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Abstract

The role of robots in society keeps expanding, bringing with it the necessity of interacting and communicating with humans.

In order to keep such interaction intuitive, we provide automatic wayfinding based on verbal navigational instructions. Our

first contribution is the creation of a large-scale dataset with verbal navigation instructions. To this end, we have developed an

interactive visual navigation environment based on Google Street View; we further design an annotation method to highlight

mined anchor landmarks and local directions between them in order to help annotators formulate typical, human references to

those. The annotation task was crowdsourced on the AMT platform, to construct a new Talk2Nav dataset with 10, 714 routes.

Our second contribution is a new learning method. Inspired by spatial cognition research on the mental conceptualization

of navigational instructions, we introduce a soft dual attention mechanism defined over the segmented language instructions

to jointly extract two partial instructions—one for matching the next upcoming visual landmark and the other for matching

the local directions to the next landmark. On the similar lines, we also introduce spatial memory scheme to encode the local

directional transitions. Our work takes advantage of the advance in two lines of research: mental formalization of verbal

navigational instructions and training neural network agents for automatic way finding. Extensive experiments show that our

method significantly outperforms previous navigation methods. For demo video, dataset and code, please refer to our project

page.

Keywords Vision-and-language navigation · Long-range navigation · Spatial memory · Dual attention

1 Introduction

Consider that you are traveling as a tourist in a new city and

are looking for a destination that you would like to visit. You

ask the locals and get a directional description “go ahead

for about 200 m until you hit a small intersection, then turn

left and continue along the street before you see a yellow

building on your right”. People give indications that are not

purely directional, let alone metric. They mix in referrals

to landmarks that you will find along your route. This may

seem like a trivial ability, as humans do this routinely. Yet,
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this is a complex cognitive task that relies on the develop-

ment of an internal, spatial representation that includes visual

landmarks (e.g. “the yellow building”) and possible, local

directions (e.g. “going forward for about 200 m”). Such rep-

resentation can support a continuous self-localization as well

as conveying a sense of direction towards the goal.

Just as a human can navigate in an environment when

provided with navigational instructions, our aim is to teach

an agent to perform the same task to make the human-robot

interaction more intuitive. The problem is tackled recently as

a Vision-and-Language Navigation (VLN) problem (Ander-

son et al. 2018). Although important progress has been made,

e.g. in constructing good datasets (Anderson et al. 2018;

Chen et al. 2019) and proposing effective learning methods

(Anderson et al. 2018; Fried et al. 2018; Wang et al. 2018;

Ma et al. 2019), this stream of work mainly focuses on syn-

thetic worlds (Hermann et al. 2017; Das et al. 2018; Chen and

Mooney 2011) or indoor room-to-room navigation (Ander-

son et al. 2018; Fried et al. 2018; Wang et al. 2018). Synthetic

environments limit the complexity of the visual scenes while
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(a) (b)

Fig. 1 a An illustration of an agent finding its way from a source point
to a destination. b Status of the agent at the current location includ-
ing the segmented navigational instructions with red indicating visual
landmark descriptions and blue the local directional instructions, and
the agent’s panoramic view and a pie chart depicting the action space.

The bold text represents currently attended description. The predicted
action at the current location is highlighted. The landmark that the agent
is looking for at the moment is indicated by a yellow box (Color figure
online)

the room-to-room navigation comes with the kind of chal-

lenges different from those of outdoors.

The first challenge to learning a long-range wayfinding

model lies in the creation of large-scale datasets. In order

to be fully effective, the annotators providing the naviga-

tion instructions ought to know the environment like locals

would. Training annotators to reach the same level of under-

standing for a large number of unknown environments is

inefficient—to create one verbal navigation instruction, an

annotator needs to search through hundreds of street-view

images, remember their spatial arrangement, and summarize

them into a sequence of route instructions. This straightfor-

ward annotation approach would be very time-consuming

and error-prone. Because of this challenge, the state-of-the-

art work uses synthetic directional instructions (Hermann

et al. 2019) or works mostly on indoor room-to-room naviga-

tion. For indoor room-to-room navigation, this challenge is

less severe, due to two reasons: (1) the paths in indoor navi-

gation are shorter; and (2) indoor environments have a higher

density of familiar ‘landmarks’. This makes self-localization,

route remembering and describing easier.

To our knowledge, there is only one other work by Chen

et al. (2019) on natural language based outdoor navigation,

which also proposes an outdoor VLN dataset. Although they

have designed a great method for data annotation through

gaming—to find a hidden object at the goal position, the

method has difficulty to be applied to longer routes (see

discussion in Sect. 3.2.2). Again, it is very hard for the anno-

tators to remember, summarize and describe long routes in

an unknown environment.

To address this challenge, we draw on the studies in cog-

nition and psychology on human visual navigation which

state the significance of using visual landmarks in route

descriptions (Hölscher et al. 2011; Ishikawa and Nakamura

2012; Tom and Denis 2004). It has been found that route

descriptions consist of descriptions for visual landmarks

and local directional instructions between consecutive land-

marks (Millonig and Schechtner 2007; Michon and Denis

2001). Similar techniques—a combination of visual land-

marks, as rendered icons, and highlighted routes between

consecutive landmarks—are constantly used for making effi-

cient maps (Tversky and Lee 1999; Weissenberg et al. 2014;

Grabler et al. 2008). We divide the task of generating the

description for a whole route into a number of sub-tasks

consist of generating descriptions for visual landmarks and

generating local directional instructions between consecutive

landmarks. This way, the annotation tasks become simpler.

We develop an interactive visual navigation environment

based on Google Street View, and more importantly design

a novel annotation method which highlights selected land-

marks and the spatial transitions in between. This enhanced

annotation method makes it feasible to crowdsource this

complicated annotation task. By hosting the tasks on the

Amazon Mechanical Turk (AMT) platform, this work has

constructed a new dataset Talk2Nav with 10, 714 long-range

routes within New York City (NYC).

The second challenge lies in training a long-range wayfind-

ing agent. This learning task requires accurate visual atten-

tion and language attention, accurate self-localization and

a good sense of direction towards the goal. Inspired by the

research on mental conceptualization of navigational instruc-

tions in spatial cognition (Tversky and Lee 1999; Michon and

Denis 2001; Klippel and Winter 2005), we introduce a soft

attention mechanism defined over the segmented language

instructions to jointly extract two partial instructions—one

for matching the next coming visual landmark and the other

for matching the spatial transition to the next landmark. Fur-

thermore, the spatial transitions of the agent are encoded by

an explicit memory framework which can be read from and

written to as the agent navigates. One example of the outdoor
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VLN task can be found in Fig. 1. Our work connects two lines

of research that have been less explored together so far: men-

tal formalization of verbal navigational instructions (Tversky

and Lee 1999; Michon and Denis 2001; Klippel and Win-

ter 2005) and training neural network agent for automatic

wayfinding (Anderson et al. 2018; Hermann et al. 2019).

Extensive experiments show that our method outperforms

previous methods by a large margin. We also show the contri-

butions of the sub-components of our method, accompanied

with their detailed ablation studies. The collected dataset will

be made publicly available.

2 RelatedWorks

Vision & Language. Research at the intersection of language

and vision has been conducted extensively in the last few

years. The main topics include image captioning (Karpathy

and Fei-Fei 2015; Xu et al. 2015), visual question answering

(VQA) (Agrawal et al. 2017; Andreas et al. 2016), object

referring expressions (Deruyttere et al. 2019; Anne Hen-

dricks et al. 2017; Balajee Vasudevan et al. 2018; Vasudevan

et al. 2018), and grounded language learning (Hermann et al.

2017; Hill et al. 2017). Although the goals are different from

ours, some of the fundamental techniques are shared. For

example, it is a common practice to represent visual data

with CNNs pre-trained for image recognition and to repre-

sent textual data with word embeddings pre-trained on large

text corpora. The main difference is that the perceptual input

to the system is static while ours is active, i.e. the system’s

behavior changes the perceived input.

