
Linköping Studies in Science and Technology

Dissertation No. 937

TALplanner
and Other Extensions to Temporal Action Logic

by

Jonas Kvarnström

Department of Computer and Information Science

Linköpings universitet

SE-581 83 Linköping, Sweden

Linköping 2005

Parts of this doctoral thesis appear in other publications:

Doherty, P., & Kvarnström, J. (2001). TALplanner: A temporal logic-based planner. AI

Magazine, 22(3), 95–102. See also ❤tt♣✿✴✴✇✇✇✳❛❛❛✐✳♦r❣✴▲✐❜r❛r②✴▼❛❣❛③✐♥❡✴❱♦❧✷✷✴✷✷✲✵✸✴

✈♦❧✷✷✲✵✸✳❤t♠❧.

Doherty, P., & Kvarnström, J. (1999). TALplanner: An empirical investigation of a temporal

logic-based forward chaining planner. In Dixon, C., & Fisher, M. (Eds.), Proceedings

of the Sixth International Workshop on Temporal Representation and Reasoning (TIME’99),

pp. 47–54, Orlando, Florida, USA. IEEE Computer Society Press. Available at ❢t♣✿

✴✴❢t♣✳✐❞❛✳❧✐✉✳s❡✴♣✉❜✴❧❛❜s✴❦♣❧❛❜✴♣❡♦♣❧❡✴♣❛t❞♦✴t✐♠❡✾✾✲✜♥❛❧✳♣s✳❣③.

Doherty, P., & Kvarnström, J. (1998). Tackling the qualification problem using fluent depen-

dency constraints: Preliminary report. In Khatib, L., & Morris, R. (Eds.), Proceedings of

the Fifth International Workshop on Temporal Representation and Reasoning (TIME-98), pp.

97–104, Los Alamitos, California, USA. IEEE Computer Society Press.

Gustafsson, J., & Kvarnström, J. (2001). Elaboration tolerance through object-orientation.

In Proceedings of the Fifth Symposium on Logical Formalizations of Commonsense Rea-

soning (Common Sense-2001). Available at ❤tt♣✿✴✴✇✇✇✳❝s✳♥②✉✳❡❞✉✴❢❛❝✉❧t②✴❞❛✈✐s❡✴

❝♦♠♠♦♥s❡♥s❡✵✶✴✜♥❛❧✴❦✈❛r♥str♦♠✳♣s.

Gustafsson, J., & Kvarnström, J. (2004). Elaboration tolerance through object-orientation.

Artificial Intelligence, 153, 239–285. c© 2003 Elsevier B. V.

Kvarnström, J. (2002). Applying domain analysis techniques for domain-dependent con-

trol in TALplanner. In Ghallab, M., Hertzberg, J., & Traverso, P. (Eds.), Proceedings of

the Sixth International Conference on Artificial Intelligence Planning and Scheduling (AIPS-

2002), pp. 101–110, Toulouse, France. AAAI Press, Menlo Park, California, USA.

Kvarnström, J., & Doherty, P. (2000a). Tackling the qualification problem using fluent de-

pendency constraints. Computational Intelligence, 16(2), 169–209. c© 2000 Blackwell

Publishers, 350 Main Street, Malden, MA 02148, USA, and 108 Cowley Road, Oxford,

OX4 1JF, UK.

Kvarnström, J., & Doherty, P. (2000b). TALplanner: A temporal logic based forward chaining

planner. Annals of Mathematics and Artificial Intelligence, 30, 119–169.

Kvarnström, J., Doherty, P., & Haslum, P. (2000). Extending TALplanner with concurrency

and resources. In Horn, W. (Ed.), Proceedings of the Fourteenth European Conference on

Artificial Intelligence (ECAI-2000), Frontiers in Artificial Intelligence and Applications,

pp. 501–505, Berlin, Germany. IOS Press, The Netherlands. Available at ❢t♣✿✴✴❢t♣✳✐❞❛✳

❧✐✉✳s❡✴♣✉❜✴❧❛❜s✴❦♣❧❛❜✴♣❡♦♣❧❡✴♣❛t❞♦✴✇✇✇✲❡❝❛✐✳♣s✳❣③.

Kvarnström, J., & Magnusson, M. (2003). TALplanner in the Third International Planning

Competition: Extensions and control rules. Journal of Artificial Intelligence Research, 20,

343–377. Available at ❤tt♣✿✴✴✇✇✇✳❥❛✐r✳♦r❣✴❝♦♥t❡♥ts✴✈✷✵✳❤t♠❧.

