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Abstract.

Many computational problems can be solved with the aid of contour integrals con-
taining ez in the integrand: examples include inverse Laplace transforms, special func-
tions, functions of matrices and operators, parabolic PDEs, and reaction-diffusion equa-
tions. One approach to the numerical quadrature of such integrals is to apply the
trapezoid rule on a Hankel contour defined by a suitable change of variables. Optimal
parameters for three classes of such contours have recently been derived: (a) parabolas,
(b) hyperbolas, and (c) cotangent contours, following Talbot in 1979. The convergence
rates for these optimized quadrature formulas are very fast: roughly O(3−N ), where N
is the number of sample points or function evaluations. On the other hand, convergence
at a rate apparently about twice as fast, O(9.28903−N ), can be achieved by using a dif-
ferent approach: best supremum-norm rational approximants to ez for z ∈ (−∞,0],
following Cody, Meinardus and Varga in 1969. (All these rates are doubled in the case
of self-adjoint operators or real integrands.) It is shown that the quadrature formu-
las can be interpreted as rational approximations and the rational approximations as
quadrature formulas, and the strengths and weaknesses of the different approaches are
discussed in the light of these connections. A MATLAB function is provided for com-
puting Cody–Meinardus–Varga approximants by the method of Carathéodory–Fejér
approximation.
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1 Introduction.

This article is concerned with the numerical computation of contour integrals
of the form

I =
1

2πi

∫
Γ

ezf(z) dz,(1.1)

where f is analytic in a neighborhood of the negative real axis R− = (−∞, 0]
except on R− itself, and Γ denotes a “Hankel contour” that winds from −∞−0i
in the lower half-plane, around 0, and back to −∞+ 0i in the upper half-plane.
We assume that Γ lies in the region of analyticity of f , in which case I is
independent of Γ under mild assumptions, even if Γ is deformed to widen out
to a shape such as a parabola or a hyperbola for large |Re z|. For example, it is
enough if f satisfies |ezf(z)| = o(z−1) as Re z → −∞. Here and in what follows
we mostly speak of f as a scalar, for simplicity, but the same methods apply if
it is a matrix or linear operator depending analytically on z.
On the face of it (1.1) might seem quite a specialized problem, but in fact, it
arises throughout scientific computing. The integral is that of the inverse Laplace
transform, which is more familiarly written in the form

G(t) =
1

2πi

∫
Γ

estg(s) ds ;(1.2)

the substitutions s = z/t, g(s) = f(z/t)/t yield I = G(t). Integrals of the form
(1.1) or (1.2) arise in many areas of applied mathematics and are the basis of
fast methods for computing special functions [11, 22, 35, 42]. In numerical linear
algebra, they can lead to fast methods for computing matrix exponentials eA

and associated vectors eAv for matrices A with eigenvalues in R− [20, 39]; in
such applications (1.1) takes the form

eAv =
1

2πi

∫
Γ

ez(z −A)−1v dz.(1.3)

In partial differential equations they offer powerful tools for solving parabolic
PDE [2, 4, 6, 7, 8, 9, 48]. The evaluation of integrals related to (1.1) is also a key
step in some fast algorithms for solving nonlinear PDE such as reaction-diffusion
equations [14, 15]. These methods generalize in natural ways to large-scale prob-
lems involving fine discretizations and large matrices, where they are readily uti-
lized in the context of Krylov subspace iterations and multiple processors [7, 8].
And they are readily generalized to problems with singularities off R−, includ-
ing evolution equations for sectorial operators such as fractional differential and
integral equations associated with anomalous diffusion [25, 34].
Numerical methods for the quadrature of (1.1) have recently been derived by
Weideman that are in certain senses optimal or close to optimal. These are based
on applying anN -point trapezoid or midpoint rule to (1.1) after a transformation
of z to a real variable θ ∈ R. If Γ is a parabola, parameters have been derived [51]
that achieve the convergence rate

Trapezoid rule on parabola: O(2.85−N);(1.4)
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related work with parabolic contours is due to Gavrilyuk and Makarov [9]. If
Γ is a hyperbola, a choice particularly attractive for generalizations to sectorial
operators, parameters have been derived [51] that achieve the rate

