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TALK AND SILENCE SEQUENCES IN INFORMAL CONVERSATIONS II

JOSEPH N. CAPPELLA

University of Wisconsin

Three models describing the structure of talk and silence sequences within and across

conversations presented in a previous report (Cappella, 1979) are tested. The Markov

model, describing talk and silence sequences within a conversation, is found to be a valid

representation on a dyad-by-dyad basis. The Independent Decision (ID) model shows

some predictive validity between conversations, although its' 'fit" within the conversa­

tion is less than the Markov model. The Incremental model in relaxing the consistency­

across-conversation assumption of the ID model finds differences due to switching of

partners in the probability of breaking or continuing mutual silences and in the probabil­

ity of continuing to hold the floor. The implication for deriving dyadic interaction

patterns from individual interaction styles are explored.

In an earlier report (Cappella, 1979), several

models of talk and silence sequences within and

between conversations were posited on the basis of

previous literature, especially the work of Jaffe and

Feldstein (1970). To recapitulate briefly, a two­

person conversation can be described in terms of the

four-state description (all combinations of talk and

silence for both persons) or in terms of the six-state

description (which keeps track of who is holding the

floor). In addition, the individuals in each dyad can

be characterized by four (or six) individual param­

eters describing the probability of talk given the

prior dyadic state. The individual parameters are

obined directly from the four- or six-state dyadic

transition matrices.

Four models, applicable to both the four- anq

six-state descriptions, were offered to account for

the within- and between-conversation sequences of

talk and silence. A simple first-order Markov Chain

model was presented to describe the within­

conversation sequences on a dyad-by-dyad basis.

The Independent Decision (10) model was posited

as the simplest representation of between­

conversation sequences with partner switching.

Joseph N. Cappella (Ph.D., Michigan State University, 1974) is

associate professor of communication arts at the University of

Wisconsin, Madison, Wisconsin 53706. This study accepted for

publication June 14, 1979.

This model is simple because of its strong assump­

tions: (1) persons are perfectly consistent in their

individual parameters across conversations and (2)

persons act independently of the actions of others.

The other two models treated, the Incremental and

Regulation models, are variants of the ID model

which relax the "consistency across conversa­

tions" assumption and the consistency and inde­

pendence assumptions, respectively.

The research reported here presents evidence on

the within-occasion Markov model and the

between-occasion Independent Decision and In­

cremental models. The Regulation model will be

evaluated in a subsequent report.

While the study reported here is hoped to be the

first in a program of research on talk and silence

sequences in informal conversations, it is in several

respects a replication Qf sequential analyses done by

Jaffe and Feldstein (1970, p. 30) and Feldstein,

Jaffe, and Cassotta (1966, 1967). I believe that

replication is important because

1. There are few laboratories capable of producing

the data which Jaffe and Feldstein have reported

from their own facilities.

2. Certain of their results have become controver­

sial (Hayes, Meltzer, & Wolf, 1970), so that

independent replication on a separate but struc­

turally similar facility is desirable.
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3. The beginnings of programmatic research which

will rely heavily on a specialized data acquisi­

tion facility (such as that used in this study)

should be based upon established results.

4. Replication is that which distinguishes scientific

knowledge from other forms of knowing.

PROCEDURES

Subjects, Task, and Design

In the summer of 1975, an initial study was un­

dertaken to replicate the work of Jaffe, Feldstein,

and their associates on the Markov and ID models

discussed previously. The study was modeled after

Jaffe and Feldstein's study (1970, p. 30), also dis­

cussed in Feldstein, Jaffe, and Cassotta (1966,

1967).

A volunteer sample of eight summer-school stu­

dents enrolled in an introductory group discussion

course was obtained. The subjects were told that

this was an experiment about how well people un­

derstood one another. The four males and four

females were given a lengthy questionnaire on

changing sex roles and sex role stereotypes upon

volunteering. The questionnaire was designed to

provoke thought about sex-role issues so that differ­

ences in topic familiarity might be reduced during

initial conversations with peers.The subjects were

permitted to take the questionnaire home with them

and fill it out at their leisure. Discussion of the

questions with peers and friends was encouraged.

The questionnaires were returned to the experi­

menter at their first meeting.

Subjects were randomly assigned to a same-sex

partner on their first occasion and asked to discuss

the issues raised on the questionnaire which they

had completed. Their task was simply to discuss the

issues fully and to aim to understand not only the

point of view of their interlocuters but also the

reasons why their partners held that view. Each

conversation lasted about 30 minutes. Subjects re­

turned for three such conversations at approxi­

mately one-week intervals. On the second occasion,

each person was randomly assigned to an opposite­

sex partner and given the same instructions and

task. On the third occasion, each person was ran­

domly assigned to another same-sex partner (but

different from the first) for the third conversation.

Ideally, each discussant would have had three

discussions with three different partners. However,

despite numerous rescheduling efforts, one subject

would not return for a second conversation. As a

result, a ninth volunteer was obtained to fill the

gaps. Overall there were 12 dyadic conversations

for nine subjects distributed across three occasions

(i.e., different partners). Due to the person who

dropped, one subject had only one partner, one had

four different partners, two had two different part­

ners, and the remainder had the required three dif­

ferent partners.

After the third discussion subjects were debriefed

but no postdiscussion questionnaires were distrib­

uted.