Abstract

Though the exact definition of the boundary between intelligent and non-intelligent

artifacts has been a subject of much debate, one aspect of intelligence that many

would deem essential is deliberation: Rather than reacting “instinctively” to its en-

vironment, an intelligent system should also be capable of reasoning about it, rea-

soning about the effects of actions performed by itself and others, and creating and

executing plans, that is, determining which actions to perform in order to achieve

certain goals. True deliberation is a complex topic, requiring support from several

different sub-fields of artificial intelligence. The work presented in this thesis spans

two of these partially overlapping fields, beginning with reasoning about action and

change and eventually moving over towards planning.

The qualification problem relates to the difficulties inherent in providing, for

each action available to an agent, an exhaustive list of all qualifications to the action,

that is, all the conditions that may prevent this action from being executed in the

intended manner. The first contribution of this thesis is a framework for modeling

qualifications in Temporal Action Logic (TAL).

As research on reasoning about action and change proceeds, increasingly com-

plex and interconnected domains are modeled in increasingly greater detail. Un-

less the resulting models are structured consistently and coherently, they will be

prohibitively difficult to maintain. The second contribution of this thesis is a frame-

work for structuring TAL domains using object-oriented concepts.

Finally, the second half of the thesis is dedicated to the task of planning. TLPlan

pioneered the idea of using domain-specific control knowledge in a temporal logic

to constrain the search space of a forward-chaining planner. We develop a new

planner called TALplanner, based on the same idea but with several new exten-

sions, some of which are enabled by fundamental differences in the way the plan-

ner verifies that a plan satisfies control formulas. TALplanner generates concur-

rent plans and can take resource constraints into account. The planner also applies

several new automated domain analysis techniques to control formulas, further in-

creasing performance by orders of magnitude for many problem domains.

Acknowledgements

Although I had always planned to leave the university after my undergraduate

studies, some of the last courses I took served to pique my interest in research and

made me consider applying to become a graduate student. One of them was a

course in Knowledge Representation, given by Patrick Doherty, who later became

my supervisor and main thesis advisor. I would like to thank him both for (un-

knowingly) helping to lead me towards this path and for his help and support over

the years.

I am also grateful to all of my colleagues in the AIICS division for a great deal

of help and inspiration. I would especially like to thank Joakim Gustafsson, with

whom I have co-authored one of the first articles in this thesis. Working in the

same room during the first part of my graduate studies led to many interesting

discussions, both strictly research-related and otherwise. At a later stage, Patrik

Haslum and Martin Magnusson co-authored two articles on the subject of planning.

Once again, this lead to some very fruitful discussions, without which this thesis

would probably have been quite different.

Finally, I would like to thank my mother and father, and my friends at work and

outside work, for their support and encouragement during these years. I couldn’t

have done this without you.

This work has been supported in part by the Wallenberg Foundation, the Swedish Research Council

for Engineering Sciences (TFR) and the ECSEL / ENSYM graduate studies program.

