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Abstract

Speaker diarization (answering ’who spoke when’) is a widely

researched subject within speech technology. Numerous exper-

iments have been run on datasets built from broadcast news,

meeting data, and call centers—the task sometimes appears

close to being solved. Much less work has begun to tackle

the hardest diarization task of all: spontaneous conversations in

real-world settings. Such diarization would be particularly use-

ful for studies of language acquisition, where researchers inves-

tigate the speech children produce and hear in their daily lives.

In this paper, we study audio gathered with a recorder worn by

small children as they went about their normal days. As a re-

sult, each child was exposed to different acoustic environments

with a multitude of background noises and a varying number of

adults and peers. The inconsistency of speech and noise within

and across samples poses a challenging task for speaker diariza-

tion systems, which we tackled via retraining and data augmen-

tation techniques. We further studied sources of structured vari-

ation across raw audio files, including the impact of speaker

type distribution, proportion of speech from children, and child

age on diarization performance. We discuss the extent to which

these findings might generalize to other samples of speech in

the wild.

Index Terms: speaker diarization, language acquisition, spon-

taneous speech, i-vectors

1. Introduction

At a glance, the problem of automatic, unsupervised speaker

diarization (deciding who is talking at a given time) appears to

be a solved task. For instance, in a 2012 review on meeting

recording diarization [1], the top-performing system achieved a

4% Diarization Error Rate (DER) for single distant microphone,

multi-talker settings. Such accurate diarization is also needed

for analyses of the messier acoustic environments characteristic

of our everyday language use. In particular, audio recordings

gathered with personal devices worn by small children have

enormous potential for shedding light on how children learn

language.

While it is obvious that typically developing children come

to speak their ambient language(s) effortlessly, it is less clear

how exactly this process comes about. Surely children learn

about language from what they hear, but what exactly is avail-

able in their speech environment for them to learn from? By

recording children’s at-home language environments, we can

inspect what children say and hear on an everyday basis [2].

In turn, we can better hypothesize about the learning mecha-

nisms that process this linguistic ‘input’ into full-fledged lin-

guistic knowledge. It is imperative to include geographically,

culturally, and linguistically diverse populations in this process

so that we capture the whole range of early language experi-

ences that language-learning children encounter [3]. Findings

in this domain also indirectly further efforts on language doc-

umentation, preservation, and revitalization, as well as inform

clinical applications.

Advances in recording technology have broadened our view

of children’s speech environments—we can now gather record-

ings that last whole days or weeks—and we can better appreci-

ate the diversity of activities and interactive environments that

make up children’s daily linguistic experience. An enormous

challenge now is how to extract useful information from these

recordings, which quickly accumulate to hundreds or thousands

of hours, and can therefore no longer simply be manually di-

arized and annotated for speech properties.

That said, the use of diarization with child audio remains

relatively rare. Over the years diarization systems have typi-

cally focused on broadcast news and telephone conversations

between adults with reasonably clean audio. Advances in sys-

tems have also been evaluated based on these datasets [4], and

only some diarization studies have been performed on chil-

dren’s speech (e.g, [5, 6])

Daylong child language recordings present a stimulating

next challenge for diarization systems. A typical day includes

variable background noise conditions as the child moves be-

tween various reverberant and dampened spaces inside and out-

side of their home (see Fig. 1). The recording devices used

are typically equipped with one or two omnidirectional micro-

phones. Among the many voices that may be captured over the

day, most come from relatives who often sound similar to each

other; much more similar than two speakers in an average busi-

ness meeting or clinical recording.

There is increasing interest in solving talker diarization in

these difficult daylong recordings. Using their patented record-

ing device, researchers associated with the LENATM Foundation

have gathered an extensive dataset of daylong recordings vary-

ing in child age and socio-economic status, and have developed

a set of algorithms to parse the audio (e.g., [7, 8, 9, 10]). Their

proprietary software extracts the recordings and processes them

as follows: It first extracts 36 mel frequency cepstral coeffi-

cients and their deltas in 25 ms windows every 10ms. It then an-

alyzes these features with an iterative system that performs joint

vocalization activity detection and talker diarization to break

the stream into uniform segments that are minimally .6 sec-

onds long. This process is performed with a Minimum Duration

Gaussian Mixture Model (MD-GMM) combined with dynamic

programming to find the sequences with maximum likelihood.
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Figure 1: Representative moment from a Mayan daylong

recording, captured via a mother’s chest-worn camera with a

fish-eye lens. The infant (dark blue) and seven of her family

members (light blue) take an afternoon break on their patio,

which is made of poured concrete (pink) and partly covered with

hanging clothes (yellow).