Vision Based Navigation. Navigation based on vision and

reinforcement learning (RL) has become a very interesting

research topic recently. The technique has proven quite suc-

cessful in simulated environments (Mirowski et al. 2017;

Zhu et al. 2017) and is being extended to more sophisticated

real environments (Mirowski et al. 2018). There has been

active research on navigation-related tasks, such as localizing

from only an image (Weyand et al. 2016), finding the direc-

tion to the closest McDonald’s, using Google Street View

Images (Khosla et al. 2014; Brahmbhatt and Hays 2017),

goal based visual navigation (Gupta et al. 2019) and oth-

ers. Gupta et al. (2019) uses a differentiable mapper which

writes into a latent spatial memory corresponding to an ego-

centric map of the environment and a differentiable planner

which uses this memory and the given goal to give naviga-

tional actions to navigate in novel environments. There are

few other recent works on vision based navigation (Thoma

et al. 2019; Wortsman et al. 2019). Thoma et al. (2019) formu-

lates compact map construction and accurate self localization

for image-based navigation by a careful selection of suitable

visual landmarks. Recently, Wortsman et al. (2019) proposes

a meta-reinforcement learning approach for visual naviga-

tion, where the agent learns to adapt in unseen environments

in a self-supervised manner. There is another stream of work

called end-to-end driving, aiming to learn vehicle navigation

directly from video inputs (Hecker et al. 2018, 2019).

Vision-and-Language Navigation. The task is to navigate

an agent in an environment to a particular destination based

on language instructions. The following are some recent

works in Vision-and-Language Navigation (VLN) (Ander-

son et al. 2018; Wang et al. 2018; Fried et al. 2018; Wang

et al. 2019; Nguyen et al. 2019; Ma et al. 2019; Ke et al.

2019) task. The general goal of these works are similar to

ours—to navigate from a starting point to a destination in a

visual environment with language directional descriptions.

Anderson et al. (2018) created the R2R dataset for indoor

room-to-room navigation and proposed a learning method

based on sequence-to-sequence neural networks. Subsequent

methods (Wang et al. 2018, 2019) apply reinforcement learn-

ing and cross modal matching techniques on the same dataset.

The same task was tackled by Fried et al. (2018) using

speaker-follower technique to generate synthetic instructions

for data augmentation and pragmatic inference. While shar-

ing similarity, our work differs significantly from them. The

environment domain is different; as discussed in Sect. 1,

long-range navigation raises more challenges both in data

annotation and model training. There are concurrent works

aiming at extending Vision-and-Language Navigation to city

environment (Hermann et al. 2019; Chen et al. 2019; Kim

et al. 2019). The difference to Hermann et al. (2019) lies in

that our method works with real navigational instructions,

instead of the synthetic ones summarized by Google Maps.

This difference leads to different tasks and in turn to differ-

ent solutions. Kim et al. (2019) proposes end-to-end driving

model that takes natural language advice to predict control

commands to navigate in city environment. Chen et al. (2019)

proposes outdoor VLN dataset similar to ours, where real

instructions are created from Google Street View1 images.

However, our method differs in the way that it decomposes

the navigational instructions to make the annotation easier. It

draws inspiration from spatial cognition field to specifically

promote annotators’ memory and thinking, making the task

less energy-consuming and less error-prone. More details can

be found in Sect. 3.

Attention for Language Modeling. Attention mechanism

has been used widely for language (Mansimov et al. 2015)

and visual modeling (Xu et al. 2015; Wang et al. 2017;

Anderson et al. 2018). Language attention mechanism has

been shown to produce state-of-the-art results in machine

translation (Bahdanau et al. 2014) and other natural lan-

guage processing tasks like VQA (Hudson et al. 2018; Yang

1 https://developers.google.com/streetview/.
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et al. 2016; Hu et al. 2018), image captioning (Aneja et al.

2018), grounding referential expressions (Hu et al. 2018,

2019) and others. Attention mechanism is one of the main

component for the top-performing algorithms such as Trans-

former (Vaswani et al. 2017) and BERT (Devlin et al. 2018)

in NLP tasks. The MAC by Hudson et al. (2018) has a control

unit which performs weighted average of the question words

based on a soft attention for VQA task. Hu et al. (2018) also

proposed a similar language attention mechanism but they

decomposed the reasoning into sub-tasks/modules and pre-

dicted modular weights from the input text. In our model, we

adapt the soft attention proposed by Kumar et al. (2018) by

applying the soft attention over segmented language instruc-

tions to put the attention over two different sub-instructions:

(a) for landmarks and (b) for local directions. The attention

mechanism is named dual attention.

Memory. There are generally two kinds of memory used

in the literature: (a) implicit memory and (b) explicit mem-

ory. Implicit memory learns to memorize knowledge in the

hidden state vectors via back-propagation of errors. Typical

examples include RNNs (Karpathy and Fei-Fei 2015) and

LSTMs (Donahue et al. 2015). Explicit memory, however,

features explicit read and write modules with an atten-

tion menchanism. Notable examples include Neural Turing

Machines (Graves et al. 2014) and Differentiable Neural

Computers (DNCs) (Graves et al. 2016). In our work, we

use external explicit memory in the form of a memory image

which can be read from and written to by its read and write

modules. Training a soft attention mechanism over language

segments coupled with an explicit memory scheme makes

our method more suitable for long-range navigation where

the reward signals are sparse.

3 Talk2Nav Dataset

The target is to navigate using the language descriptions in

real outdoor environment. Recently, a few datasets on lan-

guage based visual navigation task have been released both

for indoor (Anderson et al. 2018) and outdoor (Boularias et al.

2015; Chen et al. 2019) environments. Existing datasets typi-

cally annotate one overall language description for the entire

path/route. This poses challenges for annotating longer routes

as stated in Sect. 1. Furthermore, these annotations lack the

correspondence between language descriptions and sub-units

of a route. This in turn poses challenges in learning long-

range vision-and-language navigation (VLN). To address the

issue, this work proposes a new annotation method and uses

it to create a new dataset Talk2Nav.

Talk2Nav contains navigation routes at city levels. A nav-

igational city graph is created with nodes as locations in the

city and connecting edges as the road segments between the

Fig. 2 An illustrative route from a source node to a destination node
with all landmarks labelled along the route. In our case, the destina-
tion is landmark 4. Sub-routes are defined as the routes between two
consecutive landmarks

nodes, which is similar to Mirowski et al. (2018). A route

from a source node to a destination node is composed of

densely sampled atomic unit nodes. Each node contains (a) a

street-view panoramic image, (b) the GPS coordinates of that

location, (c) the bearing angles to connecting edges (roads).

Furthermore, we enrich the routes with intermediary visual

landmarks, language descriptions for these visual landmarks

and the local directional instructions for the sub-routes con-

necting the landmarks. An illustration of a route is shown in

Fig. 2.

3.1 Data Collection

To retrieve city route data, we used OpenStreetMap to obtain

the metadata information of locations and Google’s APIs for

maps and street-view images.

Path Generation. The path from a source to a destination

is sampled from a city graph. To that aim, we used Open-

StreetMap (OSM) which provides latitudes, longitudes and

bearing angles of all the locations (waypoints) within a pre-

defined region in the map. We use Overpass API to extract

all the locations from OSM, given a region. A city graph

is defined by taking the locations of the atomic units as

the nodes, and the directional connections between neigh-

bourhood locations as the edges. The K-means clustering

algorithm (k = 5) is applied to the GPS coordinates of all

nodes. We then randomly picked up two nodes from differ-

ent clusters to ensure that the source node and the destination

node are not too close. We then use opensourced OpenStreet

Routing Machine to extract a route plan from every source

node to the destination node, which are sampled from the set

of all compiled nodes. The A∗ search algorithm is then used

to generate a route by finding the shortest traversal path from

the source to the destination in the city graph.

Street View Images. Once the routes are generated using

OSM, we densely interpolated the latitudes and longitudes

of the locations along the routes to extract more road loca-

tions. We then use Google Street View APIs to get the closest

StreetView panorama and omit the locations which do not

have a streetview image. We collect the 360◦ street-view

images along with their heading angles by using Google
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Street View APIs and the metadata.2 The API allows for

downloading tiles of a street-view panoramic image which

are then stitched together to get the equirectangular pro-

jection image. We use the heading angle to re-render the

street-view panorama image such that the image is centre-

aligned to the heading directions of the route.

We use OSM and opensourced OSM related APIs for the

initial phase of extraction of road nodes and route plans.

However later, we move to Google Street View for min-

ing streetview images and their corresponding metadata.

We noted that it was not straightforward to mine the loca-

tions/road nodes from Google Street View.

3.2 Directional Instruction Annotation

The main challenge of data annotation for automatic language-

based wayfinding lies in the fact that the annotators need

to play the role of an instructor as the local people do to

tourists. This is especially challenging when the annotators

do not know the environment well. The number of street-view

images for a new environment is tremendous and searching

through them can be costly, not to mention remembering and

summarizing them to verbal directional instructions.