Contents

I Introduction and Background 1

1 Introduction 3
1.1 Background: Reasoning about Action and Change 3

1.2 TAL and the Qualification Problem . 4

1.3 Growing Pains: Modeling Complex Domains 5

1.4 A New Task: Moving towards Planning 6

1.5 Brief Contents . 8

2 TAL: Temporal Action Logics 9
2.1 History . 9

2.2 Basic Concepts . 13

2.3 The TAL-C Surface Language L(ND) 14

2.4 The TAL-C Base Language L(FL) . 22

II Extensions to TAL 29

3 Tackling the Qualification Problem using Fluent Dependency Constraints 31
3.1 Abstract . 31

3.2 Introduction . 32

3.3 The Qualification Problem . 34

3.4 The Russian Airplane Hijack Scenario 42

3.5 TAL-Q: Temporal Action Logic with Qualification 43

3.6 Representing the RAH Scenario . 43

3.7 Representing the Qualification Problem in TAL-Q 46

3.8 Additional Aspects of the Qualification Problem 50

3.9 Alternative Approaches to the Qualification Problem 54

3.10 Additional Examples . 56

3.11 Comparisons . 59

3.12 Conclusion . 65

i

ii Contents

4 Elaboration Tolerance through Object-Orientation 71
4.1 Introduction . 71

4.2 The TAL family and the TAL-C Logic 73

4.3 Basic Object-Oriented Modeling in TAL-C 73

4.4 Inheritance and Overriding . 79

4.5 Additional Object-Oriented Concepts 81

4.6 Elaboration Tolerance through Object-Orientation 83

4.7 Missionaries and Cannibals . 84

4.8 Elaborations of the MCP Domain . 90

4.9 Solving the Missionaries and Cannibals Problems 102

4.10 Traffic World . 109

4.11 Related Work . 109

4.12 Conclusions . 110

4.13 Acknowledgements . 110

III TALplanner 111

5 Planning 113
5.1 Introduction to Planning . 115

5.2 Forward-Chaining Planning . 128

5.3 Blockhead, TLPlan, and Control Formulas 132

6 TALplanner 139
6.1 An Overview of TALplanner . 139

6.2 Representing Planning Problems in TAL 142

6.3 The Basic TALplanner Algorithm . 163

6.4 TALplanner with TAL-based Control Rules 167

6.5 Tense Control Rules and Progression 179

6.6 Completeness, Control and the Definition of Plans 184

6.7 Evaluation vs Progression: Initial Benchmark Tests 186

7 Concurrency and Resources 191
7.1 Concurrent TALplanner . 192

7.2 Preventing Interference in Concurrent Plans 195

7.3 Modeling Limited Resources . 201

7.4 Concurrency, Resources and Cycle Checking 207

7.5 Concurrent TALplanner . 208

8 Domain Analysis Techniques for Domain-Dependent Control 211
8.1 General Optimization Framework . 215

8.2 Equivalence Optimizations . 216

8.3 Context-Dependent Optimizations . 217

8.4 Using State Invariants . 220

Contents iii

8.5 Eliminating Quantifiers . 222

8.6 Generating Precondition Control . 230

8.7 Empirical Benchmark Tests . 231

8.8 Related Work . 237

9 Planning Competitions 239
9.1 International Planning Competition 2000 240

9.2 International Planning Competition 2002 246

10 Discussion 281
10.1 TALplanner and the WITAS Project . 281

10.2 Hand-Tailored versus Fully Automated Planning 282

10.3 Using Control Rules . 284

10.4 Using TAL in TALplanner . 285

10.5 Future Work . 287

10.6 Acknowledgments . 288

Bibliography 289

iv Contents

Part I

Introduction and Background

1

Chapter 1
Introduction

Today, there is an abundance of “intelligent” consumer electronics available in any

electronics store. My new digital camera has “artificial intelligence auto-focus”, de-

termining automatically how to adjust the focus settings so that the most relevant

parts of a picture are in focus. My twelve-year-old stereo system has an “AI” but-

ton, which determines the best order in which to copy tracks from a CD to a tape,

and believe it or not, my laptop has an “intelligent battery pack”.

But ever since its inception in the 1950s, the field of artificial intelligence (AI) has

always aimed much higher than this. Though the exact definition of the boundary

between intelligent and non-intelligent artifacts has been a subject of much debate,

one aspect of intelligence that many would deem essential is deliberation: An intelli-

gent system should not only be able to react “instinctively” to its environment, but

should also be capable of reasoning about it, reasoning about the effects of actions

performed by itself and others within this environment, and creating and execut-

ing plans, that is, determining which actions to perform in order to achieve certain

goals. Sadly, this ability appears to be missing from my laptop battery.

True deliberation is a complex topic, requiring support from several different

sub-fields of AI. The work presented in this thesis spans two of these partially over-

lapping fields, beginning with reasoning about action and change (RAC) and eventu-

ally moving over towards planning.

1.1 Background: Reasoning about Action and Change

The field of reasoning about action and change (RAC) is concerned with reason-

ing about dynamic worlds, where properties of the world change over time due

to actions being invoked by the reasoner (and possibly others) as well as due to

processes taking place in the world. The tasks a reasoner might be expected to

perform in such a domain include prediction, determining what will happen if cer-

3

4 1.2. TAL and the Qualification Problem

tain actions are performed, and postdiction, inferring facts about the world at earlier

timepoints given some knowledge of what did happen as a result of certain actions

being taken. Planning, determining which actions to perform in order to achieve

a given goal, would also seem to fit into the boundaries of reasoning about action

and change but is nevertheless generally considered to be a separate research area.

Performing these reasoning tasks naturally requires some information about the

world, and this information should preferably be represented in some principled

and structured manner, in a form amenable to automated reasoning. Thus, any for-

malism for reasoning about action and change is generally developed concurrently

with a formalism for modeling a dynamic domain and the actions that can be per-

formed therein, and there is considerable overlap between this field and the area of

knowledge representation (KR).

A large number of different approaches to modeling and reasoning about ac-

tions have been proposed in the literature, some of them applicable only to very

limited domains and some closer to being suitable for real world problems.

