayesian approach to numerical methods
of global and stochastic optimization. J. of Global Optimization,
4(4):347–365, 1994.

[115] J. Močkus, V. Tiesis, and A. Žilinskas. The application of Bayesian
methods for seeking the extremum. In L. Dixon and G. Szego, editors,
Toward Global Optimization, volume 2. Elsevier, 1978.

[116] R. Munos. Optimistic optimization of a deterministic function without
the knowledge of its smoothness. In Advances in Neural Information

Processing Systems, pages 783–791, 2011.

[117] R. Munos. From Bandits to Monte-Carlo Tree Search: The Optimistic
Principle Applied to Optimization and Planning. Technical Report hal-
00747575, INRIA Lille, 2014.

[118] R. M. Neal. Bayesian learning for neural networks. PhD thesis,
University of Toronto, 1995.

[119] J. Nelder and R. Wedderburn. Generalized linear models. Journal of

the Royal Statistical Society, Series A, 135(3):370–384, 1972.

[120] M. A. Osborne, R. Garnett, and S. J. Roberts. Gaussian processes for
global optimisation. In LION, 2009.

[121] C. Paciorek and M. Schervish. Nonstationary covariance functions
for gaussian process regression. In Advances in Neural Information

Processing Systems, volume 16, pages 273–280, 2004.

[122] V. Picheny and D. Ginsbourger. A nonstationary space-time Gaussian
process model for partially converged simulations. SIAM/ASA Journal

on Uncertainty Quantification, 1(1):57–78, 2013.

[123] J. C. Pinheiro and D. M. Bates. Unconstrained parametrizations for
variance-covariance matrices. Statistics and Computing, 6(3):289–296,
1996.

[124] J. Quiñonero-Candela and C. E. Rasmussen. A unifying view of sparse
approximate Gaussian process regression. The Journal of Machine

Learning Research, 6:1939–1959, 2005.

[125] A. Rahimi and B. Recht. Random features for large-scale kernel
machines. In Advances in Neural Information Processing Systems,
pages 1177–1184, 2007.

[126] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for

Machine Learning. The MIT Press, 2006.

[127] D. Russo and B. Van Roy. Learning to optimize via posterior sampling.
Mathematics of Operations Research, 39(4):1221–1243, 2014.

[128] J. Sacks, W. J. Welch, T. J. Welch, and H. P. Wynn. Design and analysis
of computer experiments. Statistical Science, 4(4):409–423, 1989.

[129] P. D. Sampson and P. Guttorp. Nonparametric estimation of nonsta-
tionary spatial covariance structure. Journal of the American Statistical

Association, 87(417):108–119, 1992.

[130] T. J. Santner, B. Williams, and W. Notz. The Design and Analysis of

Computer Experiments. Springer, 2003.

[131] M. J. Sasena. Flexibility and Efficiency Enhancement for Constrained

Global Design Optimization with Kriging Approximations. PhD thesis,
University of Michigan, 2002.

[132] A. M. Schmidt and A. O’Hagan. Bayesian inference for nonstationary
spatial covariance structures via spatial deformations. Journal of the

Royal Statistical Society, Series B, 65:743–758, 2003.

[133] M. Schonlau. Computer Experiments and Global Optimization. PhD
thesis, University of Waterloo, Waterloo, Ontario, Canada, 1997.

[134] M. Schonlau, W. J. Welch, and D. R. Jones. Global versus local
search in constrained optimization of computer models. Lecture Notes-

Monograph Series, 34:11–25, 1998.

[135] S. L. Scott. A modern Bayesian look at the multi-armed bandit. Applied

Stochastic Models in Business and Industry, 26(6):639–658, 2010.

[136] M. Seeger, Y.-W. Teh, and M. I. Jordan. Semiparametric latent factor
models. In AI and Statistics, 2005.

[137] M. Seeger, C. Williams, and N. Lawrence. Fast forward selection to
speed up sparse Gaussian process regression. In Artificial Intelligence

and Statistics 9, number EPFL-CONF-161318, 2003.

[138] A. Shah, A. G. Wilson, and Z. Ghahramani. Student-t processes as
alternatives to Gaussian processes. In AI and Statistics, pages 877–
885, 2014.

[139] B. Shahriari, Z. Wang, M. W. Hoffman, A. Bouchard-Côté, and
N. de Freitas. An entropy search portfolio. In NIPS workshop on

Bayesian Optimization, 2014.

[140] E. Snelson and Z. Ghahramani. Sparse Gaussian processes using
pseudo-inputs. In Advances in Neural Information Processing Systems,
pages 1257–1264, 2005.