The MD-GMM model had been trained on over 150 hours of

recordings (30 minutes extracted from 309 daylong recordings,

gathered from as many American English-learning children)

that were segmented by professional transcribers, eventually re-

sulting in eight categories: Key Child, Other Child, Adult Male,

Adult Female, TV/other electronic sound, Noise, Silence, and

Overlapping sound (overlap of any two categories, e.g., Key

Child + Noise). In evaluating their system [11], they find 71–

86% agreement in terms of broad categories of “adult”, “child”,

“TV”, and “other”, the latter including all overlap regions. Sub-

sequent independent research has largely confirmed these high

levels of accuracy (e.g., [12, 13]).

Although their results are prima facie promising, further in-

dependent work is needed to improve some aspects of the cur-

rent system. First and foremost, the LENATM software is pro-

prietary and can neither be modified nor interrogated beyond

the descriptions found in published work. Moreover, it cannot

be applied to recordings that have not been collected with their

recording device (the LENATM DLP). Second, their approach

effectively removes regions with background noise, as well as

any lively spontaneous conversation that may contain a great

deal of overlap, thus biasing the initial sample towards “easy”

regions. In an attempt to keep their data comparable, other re-

searchers have tended to use the same sampling strategy, and we

thus have no reliable, generalizable estimate of global diariza-

tion performance in daylong recordings. Finally, the LENATM

Foundation and others working in their wake have made the

analytic choice of collapsing across all female adult speakers,

all male adult speakers, and all child speakers for most accu-

racy reports. This means that the LENATM-based reports are

not penalized for confusing the mother with other females, or

the target child with other children. Yet it would be very infor-

mative to provide accuracy estimates that take into account the

real identity of these different conversational partners.

1.1. Main goal

Child-centered audio recordings probably constitute the most

difficult, yet interesting, challenge facing current speaker di-

arization systems. Previous reports of speaker diarization per-

formance were based on a single system and may suffer from

some biases. Therefore, our main goals were to assess perfor-

mance of current off-the-shelf diarization systems in such diffi-

cult settings and to explore salient avenues to improve the per-

formance, e.g., via retraining.

2. Methods

2.1. Corpus

The third author has collected a large corpus of daylong record-

ings from children who are growing up in traditional, non-

Western, preindustrial societies [14, 15]. The present paper

focuses on 10 hours from that corpus which have been care-

fully annotated jointly by the third author (who is linguistically

trained) and a native speaker of the language who personally

knew the recorded families. Therefore, these data can be treated

as a high standard against which to compare the performance of

automated diarization tools.

The ∼10-hour at-home recordings come from 10 Tseltal

Mayan children between the ages of 2 and 36 months who live

with 3–11 other people (0–5 of whom are siblings). So both (a)

the rate and type of vocalizations made by the children and (b)

the number and types of other speakers present varies greatly

across children. For each child, there is one hour of annotated

audio, divided into 19 clips sliced out of the original recordings.

The audio scenes vary dramatically, even within a single child’s

clips, as the child moves from one activity to another over the

course of the day. The 19 annotated clips from each of the 10

recordings were selected in multiple ways: random sampling (9

x 5 minutes), or hand-selected moments of high talk or interac-

tion by the child (9 x 1 minutes + 1 x 6 minutes).

2.2. Processing and analyses

Our dataset included 203 clips, 8 of which did not have any

speech and were thus discarded. We randomly split the families

into training (N families = 5; N clips 17–21 per family, ages

2–36 months) and generalization (N families = 5; N clips 18–

21 per family, ages 4–32 months) data sets to ensure that the

training set covered the whole range of child ages.

The recording device had two omnidirectional micro-

phones, one slightly closer to the child’s mouth (∼20 vs. 22

centimeters). We extracted the channel closer to the child’s

mouth from the audio and extracted the speech intervals as the

segments where one or more people were speaking from the an-

notations. These two information sources were the input given

to the diarization system.

We used the i-vector based system using a PLDA scoring

metric [16], followed by clustering, to compute the diarization

error rate for each of the audio files. We used the Kaldi pipeline

to run the system [17]. Mel Cepstral Frequency Coefficient

(MFCC) features were extracted from the audio files with a win-

dow size of 25 ms and a stride of 10 ms. These features were

used to train the background model consisting of a 2048 mix-

ture component GMM. Following this the T-matrix was trained

and i-vectors were obtained. These i-vectors were obtained at

every 150 ms with a 75 ms stride for evaluation and for the data

used in training, we extract 300 ms i-vectors for every 10 s.

The i-vectors are of dimension 128. A PLDA scoring is applied

on these i-vectors to compute the similarity between each pair.