Many researchers, ever since McCarthy (1959) wrote about programs with com-

mon sense, have used logic as the main means for representing knowledge as well

as for actually reasoning about the facts that are known to be true and the actions

that could be performed to change these facts. Two of the main advantages of this

approach are that logic provides a succinct means for describing incomplete knowl-

edge about one’s environment, which is certainly necessary in any real-world sce-

nario, and that there is a well-defined formal semantics, which is a prerequisite for

being able to trust the conclusions that can be drawn from a model of a domain.

As for any other approach to knowledge representation and reasoning, logic-

based approaches naturally have their own set of difficulties that need to be dealt

with and overcome – otherwise, KR and RAC would no longer be active research

areas. Some of these difficulties are representational in nature, related to the prob-

lem of finding compact and comprehensible ways of describing certain kinds of

knowledge. This tends to lead to extending the power of a logic, for example by

going from first-order to second-order logic in order to be able to use techniques

such as circumscription (McCarthy, 1980). Other problems are computational, since

inference in a first-order or higher-order logic is not necessarily the most efficient

way of performing a task, which often leads to attempts to find more restricted log-

ics that are nevertheless powerful enough for the task at hand. Fortunately there

has been steady progress towards solving many of these problems, and the applica-

bility and efficiency of the logics and reasoning mechanisms being used is continu-

ously being improved.

1.2 TAL and the Qualification Problem

Some of the more powerful logics currently used in the area of reasoning about ac-

tion and change belong to the Temporal Action Logics (TAL) family. These logics

Chapter 1. Introduction 5

have been developed specifically for reasoning about action and change, and there-

fore provide explicit representations for time, in order to reason about dynamic

aspects of a domain, as well as fluents (state variables whose values change over

time), actions, and other entities.

TAL originates in a logic called PMON (Doherty, 1994), which was consider-

ably less complex than current TAL logics but nevertheless provided an unusually

robust and flexible solution to the frame problem (McCarthy & Hayes, 1969) – essen-

tially, how to succinctly specify all the facts about the world that are not changed

by each action. Extensions to PMON lead to the logic PMON-RC (Gustafsson &

Doherty, 1996), which provided one solution to the representational aspect of the

ramification problem (named by Finger, 1987) – the problem that any action can have

many side effects, some of which may trigger other side effects in finite or infinite

chains, and there should be a modular way of describing such indirect effects rather

than specifying them in a monolithic action definition.

Further extensions included the logic PMON+ (Doherty, 1996), later renamed

TAL 1.0, and the logic TAL-C (Chapter 2; Karlsson & Gustafsson, 1999), which

introduced support for concurrent actions. But even with the extensions made in

these logics, only two of the three standard problems in reasoning about action

and change using logic had been tackled within the PMON/TAL framework: The

qualification problem had still been left unexplored.

The qualification problem relates to the fact that the set of preconditions for an

action is usually far larger than we would intuitively think. Some of these condi-

tions would appear to be quite natural, such as the need to have the right car key

in order to start a car, and are best modeled as preconditions within the main ac-

tion specification. Some are less obvious, such as the fact that there should not be

a potato in the tailpipe, that no-one should have put sugar in the gasoline and that

the engine should not have been removed. If such conditions need to be modeled

explicitly, they should be specified as separate constraints rather than as part of a

monolithic action specification, in order to improve modularity.

Solving this aspect of the qualification problem in the context of TAL was the

focus of an article coauthored with Patrick Doherty (Doherty & Kvarnström, 1998;

Kvarnström & Doherty, 2000a). This article forms the first topic of this thesis (Chap-

ter 3).

1.3 Growing Pains: Modeling Complex Domains

At this stage in the evolution of TAL, it was possible to model far more complex

domains than in the original PMON logic that had been used a few years earlier.

Instead of tiny sequential toy scenarios that could be formalized in three short logic

formulas, we had now modeled a number of medium-sized domains with indirect

effects, qualified actions, and concurrency, formalized in dozens of TAL formulas.

This had worked out very well, and it was time to find new, even more complex

6 1.4. A New Task: Moving towards Planning

domains to be modeled in order to truly test the applicability and scalability of the

TAL logics.

Though this was a very promising development, it was quickly becoming clear

that the old ways of structuring domains according to statement type – all action

definitions in one section, all indirect effects in another section, and so on – were

no longer sufficient when domains grew in size and complexity. It was all too easy

to end up with the logical equivalent of “spaghetti code”, making it difficult to

verify the correctness of the domain descriptions and to reuse suitable parts from

one domain when modeling new but similar domains. In order to avoid this, it was

necessary to find a more principled modeling strategy.