Trapezoid rule on hyperbola: O(3.20−N),(1.5)

which relates to work with hyperbolic contours by López-Fernández, Lubich,
McLean, Palencia, Schädle, Sheen, Sloan, and Thomée [17, 18, 25, 38]. The
longest-established class of quadrature contours, involving the cotangent func-
tion, were introduced by Talbot in 1979 [41]. Parameters for cotangent contours
have been derived [50] that achieve the rate

Trapezoid rule on cotangent contour: O(3.89−N ).(1.6)

The convergence rates (1.4)–(1.6) are all exceedingly fast, and they can all be
doubled in the common case where f(z) = f(z) for each z, such as arises with
self-adjoint matrices or operators. At the same time, the fact that the rates are
different is an indication that not all of them can be optimal in an ultimate sense.
One might ask, rather than optimizing within these three particular classes of
integration contours, what could be achieved by a more general optimization in
which the shape of the contour is arbitrary? The purpose of this article is to
explore one approach to this question. In Section 2 we suggest that any quadra-
ture rule such as those of (1.4)–(1.6) can be interpreted as implicitly defining
a rational approximation of ez on (−∞, 0]. The particular rational approxima-
tions associated with (1.4)–(1.6) are examined in Section 3. In Section 4 we note
that one kind of optimality can be achieved by putting contours and quadra-
ture formulas aside and simply considering best rational approximations of ez

on (−∞, 0], a topic made famous by Cody, Meinardus, and Varga in 1969 [5].
Such approximations lead to numerical methods for (1.1) that converge at the
rate

Best rational approximations: O(9.28903−N).(1.7)

This rate is about twice as fast as (1.4)–(1.6), and thus might appear to be
distinctly superior to the other three methods. Moreover, in practice, the re-
quired approximations can be computed by the Carathéodory–Fejér method,
based on the singular value analysis of a Hankel matrix of Chebyshev coeffi-
cients of e9(1−x)/(1+x).
Are methods based on best rational approximations superior in practice?
In Section 6 we show that the actual situation is not so simple. Such meth-
ods are indeed the fastest in certain circumstances, but they are also somewhat
delicate, losing some of their power when the problem is changed slightly.

2 Quadratures as rational approximations.

The basis of the quadrature methods we shall consider is the trapezoid rule (or
equivalently for our purposes the midpoint rule), which is exponentially accu-
rate when applied to an analytic integrand on a periodic or unbounded domain.
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See [47] for a review of this phenomenon of high accuracy, which was first iden-
tified by Poisson in the 1820s and analyzed further by Turing (1939), Goodwin
(1949), Davies (1959), Martensen (1968), and Stenger (1981), among others. The
connection we shall make to rational approximation, however, is valid for any
quadrature rule, whether or not it is derived from the trapezoid formula.
Let φ(θ) be an analytic function that maps the real line R onto the contour Γ.
Then (1.1) can be written as

I =
1

2πi

∫ ∞
−∞
eφ(θ)f(φ(θ))φ′(θ) d θ.(2.1)

Because of the term eφ(θ), the integrand will normally decrease exponentially as
|θ| → ∞, in which case one commits an exponentially small error by truncating
R to a finite interval. For simplicity we shall arbitrarily fix this interval as [−π, π].
In [−π, π] we take N points θk spaced regularly at a distance 2π/N , and our
trapezoid approximation to (1.1) becomes

IN = −iN
−1

N∑
k=1

ezkf(zk)wk,(2.2)

where zk = φ(θk) and wk = φ
′(θk). To achieve geometric convergence rates as

in (1.4)–(1.6), it will be necessary to have the function φ depend on N , and
in particular, φ will normally be chosen so that the error introduced by the
truncation of R to [−π, π] is of the same order as that introduced by finite step
size 2π/N of the trapezoid rule.
Now (2.2) consists of a linear combination of the values taken by f at the
points zk,

IN = −
N∑
k=1

ckf(zk), ck = iN
−1ezkwk.(2.3)