Data Acquisition

Subjects were seated in comfortable chairs in

face-to-face position approximately 1.2 m apart in a

small experimental room. Each person was fitted

with a vibration-conducting throat microphone

which was snug but permitted freedom of move­

ment. A small low table between the pair also held a

nondirectional microphone. Each microphone fed

into a separate channel of a four-track tape recorder

in an adjacent room where the three channels were

preserved. Throat microphones are necessary be­

cause ordinary microphones are not unidirectional

and will pick up talk in the channel of person A

when person B is speaking loudly. This "spillover"

problem addressed by Jaffe and Feldstein (1970,

Appendix A) is especially problematic when one is

concerned with the independent contributions to the

conversation of each person. Since the throat mi­

crophone responds to vibrations in the speaker's

vocal chords, the spillover problem is effectively

solved. However, the throat microphones do not

produce easily intelligible content reproductions,

and so it was necessary to record the content of the

conversation on a third channel.

Once the conversations are stored on audiotape,

they can be analyzed for the presence or absence of

sound. The electronic and computer hardware and

software systems necessary to carry out the trans­

formation of the audio recordings to a digital repre­

sentation of talk or silence are described in detail in
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Cappella and Streibel (in press). In brief, the proc­

ess includes four steps: (1) the audio signals are

amplified, rectified, and electronically smoothed,

(2) the smoothed signal is sampled at 50 millisecond

intervals, digitized, and stored on tape, (3) the

stored data is statistically smoothed, averaged over

six 50-millisecond samples to yield a 300-milli­

second sample, and converted to a I (for talk) and a

o (for silence) if the amplitude exceeds a certain

threshold, and (4) the data are stored as an inter­

leaved string of Os and Is for later analysis.

In the data set reported here, the conversations

lasted 25-30 minutes. The first 4-5 minutes in each

conversation were ignored to allow the subjects to

become comfortable in their new roles, and exactly

20 minutes of conversation were subjected to talk­

silence analysis. This produces four thousand

300-millisecond observations for each subject.

The strings of Os and Is can be analyzed by a

series of programs1 (Cappella & Streibel, in press),

but primarily ones which convert the 0-1 sequences

into the four-state and six-state representations and

from these to the four-state and six-state transition

matrices with each dyad being described by

4000-1=3999 transitions. The present data were

summarized into 10 two-minute transition matrices

for each dyad in both the four· state and the six-state

versions. These are the primary data forms neces­

sary for testing the models.

Reliability and Validity

Studies aimed at establishing the reliability and

validity of machine-coded talk and silence data, as

carried out in this study, are reported fully in Cap­

pella and Streibel (in press). Both reliability and

validity were quite high. Act-by-act machine relia­

bility showed 92 percent agreement between runs

on the same data and act-by-act amplitude correla­

tions of .987. Transition matrices were not different

from the composite in adjacent runs (X2 =6.01,

p> .90, df= 12). Overall automatic analysis of talk

and silence in conversation is highly reliable.

Furthermore, human coders showed 81 percent

agreement with machine coding of a six-minute

stretch of conversation, indicating similarity be­

tween machine judgments and naive judgments of

conversational talk and silence. Cappella and

Streibel (in press) also report similarity to previ­

ously reported data in the means and the distribu­

tional shapes of pauses, switching pauses, vocali­

zations, and simultaneous speech. They also report

data indicating that the typical 300-millisecond

sampling interval provides a stable unit for the anal­

ysis of conversational sequences.

RESULTS

In the results which follow, both the four-state

and six-state conclusions will be presented. First,

the within-occasion Markov model will be tested.

Second, the between-occasion ID model will be

tested. Third, a predictive version of the Incremen­

tal model will be presented and tested.

The Within-Occasion Markov Model

To determine if a set of data fits a Markov Chain,

a researcher has two choices: test each of the as­

sumptions and conclude that the predictions will

match observation, or presume that the assumptions

are met until predictions fail to match observations.

We will try both strategies. There are usually three

assumptions to be tested in a Markov Chain: statio­

narity, homogeneity, and order. The order assump­

tion is not tested here because two independent

laboratories using two different sampling rates

(.166 seconds and .300 seconds) have concluded

that talk-silence sequences exhibit statistically sig­

nificant but negligible second-order dependencies

(Jaffe & Feldstein, 1970, p. 74, note 7; Hayes,

Meltzer, & Wolf, 1970, p. 266). My own biases

toward simplicity suggest that the first-order model

be retained.

The stationarity assumption maintains that the 10

transition matrices within a conversation are all

equal to the expected matrix and, hence, to one

another. Using a X2 test for stationarity (Hewes, in

press), each of the 12 dyads were tested for nonsta­

tionarity in each of the 10 transition matrices. The

averaged results are presented in Table 1. Using an

a= .01 significance criterion, Table 1 shows that

only one of five time periods for the four-state and

none of the five time periods for the six-state are
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TABLE 1
Average Stationarity Values Across 12 Experiments as Computed by the Chi-Squared Statistic: Four- and

Six-State I>escriptions

Four State Six State

Time Units X2 Time Units X2(+)

1 & 2 21.4 1 & 2 27.7

3 & 4 24.9 3 & 4 28.5

5 & 6 18.6 5 & 6 23.7

7 & 8 25.1 7 & 8 30.4

9 & 10 28.7* 9 & 10 32.3

* Significant at p<.Ol, df-12.
+NoX2 va1ues significant at p <.01, df-6·5-12-18.
N.B. Any X2 value greater than 21.0 is significant at p< .05 for df-12i

any X value greater than 28.9 is significant at p< .05 for df-18.

significantly different from the composite transition

matrix. Similarly, the individual dyad data show II

of 60 (four-state) X2s and 13 of 60 (six-state) X2S
significantly different from the composite at

a= .01. Together, the average X2 and the individual

X2 values suggest that the within-occasion data is

stationary at the preassigned a= .01 level.