Gustafsson started working on this problem and decided to apply object-orien-

ted modeling techniques to TAL. After some time I also got involved in the ef-

fort, and our work resulted in a paper (Gustafsson & Kvarnström, 2001) describing

how applying object-orientation to reasoning about action and change could lead

to more structured models exhibiting a higher degree of elaboration tolerance (Mc-

Carthy, 1998). An extended version of this paper was accepted for publication in

Artificial Intelligence (Gustafsson & Kvarnström, 2004), and forms the second topic

of this thesis.

1.4 A New Task: Moving towards Planning

Even before the object-oriented extensions were developed, the TAL logics had

grown quite powerful. But despite this, they could in themselves only be used for

reasoning about what would happen given a fixed set of actions to be performed, or

what had happened given a fixed set of actions that had been performed. These rea-

soning tasks are important, but so is the ability to determine which actions should

be performed in order to achieve a certain goal within a given environment – in

other words, the ability to create plans.

Our first concrete application for planning was found at the end of 1998 in the

WITAS project (Doherty, Haslum, Heintz, Merz, Persson, & Wingman, 2004; Do-

herty, Granlund, Kuchcinski, Sandewall, Nordberg, Skarman, & Wiklund, 2000;

Doherty, 2004; Heintz & Doherty, 2004b; Merz, 2004), a research project aimed at

developing an autonomous UAV (an unmanned aerial vehicle, in this case a heli-

copter). This UAV would be able to fly and navigate autonomously, and would

be able to perform a number of different tasks using its onboard computer and

various sensors mounted on the platform, including delivering packages, tracking

and following cars and other vehicles, detecting conventional and unconventional

(possibly dangerous) maneuvers performed by vehicles, and assisting emergency

vehicles in finding the best path to their destination.

The software running on board the UAV would include image recognition sys-

tems, geographical information systems, and newly developed helicopter control

software handling all the intricacies of flying a helicopter in varying environments.

Chapter 1. Introduction 7

It would also include numerous high-level deliberative systems, supported by a

path planner (Pettersson, 2003; Pettersson & Doherty, 2004) finding paths around

obstacles and most likely also an action planner generating action sequences for

various tasks to be performed by the helicopter. Unfortunately none of the plan-

ners available at the time appeared to be completely suitable for this project. Many

planners were unable to handle operators with complex preconditions and condi-

tional effects. Most could not generate true concurrent plans, where the execution

intervals of two operators can overlap completely or partially, which would be re-

quired in order to take proper advantage of the parallelism inherent in the domain.

Despite a focus on efficiency, and despite significant progress being made in the

field, most algorithms that were available at the time did not appear to be effi-

cient enough to be run in real time on board an autonomous helicopter, requiring

minutes to solve even rather small problem instances from common benchmark

domains. And finally, despite the fact that the TAL logics were developed specif-

ically for reasoning about action and change, making them eminently suitable for

use in a planner, there were no planners based on the TAL semantics for actions.

This would have facilitated interfacing the planner to other parts of the higher level

deliberative systems on board the UAV, where it was envisioned that TAL would

be used as a modeling language for the UAV domain.

As a first step towards developing a planner for the UAV domain, we wanted

to take an existing planning algorithm and adapt it to the use of TAL, creating a

new implementation that supported a limited subset of the TAL syntax and seman-

tics and then integrating this implementation with the existing tools for TAL. This

prototype would be limited to sequential plans and would not necessarily be very

efficient, but it would nevertheless provide a way of learning more about the state

of the art in planning, about the difficulties specific to integrating a planner with

TAL, and about the requirements a planner would need to satisfy in order to be

useful in the project. After this prototype was finished, it would be time to con-

sider whether the initial approach was suitable for our needs or whether another

planning paradigm would perhaps be more amenable to being used in the project.

One planning algorithm which seemed quite interesting was TLPlan (Bacchus

& Kabanza, 1996b, 2000), which used a forward-chaining search technique with a

twist: A set of temporal logic formulas could be used to constrain the plans that

were generated, allowing users to guide the planner towards the goal in a way that

could increase planning efficiency by several orders of magnitude for a number

of common benchmark domains. This was not the first planner to allow users to

specify control information, but it did so in a flexible and rather intuitive manner,

and the use of a temporal logic for control would be quite compatible with the

modeling of actions and planning domains in a temporal action logic such as TAL.

It seemed reasonable to believe that much if not all of the efficiency gains that

were possible through the additional pruning would carry over to the UAV plan-

ning domain. These efficiency gains would be extremely significant given the na-

ture of the UAV project, and would be well worth the additional effort that would

8 1.5. Brief Contents

have to be spent when creating suitable domain-specific control rules, making the

TLPlan approach a prime candidate for use in the project. Another advantage of

this approach was that it was reasonably expressive – and although TLPlan itself

did not support all the expressivity that would be required for the UAV project,

its forward-chaining nature meant that it would most likely be feasible to develop

a variation of the planner that would support concurrency, metric time and other

desirable extensions while staying within the basic framework of forward-chaining

with control rules. Consequently, we decided to use this framework as the basis for

a new planner: TALplanner.