According to residue calculus, this sum is equal to the integral

IN =
1

2πi

∫
C

r(z)f(z) dz,(2.4)

where r(z) is the type (N − 1, N ) rational function

r(z) =
N∑
k=1

ck

z − zk
(2.5)

and C is a closed contour in the region of analyticity of f that winds in the
negative sense once around each point zk. By the negative sense we mean clock-
wise, a direction consistent with the appearance of the minus sign in (2.3). The
reason for this choice of signs is illustrated in Figure 2.1. Let Γ′ be a contour
for (1.1) like Γ, except lying between R− and the points {zk}. Then Γ′ is equiv-
alent to Γ for the integral (1.1) of ezf(z). Moreover, if f is analytic in C\R−
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Figure 2.1: If f(z) = o(1) as |z| → ∞, then the contours Γ′ and C of (2.4) and (2.6)
are equivalent. This is the essential point in the derivation of Theorem 2.1.

with f(z) = o(1) as |z| → ∞, then r(z)f(z) = o(|z|−1) as |z| → ∞. Thus if
we deform C to the contour consisting of the union of Γ′ with a large circular
arc of radius R, the contribution from the latter must decrease to 0 as R→∞,
implying that Γ′ is equivalent to C for the integral (2.4) involving r(z)f(z).

We have proved:

Theorem 2.1. Let f be analytic in C\R− with f(z)→ 0 uniformly as |z| → ∞,
and define r(z) by (2.5). Let Γ′ be a contour for (1.1) lying between R− and the
points {zk}, as illustrated in Figure 2.1. Then the sum IN defined by (2.2) is
equal to

IN =
1

2πi

∫
Γ′
r(z)f(z)dz,(2.6)

and together with (1.1), this gives the quadrature error estimate

I − IN =
1

2πi

∫
Γ′
(ez − r(z))f(z)dz.(2.7)

The last equation suggests that r(z) is likely to be a good approximation to ez

near R−. Thus any quadrature formula can be viewed as a rational approxima-
tion; we shall look at three examples in the next section. Conversely, any rational
approximation can be interpreted as a quadrature formula – see Section 4.

3 Parabolic, hyperbolic, and cotangent contours.

We now consider the three particular quadrature contours Γ mentioned in
Section 1. The simplest is a parabola, a choice proposed by Gavrilyuk and
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Makarov [9]. Several parameters can be varied in defining such a curve, and by
balancing various error terms Weideman has devised the particular combination

z(θ) = N [0.1309− 0.1194θ2 + 0.2500iθ],(3.1)

which achieves the convergence rate O(2.85−N) mentioned in (1.4). According
to Theorem 2.1, for each N , this corresponds to a rational function r(z) of type
(N − 1, N ) that we may consider as an approximation to ez for values of z
near R−. Figure 3.1 shows the quality of the approximation for the case N = 32.
Since 2.85−32 ≈ 3× 10−15, we expect 14 or more digits of accuracy, and this is
just what the figure shows. The high accuracy is achieved not only on R− but
in a wide region in the left half-plane.
Another simple choice of contour is a hyperbola, as has been considered
by López-Fernández, Lubich, McLean, Palencia, Schädle, Sheen, Sloan, and
Thomée [17, 18, 25, 38]. Here Weideman has proposed the parameters

z(θ) = 2.246N [1− sin(1.1721− 0.3443iθ)],(3.2)

with convergence rate O(3.20−N ). (That this formula describes a hyperbola fol-
lows from standard properties of the sine function in the complex plane.) The
slightly improved convergence rate would permit N to be reduced from 32 to,
say, 28, but to facilitate comparisons, we take N = 32 again in Figure 3.2. Once
more, the prescribed accuracy is achieved in a wide region of the left half-plane.
Talbot’s original contours were defined by a formula involving the cotangent
function. Again Weideman has developed parameters for such contours that are
in certain senses optimal [50], and one of his choices amounts to

z(θ) = N [0.5017θ cot(0.6407θ)− 0.6122 + 0.2645iθ],(3.3)

Figure 3.1: Contour plot in the complex z-plane of the error |ez − r(z)|, where r(z) is
the rational function (2.5) associated with the trapezoid rule quadrature formula with
N = 32 on the parabolic contour (3.1), marked by the grey curve. The solid dots mark
the quadrature points zk, which are the poles of r. From right to left, the contours
correspond to 100, 10−1, . . . , 10−14.