The i-vectors obtained from the training dataset (depending on

the training regime, as explained below) was used to train the

PLDA system after which the evaluation data i-vectors (always
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the Tseltal data) were scored. These scores were then clustered

using agglomerative hierarchical clustering to group all scores

belonging to individual speakers together. The stopping crite-

ria in the clustering stage is based on a threshold which is ob-

tained using unsupervised calibration by fitting a two mixture

GMM on the PLDA scores. This parameter proved to be an im-

portant factor during experimentation wherein we observed that

the DER values changed significantly on changing the calibra-

tion score.

We explored a variety of training regimes during our ex-

periments. The first dataset we chose for our analysis was

LibriSpeech [18], which is a collection of stories read aloud

by a number of different speakers in English. This corpus is

clean and free of any background noise or disturbances. Using

this as our baseline, we experimented with training on different

datasets, as follows.

Keeping in mind that the Tseltal dataset analyzed in this

paper is a noisy corpus—with many background sounds, ani-

mal sounds, adult speech (dominated by females), and sibling

speech in addition to the child’s own speech—we added the

AMI corpus [19] to the training set. The AMI corpus contains

recordings of meetings consisting of spontaneous speech with

a natural room reverberation and overlapping speech. Since

the AMI corpus is male dominated, to balance the gender ra-

tio we also used the Switchboard cellular dataset [20], a speech

corpus on mobile phone conversations. We picked out all con-

versations having at least one female talker taking place in ei-

ther an outdoor or indoor setting. To account for the child

speaking, we used the Paidologos dataset, which are laboratory

recordings of words in isolation spoken by children in English,

Japanese, Greek, and Cantonese [21, 22, 23, 24], available from

the CHILDES repository [25]. To simulate the Tseltal environ-

ment, we augmented this dataset with babble, reverb, and noise

[26].

3. Results

The average DER collapsing across all clips and all systems

was 48.2%, with a range between 0 and 86.2%. Anguera and

colleagues’ (2012) review [1] show an average DER between 4

and 32% for a range of systems applied to a varied set of meet-

ing recordings. Thus, the first conclusions may be that these

family-based recordings are indeed more challenging than the

meeting data that has been the focus of diarization attention in

the recent past. Overall, systems underestimated the number of

speakers when the audio files had a large number of annotated

talkers.

Manual inspection suggested that DER changed as a func-

tion of training regime at the clip level. For example, on one

file the DER was 48.9% when trained on LibriSpeech alone,

while the DER dropped to 19.2% when trained on the combi-

nation of AMI, augmented Paidologos, and Switchboard cellu-

lar. However, statistical inspection of performance across the

different training systems suggested that the impact of the train-

ing regime on performance was not statistically significant (all

p’s > .05), and only the threshold manipulation helped (all p’s

< .05), with gains against all other systems of about 6% DER

for the .7 threshold, and of about 8% DER for the .8 threshold.

These systems may be outperforming the others for the wrong

reason: the best-performing system estimates that there is only

one speaker for all clips.

We additionally observed that certain clips exhibited a very

consistent performance (i.e., a very low DER or very high DER)

regardless of the training dataset. This suggested that gaining

Figure 2: Illustration of speaker identity in the gold annota-

tion versus two of the systems’ output in a file yielding average

scores. Notice particularly the complexity in speaker overlap

and turn-taking in the gold (top row of annotation).

an overall insight on performance over all families and clips is

not as productive as analyses on each clip separately. We thus

explored variability in clip performance. We predicted that the

following would lead to better performance (lower DER):

• in recordings with older children, they and their same-age

peers will have more recognizable speech (closer to that

which the speech diarization systems have been trained on),

thus leading to higher performance with child age;

• longer turns, which would be easier to classify;

• fewer speakers, which reduces the chance of confusion errors;

• a higher proportion of adults, which is a better fit to data used

in the past;

• clips with more diverse speaker profiles, which are easier to

classify (i.e., clip with a child + female adult + male adult,

versus a clip with 3 children);

• clips with less speech (and thus random, over selected, clips),

since less speech means fewer opportunities for error.