Adapting the idea of using control rules to TAL was not too difficult, and since

it was possible to reuse some code from VITAL (Kvarnström, 2005), a tool for visu-

alizing and reasoning about domain models formalized in TAL, the first phase of

the project took only a couple of months. To our surprise, the new prototype TAL-

planner was also considerably faster than TLPlan, though given that the high-level

algorithms were very similar in this version, this would mainly have to be due to

low-level algorithms (for state storage and formula evaluation) and differences in

implementation.

After this initial prototype was evaluated, it was decided that the TALplanner

project should continue, and from this point in time TALplanner has developed

independently from TLPlan. A number of extensions have been developed, in-

cluding both increases in expressivity, support for concurrency and resources, and

efficiency improvements through optimizations as well as new formula analysis

techniques developed specifically for TALplanner. Most of the extensions have

been published in a number of papers and articles (Doherty & Kvarnström, 1999;

Kvarnström & Doherty, 2000b; Kvarnström, Doherty, & Haslum, 2000; Doherty &

Kvarnström, 2001; Kvarnström, 2002; Kvarnström & Magnusson, 2003), and these

form the basis for a new, updated and integrated description of TALplanner in the

final part of this thesis.

1.5 Brief Contents

The first part of this thesis mainly provides some background for my work. It

consists of the introduction you have just read together with a chapter describing

the PMON and TAL logics and their evolution over the years (Chapter 2).

The second part of the thesis contains two chapters related to the use of TAL in

reasoning about action and change. Chapter 3 contains a journal article on tackling

the qualification problem in TAL, while Chapter 4 contains an article on achieving

elaboration tolerance through object-oriented modeling in TAL.

Finally, the third part of the thesis (Chapters 5 through 10) describes the current

version of TALplanner.

Chapter 2
TAL: Temporal Action Logics

Logic is often used as the main means for reasoning about actions and the way they

affect the environment in which the reasoner is operating. This chapter introduces

Temporal Action Logics (TAL), one of several frameworks used for reasoning about

action and change in logic. Though no new results will be presented in this chapter,

understanding TAL will be important when reading other parts of this thesis.

2.1 History

TAL is not a single logic, but a family of logics. Some of these logics are exten-

sions to older versions, while others branch out to provide alternative approaches

to solving particular types of reasoning problems, often being incorporated into the

main branch of the TAL development tree after having proven their usefulness.

The logic which will be used in much of this thesis is called TAL-C. Before defin-

ing TAL-C, though, we will take a look at the history that led to the development

of the TAL logics.

2.1.1 The Beginning

In the beginning, there was chaos.

To be more exact (and somewhat less dramatic), quite a few logics for reasoning

about action and change have been proposed over the years, but for a long time

there was no principled formal method for determining whether a logic always

yielded the intended results.

Given a (possibly partial) description of a world and the actions taking place in

that world, one would like to have some kind of formal guarantee that the conclu-

sions that can be drawn from that description, the facts that can be inferred from

that logical theory, are sound and preferably also complete. Proving this might

9

10 2.1. History

be reasonably straight-forward for an ordinary monotonic first order logic, where

there is more or less universal agreement on what soundness and completeness

means, but a logic for reasoning about action and change is usually expected to

be non-monotonic. While adding new facts to a theory in a monotonic logic al-

ways extends the set of valid conclusions that should be drawn from this theory,

non-monotonic logics are able to “jump to conclusions”, and adding new facts may

invalidate some previous conclusions. This leads to the question of exactly what

conclusions should be jumped to, and when they should be retracted.

For example, non-monotonic inferences are used in many solutions to the frame

problem (McCarthy & Hayes, 1969), the problem that when you formally define

what happens when you perform an action (such as moving a box from A to B),

you only want to specify the facts that will be changed (the box will now be at

location B) and not all the myriad facts that will not be changed (the box will not

change color, other boxes will not move, the speed of the car going by outside will

not be affected, and so on). A logic for reasoning about action and change should

automatically infer, or jump to the conclusion, that the only actions that occur are

those that are explicitly specified and that all facts that are not explicitly stated to

change at any given point in time will indeed remain unchanged – but if a new

action is added to the theory, some of these conclusions will have to be withdrawn.

For example, if an action is added that paints a block red, it should no longer be

possible to conclude that no blocks ever change colors. This non-monotonicity,

where previous conclusions are no longer valid when new facts are added, renders

the classical definition of soundness for first-order logic useless.