Inspired by the large body of work in cognitive science on

how people mentally conceptualize route information and

convey routes (Klippel et al. 2005; Michon and Denis 2001;

Tversky and Lee 1999), our annotation method is designed

to specifically promote memory or thinking of the annota-

tors. For the route directions, people usually refer to visual

landmarks (Hölscher et al. 2011; Michon and Denis 2001;

Tom and Denis 2003) along with a local directional instruc-

tion (Tversky and Lee 1999; Vogel and Jurafsky 2010).

Visualizing the route with highlighted salient landmarks and

local directional transitions compensates for limited famil-

iarity or understanding of the environment.

3.2.1 Landmark Mining

The ultimate goal of this work is to make human-to-robot

interaction more intuitive, thus the instructions need to be

similar to those used by daily human communication. Simple

methods of mining visual landmarks based on some CNN

features may lead to images which are hard for human to

distinguish and describe. Hence, this may lead to low-quality

or unnatural instructions.

We frame the landmark mining task as a summarization

problem using sub-modular optimization to create sum-

maries that takes into account multiple objectives. In this

work, three criteria are considered: (1) the selected images

are encouraged to spread out along the route to support con-

2 http://maps.google.com/cbk?output=xml&ll=40.735357,-73.
918551&dm=1.

tinuous localization and guidance; (2) images close to road

intersections and the approaching side of the intersections

are preferred for better guidance through the intersections;

and (3) images which are easy to be described, remembered

and identified are preferred for effective communication.

Given the set of all images I along a path P , the problem

is formulated as a subset selection problem that maximizes

a linear combination of the three submodular objectives:

L = argmaxL′⊆℘(I)

3
∑

i=1

wi fi (L
′, P), s.t .|L′| = l (1)

where ℘(I) is the powerset of I, L′ is the set of all possible

solutions for the size of l, wi are non-negative weights, and fi

are the sub-modular objective functions. More specifically,

f1 is the minimum travel distance between any of the two con-

secutive selected images along the route P; f2 = 1/(d + σ)

with d the distance to the closest approaching intersection and

σ is set to 15 m to avoid having an infinitely large value for

intersection nodes; f3 is a learned ranking function which sig-

nals the easiness of describing and remembering the selected

images. The weights wi in Eq. 1 are set empirically: w1 = 1,

w2 = 1 and w3 = 3. l is set to 3 in this work as we have

the source and the destination nodes fixed and we choose

three intermediate landmarks as shown in Fig. 2. Routes of

this length with 3 intermediate landmarks are already long

enough for the current navigation algorithms. The function

f3 is a learned ranking model, which is presented in the next

paragraph.

Ranking model. In order to train the ranking model for

images of being ‘visual landmarks’ that are easier to describe

and remember, we compile images from three cities: New

York City (NYC), San Francisco (SFO) and London cov-

ering different scenes such as high buildings, open fields,

downtown areas, etc. We select 20,000 pairs of images from

the compiled set. A pairwise comparison is performed over

20,000 pairs to choose one over the other for the preferred

landmark. We crowd-sourced the annotation with the fol-

lowing criteria: (a) Describability—how easy to describe it

by the annotator, (b) Memorability—how easy to remem-

ber it by the agent (e.g. a traveler such as a tourist),

and (c) Recognizability—how easy to recognize it by the

agent. Again, our ultimate goal is to make human-to-robot

interaction more intuitive, so these criteria are inspired by

how human select landmarks when formulating navigational

descriptions in our daily life.

We learn the ranking model with a Siamese network

(Chopra 2005) by following Gygli et al. (2016). The model

takes a pair of images and scores the selected image more

than the other one. We use the Huber rank loss as the cost

function. In the inference stage, the model ( f3 in Eq. 1) out-
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Describe the route description in a short sentence. E.g: Go straight for 50m and then turn right.

1

3

Left view Front view Right view Rear view

4
Destination

Current Location

Landmarks

2

Fig. 3 The annotation interface used in Mechanical Turk. Box 1 rep-
resents the text box where the annotators write the descriptions. Box 2
denotes the perspective projected images of left, front, right and rear
view at the current location. Box 3 shows the Street View environment
where the annotator can drag and rotate to get 360◦ view. Box 4 repre-
sents the path to-be-annotated with the markers for the landmarks. Red

line in Box 4 denotes the current subroute. We can navigate forward and
backward along the marked route (lines drawn in red and green), per-
ceiving the Street View simultaneously on the left. Boxes are provided
for describing the marked route for landmarks and directions between
them. Zoom In for a better view (Color figure online)

(a) (b) (c) (d)

Fig. 4 An illustration of our Talk2Nav dataset at multiple granularity levels

puts the averaged score for all selected images signalling

their suitability as visual landmarks for the VLN task.

3.2.2 Annotation and Dataset Statistics

In the literature, a few datasets have been created for similar

tasks (Anderson et al. 2018; Chen et al. 2019; de Vries et al.

2018; Zang et al. 2018). For instance, Anderson et al. (2018)

annotated the language description for the route by asking

the user to navigate the entire path in egocentric perspective.

Incorporation of overhead map of navigated route as an aid

for describing the route can be seen in Chen et al. (2019); de

Vries et al. (2018); Zang et al. (2018).

In the initial stages of our annotation process, we followed

the above works. We allowed the annotators to navigate the

entire route and describe a single instruction for the complete

navigational route. We observed that (a) the descriptions are

mostly about the ending part of the routes indicating that

the annotators forget the earlier stages of the routes; (b) the

annotators took a lot of time to annotate as they have to move

back and forth multiple times, (c) the annotation errors are

very high. These observations confirmed our conjecture that

it is very challenging to create high-quality annotations for

large-scale, long-range VLN tasks. For each annotation, the

annotator needs to know the environment as well as the locals

would in order to be accurate. This is time-consuming and
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error-prone. To address this issue, we simplify the annotation

task.

In our route description annotation process, the mined

visual landmarks are provided, along with an overhead topo-

logical map and the street-view interface. We crowd-source

this annotation task on Amazon Mechanical Turk. In the

interface, a pre-defined route on the GoogleMap is shown

to the annotator. An example of the interface is shown in

Fig. 3. The green line denotes the complete route while the

red line shows the current road segment. We use Move for-

ward and Move backward button to navigate from the source

node to the destination node. The annotator is instructed to

watch the 360◦ Street-view images on the left. Here, we have

customized the Google Street View interface to allow the

annotator to navigate along the street-view images simul-

taneously as they move forward/backward in the overhead

map. The street view is aligned to the direction of the navi-

gation such that forward is always aligned with the moving

direction. To minimize the effort of understanding the street-

view scenes, we also provide four perspective images for the

left-view, the front-view, the right-view, and the rare-view.

The annotator can navigate through the complete route

comprising of m landmark nodes and m intermediate sub-

routes and is asked to provide descriptions for all landmarks

and descriptions for all sub-routes. In this work, we use

m = 4, which means that we collect 4 landmark descriptions

and 4 local directional descriptions for each route as shown

in Fig. 2. We then append the landmark descriptions and

the directional descriptions for the sub-routes one after the

other to yield the complete route description. The whole route

description is generated in a quite formulaic way which may

lead to not very fluent descriptions. The annotation method

offers an efficient and reliable solution at a modest price of

language fluency.

Statistics. We gathered 43, 630 locations which include GPS

coordinates (latitudes and longitudes), bearing angles, etc. in

New York City (NYC) covering an area of 10 km × 10 km

as shown in Fig. 4. Out of all those locations, we managed to

compile 21, 233 street-view images (outdoor)—each for one

road node. We constructed a city graph with 43, 630 nodes

and 80, 000 edges. The average # of navigable directions per

node is 3.4.

We annotated 10, 714 navigational routes. These route

descriptions are composed of 34, 930 node descriptions

and 27, 944 local directional descriptions. Each navigational

instruction comprises of 5 landmark descriptions (we use

only 4 in our work) and 4 directional instructions. These 5

landmark descriptions include the description about the start-

ing road node, the destination node and the three intermediate

landmarks. Since the agent starts the VLN task from the start-

ing node, we use only 4 landmark descriptions along with 4

directional instructions. The starting point description can be

(a) (b)

(c)

Fig. 5 The length distribution of landmark instructions (a), local direc-
tional instructions (b), and complete navigational instructions (c)

used for automatic localization which is left for future work.

The average length of the navigational instructions, the land-

mark descriptions and the local directional instructions of the

sub-routes are 68.8 words, 8 words and 7.2 words, respec-

tively. In total, our dataset Talk2Nav contains 5240 unique

words. Figure 5 shows the distribution of the length (number

of words) of the landmark descriptions, the local directional

instructions and the complete navigational instructions.