The choice ofconfidence level at a= .01 deserves

some discussion since if a were set at .05, four of

five values for the four-state and two of five values

for the six-state would be considered statistically

significant. The problem is this: with huge amounts

of data, small discrepancies between probabilities

in the observed and expected matrices are magnified

by the expected row frequency, which is usually

large. The numerator of the X2 stationarity statistic

is the square of an observed minus expected proba­

bility times the row frequency of the expected mat­

rix. Since the expected matrix for any dyad consists

of 400 observations, any row frequency could easily

be in the 50-100 range as a multiplying factor of the

discrepancy. Thus, what appear to the researcher's

eye as negligible discrepancies are greatly mag­

nified because of the large data base upon which the

statistics are calculated. The problem is further

compounded because the degrees of freedom for the

X2 test take into account only the number of inde­

pendent cells in the transition matrix, and not the

number ofobservations upon which they are based.

In order to compensate for the bias toward finding

statistical significance, a was set as small as possi­

ble, while still maintaining reasonably high power,

so that the probability of making a Type II error is

not prohibitively high. Table 2 summarizes some

calculations of power used in setting a= .01
(Cohen, 1977, chapter 7). As Table 2 shows, the

power available to pick up a moderate effect (.30)

across all levels of a is very good (at least .93) for

both the four- and six-state models. The power

drops precipitously as the assumed effect size is

made smaller. An effect size of .2 corresponds to a

deviation of 10 percent per cell ofthe observed from

the expected, using Cohen's formula (1977, p.

221), and an effect size of .3 corresponds to a 15

percent deviation. Setting a= .01 or even to .001

will produce high power to detect an average 15

percent deviation per cell or larger. In general, such

discrepancies are not present and stationarity is up­

held.

The results for homogeneity are more clear-cut.

Each of the 12 dyads is very different from the

composite transition matrix by the X2 test (Hewes,
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TABLE 2
Comparison Among Critical and Observed Chi-Squared Values and Power Estimates for Stationarity

Analyses: Four- and Six-State Descriptions

Four State Model

Observed Significant/ Assumed Effect+ Power*
Critical X 2

Cl. df Total Size (N=400)

32.9 .001 12 10!60 .20 .49

.30 .965

26.2 .01 12 11!60 .20 .54

.30 .97

21.0 .05 12 28!60 .20 .76

.30 .99

Six State Xodel

Observed Significant! Assumed Effect+ Power*
Critical X 2

Cl. df Total Size (N=400)

42.3 .001 18 7/60 .20 .37

.30 .93

34.8 .01 18 13!60 .20 .43

.30 .94

28.9 .05 18 22!60 .20 .68

.30 .99

*Power values at Cl. ... 001 are not listed in Cohen (1977) so linear extra-

polation was employed to estimate the power values at Cl. ... 001; similarly

df = 18 is not listed ~ u t df .. 16 and 20 provide endpoints for a linear

interpolation and Cohen quotes .30 as a "moderate" and .1 as a "small"

effect size.

in press) (p<.OOOl in all cases). The dyads cannot

be pooled but must be analyzed separately. A

slightly different set of homogeneity comparisons

was carried out for the four-state matrices. Within

occasion 1, the two male-male dyads were com­

pared and the two female-female dyads were com­

pared. Both comparisons were significantly differ-

ent from their expected matrices (X2 (df= 12)=

102.9 and 143.8,p<.OOOl). Similar results obtain

for the mixed-sex occasion (two dyads) and for the

same-sex occasion (three dyads). Thus, the hetero­

geneity among transition matrices gets no better

(i.e., more homogeneous) as occasion or sex of

partner is taken into account.
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A final bit of evidence that the talk-silence proc­

ess is basically Markovian is obtained from the

distributions of sequences of states. These distribu­

tions should be exponentially decreasing in shape

(Singer & Spilennan, 1974) so that the frequency of

shorter strings of states is very high and that of

longer strings is very low. Visual inspection indi­

cates that all distributions are exponentially de­

creasing (Cappella & Streibel, in press).

The strictest test for any process supposed to be

Markovian is its ability to predict. In testing the fit

of these data to a Markov chain within a conversa­

tion, the initial transition matrix based upon the first

two minutes of interaction, P(l ,k), was raised to the

10th power and that powered matrix compared to

the observed matrix; P(t+i,k)for each conversa-
i=O

tion separately. Discrepancies between observed

and predicted were calculated and average dis­

crepancies obtained only after individual predic­

tions were made. These discrepancies are reported

in Tables 3 and 4. Two types of discrepancies are

reported: the average algebraic and the average ab­

solute discrepancy for each cell. Each index has its

uses and drawbacks as a measure of the fit of ob­

served to predicted. The average algebraic discre­

pancy takes the sign of the difference between pre­

dicted and observed into account. If there are any

systematic discrepancies of over- or underpredic­

tion due to given rows or columns, the pattern of

signs would show this. There do not appear to be

such discrepancies in either the four- or six-state

data. The average algebraic discrepancy does, how­

ever, tend to understate the size of the discrepancy

in anyone cell on the average since the positive and

negative values tend to cancel one another. The

average absolute discrepancy ignores the sign of the

difference between predicted and observed and

takes any discrepancy into account. However, in

doing so, the average absolute discrepancy over­

states the size of the discrepancy in any cell. The

reason is that the transition matrix is constrained to

have row sums equal to one. Consequently, if some

cell in the predicted matrix is larger than the corre­

sponding cell in the observed matrix, then some

other cell in the same row of the predicted matrix

must be smaller than the corresponding cell in the

TABLE 3
Average Algebraic and Average Absolute

Discrepancies Between Markov Predicted and
Observed Matrices: Four-State Description

D i s c r e p ~ n c y ~ ~ t r i x

.1 2 3 4

1 -.005'" -.006 -.018 .042

.094"'''' .040 .055 .082

2 -.029 .000 -.014 .043

.093 .046 .062 .086

1 -.021 -.005 -.OlD .021

.089 .042 .062 .060

4 -.026 -.006 -.021 -.053

.094 .041 .053 .071

"'The first entry in each cell is the
average algebraic discrepancy.