Without a suitable formal framework providing a definition of what should be

entailed by a theory, logics could only be tested against a researcher’s intuitive

idea of how they should work. This was usually done with the help of a small

set of benchmark examples for which the logic did yield the intended conclusions.

Unfortunately logic sometimes does not behave intuitively, and now and then new

problem instances were found for which some existing logics gave some rather

surprising results. For example, some logics had a partial solution to the frame

problem that initially appeared correct but would allow you to infer that if you

load a gun, wait, and shoot, the gun might magically become unloaded during the

waiting action (for some reason these benchmark tests are often quite violent). This

scenario is also known as the Yale Shooting Problem (Hanks & McDermott, 1986).

Once such a deficiency was found in a logic, the logic might have to be dis-

carded. Even if the logic could be patched to handle the new test, the presence of

one flaw indicated that there could still be others waiting to be found, making it

difficult to completely trust any of the logics to provide the intended results.

2.1.2 Features and Fluents

In his book Features and Fluents (1994), Sandewall developed a formal framework

for assessing the correctness (soundness and completeness) of a logic for reasoning

Chapter 2. TAL: Temporal Action Logics 11

about action and change.

The events taking place in the Yale Shooting Problem could be seen as an action

scenario, a kind of story line or plot that tells us what has happened or what will

happen. Like other approaches to reasoning about action and change using logic,

the Features and Fluents framework provides a way of formally describing such

scenarios. An action scenario description contains a set of observations of facts that

hold at various points in time (the gun is not loaded in the initial state at time 0),

together with a generic definition of actions that can be performed (the ❋✐r❡ action

means that if the gun is loaded when the action is invoked, the turkey will be dead

at the end of the action) and a specification of which actions do in fact occur (❋✐r❡

occurs between time 5 and time 7). Action scenario descriptions are sometimes

called scenario descriptions or narratives.

Reasoning problems were then classified according to their ontological and epis-

temological characteristics.

The ontological characteristics relates to the structure of the (abstract) world an

agent is reasoning about, and specifies properties such as whether inertia can be

assumed (that is, whether facts only change when explicitly caused to change),

whether surprises can occur, whether actions can be performed concurrently, and

whether effects of actions can be delayed. Note that explicitly specifying these char-

acteristics often provides additional information about the world in which the sce-

nario is taking place, information that cannot necessarily be inferred from the action

scenario description itself.

The epistemological characteristics specifies constraints on the knowledge pro-

vided to the agent by the world, such as whether the agent knows all actions that

are performed, whether all preconditions for being able to execute a given action

are explicitly known to the agent, whether it knows all effects of all actions, and

whether it has complete knowledge about the initial state.

Sandewall then defined the exact conclusions that a logic should be able to pro-

duce from a reasoning problem belonging to a number of such classes of character-

istics. A set of preferential entailment methods1 were developed, many of which

corresponded directly to the behavior of existing logics for reasoning about action

and change. These preferential entailment methods were then analyzed, giving up-

per and lower bounds in terms of the classes of reasoning problems for which they

produced exactly the intended conclusions.

PMON, Pointwise Minimization of Occlusion with Nochange premises, was

one of the few preferential entailment methods that were assessed correct for the

K–IA class of action scenario descriptions, where K is an epistemological char-

acteristics stating approximately that explicit, correct and accurate knowledge is

provided (with no requirements on complete knowledge in the initial state and no

restrictions on knowledge about other states), and IA is an ontological character-

1Preferential entailment reduces the set of classical models of a theory by only retaining those models

that are minimal according to a given preference relation, a strict partial order over logical interpreta-

tions (Shoham, 1987).

12 2.1. History

istics stating approximately that discrete integer time is used together with plain

inertia (without surprises or other complicating factors). Though ramifications and

qualifications were not allowed in K–IA, the class is in fact quite broad, permitting

the use of conditional effects, non-deterministic effects, and incomplete specifica-

tion of states and the timing of actions.

2.1.3 PMON and TAL

While the original PMON was a preferential entailment method, Doherty later de-

veloped an equivalent classical logic, with a circumscription axiom capturing the

PMON definition of preferential entailment (Doherty, 1994; Doherty & Łukaszewicz,

1994). This new logic is also called PMON, and uses two languages for repre-

senting and reasoning about narratives. The surface language L(SD), Language

for Scenario Descriptions, provides a convenient high-level notation for describing

narratives, and can be seen as a set of macros easily translated into the base lan-

guage L(FL), which was initially a many-sorted first-order language and was later

altered to be an order-sorted2 first-order language. The L(SD) language was later

renamed to L(ND), Language for Narrative Descriptions.