[141] E. Snelson, C. E. Rasmussen, and Z. Ghahramani. Warped Gaussian
processes. In Advances in Neural Information Processing Systems,
2003.

[142] J. Snoek. Bayesian Optimization and Semiparametric Models with Ap-

plications to Assistive Technology. PhD thesis, University of Toronto,
Toronto, Canada, 2013.

[143] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian
optimization of machine learning algorithms. In Advances in Neural

Information Processing Systems, pages 2951–2959, 2012.

[144] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram,
M. Patwary, Prabhat, and R. Adams. Scalable Bayesian optimization
using deep neural networks. In International Conference on Machine

Learning, 2015.

[145] J. Snoek, K. Swersky, R. S. Zemel, and R. P. Adams. Input warping
for Bayesian optimization of non-stationary functions. In International

Conference on Machine Learning, 2014.

24

[146] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger. Gaussian process
optimization in the bandit setting: No regret and experimental design.
In International Conference on Machine Learning, pages 1015–1022,
2010.

[147] K. Swersky, D. Duvenaud, J. Snoek, F. Hutter, and M. A. Osborne.
Raiders of the lost architecture: Kernels for Bayesian optimization in
conditional parameter spaces. arXiv preprint arXiv:1409.4011, 2014.

[148] K. Swersky, J. Snoek, and R. P. Adams. Multi-task Bayesian optimiza-
tion. In Advances in Neural Information Processing Systems, pages
2004–2012, 2013.

[149] K. Swersky, J. Snoek, and R. P. Adams. Freeze-thaw Bayesian
optimization. arXiv preprint arXiv:1406.3896, 2014.

[150] W. R. Thompson. On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples. Biometrika,
25(3/4):285–294, 1933.

[151] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-
WEKA: Combined selection and hyperparameter optimization of clas-
sification algorithms. In Knowledge Discovery and Data Mining, pages
847–855, 2013.

[152] M. K. Titsias. Variational learning of inducing variables in sparse Gaus-
sian processes. In International Conference on Artificial Intelligence

and Statistics, pages 567–574, 2009.
[153] H. P. Vanchinathan, I. Nikolic, F. De Bona, and A. Krause. Explore-

exploit in top-N recommender systems via Gaussian processes. In
Proceedings of the 8th ACM Conference on Recommender systems,
pages 225–232. ACM, 2014.

[154] E. Vazquez and J. Bect. Convergence properties of the expected
improvement algorithm with fixed mean and covariance functions. J.

of Statistical Planning and Inference, 140:3088–3095, 2010.
[155] E. Vazquez and J. Bect. Convergence properties of the expected

improvement algorithm with fixed mean and covariance functions.
Journal of Statistical Planning and Inference, 140(11):3088–3095,
2010.

[156] J. Villemonteix, E. Vazquez, and E. Walter. An informational approach
to the global optimization of expensive-to-evaluate functions. J. of

Global Optimization, 44(4):509–534, 2009.
[157] Z. Wang and N. de Freitas. Theoretical analysis of Bayesian optimisa-

tion with unknown Gaussian process hyper-parameters. arXiv preprint

arXiv:1406.7758, 2014.
[158] Z. Wang, B. Shakibi, L. Jin, and N. de Freitas. Bayesian multi-scale

optimistic optimization. In AI and Statistics, pages 1005–1014, 2014.
[159] Z. Wang, M. Zoghi, D. Matheson, F. Hutter, and N. de Freitas.

Bayesian optimization in high dimensions via random embeddings. In
International Joint Conference on Artificial Intelligence, pages 1778–
1784, 2013.

[160] B. J. Williams, T. J. Santner, and W. I. Notz. Sequential design
of computer experiments to minimize integrated response functions.
Statistica Sinica, 10:1133–1152, 2000.

[161] D. Yogatama and G. Mann. Efficient transfer learning method for
automatic hyperparameter tuning. In AI and Statistics, pages 1077–
1085, 2014.

[162] D. Yogatama and N. A. Smith. Bayesian optimization of text repre-
sentations. arXiv preprint arXiv:1503.00693, 2015.

[163] Y. Zhang, K. Sohn, R. Villegas, G. Pan, and H. Lee. Improving object
detection with deep convolutional networks via Bayesian optimization
and structured prediction. In IEEE Computer Vision and Pattern

Recognition Conference, 2015.
[164] A. Žilinskas and J. Žilinskas. Global optimization based on a statistical

model and simplical partitioning. Computers and Mathematics with

Applications, 44:957–967, 2002.