"''''The second entry in each cell is the
average absolute discrepancy.

observed matrix. The absolute discrepancy counts

both discrepancies into its sum without any correc­

tion for this inherent upward bias in any row. A

more valid index of discrepancy on a cell-by-cell

basis is probably one which lies between the aver­

age algebraic and average absolute discrepancies.

Nevertheless, it seems clear from Tables 3 and 4

that the fit of the Markov-predicted matrices to the

observed matrices 20 minutes ahead in time is very

tight. In the four-state case, the largest absolute

discrepancy is .094 and in the six-state data it is

.102. The average cell in the four-state case has an

absolute discrepancy of .067 and in the six-state

case it has an absolute discrepancy of .051. Of

course, these averages are somewhat inflated.

Despite this obviously close fit in the transition

matrices, it is useful to obtain a statistical measure

of fit across time under Markov assumptions. Such
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TABLE 4
Average Algebraic and Average Absolute Discrepancies Between Markov Predicted and Observed Matrices:

Six-State Description

D i s c r e p a ~ c y Matrix

1

1. -.012*

.086**

2 -.016

.083

.1 -.006

.055

4 -.040

.057

1 -.035

.049

.§. -.041

.032

2

-.004

.068

-.021

.071

.005

.060

-.032

.049

-.028

.048

-.018

.066

.002

.030

.001

.031

.002

.019

-.005

.015

-.004

.014

-.002

.019

4

.004

.047

.004

.042

-.008

.042

.027

.060

.031

.061

.017

.053

.029

.067

.031

.065

.031

.083

.073

.096

.053

.102

.062

.096

6

-.004

.021

-.000

.017

-.003

.026

.000

.029

.000

.032

.010

.037

*The first entry in each cell is the average algebraic discrepancy.

**The second entry in each cell is the average absolute discrepancy.

a measure is obtained by calculating a X2 measure of

fit of predicted to observed data.2 The measure is

simply the squared discrepancies between predicted

and observed transition matrices at the 10th time

unit, divided by the predicted, weighted by the

expected row frequency, and summed across a1116

or 36 cells.

In the four-state case, six of 12X2 measures do

not reach statistical significance at a< .01 (df= 12).

In the six-state case, six of 12X2 measures do not

achieve significance at a<.01(dj=30). These

dyads are not the same in both cases. In both the

four-state and six-state cases, two dyads (dyads four

and 12 in both cases) have predicted matrices based

upon an initial matrix, which is grossly discrepant

from the composite (see note 2). They produce very

large X2 measures ofdiscrepancy from the predicted

transition matrix. If these two dyads are not consid­

ered, then the average X2 values are 22.61 in the

four-state and 51.06 in the six-state cases. The

former is not statistically significant at

a= .Ol(dj= 12), while the latter is borderline sig­

nificant at a= .01 (dj=30). Given the size of the

data set for anyone dyad, and given that we have not
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taken advantage of any of the tested assumptions

(see note 3), the overall fit of both the four- and

six-state descriptions to a Markov Chain must be

viewed as remarkable.

Interestingly, the X2 per degree of freedom for

the four- and six-state predictions across all 12

dyads is 3.77 and 2.36, respectively, showing a

slightly better, but not statistically significant

(F= 1.60, df= 12,30), fit for the six-state descrip­

tion.

Granting that the sequence of talk and silence is

stationary and Markovian within a conversation,

does this consistency in individual parameters in the

conversation extend across conversations with dif­

ferent partners?

The Independent Decision Model

The ID model tests this assumption by using the

composite individual parameters, PI*(T,k,A) and

PI*(T,k,B), from one conversation to predict the

composite dyadic transition matrix for a conversa­

tion which has not yet occurred. In the present

study, individual composite parameters from the

first conversation were used to predict dyadic trans­

ition matrices in the second and third conversations

and, similarly, for predicting from the second to the

third conversations. Backward predictions are

compatible with the assumptions of the Independent

Decision model, but none were undertaken. Twelve

conversations were predicted in this way. When two

different predictions of the same conversation were

available from independent data sets (as, for exam­

ple, in predicting the third conversation), both sets

were included. Discrepancies between predicted

and observed data are presented in Tables 5 and 6

for four- and six-state matrices.

As with the within-occasion predictions, both the

average algebraic and average absolute discrepan­

cies are provided. The largest absolute discrepan­

cies are .118 in the four-state case and .128 in the

six-state case. The average absolute discrepancy per

cell is .062 in the four-state case and .065 in the

six-state case. These figures are about the same or a

little worse than the within-occasion discrepancies.

However, one must be struck by the degree of fit

between occasions since what is being predicted is

TABLE 5
Average Algebraic and Average Absolute

Discrepancies Between Observed and
"Between-Conversation" Predicted Matrices:

Four-State ID Model

Discrep~ncy Matrix

.1 2 1 4

.1 .026* .013 -.OS7 .018

.103** .014 .084 .046

1 .016 -.018 .014 -.012

.053 .072 .067 .060

1 .oos .011 -.014 -.003

.118 .030 .101 .010

2- .100 -.019 -.011 -.072

.106 .027 .013 .092

*The first entry in each cell is the
average algebraic discrepancy.

**The second entry in each cell is the
average absolute discrepancy.

the composite structure of a nonexistent conversa­

tion from individual components derived from other

conversations at least one week prior and with a

different partner.

A more sensitive test permitting a more direct

comparison between the within- and between­

occasion models can be achieved as follows:

1. Since the within-occasion process is stationary,

a prediction of the composite matrix from the

Independent Decision model is also a legitimate

prediction of the initial transition matrixP ID( l,k)

where the subscript "ID" indicates that the ma­

trix has been predicted by the ID model.