In Table 1, we show a detailed comparison with the

R2R dataset (Anderson et al. 2018) and the TouchDown

dataset (Chen et al. 2019) under different criteria. While

the three datasets share similarities in multiple aspects, the

R2R and TouchDown datasets only annotate one overall lan-

guage description for the entire route. It is costly to scale

the annotation method to longer routes and to a large num-

ber of unknown environments. Furthermore, the annotations

in these two datasets lacks the correspondence between lan-

guage descriptions and sub-units of a route. Our dataset offers

it without increasing the annotation effort. The detailed cor-

respondence of the sub-units facilitates the learning task and

enables an interesting cross-difficulty evaluation as presented

in Sect. 5.2.

The average time taken for landmark ranking task is 5 s

and for the route description task is around 3 min. In terms

of payment, we paid $0.01 and $0.5 for the landmark rank-

ing task and the route description task, respectively. Hence,

the hourly rate of payment for annotation is $10. We have a

qualification test. Only the annotators who passed the qualifi-

cation test were employed for the real annotation. In total, 150

qualified workers were employed. During the whole course

of annotation process, we regularly sample a subset of the

annotations from each worker and check their annotated route

descriptions manually. If the annotation is of low quality, we
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Table 1 A comparison of our Talk2Nav dataset with the R2R dataset (Anderson et al. 2018) and the TouchDown dataset (Chen et al. 2019)

Criteria R2R (Anderson et al. 2018) Touchdown (Chen et al. 2019) Talk2Nav

# of navigational routes 7189 9326 10,714

# of panoramic views 10,800 29,641 21,233

# of panoramic views per path 6.0 35.2 40.0

# of navigational descriptions 21,567 9326 10,714

# of navigational desc per path 3 1 1

Length of navigational desc (w) 29 89.6 68.8

# of landmark desc – – 34,930

Length of landmark desc (w) – – 8

# of local directional desc – – 27,944

Length of landmark desc (w) – – 7.2

Vocabulary size 3156 4999 5240

Sub-unit correspondence No No Yes

Avg stands for Average, desc for description, and (w) for (words)

reject the particular jobs and give feedback to the workers

for improvement.

We restrict the natural language to English in our work.

However, there are still biases in the collected annotations

as is generally studied in the works of Bender (2011) and

Bender and Friedman (2018). The language variety in our

route descriptions comprise of social dialects from United

States, India, Canada, United Kingdom, Australia and oth-

ers, showing diverse annotator demographics. Annotators are

instructed to follow guidelines for descriptions like (i) Do

not describe based on street names or road names, (ii) Try to

use non-stationary objects mainly as visual landmarks. We

also later perform certain curation techniques to the provided

descriptions such as (a) removing all non-unicode characters,

(b) correcting misspelled words using opensourced Lan-

guage Tool (2016).

4 Approach

Our system is a single agent traveling in an environment

represented as a directed connected graph. We create a street-

view environment on top of the compiled city graph of

our Talk2Nav dataset. The city graph consists of 21, 233

nodes/locations with the corresponding street-view images

(outdoor) and 80, 000 edges representing the travelable road

segments between the nodes. Nodes are points on the road

belonging to the annotated region of NYC. Each node con-

tains (a) a 360◦ street-view panoramic image, (b) the GPS

coordinates of the corresponding location (defined by lati-

tudes and longitudes), (c) and the bearing angles of this node

in the road network. A valid route is a sequence of connected

edges from a source node to a destination node. Please see

Fig. 4 for the visualization of these concepts.

During the training and testing stages, we use a simulator

to navigate the agent in the street view environment in the city

graph. Based on the predicted action at each node, the agent

moves to the next node in the environment. A successful

navigation is defined as when the agent correctly follows the

right route referred by the natural language instruction. For

the sake of tractability, we assume no uncertainty (such as

dynamic changes in the environment, noise in the actuators)

in the environment, hence it is a deterministic goal setting.

Our underlying simulator is the same as the ones used by

previous methods (Anderson et al. 2018; Chen et al. 2019;

Hermann et al. 2019). It, however, has a few different fea-

tures. The simulator of Anderson et al. (2018) is compiled

for indoor navigation. The simulators of Chen et al. (2019),

Hermann et al. (2019) are developed for outdoor (city) nav-

igation but they differ in the region used for annotation. The

action spaces are also different. The simulators of Anderson

et al. (2018), Chen et al. (2019), Hermann et al. (2019) use an

action space consisting of left, right, up, down, forward and

stop actions. We employ an action space of nine actions: eight

moving actions in the eight equi-spaced angular directions

between 0◦ and 360◦ and the stop action. For each moving

action, we select the road which has the minimum angular

distance to the predicted moving direction. In the following

sections, we present the method in details.

4.1 Route Finding Task

The task defines the goal of an embodied agent to navigate

from a source node to a destination node based on a nav-

igational instruction. Specifically, given a natural language

instruction X = {x1, x2, . . . , xn}, the agent needs to perform

a sequence of actions {a1, a2, . . . , am} from the action space

A to hop over nodes in the environment space to reach the
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Fig. 6 The illustrative diagram of our model. We have a soft attention
mechanism over segmented language instructions, which is controlled
by the Indicator Controller. The segmented landmark description and
local directional instruction are matched with the visual image and the
memory image respectively by two matching modules. The action mod-

ule fetches features from the visual observation, the memory image, the
features of the language segments, and the two matching scores to pre-
dict an action at each step. The agent then moves to the next node,
updates the visual observation and the memory image, continues the
movement, and so on until it reaches the destination

destination node. Here xi represents individual word in an

instruction while ai denotes an element from the set of nine

actions (Detailed in Sect. 4.1.5). When the agent takes an

action, it interacts with the environment and receives a new

visual observation. The agent performs the actions sequen-

tially until it reaches the destination node successfully or it

fails the task because it exceeds the maximum episode length.

The agent learns to predict an action at each state to nav-

igate in the environment. Learning long-range vision-and-

language navigation (VLN) requires an accurate sequential

matching between the navigation instruction and the route.

As argued in the introduction, we observe that navigation

instructions consist of two major classes: landmark descrip-

tions and local directional instructions between consecutive

landmarks. In this work, given a language instruction, our

method segments it to a sequence of two interleaving classes:

landmark descriptions and local directional instructions.

Please see Fig. 1 for an example of a segmented naviga-

tional instruction. As it moves, the agent learns an associated

reference position in the language instruction to obtain a

softly-attended local directional instruction and landmark

description. When one landmark is achieved, the agent

updates its attention and moves towards the new goal, i.e. the

next landmark. Two matching modules are used to score each

state by matching: 1) the traversed path in memory and the

local, softly-attended directional instruction, and 2) the visual

scene the agent observes at the current node and the local,

softly-attended landmark description. An explicit external

memory is used to store the traversed path from the latest

visited landmark to the current position.

Each time a visual observation is successfully matched

to a landmark, a learned controller increments the reference

position of the soft attention map over the language instruc-

tion to update both the landmark and directional descriptions.

This process continues until the agent reaches the destination

node or the episodic length of the navigation is exceeded. A

schematic diagram of the method is shown in Fig. 6. Below

we detail all the models used by our method.

4.1.1 Language

We segment the given instruction to two classes: (a) visual

landmark descriptions and (b) local directional instructions

between the landmarks. We employ the BERT transformer

model (Devlin et al. 2018) to classify a given language

instruction X into a sequence of token classes {ci }
n
i=1 where

ci ∈ {0, 1}, with 0 denoting the landmark descriptions and

and 1 the local directional instructions. By grouping consec-

utive segments of the same token class, the whole instruction

is segmented into interleaving segments. An example of

the segmentation is shown in Fig. 1 and multiple more in

Fig. 8. Those segments are used as the basic units of our

attention scheme rather than the individual words used by

previous methods (Anderson et al. 2018). This segmentation
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converts the language description into a more structured rep-

resentation, aiming to facilitate the language-vision matching

problem and the language-trajectory matching problem.

Denoted by T (X) a sequence of segments of landmark and

local directional instructions, then

T (X) =
(

(L1, D1), (L2, D2), . . . , (L J , D J )

)

(2)

where L j denotes the feature representation for segment j of

landmark description, D j denotes the feature representation

for segment j of directional instruction, and J is the total

number of segments in the route description.