We also hypothesize that further study on the scoring tech-

nique as well as the calibration methodology from the system

perspective could lead to an improvement in DER with the

current dataset. Therefore, we fit a linear regression predict-

ing DER from the best-performing system (trained on AMI,

the augmented Paidologos data, and the Switchboard; thresh-

old set at .8) from the child’s age, the average turn duration in

the clip, the number of people who spoke, their diversity (on a

three-point scale, counting the presence of female adults, male

adults, and children separately), the proportion of speakers who

were adults as compared to children, controlling for the family’s

ID. Results should be taken with a grain of salt since the data

violated equality of variance. This model was overall signifi-

cant: F(14,177) = 19.72, p < .001; and it explained a substan-

tial proportion of variance: R2
= .58. The overall number of

speakers, child age, average turn duration, whether the clip was

randomly or purposefully selected, and the family ID signifi-

cantly predicted diarization performance. Figure 3 shows that,

unsurprisingly, the system performs worse when more talkers

were present in the clip [β = 7.84 (0.81)]. Also as predicted,

longer turns led to lower error rates [β = -8.62 (4.34)]. How-

ever, counter to predictions, age was positively associated with

DER: clips from older children had higher error rates [β = -

0.54 (0.22)]). Also, clips that had been selected to have a greater

amount of speech or higher talker change rate in fact had lower

DER, i.e. higher performance [β = -9.12 (2.4)].

4. Discussion

Our findings confirm that daylong recordings of children’s nat-

ural language environments are incredibly challenging for cur-
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Figure 3: Diarization error rate as a function of the number of

speakers found in the gold human annotation. Each dot is a

clip, and a dot’s color indicates which of the 10 recordings it

came from.

rent diarization systems. Based on a variety of clips extracted

from daylong recordings, we estimate the DER from current

systems to be no lower than 40%. This contributes some much

needed unbiased estimations regarding the accuracy of auto-

matic diarization systems.

We had expected difficulties due to higher voice similarity,

more variable number of participants, shorter turn duration, and

more overlap than in previously studied meeting datasets. Al-

though the first two are probably true, at least in this dataset the

turn duration and level of overlap is comparable to that reported

for meetings achieving much better DERs. Indeed, Anguera

and colleagues’ (2012) review [1] estimates an average turn du-

ration of 1.4 seconds, with 7 to 16% overlap for meeting data

(on which 4% DER has been documented), whereas turns in

our data were an average of 1.1 seconds long with 12% over-

lap. Our regression analyses suggested that, while shorter turns

led to lower performance, overlap itself did not explain signif-

icant variance. Beyond these factors, the enormous difference

between the meeting accuracy (50% here versus minimally 4%

to 25% across a range of systems in meeting data [1]) indirectly

suggests that voice similarity and variability or talker number

pose a formidable challenge for current diarization systems.

While we could not test for voice similarity effects (beyond

broad classes of male/female adult and child, which was not

significant), our regression did confirm that a larger number of

talkers led to lower performance. Additionally, we found that

clips selected because they had a lot of child speech or active

verbal interaction between the child and others actually led to

higher performance than a random selection, contrary to our ex-

pectations based on the LENA work. Overall, we believe there

is a great deal more work to be carried out to understand which

factors are most difficult about daylong recordings, and how to

address these roadblocks.

Perhaps the most surprising finding is that training did not

help improve performance. This is far from obvious, as the

idea that in-domain data helps is almost a truism. Yet pre-

training on a corpus containing children’s voices, including

children’s voices augmented with noise, did not significantly

change DERs. And while we did manage to build a system

that outperformed the others, it did so by collapsing all speak-

ers onto one, which is conceptually unacceptable.

One may wonder whether some top-down information

could help raise performance. For instance, it would be easy to

provide systems with the number of family members. However,

the likelihood of each talking at a given time in the recording is

completely unknown. Almost every family provided clips with

the entire range of number of talkers for that family, so it is

unlikely that one will be able to constrain inferences based on

the composition of the family. A semi-supervised system that

provides annotators with a first classification (e.g., [27]) may,

however, be more useful.

Might our results generalize to other recordings “in the

wild”? All of our recordings were made in a rural, traditional

setting with (mainly) large families. Therefore, we believe that

the task we have tested here is harder than that which will be

encountered with recordings from typical Western middle-class

households. In an average household in the USA, there are 1–2

parents and 1–2 children, whereas the average household size in

the present sample is 7 people, with a range of 4 to 14. Further

work should revisit these questions with recordings that are not

centered on children. Indeed, a growing field of research is in-

vestigating the possibility of using adults’ speech as a potential

biomarker (e.g., [28]). We believe that adult-centered record-

ings will be, on average, less challenging than child-centered

ones, with difficulty levels increasing for certain neurological

conditions affecting speech production (e.g., aphasia).

5. Conclusions

In sum, this paper provides the first systematic assessment of

speaker diarization of audio recordings collected as children go

about their normal day. We find that performance is much lower

than that found in previously “difficult” data, notably multi-

talker meetings. A main cause for errors is found in marked

misestimations of talker number, with increased difficulty when

more talkers are present, even after controlling for turn duration.
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