2. This matrix raised to the 10th power can be the

predicted matrix for a X2 test of fit to the ob­

served within-conversation transition matrix.

3. X2 values calculated between the predicted mat-
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TABLE 6
Average Algebraic and Average Absolute Discrepancies Between Observed and "Between-Conversation"

Predicted Matrices: Six-State ID Model

2

Discrepancy Matrix

3 4 5 6

1. .036'"

.110"''''

2 .014

.114

1. .024

.059

-.040

.078

-.007

.087

.023

.'086

.006

.011

.000

.028

-.048

.054

0+

o

o

o

o

o

-.002

.030

-.006

.012

.001

.051

o

o

o

o

o

o

4

6

o

o

o

o

o

o

-.055

.078

-.007

.012

.035

.067

o

o

o

o

o

o

.016

.093

.137

.128

.034

.066

.031

.058

-.111

.113

.022

.071

.008

.011

-.019

.029

-.046

.105

*The first entry in each cell is ~ h e average algebraic discrepancy.

"'*The second entry i'n each cell is the average absolute discrepancy.

+The single digit zeroes are zero by definition of the appropriate

transitions.

rix from the Independent Decision model and the

observed transition matrices can be compared to

the X2S obtained in the previous section from the

simple within-conversation Markov predictions.

4. If there is no difference, then there is reason to

believe that there is between-occasion consis­

tency.

We find that the average X2S across the 12 pre­

dicted conversations derived from the Independent

Decision model to be 174.2 (l4.5=X2/dj) for the

four-state case and 249.4 (8.31 =xz/dj) for the six­

state case. These values are much greater than the

average XZ values of 67.5 (5.62=xz/dj) and 74.89

(2.50=xz/dj) obtained with the within-occasion,

four- and six-state Markov predictions.3 The differ­

ences are, in fact, statistically significant in the

six-state case (F=3.32, df=30,30, p<.Ol) and

close to significance in the four-state case (F=2.58,

df=12,12,p<.07). It is clear that using the Inde-
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pendent Decision model to predict the initial transi­

tion matrix for powering under the Markov as­

sumption is predictively less adequate than using

the initial observed transition matrix for powering.

The implication follows that individuals are more

consistent within a conversation than across conver­

sations with a different partner. The questions to be

raised next are: Can we detennine what types of

factors the inconsistency across conversations is

due to? Can we establish which, if any, of the 6

six-state and 4 four-state parameters are most re­

sponsible for the observed across-conversation in­

consistency?

The Incremental Model: A Predictive Version

The previous results establish two important con­

clusions for the Incremental model. First, the find­

ing of stationarity within a conversation suggests

that the individual parameters are stable within that

conversation. Second, the finding that the predic­

tions of the Independent Decision model across

conversations are less accurate than the within­

conversation Markov model implies that differ­

ences in the individual parameters between conver­

sations ought to be investigated. This investigation

may be described as follows: variation in individual

parameters occurs both between and within conver­

sations, although the within-conversation variabil­

ity should not be appreciable, as the stationarity

finding shows. According to the Incremental

model, this variation may be due to individual pre­

dispositions, fixed partner influences (occasion

differences), or sequential or practice effects as the

experiment progresses. The purpose is to account

for as much variation as possible in each of the 10

individual parameters (6 six-state and 4 four-state) ,4

with dummy variable surrogates for individual dif­

ferences, partner or occasion effects, and sequence

or practice effects. The results are presented first for

a person-by-person analysis across time and second

for a pooled data set of persons and time. For con­

venience, the 6 six-state parameters will be labeled

SIX-I, SIX-2, etc. and the four-state parameters as

FOUR-I, FOUR-2, etc. (see note 4).

Individual-level results. These analyses seek to ac­

count for variation in each individual's parameters

(i.e., SIX-I, SIX-2, ... FOUR-2) as a function of

dummy variables representing the occasion of each

conversation,S an integer variable for time within

each conversation and their interactions. These in­

dependent variables will uncover all linear and non­

linear differences in the dependent variables across

conversations and any linear trends in the parame­

ters within a conversation.

Consider first the linear effects of time and time­

by-occasion interactions. When all the independent

predictors remained in the equations, only nine of

184 possible tests were significant at a= .05. Using

a stepwise procedure with forward selection and an

a= .05 inclusion criterion, only 12 of 184 possible

time and time-by-occasion effects remained in the

final regressions. As expected, there are essentially

no linear effects of time on any of the eight individ­

ual parameters. On the other hand, several of the

between-occasion contrasts were significantly dif­

ferent in both analyses, with SIX-2 exhibiting the

strongest shifting from conversation to conversa­

tion.

A second and more careful analysis of the

between-occasion effects alone was undertaken.

Since we are perfonning regression analyses on

time-series probability data, it is wise to check the

data for violations of the homogeneity of variance

and serial correlation assumptions. The previous

results about time effects are not invalid since the

usual impact of heterogeneous variance and serial

correlation is to produce excessively liberal rather

than conservative hypothesis tests (Kmenta, 1971,

p. 256, 282).

The eight dependent variables were first checked

for serial correlation using the Durbin-Watson test

(Kmenta, 1971, p. 294). Only three of 64 (eight

dependent variables x eight persons) tests were

significant at a< .05 (two-tailed test; df= 1,20 or

2,30 or 3,40 depending on whether the subject had

two, three, or four conversations), 11 were incon­

clusive, and 58 were not significant. Clearly, each

person is free of serial correlation on each depen­

dent variable.