As it moves in the environment, the agent is associated

with a reference position in the language description in order

to put the focus on the most relevant landmark descriptions

and the most relevant local directional instructions. This is

modeled by a differentiable soft attention map. Let us denote

by ηt the reference position for time step t . The relevant

landmark description at time step t is extracted as

L̄ηt =

J
∑

j=1

L j e−|ηt − j | (3)

and the relevant directional instruction as

D̄ηt =

J
∑

j=1

D j e−|ηt − j |, (4)

where ηt+1 = ηt + φt (.), η0 = 1, and φt (.) is an Indicator

Controller learned to output 1 when a landmark is reached and

0 otherwise. The controller is shown in Fig. 6 and is defined

in Sect. 4.1.4. After a landmark is reached, ηt increments 1

and the attention map then centers around the next pair of

landmark and directional instructions. The agent stops the

navigation task successfully when φt () outputs 1 and there

are no more pair of landmark and directional instructions

left to continue. We initialize η0 as 1 to position the language

attention around the first pair of landmark and directional

instruction.

4.1.2 Visual Observation

The agent perceives the environment with an equipped 360◦

camera which obtains the visual observation It of the envi-

ronment at time step t . From the image, a feature ψ1(It )

is extracted and passed to the matching module as shown

in Fig. 6 which estimates the similarity (matching score)

between the visual observation It and a softly attended land-

mark description L̄ηt which is modulated by our attention

module. The visual feature is also passed to the action module

to predict the action for the next step as shown in Sect. 4.1.5.

Fig. 7 Exemplar memory images. The blue square denotes the source
node, and the blue disk denotes the current location of the agent. The
red lines indicate the traversed paths. Each memory image is associated
with its map scale (metres per pixel) which is shown in the text box
below (Color figure online)

4.1.3 Spatial Memory

Inspired by Gordon et al. (2018), Graves et al. (2016), an

external memory Mt explicitly memorizes the agent’s tra-

versed path from the latest visited landmark. When the agent

reaches a landmark, the memory Mt is reinitialized to memo-

rize the traversed path from the latest visited landmark. This

reinitialization can be understood as a type of attention to

focus on the recently traversed path in order to better localize

and to better match against the relevant directional instruc-

tions D̄ηt modeled by the learned language attention module

defined in Sect. 4.1.1.

As the agent navigates in the environment, we have a write

module to write the traversed path to the memory image. For

a real system navigating in the physical world, the traversed

path can be obtained by an odometry system. In this work, we

compute the traversed path directly from the road network

in our simulated environment. Our write module traces the

path travelled from the latest visited landmark to the current

position. The path is rasterized and written into the memory

image. In the image, the path is indicated by red lines, the

starting point by a blue square marker, and the current loca-

tion is by a blue disk. The write module always writes from

the centre of the memory image to make sure that there is

room for all directions. Whenever the coordinates of the new

rasterized pixel are beyond the image dimensions, the mod-

ule incrementally increases the scale of the memory image

until the new pixel is in the image and has a distance of 10

pixels to the boundary. An image of 200 ×200 pixels is used

and the initial scale of the map is set to 5 m per pixel. Please

find examples of the memory images in Fig. 7.

Each memory image is associated with the value of its

scale (meters per pixel). Deep features ψ2(Mt ) are extracted

from the memory image Mt which are then concatenated

with its scale value to form the representation of the memory.

The concatenated features are passed to the matching mod-

ule. The matching module verifies the semantic similarity

between the traversed path and the provided local directional

instruction. The concatenated features are also provided to

the action module along with the local directional instruction

features to predict the action for the next step.
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4.1.4 Matching Module

Our matching module is used to determine whether the aimed

landmark is reached. As shown in Fig. 6, the matching score

is determined by two complementary matching modules:

1) between the visual scene ψ1(It ) and the extracted land-

mark description L̄ηt and 2) between the spatial memory

ψ2(Mt ) and the extracted directional instruction D̄ηt . For

both cases, we use a generative image captioning model

based on the transformer model proposed in Vaswani et al.

(2017) and compute the probability of reconstructing the lan-

guage description given the image. Scores are the averaged

generative probability over all words in the instruction. Let

s1
t be the score for pair (ψ1(It ), L̄ηt ) and s2

t be the score for

pair (ψ2(Mt ), D̄ηt ). We then compute the score feature st

by concatenating the two: st = (s1
t , s2

t ). The score feature

st is fed into a controller φ(.) to decide whether the aimed

landmark is reached:

φt (st , ht−1) ∈ {0, 1}, (5)

where 1 indicates that the aimed landmark is reached and

0 otherwise. φt (.) is an Adaptive Computation Time (ACT)

LSTM (Graves 2016) which allows the controller to learn to

make decisions at variable time steps. ht−1 is the hidden state

of the controller. In this work, φt (.) learns to identify the land-

marks with the variable number of intermediate navigation

steps.

4.1.5 Action Module

The action module takes the following inputs to decide the

moving action: (a) the pair of (ψ1(It ), L̄ηt ), (b) the pair of

(ψ2(Mt ), D̄ηt ), and c) the matching score feature st . The

illustrative diagram is shown in Fig. 6.

The inputs in the (a) group is used to predict a
e
t —a prob-

ability vector of moving actions over the action space. The

inputs in the (b) is used to predict a
m
t —the second probabil-

ity vector of moving actions over the action space. The two

probability vectors are adaptively averaged together, with

weights learned from the score feature st . Specifically, st is

fed to a fully-connected (FC) network to output the weights

wt ∈ R
2. For both (a) and (b), we use an encoder LSTM

as used in Anderson et al. (2018) to encode the language

segments. We then concatenate the encoder’s hidden states

with the image encodings (i.e. ψ1(It ) and ψ2(Mt )) and pass

through a FC network to predict the probability distribution

a
e
t and a

m
t . By adaptively fusing the, we get the final action

prediction at :

at =
1

∑

i wi
t

(

w0
t ∗ a

e
t + w1

t ∗ a
m
t

)

. (6)

The action at at time t is defined as the weighted aver-

age of a
e
t and a

m
t . For a different part of the trajectory,

one of the actions (ae
t or a

m
t ) or both of them are reliable.

This is heavily dependent on the situation. For instance,

when the next landmark is not visible, the prediction should

rely more on a
m
t ; when the landmark is clearly recogniz-

able, the opposite holds. The learned matching scores will

decide adaptively at each time step which prediction to be

trusted and by how much. This adaptive fusion can be under-

stood as a calibration system for the two complementary

sub-systems for action prediction. The calibration method

needs to be time- or situation-dependent. A simpler summa-

tion/normalization of the two predictions is rigid, and cannot

distinguish between a confident true prediction and a con-

fident false prediction. Confident false predictions are very

common in deeply learned models.

The action space A is defined as follows. We divide the

action space A into eight moving actions in eight directions

and the stop action. Each direction is centred at {(i*45◦) :

i ∈ [0, . . . , 7]} with ±22.5◦ offset as illustrated in Fig. 6.

When an action angle is predicted, the agent turns to the road

which has the minimum angular distance to the predicted

angle and moves forward to the next node along the road.

The turning and moving-forward define an atomic action. The

agent comes to a stop when it encounters the final landmark

as stated in Sect. 4.1.1.

It is worth noting that the implementation of our stop

action is different from previous VLN methods (Anderson

et al. 2018; Chen et al. 2019; Hermann et al. 2019). As

pointed out in the deep learning book [Goodfellow et al.

(2016), p.384], the stop action can be achieved in various

ways. One can add a special symbol corresponding to the

end of a sequence, i.e. the STOP used by previous VLN

methods. When the STOP is generated, the sampling pro-

cess stops. Another option is to introduce an extra Bernoulli

output to the model that represents the decision to either con-

tinue generation or halt generation at each time step. In our

work, we adopt the second approach. The agent uses Indica-

tor Controller (IC) to learn to determine whether it reaches

landmarks. IC outputs 1 when the agent reaches a landmark

and updates the language attention for finding the next land-

mark until the destination is reached. The destination is the

final landmark described in the instruction. The agent stops

when the IC predicts 1 and there is no more language descrip-

tion left to continue. Thus, our model has a stop mechanism

but in a rather implicit manner.

4.2 Learning

The model is trained in a supervised way. We followed the

student-forcing approach proposed in Anderson et al. (2018)

to train our model. At each step, the action module is trained

123



International Journal of Computer Vision (2021) 129:246–266 257

with a supervisory signal of the action in the direction of

the next landmark. This is in contrast with previous meth-

ods (Anderson et al. 2018), in which it is the direction to the

final destination.

We use the cross-entropy loss to train the action module

and the matching module as they are formulated as classifi-

cation tasks. For the ACT model, we use the weighted binary

cross-entropy loss at every step. The supervision of the pos-

itive label (‘1’) for ACT model comes into effect only if the

agent reaches the landmark. The total loss is the sum of all

module losses:

Loss = Lossaction+Losslandmark
matching +Lossdirection

matching+LossACT.