TALBOT QUADRATURES AND RATIONAL APPROXIMATIONS 659

Figure 3.2: Like Figure 3.1 but for the hyperbolic contour (3.2). The innermost contour
is affected by rounding errors.

with convergence rate O(3.89−N). In this case we might reduce N to 24, but
again we keep it at 32 for Figure 3.3, which looks much like the other two.
Indeed, we have been quite surprised to find how similar these images all are.
This suggests that there will be little difference between parabolas, hyperbolas,
and cotangent contours in practice.
Figures 3.1–3.3 confirm the expectation suggested by Theorem 2.1: by apply-
ing the trapezoid rule over a Talbot contour, we implicitly construct excellent
rational approximations to ez.
Here is an illustration of how powerful these quadrature formulas can be
in scientific computing. Suppose the heat equation ut = ε∆u in the square
[−1, 1]2, with zero boundary conditions and ε = 0.02, is semidiscretized by
standard finite differences with a 5-point stencil on a regular grid with ∆x =
∆y = 1/100, with the variable v representing the discretization of u. The dis-

Figure 3.3: Like Figure 3.1 but for the cotangent contour (3.3).
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cretization introduces a matrix A of dimension 992 = 9801. Suppose we take
u(x, y, 0) = ex(1− x2)(1− y2) and seek the value

v(1)0,0 =
1

2πi

∫
Γ

ez(z −A)−1v(0) dz(3.4)

at the grid point x = y = 0, where v(0) is the initial condition sampled on the
grid. The MATLAB code fragment shown in Figure 3.4 evaluates (3.4) by the
quadrature method (3.1) with N = 32. It runs in about 10 seconds on a 2004
laptop,1 whereas MATLAB’s expm function, which computes the whole matrix
eA rather than just a vector, would require about 6 hours.

J = 100; h = 2/J; s = (-1+h:h:1-h)’; % 1D grid

[xx,yy] = meshgrid(s,s); % 2D grid

x = xx(:); y = yy(:); % 2D grid stretched to 1D

L = -gallery(’poisson’,J-1)/h^2; % 2D Laplacian

I = speye((J-1)^2); % identity

N = 32; theta = pi*(1:2:N-1)/N; % quad pts in (0,pi)

z = N*(.1309-.1194*theta.^2+.2500i*theta); % quad pts on contour

w = N*(-.1194*2*theta+.2500i); % derivatives

c = (1i/N)*exp(z).*w; % quadrature weights

u = (1-x.^2).*(1-y.^2).*exp(x); % initial condition

v = zeros(size(u));

for k = 1:N/2 % quadrature via

v = v - c(k)*((z(k)*I-0.02*L)\u); % sparse linear solves

end

v = 2*real(v); % exploit symmetry

IN = v(J^2/2-J+1) % value at origin

Figure 3.4: MATLAB code fragment to compute the exponential of a matrix of dimen-
sion 9801 for the numerical solution of the heat equation in three dimensions. On a 2004
laptop, this code prints the correct result 0.93864312688253 in about 10 seconds.

4 Best approximations.

An alternative idea is to bypass the use of quadrature formulas and work
directly with rational functions designed as good approximations to ez on R−.
There are various ways in which such approximations could be defined, and we
shall follow the route that is the most familiar. Given m and n, let r∗ be the real
rational function of type (m,n) (i.e., numerator of degree ≤ m and denominator
of degree ≤ n) such that

‖ez − r∗(z)‖ = inf
r
‖ez − r(z)‖ = Emn,

where the infimum is over all real rational functions of type (m,n) and ‖ · ‖
denotes the supremum norm on R−. Standard results of approximation theory

1 All tests reported in this article were run in MATLAB 7 on an IBM ThinkPad T42 with
512MB of RAM and a 1.70GHz clock speed.
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ensure that r∗ exists and is unique [26]. A great deal has been learned about
these functions in the years since the publication of an influential 1969 paper
by Cody, Meinardus and Varga [5], which followed earlier work by Varga [48].
Cody et al. proved that Enn decreases geometrically as n → ∞, a conclusion
that we now see also could follow from a suitably rigorous treatment of any of
the quadrature estimates (1.4)–(1.6). In 1973 Schönhage [36] proved that E0n
converges at the rate

lim
n→∞

E
1/n
0n =

1

3
.