The variance in each dependent variable for each

person across conversations did show considerable

heterogeneity by a maximum likelihood test

(Kmenta, 1971, p. 268), with 25 of 64 (the subject
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TABLE 7
Significance of Partner Switching on Each of Eight Probabilities for Each Subject: Four- and Six-State

Descriptions

Dependent Variable
(Individual Probability Parameters)

SIX-l SIX-2 SIX-3 5IX-4 SIX-5 SIX-6 FOUR-l FOUR-2

Subj 1 .55 .85 .17 .51 .42 .21 .61 .26

df-3,36 (.0000) (.0000) (N.S. ) (.0000) ( .0002) ( .036) (.0000) (.011)

Subj 2 .29 .58 .04 .35 .05 .41 .41 .33

df-2,27 ( .009) (.0000) (N. 5.) (.003) (N.5. ) (.001) (.001) ( .004)

5ubj 3 .12 .27 .06 .28 .01 .01 .11 .02

df"Z,Z7 (N. S.) (.013) (N.5.) (.010) (N.5. ) (N.5. ) (N. S.) (N.5. )

5ubj 4 .03 .32 .21 .18 .09 .02 .16 .13

df-2,Z7 (N. 5.) ( .006) (.041) (N.5. ) (N.5. ) (N.5) (N.5. ) (N. 5.)

5ubj 5 .05 .66 .28 .33 .37 .21 .31 .27

df-2,27 (N. 5.) (.0000) (.OlZ) (.004) (.OOZ) (.04) (.006) (.01)

Subj 6 .26 .06 .18 .33 .16 .05 .32 .18

df-2,Z7 (.018) (N. 5.) (N.5) (.004) (N.5.) (N. 5.) ( .006) (N.5. )

5ubj 7 .05 .35 .00 .01 .01 .09 .01 .08

df-l,18 (N. 5.) (.006) (N.5. ) (N. S.) (N.5. ) (N. 5.) (N.5. ) (N.5. )

5ubj 8 .01 .62 .04 .00 .10 .03 .01 .00
df-l,18 (N.5. ) (.0000) (N.5.) (N. S.) (N.S) (N. S.) (N.5. ) (N.5.)

Ave. R
2

.169 .465 .122 .Z51 .151 .128 .241 .160

ilOverall

Significant/ 3/8 7/8 2/8 5/8 2/8 3/8 4/8 3/8

Total

with one conversation could not be tested) compari- so severe as to seriously bias the reported signifi-

sons significant at a< .05. The ratios of the largest cance tests (Boneau, 1971; Cochran, 1971). The

to the smallest variances were in many cases too regressions reported hereafter have all dependent

large to simply be ignored. A number of transfor- variables transformed by the ARCSIN-square root

mations normally applied to heterogeneous proba- transformation above.

bility data were tried (Krumbein, 1957; Bartlett, The between-occasion differences are com-

1971; Winer, 1962, pp. 400-01), and the ARCSIN pletely confounded with changing partner since no

V Pl*± .05 was found to reduce the number of person interacts with the same partner on sub-

significant heterogeneous variances from 25 to 10 sequent occasions. Table 7 summarizes the occa-

and, more importantly, to reduce the ratios of sion (or partner) effects foe each subject and each

largest to smallest variances to tolerable limits. dependent variable. Overall, the greatest effect on

While some heterogeneity remains, it should not be individual parameters due to partner (or occasion)
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TABLE 8
Effects of Person, Partner, Occasion, and Person-By-Occasion Interaction on Each of Eight Probabilities

Pooled Across Time and Subject: Four- and Six-State Descriptions

Overall I g n o r i ~ g R
2

Increments

R2 Person Partner Occasion Person x Occasion due to Insignificant Incre-

Variable (df-34.205) (df-8.231) (df-8.223) (df-l,222) (df-17,205) ments then R2

SIX-l 41. 7% 23.9% 14.0% 0% 3.6% 38.17.

( .0000) ( .0000) ( .0000) N.S. N.S.

SIX-2 63.2% 17.8% 36.6% 0% 8.4% 63.2%

( .0000) ( .0(00) ( .0000) N.S. ( .0004)

SIX-3 18.5% 6.9% 8.9% 0% 2.7% 15.8%

N.S. ( .033) (. 004) N.S. N.S.

SIX-4 35.8% 13.7% 15.6% IX 5.6% 30.2%

( .0000) ( .0000) ( .0000) N.S. N.S.

SIX-5 23.6% 9.8% 5.8% 2% 5.9% 17. 7%
(.0047) ( .002) N.S. •019 N.S •

SIX-6 21.2% 10.4% 7.3% 0% 3.4% 17.8%

( .022) ( .001) (. 014) N.S. tl.S.

FOUR-l 50.7% 24.0% 18.7% 6% 7.4% 43.3%

(.0000) ( .0000) ( .0000) N.S. .028

FOUR-2 33.8% 12.9% 13.6% 0% 7.3% 26.5%

(,0000) ( .00(1) (,0000) N.S. N.S.

factors is found in SIX-2, SIX-4, and FOUR-I,

which exhibit the largest average variance ex­

plained and the largest ratio of overall significant

R 2s per subject. This pattern is strengthened when

one focuses upon the number of between-occasion

contrasts which are statistically significant at

a< .05 when the overall F for a particular equation

is significant. For SIX-2, 12 of 15 contrasts are

significant, for SIX-4, seven of 15 contrasts are

significant. The other dependent variables exhibit a

maximum of three of 15 contrasts significant.

The individual parameters most strongly affected

by partners then are SIX-2 (the probability that A

will talk given that A has the floor and is talking and

B is silent), SIX-4 (the probability that A will talk

given that B has the floor and is silent and A is

silent), and FOUR-I (the probability that A will talk

given that A and B are silent). However, since there

seem to be differences among persons in these ef­

fects and since partner and occasion are completed

confounded, it is desirable to pool the time-series

data across subjects to determine (1) how much

variation in the eight individual parameters is due to

individual differences and (2) if there is a true in-

crement in probability due to partner effects rather

than occasions.