(7)

The losses of the two matching modules take effect only at

the place of landmarks which are much sparser than the road

nodes where the action loss and ACT loss are computed.

Because of this, we first train the matching networks indi-

vidually for the matching tasks, and then integrate them with

other components for the overall training.

4.3 Implementation Details

Language Module. We use the BERT (Devlin et al. 2018)

transformer model pretrained on the BooksCorpus (Zhu et al.

2015) and the English Wikipedia,3 for modelling language.

This yields contextual word representations which is differ-

ent from classical models such as word2vec (Mikolov et al.

2013) and GloVe (Pennington et al. 2014). We use a word-

piece tokenizer to tokenize the sentence, by following Devlin

et al. (2018), Wu et al. (2016). Out of vocabulary words

are split into sub-words based on the available vocabulary

words. For word token classification, we first train BERT

transformer with a token classification head. Here, we use

the alignment between the given language instruction X and

their corresponding set of landmark and directional instruc-

tion segments in the training set of the Talk2Nav dataset. We

then train the transformer model to classify each word token

in the navigational instruction to be a landmark description

or a local directional instruction.

At the inference stage, the model predicts a binary label

for each word token. We later convert the sequence of word

token classes into segments T (X) by simply grouping adja-

cent tokens which have the same class. We note that this

model has a classification accuracy of 91.4% on the test

set. We have shown few word token segmentation results

in Fig. 8.

Visual inputs. The Google street-view images are acquired

in the form of equirectangular projection. We experimented

3 https://en.wikipedia.org/wiki/English_Wikipedia.

Fig. 8 Examples of given instructions from Talk2Nav dataset. Differ-
ent colours denote word token segmentation. Red denotes landmark
descriptions and blue the local directional instructions (Color figure
online)

with SphereNet (Coors 2018) architecture pretrained on the

MNIST (LeCun et al. 1998) dataset and ResNet-101 (He

et al. 2016) pretrained on ImageNet (Deng et al. 2009) to

extract ψ1(I ). Since the SphereNet pre-trained on MNIST is

a relatively shallow network, we adapted the architecture of

SphereNet to suit Street View images by adding more convo-

lutional blocks. We then define a pretext task using the Street

View images from the Talk2Nav dataset to learn the weights

for SphereNet. Given two street-view images with an over-

lap of their visible view, the task is to predict the difference

between their bearing angles and the projection of line join-

ing the locations on the bearing angle of second location. We

frame the problem as a regression task of predicting the two

angles. This encourages SphereNet to learn the semantics in

the scene. We compiled the training set for this pre-training

task from our own training split of the dataset. In the case of

memory image, we use ResNet-101 pretrained on ImageNet

to extract ψ2(M) from the memory image M .

Other modules. We perform image captioning in the match-

ing modules using the transformer model, by following Luo

et al. (2018), Zhu et al. (2018), Vaswani et al. (2017). We pre-

train the transformer model for captioning in the matching

module using the landmark street-view images and their cor-

responding descriptions from the training split of Talk2Nav

for matching of the landmarks. For the other matching mod-

ule of local directions, we pretrain the transformer model

using the ground-truth memory images and their correspond-

ing directional instructions. We synthesized the ground truth
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memory image in the same way as our write module writes

to the memory image (as mentioned in Sect. 4.1.3). We fine-

tune both the matching modules in the training stage. All the

other models such as Indicator Controller, Action module are

trained in an end-to-end fashion.

Network details. The SphereNet model consists of five

blocks of convolution and max-pooling layers, followed by

a fully-connected layer. We use 32, 64, 128, 256, 128 filters

in the 1 to 5 convolutional layers and each layer is followed

by a Max pooling and ReLU activation. This is the backbone

structure of the SphereNet. For ResNet, we use ResNet-101

as the backbone. Later, we have two branches: the fully

connected layer has 8 neurons using a softmax activation

function in one branch of the network for the action module

and 512 neurons with ReLU activation in the other branch for

the match module. Hence, input of image feature size from

these models are of 512 and attention feature size over the

image is 512. The convolutional filter kernels are of size 5x5

and are applied with stride 1. Max pooling is performed with

kernels of size 3x3 and a stride of 2. For language, we use

an input encoding size of 512 for each token in the vocabu-

lary. We use Adam optimizer with learning rate of 0.01 and

alpha and beta for Adam as 0.999 and 10−8. We trained for

20 epochs with a mini-batch size of 16.

5 Experiments

Our experiments focus on (1) the overall performance of

our method when compared to the state-of-the-art (s-o-t-a)

navigation algorithms, and (2) multiple ablation studies to

further understand our method. The ablation studies cover

(a) the importance of using explicit external memory, (b) a

performance evaluation of navigation at different levels of

difficulty, (c) a comparison of visual features, (d) a compari-

son of the performance with and without Indicator Controller

(IC), and across variants of matching modules. We train and

evaluate our model on the Talk2Nav dataset. We use 70% of

the dataset for training, 10% for validation and the rest for

testing. By following Anderson et al. (2018), we evaluate our

method under three metrics:

– SPL: the success rate weighted by normalized inverse

path length. It penalizes the successes made with longer

paths.

– Navigation Error: the distance to the goal after finishing

the episode.

– Total Steps: the total number of steps required to reach

the goal successfully.

We compare with the following s-o-t-a navigation meth-

ods: Student Forcing (Anderson et al. 2018), RPA (Wang

et al. 2018), Speaker-Follower (Fried et al. 2018) and Self-

Monitoring (Ma et al. 2019). We trained their models on

the same data that our model uses. The work (Wang et al.

2019) yields very good results on the Room-to-Room dataset

for indoor navigation. We, however, have not found publicly

available code for the method and thus can only compare

with other top-performing methods on our dataset.

We also study the performance of our complete model and

other s-o-t-a methods at varying difficulty levels: from short

navigation paths consisting of one landmark to long ones

consisting of four landmarks. In order to evaluate methods

at different difficulty levels, we generate datasets of different

navigation difficulties from the Talk2Nav dataset. The nav-

igation difficulty of a route is approximated by the length

of the route which is measured by the number of landmarks

it contains. In particular, in Talk2Nav, each route consists

of 4 landmarks. For our primary experiments, we use the

whole route for training and testing. For specific experiments

to evaluate at different difficulty levels, we obtain routes

with the length of 1, 2 and 3 landmarks by sub-sampling

the annotated 4-landmark routes. For instance, we sample

four 1-landmark sub-routes, three 2-landmark sub-routes and

two 3-landmark sub-routes from a 4-landmark route. We also

generate a dataset with all four levels of navigation difficulty

by mixing the original Talk2Nav and the three generated

datasets. We use these sub-sampled routes to generate the

datasets for the cross-difficulty evaluation.

5.1 Comparison to PriorWorks

To make a fair comparison with prior works, we use the same

image features and language features in all the cases. We use

pre-trained ResNet-101 model on ImageNet to extract image

features and pre-trained BERT transformer model for lan-

guage features. For Self-Monitoring (Ma et al. 2019) and

Speaker-Follower (Fried et al. 2018), the panoramic view of

the environment is discretized into 8 view-angles (8 head-

ings × 1 elevation with 45 degree intervals). The navigable

directions at each location are defined by the city graph of

the Talk2Nav dataset. We use greedy action selection during

evaluation as beam search decoding for action selection leads

to lower SPL because of longer trajectory lengths (Ma et al.

2019).

Table 2 shows the results of our method and other compet-

ing s-o-t-a methods. We tabulate results under all the evalua-

tion metrics. The destination threshold (when the distance of

the final reached position and the destination node is within

this range, it is a successful navigation) is set to 100 m and and

the additional trajectory length (denoting additional allowed

path length w.r.t the ground-truth length to the destination)

is set to 30%. This sets the budget of the trajectory length to

be 130% of the length of the ground truth. The budget of the

trajectory length is the maximum trajectory length allowed
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Table 2 Comparison with prior
s-o-t-a methods on our
Talk2Nav Dataset

Methods SPL↑ Navigation error↓ Total steps↓

Random 2.88 1986.23 52.1

Student-forcing (Anderson et al. 2018) 8.77 887.57 45.9

RPA (Wang et al. 2018) 8.43 803.90 46.4

Speaker-follower (Fried et al. 2018) 9.02 784.23 43.9

Self-monitoring (Ma et al. 2019) 9.56 740.12 43.1

Ours 11.92 633.85 42.2

Oracle 13.12 520.90 40.6

Human 61.1 124.5 35.5

Boldness for the numbers in the tables signify that the corresponding row/method in the table gives the best
performance among all other methods

Table 3 Comparison with prior
s-o-t-a methods on the
TouchDown dataset (Chen et al.
2019). The numbers of RConcat
is taken from the paper cited
above

Methods SPL↑ Navigation error↓ Total steps↓

RConcat (Chen et al. 2019) 10.4 234.57 48.2

Student-forcing (Anderson et al. 2018) 11.61 207.86 45.1

RPA (Wang et al. 2018) 13.27 187.45 44.7

Ours 20.45 102.41 41.9

The numbers of RConcat is taken from the paper Chen et al. (2019)
Boldness for the numbers in the tables signify that the corresponding row/method in the table gives the best
performance among all other methods

for the exploration episode. We adopted the VLN evaluation

criteria from Anderson et al. (2018). The row for Oracle

in Table 2 denotes the maximum accuracy that could be

achieved when the ground-truth segments of the instructions

are used instead of the segments by the trained segmentation

method presented in Sect. 4.1.1. The row for Human denotes

the performance of human navigators. We asked the AMT

workers to navigate from the starting node to the destination

in our web-annotation interface with the annotated instruc-

tions. The performance is measured on the test set.