In 1983 Trefethen and Gutknecht observed numerically [46] that the rate for
Enn is

2

lim
n→∞

E1/nnn =
1

9.28903 . . .
.(4.1)

Carpenter et al. confirmed this result by high-precision computations by the
Remes algorithm [3]. A few years later, Magnus and independently Gonchar
and Rakhmanov found exact expressions for this number, with Gonchar and
Rakhmanov proving that the limit is indeed (4.1) [12, 13]. Magnus also found
that H = 1/9.28903 . . . is a quantity associated with elliptic integrals first stud-
ied and even evaluated to 6-digit precision by Halphen in 1886 [13], and accord-
ingly, it is now known as Halphen’s constant. A much sharper result than (4.1)
was conjectured by Magnus [24] and subsequently proved by Aptekarev [1]:

Enn ∼ 2H
n+1/2 (n→∞).

This “1/9 problem” has been the starting point of a great deal of fundamental
work in approximation theory, building on the powerful connections with poten-
tial theory introduced by Gonchar and Rakhmanov [24, 32, 40]. As far as we
can determine, it has been used only occasionally for applications in scientific
computing [4, 16, 20, 39].
A comparison of (4.1) with (1.4)–(1.6) suggests that it should be possible to
roughly double the speed of the algorithms of the last section:

Best rational approximations: O(9.28903−N).(4.2)

To put this idea into effect, we proceed in the reverse of the order of Section 3.
There, we started with quadrature points and weights and interpreted these as
poles and residues for a rational function. Now, we start with a rational func-
tion and interpret its poles and residues as points and weights for a quadrature
formula. Specifically, suppose r is a rational function of type (N − 1, N ) that
is a good approximation to ez on R−. Then we may expect the quantity IN
defined by (2.6) to be a good approximation to the integral I of (1.1). Let the

2 LNT remembers his excitement when this number emerged from the computer one morning
when he was a graduate student at Stanford (May 23, 1981). He sent Gutknecht a telegram in
Switzerland: “9.28903?”.
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poles and residues of r be z1, . . . , zN and c1, . . . , cN , as in (2.5). Then just as
in Theorem 2.1, IN will be equal to the integral (2.4) and the sum (2.3), and
it is the sum we will use to evaluate it in practice. In effect we are applying
a quadrature formula with weights defined by the second half of (2.3), that is,
wk = −iNe−zkck. The error formula (2.7) will hold as before.
There has been so much attention to the Cody–Meinaruds–Varga problem
of best approximations with m = n that we shall stay within this framework.
Given N , let r∗ be the best approximation to ez on R− of type (N,N ), and
define

r(z) = r∗(z)− r∗(∞).(4.3)

This is a rational function of type (N − 1, N ), not quite optimal but nonethe-
less with deviation from ez decreasing at the optimal rate (9.28903 . . . )−N as
N →∞. The function r∗ can be computed by the Remes algorithm as in [3]
and [5]; we have also been given very high accuracy computed results in a pri-
vate communication from Alphonse Magnus. A simple practical alternative is to
use the Carathéodory–Fejér method as proposed in the final section of [46] and
analyzed at length in [24], based on the singular value decomposition of a Han-
kel matrix of Chebyshev coefficients of the function ez transplanted from R− to
[−1, 1]. For the easiest introduction to CF approximation, see [43]. Though the
CF approach is in principle only approximate, Magnus has shown that the func-
tions it produces differ from the true best approximations by about O(56−N ),
which is so much smaller than 9.28−N that the method can be regarded as
exact in practice, apart from the effects of rounding errors; the error in exact
arithmetic is below standard machine precision for N ≥ 9, and for N = 14 it
is about 10−26 [24]. We have found that by modifying codes of [44] to work
with pole-residue form rather than polynomial coefficients, and carrying out the
transplantation just mentioned by the formula z = s(t− 1)/(t+ 1) with s ≈ 9,
we can determine r∗ by this method to high accuracy for 1 ≤ N ≤ 13 and to
good accuracy for N = 14, without the need for extended precision arithmetic.
Figure 4.1 shows our MATLAB code, and Figure 4.2 shows the result it produces
for N = 14 in about 0.2 sec. on our laptop.
Figure 4.3 is analogous to Figures 3.1–3.3, but for the near-best approximation
r of (4.3). (A figure like this has previously been published by Sidje [39].) The first
thing that strikes us is how similar this figure is to the earlier ones, though the
methods of derivation have been entirely different. The high accuracy, however,
is now achieved with the smaller value N = 14. It is striking that as before,
the poles line up along a smooth arc curving leftward around the origin. As
before, this arc scales in proportion to N , and its shape in the limit N → ∞
was determined by Gonchar and Rakhmanov by methods of potential theory,
though we are unaware of a simple formula; see [1, 12, 32].
Figure 4.4 repeats Figure 3.4, but now making use of best approximation.
With N = 14 we now get the same accuracy obtained before with N = 32.
The behavior of this code is remarkable: it evaluates eAv to 14-digit precision
by means of just seven sparse matrix solves, each requiring only a fraction of
a second.
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function [zk,ck] = cf(n);