Cross-sectional plus time-series results. The data

for nine subjects was pooled in a cross-sectional

plus time-series data set (Simonton, 1977; Kmenta,

1971, chapter 12) with anN=240. Several different

patterns of dummy variables were regressed on each

of the eight dependent variables in a stepwise re­

gression procedure under several different assump­

tions about order of entry. Since there were no

appreciable differences among these alternatives,

only one is presented here.

Each of the eight individual parameters was re­

gressed on a set of eight person dummies, eight

partner dummies, three occasion dummies, and 24

person-by-occasion interaction dummies with the

four groups entered in the order listed. The results

are presented in Table 8. In seven of eight cases,

significant portions of the variance in individual

parameters are accounted for by the set of predic­

tors.

The occasion dummies account for none of the

variation. Even when the occasion dummies are

entered first in the stepwise hierarchy, they account
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for essentially zero variation. This result is as it

should be since positive increments from one con­

versation to the next are likely to be balanced by

decrements when one pools across subjects. Simi­

larly, the person-by-occasion interaction group

adds a statistically significant amount to the var­

iance only in the case of SIX-2 (F=2.76,

df= 17,200, p< .01) (Kerlinger & Pedhazur, 1973,

p.70). All other increments are not significant with

a> .05. The final column in Table 8 presents the

overall R 2 values with the statistically nonsignifi­

cant contributions deleted.

As in the individual regressions, SIX-2, SIX-4,

and FOUR-l show the greatest variance explained.

In this case, the variance is attributable to the pres­

ence of particular partners separate from occasion

and to individual differences among speakers.

Contrary to the individual analyses, SIX-l and

FOUR-2 show that appreciable amounts of their

variance can be attributed to partners and subjects.

Only SIX-3, SIX-5, and SIX-6 have relatively pal­

try amounts of their variance explained by the 16

independent predictors (about one percent of the

variance per predictor).

It is interesting to note that, among the five vari­

ables which have large portions of variance ac­

counted for, only SIX-2 has the largest share of this

variance attributable to nonperson variables (de­

spite not being entered first). The others have about

one-half or more of their explained variance ac­

counted for by individual differences.

Summary. The individual and pooled results from

the Incremental model pennit some general and

some particular conclusions. Generally, the indi­

vidual paramt:ters show no linear trends in conver­

sations but do show shifts from conversation to

conversation, especially in the probability of

breaking mutual silences (SIX-I, SIX-4, and

FOUR-I) and in the probability of continued talking

(SIX-2, which is identical with FOUR-3). On the

other hand, the probability of breaking or continu­

ing simultaneous talk (SIX-3, SIX-6, and FOUR-2)

and the probability of talking when the other has the

floor (SIX-5, which is identical to FOUR-4) show

consistencies across conversations.

More particularly, the above inconsistencies

seem to be due to the effects of changing partners

rather than merely changing conversations. When

there are differences in individual parameters due to

changing partners, there is also considerable indi­

vidual difference in the amount of such change.

However, only SIX-2 exhibits a significant interac­

tion between person and partner effects, implying

that it is something about the dyad, in addition to the

partner and the person, which has effected a change.

CONCLUSIONS

Let us review what we have found in representing

the sequence of talk and silence and interpret these

findings in light of the research reviewed earlier.

Within-Conversation Sequences

A first-order Markov Chain model was proposed

to account for within-conversation talk and silence

sequences for each dyad. This model was shown to

fit observed talk and silence sequences. Substan­

tively, fit requires that the transition matrices are

stationary, which in turn implies that the dyad's

probabilities of changing states are consistent over

the conversation. In addition, since the individual

parameters are obtained from the dyadic transition

probabilities (Equations 4-9 in Cappella, 1979),

then dyadic consistency implies individual consis­

tency within the conversation.

The literature on individual talk and silence con­

sistency reviewed in the earlier report leads to the

expectation of individual consistency in the present

data. However, the present data are an even stronger

claim to individual consistency since they show

consistency across two-minute intervals in conver­

sation, whereas previous data showed consistency

between segments of conversation which were

aggregated to create stable mean response levels.

While it is difficult to explain how the above

regularity arises, the most likely alternatives are

biological or cognitive (Jaffe, 1977) and personality

(Lustig, 1977; McCroskey, 1977). Whatever the

reason, this strong consistency is an important

structural baseline for conversations, but not one

which is unmodifiable.
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Pt*(T,k,+l,A) = pt*(T,k,A) + lf3uOj + lAUPj (1)

p2*(T,k+,A) = p2*(T,k,A) + lf32Pj (2)

+ lAo2!'l + l82J(OjxP j )

(5)

(6)P8*(T ,k+ l,A) = P8*(T ,k,A) + lA8!' j

p~*(T,k+ I ,A) = p~*(T,k,A) + lA~!,j

where the (3s, AS, 8s are regression weights, the OJ

are exogenous partner variables, and the PJ are

person differences. These equations make SIX-3,

SIX-5, and SIX-6 consistent across partners, as the

data requires, while permitting individual differ­

ences. SIX-I, SIX·4, and SIX-2 incorporate partner

effects as well as individual differences, while only

SIX·2 involves an interaction between person and

partner effects.

In retrospect, one should have expected the indi­

vidual probabilities SIX-I, SIX-2, and SIX·4 to

exhibit the greatest between-conversation differ­

ences since these probabilities primarily account for

pauses, switching pauses, and vocalization length.

from partner to partner) despite partner switches.