The table shows that our method achieves significantly

better results than other existing methods under all consid-

ered evaluation metrics for long-range Vision-and-Language

navigation in outdoor environments. For instance, our method

improves SPL from 9.56% to 11.92%, reduces Navigation

Error from 740.12m to 633.85m and reduces Total Steps from

43.1 to 42.2, when compared to the best competing method.

We also conducted human studies on this task. We see that the

Human performance is much higher than all learning meth-

ods. This big gap means that the dataset offers a sufficient

room for developing and improving learning algorithms on

the dataset. This also validates the quality and the value of

the dataset.

We also evaluate our method on the TouchDown dataset

(Chen et al. 2019). The Touchdown dataset has naviga-

tional instructions quite similar to the TalkNav dataset in

terms of text length and the navigation environment. How-

ever, the Touchdown dataset has no correspondence between

sub-descriptions and visual landmarks, and between sub-

descriptions and sub-routes. Hence, we cannot train our

method on the Touchdown dataset. We train our model on

the Talk2Nav dataset and then evaluate it on the Touch-

down dataset. We keep the model setting and the approach

the same as used for our Talk2Nav dataset. We tabulate

our evaluation results in Table 3 under the same metrics.

We compare the performance of our method with Student-

Forcing (Anderson et al. 2018), RPA (Wang et al. 2018) and

RConcat (Chen et al. 2019). We observe that our approach

also outperforms other top-performing VLN methods on the

TouchDown dataset (Chen et al. 2019).

In addition to the evaluation for the long-range (i.e. 4-

landmark) navigation, we also study the performance of all

these trained methods when evaluated at varying difficulty

levels: from short navigation paths consisting of one land-

mark to long ones consisting of four landmarks. We evaluate

under SPL and compare our method with the prior works as

before. The results are listed in Table 4. We observe that our

method outperforms all the other prior works by a large mar-

gin. For instance, our method improves SPL (%) from 72.21

to 74.28 for short routes having 1 landmark, from 37.71 to

43.08 for routes with 2 landmarks, and from 23.16 to 27.96

for routes with 3 landmarks, when compared to Ma et al.

(2019).

5.1.1 Analysis

The reason behind the good performance of our method can

be attributed to multiple factors. The decomposition of the
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Table 4 Comparison of our
method to other methods at
varying difficulty levels: from
short paths consisting of one
landmark to long paths
consisting of four landmarks

Methods / #(Landmarks) 1 2 3 4

Random walk 31.05 16.95 9.04 2.88

Student-forcing (Anderson et al. 2018) 55.63 26.76 18.31 8.77

RPA (Wang et al. 2018) 59.75 30.30 18.20 8.43

Speaker-follower (Fried et al. 2018) 71.14 35.79 21.47 9.02

Self-monitoring (Ma et al. 2019) 72.21 37.71 23.16 9.56

Ours 74.28 43.08 27.96 11.92

SPL↑ is used as the metric
Boldness for the numbers in the tables signify that the corresponding row/method in the table gives the best
performance among all other methods

whole navigation instruction into landmark descriptions and

local directional instructions, the attention map defined on

language segments instead of English words, and the two

clearly purposed matching modules make our method suit-

able for long-range vision-and-language navigation. Due to

these introduced components and the design that allows them

to work together, the agent is able to put the focus to the right

place and does not get lost easily as it moves.

Previous methods aim to find a visual image match for the

given language sentence at each step to predict an action. We

argue that this is not optimal. The navigational instructions

indeed consist of mixed referrals for visual content (land-

marks) and for spatial movements. For instance, it is wrong to

match a sentence like ‘Go forward 100m and take a left turn’

to an image observation. Our method distinguishes the two

types of language sentences and computes a better match-

ing score between language description and the sequential

actions (spatial movement + visual observations). In this

work, we use an explicit memory, as explained in Sect. 4,

to keep track of the spatial movements from a topological

perspective.

It is possible that the comparison models would obtain

similar improvements if additional supervision for landmark

matching is given. It is worth noting that it is not straight-

forward to incorporate the landmark grounding into other

methods. More importantly, if one compare the total anno-

tation cost, this ‘additional’ supervision does not cost more

annotation effort—our annotation method is easier and more

efficient than annotating the whole long-range route at once.

Thus, being able to use this additional supervision without

adding extra annotation cost is the contribution of our work.

5.2 Ablation Studies

In order to further understand our method, we perform three

ablation studies on memory types, difficulty levels of navi-

gation, with and without IC, variants of matching modules

and visual features.

Memory. We compare our memory to no memory and to

a trajectory of GPS coordinates. For GPS coordinates, an

Fig. 9 Rows for metrics and columns for evaluation settings. Trajectory
length: % extra length of path allowed for agents to navigate at evalua-
tion. Destination Threshold (meter): a threshold of the final distance to
the destination, below which is considered as a success

encoder LSTM is used to extract features ψ3(G t ), where

G t = {(X
gps

i , Y
gps

i ) : i ∈ [1, . . . , t]}. The results are

reported in Table 5. We see that Student-Forcing (Ander-

son et al. 2018) and RPA (Wang et al. 2018) has a SPL

score of 8.77% and 8.43%, respectively (from Table 2). Ours

with no memory gets 6.87%. This is because Anderson et al.

(2018) and Wang et al. (2018) use sequence-to-sequence

model (Sutskever et al. 2014) which has implicit memory

about the history of visual path and actions. The poor perfor-

mance of no memory is also seen in Fig. 9 when compared

against all other methods either with implicit or explicit mem-

ory.

Encoding the explicit memory as a trajectory of GPS coor-

dinates improves SPL from 6.87% to 9.04% as done in Ours
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Table 5 Comparison of our
method under different settings:
(a) three variants of memory: no
memory, GPS memory and our
memory, and (b) two different
visual features: ResNet and
SphereNet

Memory Visual feature SPL↑ Nav Err↓ Tot. steps↓

No GPS Ours ResNet SphereNet

✓ ✓ 6.87 1374.02 48.74

✓ ✓ 9.04 742.36 46.47

✓ ✓ 9.37 801.38 44.93

✓ ✓ 11.92 633.85 42.29

Boldness for the numbers in the tables signify that the corresponding row/method in the table gives the best
performance among all other methods

Table 6 Cross-difficulty
evaluation of our method

# of landmarks (test)

1 2 3 4 All

# of landmarks (train) 1 76.71 34.21 21.41 8.45 45.89

2 75.11 46.42 27.07 10.71 50.08

3 74.43 46.62 28.14 11.51 50.41

4 74.28 43.08 27.96 11.92 49.93

All 75.33 46.10 27.32 11.68 51.37

We train our model with training data of routes with each difficulty level {1, 2, 3, 4} and we evaluate for all
the models on all difficulty levels. All denotes the mixed routes of all difficulty levels
Boldness for the numbers in the tables signify that the corresponding row/method in the table gives the best
performance among all other methods

(no memory). Ours with GPS memory also performs better

than having implicit memory under both SPL and Navigation

Error as shown in Table 5. Furthermore, when we employ the

top-view trajectory map representation as the explicit mem-

ory, our method outperforms all the previous methods either

with no memory or with implicit memories as one can see in

Tables 2 and 5. This validates the effectiveness of our explicit

memory. It has been found already that top-view trajectory

map representation is very useful in learning autonomous

driving models (Hecker et al. 2018). Our findings are in line

with theirs, in a relevant but different application.