K = 75; % no of Cheb coeffs

nf = 1024; % no of pts for FFT

w = exp(2i*pi*(0:nf-1)/nf); % roots of unity

t = real(w); % Cheb pts (twice over)

scl = 9; % scale factor for stability

F = exp(scl*(t-1)./(t+1+1e-16)); % exp(x) transpl. to [-1,1]

c = real(fft(F))/nf; % Cheb coeffs of F

f = polyval(c(K+1:-1:1),w); % analytic part f of F

[U,S,V] = svd(hankel(c(2:K+1))); % SVD of Hankel matrix

s = S(n+1,n+1); % singular value

u = U(K:-1:1,n+1)’; v = V(:,n+1)’; % singular vector

zz = zeros(1,nf-K); % zeros for padding

b = fft([u zz])./fft([v zz]); % finite Blaschke product

rt = f-s*w.^K.*b; % extended function r-tilde

rtc = real(fft(rt))/nf; % its Laurent coeffs

zr = roots(v); qk = zr(abs(zr)>1); % poles

qc = poly(qk); % coeffs of denominator

pt = rt.*polyval(qc,w); % numerator

ptc = real(fft(pt)/nf); % coeffs of numerator

ptc = ptc(n+1:-1:1); ck = 0*qk;

for k = 1:n % calculate residues

q = qk(k); q2 = poly(qk(qk~=q));

ck(k) = polyval(ptc,q)/polyval(q2,q);

end

zk = scl*(qk-1).^2./(qk+1).^2; % poles in z-plane

ck = 4*ck.*zk./(qk.^2-1); % residues in z-plane

Figure 4.1: MATLAB function to compute poles {zk} and residues {ck} by the
Carathéodory–Fejér method for the type (n, n) best approximation r∗ to ez on
R
− [24, 43, 44, 46].

Figure 4.2: Error curve ez − r∗(z) against z for type (14, 14) best approximation to ez

on R−, as computed by CF approximation by the program of Figure 4.1. Note that the
abscissa, the negative real axis in the z-plane, is displayed on a log scale. The dashed
lines mark the ideal minimax error. The imperfect equioscillation is caused by rounding
errors but will do less than one bit of damage in applications.
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Figure 4.3: Error |ez − r∗(z)| in best rational approximation to ez on (−∞, 0] with
N = 14, with contours again as in Figures 3.1–3.3. The dots mark the poles of r∗, and
this time, the grey curve marks the limiting shape that the poles approach as N →∞,
as shown by Gonchar and Rakhmanov [12]. Note that we get approximately the same
accuracy as in Figures 3.1–3.3 on R−, though N has been cut in half. The enhanced
accuracy is mostly confined to a region near R−, however.

J = 100; h = 2/J; s = (-1+h:h:1-h)’; % 1D grid

[xx,yy] = meshgrid(s,s); % 2D grid

x = xx(:); y = yy(:); % 2D grid stretched to 1D

L = -gallery(’poisson’,J-1)/h^2; % 2D Laplacian

I = speye((J-1)^2); % identity

N = 14; % degree of approx

[z,c] = cf(N); % compute the approx

u = (1-x.^2).*(1-y.^2).*exp(x); % initial condition

v = zeros(size(u));

for k = 1:2:N % quadrature via

v = v - c(k)*((z(k)*I-0.02*L)\u); % sparse linear solves

end

v = 2*real(v); % exploit symmetry

IN = v(J^2/2-J+1) % value at origin

Figure 4.4: Variant of the code fragment of Figure 3.4 to compute the same result by
means of best approximation. With N = 14 instead of N = 32, this code gets 14-digit
accuracy in less than half the time.