These are the probabilities of breaking or continuing

simultaneous speech (SIX-3 and SIX-6) and the

probability of talking when the other is and has the

floor (SIX-5). On the other hand, SIX·I, SIX·4,

and SIX-2 do "increment" or change as partners

change.The probabilities of continuing or breaking

mutual silences (SIX-I and SIX-4) show individual

differences as well as partner effects, but no in­

teractions between partner and person factors. The

probability of continuing the floor, given that you

have it and the other is silent (SIX-2), shows indi­

vidual differences, strong partner influences, and

interaction between person and partner effects.

Together the above results suggest that the

consistency-across-partners assumption (that is,

PI*(T ,k,A) =PI*(T ,k+ I ,A) for all k and i) should

be replaced by the following tentative predictive

equations:

Between-Conversation Sequences

The attempt to account for conversational sequ­

ences as persons switch partners is really nothing

more than the question of how to get dyads from

individuals. I take this question to be a fundamental

question in any theory of two-person interaction. It

is a simple matter to characterize individual or

dyadic interaction alone, but it is no small matter to

describe how dyadic interaction processes derive

from the styles of the individuals who make up the

dyad.

Following the lead of Jaffe and Feldstein (1970),

three answers are given to this question in the form

of the Independent Decision, Incremental, and

Regulation models. The ID model boldly states that

dyadic transitions are derived from individual prob­

abilities by assuming (1) that individuals are per­

fectly consistent across partners and (2) that they act

independently of one another in choosing to talk or

be silent.

Despite its assumptions, which are contrary not

only to the available evidence but also to common

sense, the ID model shows some predictive utility.

Predictions from one conversation to a future one

show an average absolute discrepancy of about .06

per cell in the transition probability matrix. While

its predictive utility is not as strong as the within­

occasion Markov model, one must be impressed

with the ability of relatively weak and simplistic

assumptions to predict the structure of a nonexistent

dyad from individuals' previous behavior.

The ID model provides a baseline set of predic­

tions for generating dyads from individuals which

must be exceeded by subsequent models of greater

complexity. If the Incremental and Regulation

models cannot improve the predictions of the ID

model, then they must fall under the force of Oc­

cam's razor, despite their more realistic assump­

tions.

The Incremental model tested here relaxes the

consistency-across-partners assumption which pre­

vious literature on talk and silence would lead one to

label as suspect. On the one hand, the Incremental

model finds certain individual parameters to be re­

latively consistent (i.e., not systematically different
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The research reviewed in the earlier report showed

these aspects of conversation to be susceptible to

modification through factors like perceived partner

wannth, anxiety, ambiguity, and cognitive load, as

well as influence from the partners' own levels of

response on these behaviors. The results of the

Incremental model show by an indirect route that

the probabilities most responsible for pause,

switching pause, and vocalization duration are

subject to the influences expected.

Future Directions

The next step in describing across-conversation

sequences is to test the independence assumption of

the ID model by testing for the mutual influence

posited by the Regulation model. If the Regulation

model is strongly upheld, then the ill model and the

within-conversation Markov model would be

opened to serious question. What is more likely is

that the mutual influence between partners, if any,

will be small, helping to account for residual varia­

tion within and between conversations.

Secondly, substantive predictor variables must

be incorporated in Equations 1-6 above. Candidates

for inclusion have been suggested in the previous

literature review. Without this step, one cannot test

the predictive adequacy of the Incremental model

relative to the ID model. Dummy variable surro­

gates provide useful guides to which types of pre­

dictors are necessary, but the predictors themselves

are required if comparisons are to be made. Re­

search underway in our laboratory is focusing on

personality variables such as dominance, affilia­

tion, and self-monitoring and interpersonal factors

such as attraction, previous task satisfaction, and

perception of the other's personality.

Finally, the models presented and tested in these

papers are actually quite general. They are appro­

priate to any two-person interaction system with

categorical states. More importantly, they suggest

alternative procedures through which dyadic in­

teraction structure might be derived from individual

behaviors. Until our research can answer this ques­

tion, studies of interaction process must continue to

make the unnatural choice between studying indi­

vidual behaviors or studying dyadic (or group) be­

haviors.

NOTES

The author wishes to thank Joseph Folger, Daniel

Fogel, and Michael Streibel for their assistance in data

analysis and gathering, Sally Planalp for reading and

critiquing a version of the manuscript, and Dean Hewes

for invaluable statistical consultation. Unfortunately, I

cannot blame them for the final product. The research was

made possible through a grant of the Graduate Research

Committee of the University of Wisconsin-Madison.

1. The types of data reduction and summarization are

described in Cappella and Streibel (in press). The

programs are available from the author.

2. There is a significant difference between "true pre­

diction" and "ordinary prediction" in Markov anal­

ysis. When the observed initial transition matrix is

raised to the nth power and compared to the observed,

then whatever statistical fluctuations exist in the data

are carried through the predictions. Consequently, fit

is less good. The alternative is to test the assumptions

and, finding that they are satisfied, use the composite

matrix as the best estimate of the initial transition

matrix. When the composite is so used, fluctuations in

the data are smoothed, fit is better, but true prediction

is lost. While we have tested the assumptions, we have

also opted for true prediction, which is the more con­

servative predictive test. I am indebted to Dean Hewes

for pointing out the above distinction.

3. Note that all conversations were predicted using the ID

model. Only dyads 5,6,7,9,10,11, and 12 could be so

predicted, since backward predictions were disal­

lowed. The X2 values reported in this section for the

within-conversation Markov predictions are obtained

only from the above dyads.

4. Actually there are only 8 independent parameters,

sincep3* andp5* for the four-state description andp2*

and P5* for the six-state description are identical by

definition. The data presented will list the 6 six-state

and first 2 four-state parameters as dependent vari­

ables.

5. The dummy scheme identified the first occasion for

each person as the comparison. All contrasts then are

contrasts from later conversations to the first conver­

sation. Which coding of independent variables one

uses is irrelevant when the focus is primarily on ex­

plained variance.
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