We take a step further to evaluate the memory types under

different evaluation settings of trajectory length and destina-

tion threshold. We again compare our method Ours (Full) to

Ours (No memory) and Ours (GPS memory). The results are

shown in Fig. 9. The figure shows that Ours (Full) has higher

SPL consistently over others at different trajectory length and

destination threshold. Our variant Ours (GPS) where GPS

information is encoded as a sequence of coordinates, shows

deteriorating performance with increasing trajectory length.

Subsequently, this shows the importance of a 2-dimensional

representation of the memory as used in Ours (Full). In the

case of Navigation Error plots, we observe that Ours (Full)

performs better than other methods. However, we see that

Ours (Full) performs worse than Ours (GPS) at 300% of

trajectory length. This may be because the memory module

draws a long traversed path in the external memory which

may lead to overlap of the line. This overlap reduces the

matching accuracy and thus increases the navigation error.

Finally, in the case of Average Steps, Ours (Full) has lower

value (better performance) compared to other methods when

tested under different settings for the trajectory length and

destination threshold. We observe that average steps of Ours

(Full) increases relatively slower than other methods with

the trajectory length. It can be seen that Ours (Full) outper-

forms other methods consistently over varying destination

thresholds.

Navigation at different difficulty levels. To further under-

stand how our method behaves when training and testing on

different navigation difficulty levels, we take one step fur-

ther to study the effect of training and testing our model with

routes of variable number of landmarks. We have tabulated

in Table 6 the performance of the method under the different

combinations of route lengths (i.e. the number of landmarks)

used in the training and testing phases.

The table shows that the performance of our model is fairly

high when trained with routes of 1 landmark and tested on

the same difficulty level. However, the performance drops

drastically when tested on routes of higher difficulty levels.

The performance on longer routes improves when we train

the model with routes of the same or higher difficulty levels.

The main conclusion from this experiment is that a model

trained with harder cases works well on easier test cases, but

not the other way around.

In the last row, we show the model performance when

trained with mixed routes of all the difficulty levels. The

trained model achieves competitive performance at all navi-
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Table 7 Comparison of our method under different settings: (a) three
variants of IC: w/o IC, LSTM and ACT, and (b) two different matching
modules: discriminative (Disc) and generative (Gen)

IC Match module SPL↑

w/o LSTM ACT Disc. Gen.

✓ ✓ 9.71

✓ ✓ 8.95

✓ ✓ 11.15

✓ ✓ 11.92

Boldness for the numbers in the tables signify that the corresponding
row/method in the table gives the best performance among all other
methods

gation difficulty levels and outperforms all other models for

the mixed difficulty levels.

One can also see that the performance drops almost

exponentially with the level of navigation difficulty. The nav-

igation at difficulty level 4 is already very challenging as the

highest SPL is 11.92 only. Hence, annotating even longer

routes is not very necessary at the moment for training and

validating the current learning algorithms. This experiment is

also a showcase of the notable merit of our Talk2Nav dataset

that routes of different difficulty levels can be created for the

fine-grained evaluation.

With and without IC. Here, we explore the significance of

Indicator Controller in our model. IC has two roles in our

approach, the first being modelling attention over the seg-

ments of landmark and local directional instructions, and the

other being an indicator of reaching the landmarks. We train

and test our models with and without IC. We also exper-

iment with different IC models such as LSTM and ACT

(final model). In Table 7, w/o IC represents our approach

without IC. To adapt this setting, we combine all landmark

instruction segments into one single instruction and all direc-

tional segments into another single instruction. We employ

transformer model with self-attention for feature extraction

from the landmark and directional instructions. Further to

indicate reaching the landmarks, we also add an additional

STOP action in action space. We observe a drop in the perfor-

mance to 9.71. This can be due to the implicit attention model

over the landmark and directional instructions. For IC:LSTM

model, we replace the ACT with the regular LSTM (Hochre-

iter and Schmidhuber 1997) for our IC module. We see that

the performance drops to 8.95. This is probably because the

inherent merit of ACT over the regular LSTM that it is able

to dynamically predict the number of recurrent steps based

on the input and the hidden states.

Matching module variants. We experiment with two vari-

ants for matching module of Sect. 4.1.4 here. We use a

discriminative model and a generative image captioning

model. Both the models receive features from the language

and images and are supposed to compute scores based on their

semantic matching. In the discriminative model, features

from images and language are concatenated before given

to multilayer perceptrons which outputs a matching score.

The triplet ranking loss is used to learn the model. To sam-

ple negative samples, we use randomly-chosen street-view

images and randomly-chosen memory images. We compare

this discriminative model to the generative model used in our

method. In Table 7, we observe that the generative model per-

forms better than the discriminative model by 0.77 points.

The main merit behind using the generative model is that

it requires just the positives, hence is not sensitive to the

choices of the negative sampling methods. A more carefully

designed negative mining step may make the discriminative

model more competitive. We leave this as the future work.

SphereNet vs. ResNet. We observe that using the pre-trained

SphereNet yields better accuracy for the navigation task than

training from scratch. This means that our proposed self-

learning tasks are useful for model pre-training. However,

we see in Table 5 that learning with SphereNet has compa-

rable or slightly worse performance than with ResNet. This

may be due to the fact that ResNet is trained on ImageNet

which comes with human labels. Henceforth, in this work we

use ResNet for the evaluation. We believe that SphereNet is

likely to perform better with architectural changes like resid-

ual connections, which can be a promising future work.

5.3 Qualitative Analysis

We also provide two qualitative examples in a step-by-step

fashion in Fig. 10. The given input navigational instructions

and the 360◦ visual observations at the source node are given

on the left of the figure. The rest is devoted to the intermedi-

ate and final results during the course of the VLN task. The

middle panel of the figure shows the rows of intermediate

results: (a) the first two rows show the results of language

segments of landmark descriptions and directional instruc-

tions, (b) the third row depicts the front 360◦ views of the

agent along the path embedded with the prediction of mov-

ing direction, (c) the fourth row shows the memory images

written by the write module and, (d) the final row shows the

agent’s navigated paths predicted by our model. Different

stages of finding landmarks are indicated by different colors.

The ground truth route with landmarks are on the right of

the figure. The numbers on the images denote the number of

steps already traversed. We see that when the agent reaches a

landmark, the memory is re-initialized and the soft attention

over the navigational instruction segments moves forward to

the next segment. Due to the space limit, we do not show all

the intermediate steps.

In Fig. 10, we show a successful navigation in the first

example. Although the agent misses the right path at some
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Fig. 10 Two qualitative results from our approach. The left panel shows
the inputs: the navigational instruction and the 360◦ image at the source
node. The middle panel shows the rows of intermediate results along the
navigated path; from top to bottom, it shows the language segments of
directional (green) and landmark instructions (yellow), the 360◦ views
of the agent along the path with imposed action predictions, the memory
images and the agent’s navigated paths, of which different stages are

indicated by different colors. The numbers embedded in the figure indi-
cate the number of the step. We cannot not show all intermediate steps
due to space constraints. The right panel shows the final traversed path
by the agent and the ground-truth trajectory with different colours indi-
cating different sub-routes between the consecutive landmarks. Note
that the overhead maps are shown only for illustration purpose and they
are not available to the agent (Color figure online)

point, it successfully comes back to the path towards the desti-

nation. It takes 14 steps to reach the destination of which only

a sub-set of intermediate steps are displayed in the figure. In

the second case, we observe that the agent fails to navigate to

the destination and forms a loop in the road until it finishes

the episode. The failure is partially due to the segmentation

error of the language instruction—the overall instruction is

segmented into 3 segments instead of 4. This causes confu-

sion for the matching modules. In both of the cases, we can

clearly see that the memory of the topological view of the

path is intuitive to interpret.
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We also present a video4 to demonstrate our task and

approach with more examples.

6 Conclusion

This work has proposed a new approach for language guided

automatic wayfinding in cities using spatial memory frame-

work and soft dual attention mechanism over language

descriptions. The main contribution of our work are: (a) an

effective method to create large-scale navigational instruc-

tions over long-range city environments; (b) a new dataset

with verbal instructions for 10, 714 navigational routes; (c)

a novel learning approach of integrating explicit memory

framework of remembering the traversed path, and soft

attention model over the language segments controlled by

Adaptive Computation Time LSTMs. Our method connects

two lines of research that have been less explored together so

far: mental formalization of verbal navigational instructions

(Tversky and Lee 1999; Michon and Denis 2001; Klippel

and Winter 2005) and training neural network agent for auto-

matic wayfindings (Anderson et al. 2018; Chen et al. 2019).

Experiments show that our model outperforms other methods

consistently.
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