5 Aside: Padé approximation and Gauss quadrature.

Over the years numerous connections have been made between inverse Laplace
transforms, rational functions, and quadrature formulas. We shall not attempt
a full survey but just point to a few ideas of this kind that are particularly
close to those of the present paper. In (1.1), suppose that the integrand ezf(z)
is dominated by its behavior near z = 0. Then instead of approximating ez

by a rational function on R−, one may choose to approximate it at the origin,
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i.e., by a Padé approximant. Methods like this have been investigated by Luke,
Piessens, Rjabov, and Zakian, among others [23, 28, 29, 30]; the earliest reference
seems to be a 1969 paper of Vlach [49]. In contrast to the functions we have
considered in this paper, the Padé approximants have poles entirely in the right
half-plane. Their disadvantage comes if values of z deep in the left half-plane are
important, which may happen in an inverse Laplace transform (1.2) when t is
close to zero.

Piessens points out in [28] that these Padé approximation methods have con-
nections with a form of Gauss quadrature. Suppose we pose the problem of
finding nodes and weights for a quadrature formula that is exact in (1.1) when
f is a polynomial in z−1 of maximal order, with no constant term. The nodes
for such a formula turn out to be the poles of certain orthogonal polynomials
related to Padé approximants; see [28]. This Gauss quadrature approach to in-
verse Laplace transforms goes back at least to Salzer in 1959 [33], and related
contributions are by Krylov, Piessens, Rjabov, Rodrigues, and Skoblya, among
others [29, 31, 30].

6 Comparison of quadratures and best approximations.

We have seen that in comparison to Talbot-type quadratures, best rational
approximations lead to methods for evaluation of (1.1) that are

1. based on coefficients that are harder to compute, but
2. up to twice as fast.

In this final section we comment further on these two important practical mat-
ters.

There is no doubt that the parabola, hyperbola, and cotangent quadrature for-
mulas (3.1)–(3.3) are all very simple. Each can be implemented for arbitraryN in
a few lines of computer code and negligible computation time. By contrast, best
approximations demand special effort. One can precompute the required poles
and residues, perhaps starting from the coefficients published by Carpenter et
al. [3]. This gives programs that execute at top speed, but the programs are not
very elegant, and they do not permit variableN . For example, if an extended pre-
cision environment becomes available, one cannot increase the accuracy of such
a code by simply adjusting N . Alternatively, the Carathéodory–Fejér method
can be used to find the poles and residues, as in Figure 4.1. This is a general
procedure for arbitrary N , but it is based on complex mathematical tools whose
execution on a computer requires fractions of a second, not fractions of a mil-
lisecond. For many applications, one might prefer to skip these complications
and just use a Talbot contour.

Still, a factor of two in efficiency is sometimes very attractive. In Figures 3.4
and 4.4 we have seen that in some applications this speedup is realized, and
there are undoubtedly many other such cases. For example, suppose one wants
to compute the gamma function Γ(t) for real or complex values of t by means of
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the Hankel integral

1

Γ(t)
=
1

2πi

∫
Γ

z−tez dz.(6.1)

(Of course, the contour Γ and the function Γ in this formula are different objects.)
As shown in [35], this approach is eminently practical, coming within a small
factor in efficiency of the best known methods for evaluating Γ(t). Both Talbot
contours and best approximations for (6.1) are effective, and the latter are twice
as efficient for a wide range of values of t. An excellent gamma function code
could be based on best approximations implemented with precomputed poles
and residues. The Carathéodory–Fejér approach is also effective in a context
where many values of t are to be treated at once.
On the other hand, the factor of two advantage of best approximations may
begin to be lost when the problem is perturbed. A conspicuous example of such
problems comes in any inverse Laplace transform (1.2) where one would like re-
sults for multiple values of t. For such situations, as was pointed out in Section 1,
a change of variables offers two mathematically equivalent integrals:

G(t) =
1

2πi

∫
Γ

estg(s) ds =
1

2πi

∫
Γ

ezg(z/t)t−1 dz,(6.2)

or in the special case ut = Au, as in (3.4),

u(t) =
1

2πi

∫
Γ

est(s−A)−1u(0) ds =
1

2πi

∫
Γ

ez(z/t−A)−1t−1u(0) dz.(6.3)

Now in each of (6.2) and (6.3), the integral on the right, containing just ez, is
the one to which the quadrature contours and best approximations analyzed in
this paper are tuned. The integral on the left with est, however, has the big
advantage that g(s) or (s−A)−1 is independent of t. This raises the possibility
that this quantity might be evaluated once and for all at a fixed set of quadra-
ture points sk, and the results combined with t-dependent coefficients to provide
results for various t. For the problem of Figures 3.4 and 4.4, for example, this
would offer the hope that whereas computing a result for the first value of t would
take many seconds expended in large matrix solves, each subsequent value could
be computed almost instantaneously by recombination of the same vectors with
new coefficients. Impressive algorithms that realize this vision, based on quadra-
tures explicitly adapted to ranges of t, have been developed by López-Fernández,
Palencia, and Schädle [18, 19].
Such methods appear to work better for Talbot contours than best approx-
imations: the latter lose accuracy more quickly as t is varied. Figure 6.1 illus-
trates this phenomenon. This experiment repeats that of Figures 3.4 and 4.4,
but now for a range of values of t, all with N = 12. (For speed, we also in-
crease ∆x and ∆y to 1/10, with negligible effect on the results. Here we use
a cotangent contour rather than a parabola, but this change has little effect.) In
each case we start with a formula tuned to solving the problem (3.4) at t = 1,
and adjust the quadrature coefficients as indicated in the first integral of (6.3)
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Figure 6.1: Comparison of errors in solution of the problem (3.4) for various t via
cotangent contours (dashed) and best approximations (solid) with N = 12. The best
approximation method is far more accurate for t = 1, but its advantage lessens for
other values of t.

for other values of t. The best approximation method gets 12-digit accuracy at
t = 1, but its accuracy diminishes rapidly as t is varied. The cotangent con-
tour gets only 7 digits, but that accuracy is maintained throughout the interval
[0.6, 1.2].

In summary, best approximations are more accurate than Talbot quadra-
tures, but more fragile. We believe that this relationship is analogous to the
relationship between Gauss quadrature on [−1, 1] and the simpler method of
Clenshaw–Curtis quadrature, and will develop this analogy in a forthcoming
publication [45].
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mation of inhomogeneous parabolic equations, Numer. Math., 102 (2005), pp. 277–291.
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34. A. Schädle, M. López-Fernández, and C. Lubich, Fast and oblivious convolution quadra-
ture, SIAM J. Sci. Comput., 28 (2006), pp. 421–438.

35. T. Schmelzer and L. N. Trefethen, Computing the gamma function using contour integrals
and rational approximations, SIAM J. Numer. Anal., submitted.

36. A. Schönhage, Zur rationalen Approximierbarkeit von e−x über [0,∞), J. Approximation
Theory, 7 (1973), pp. 395–398.

37. D. Sheen, I. H. Sloan, and V. Thomée, A parallel method for time-discretization of
parabolic problems based on contour integral representation and quadrature, Math. Com-
put., 69 (2000), pp. 177–195.

38. D. Sheen, I. H. Sloan, and V. Thomée, A parallel method for time discretization of parabolic
equations based on Laplace transformation and quadrature, IMA J. Numer. Anal., 23
(2003), pp. 269–299.

39. R. B. Sidje, Expokit: A software package for computing matrix exponentials, ACM Trans.
Math. Softw., 24 (1998), pp. 130–156.

40. H. Stahl and V. Totik, General Orthogonal Polynomials, Cambridge University Press,
Cambridge, 1992.

41. A. Talbot, The accurate numerical inversion of Laplace transforms, J. Inst. Math. Appl.,
23 (1979), pp. 97–120.

42. N. M. Temme, Special Functions, Wiley, New York, 1996.

43. L. N. Trefethen, Chebyshev approximation on the unit disk, in Computational Aspects of
Complex Analysis, H. Werner et al., eds., pp. 309–323, D. Reidel Publishing, Dordrecht,
1983.

44. L. N. Trefethen, Matlab programs for CF approximation, in Approximation Theory V,
pp. 599–602, Academic Press, Boston, 1986.

45. L. N. Trefethen, Is Gauss quadrature better than Clenshaw-Curtis?, SIAM Rev., submit-
ted.

46. L. N. Trefethen and M. H. Gutknecht, The Carathéodory–Fejér method for real rational
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