Though the circumscription axiom was a second-order formula, PMON action

definitions were structured in a way that guaranteed the possibility of using quan-

tifier elimination techniques to reduce the axiom to a first-order formula, enabling

the use of standard first-order theorem proving techniques to reason about PMON

narratives.

The original PMON logic was further extended and generalized in several steps,

while still retaining the use of the original base L(FL) together with the possibility

to reduce circumscribed narratives to first-order logic. Although the extended log-

ics belong to what we now call the TAL family, each is essentially an incremental

addition to the base logic PMON.

PMON-RC, proposed by Gustafsson and Doherty (1996), provides a solution to

the ramification problem for a broad, but as yet unassessed class of action scenarios.

The main idea is the addition of a new statement type for causal constraints, where

changes taking place in the world can automatically trigger new changes at the

same timepoint or at a specified delay from the original change. The solution is

very fine-grained in the sense that one can easily encode dependencies between

individual objects in the domain, work with both boolean and non-boolean fluents

and represent both Markovian and non-Markovian dependencies (Giunchiglia &

Lifschitz, 1995). PMON-RC also correctly handles chains of side effects.

PMON+, developed by Doherty (1996), is an extended version of the original

PMON logic incorporating the changes made in PMON-RC together with addi-

tional extensions. This logic was later renamed TAL 1.0.

2Essentially, an order-sorted language allows the use of sub-sorts; for example, car and bicyclemay

be sub-sorts of the vehicle sort.

Chapter 2. TAL: Temporal Action Logics 13

TAL-C, proposed by Karlsson and Gustafsson (1999), uses fluent dependency

constraints (an extended form of causal constraints) as a basis for representing con-

current actions. A number of phenomena related to action concurrency such as

interference between one action’s effects and another’s execution, bounds on con-

currency, and conflicting, synergistic, and cumulative effects of concurrent actions

are supported.

TAL-C has been used as the basis for several articles in this thesis. This logic

will be described below in sufficient detail for understanding those articles, omit-

ting some details regarding type structures and constraints on sorts in order to

improve readability. We refer the reader to Karlsson and Gustafsson (1999) and

Doherty, Gustafsson, Karlsson, and Kvarnström (1998) for a complete definition of

this logic and to Doherty (1994), Doherty and Łukaszewicz (1994) and Gustafsson

and Doherty (1996) for further background information and descriptions of earlier

logics in the TAL family.

2.2 Basic Concepts

We assume there is an agent interested in reasoning about a specific world. This

world might be formally defined, or it might be the “real world”, in which case the

agent can only reason about a formally defined abstraction of the real world. In

either case, it is assumed that the world is dynamic, in the sense that the various

properties or features of the world can change over time.

The formal version of the Yale Shooting Problem could be seen as an abstraction

of a real shooting situation, where the only properties being modeled are ❧♦❛❞❡❞

and ❛❧✐✈❡, two simple boolean features representing whether the gun is loaded and

whether the turkey is alive, respectively.

The TAL framework also permits the use of multiple value domains, which can be

used for modeling different types of objects that might occur in the world which is

being modeled. For example, the well-known blocks world contains blocks that can

be stacked on top of each other. The blocks world can be modeled using a value

domain for blocks, containing values such as A, B and C, together with features

such as ♦♥(block1, block2), which holds iff block1 is on top of block2, and ❝❧❡❛r(block),

which holds iff there is no block on top of the given block. Of course, values can

also be used to represent properties of objects rather than the objects themselves.

For example, if the color of each block should be modeled, then this could be done

using a value domain for colors containing values such as red, green and blue,

together with a color-valued (non-boolean) feature ❝♦❧♦r(block).

Time itself could be viewed differently depending on the nature of the world

being reasoned about and the reasoning abilities of the agent. TAL uses linear time,

as opposed to branching time, and allows the use of either continuous real-valued

time or discrete integer time. Research within the TAL framework has mostly been

14 2.3. The TAL-C Surface Language L(ND)

state

fluent

feature

on(A,A)

on(A,B)

on(B,A)

on(B,B)

ontable(A)

ontable(B)

clear(A)

clear(B)

handempty

time 0

false

true

false

false

false

true

true

false

true

time 1

false

false

false

false

false

true

false

true

false

time 2

false

false

false

false

true

true

true

true

true

time 3

false

false

false

false

true

false

true

false

false

time 4

false

false

true

false

true

false

false

true

true

Figure 2.1: Viewing a Development as Fluents or States

focused on discrete non-negative integer time, and this will be used throughout

this thesis.

The development of the world over a (possibly infinite) period of discrete time

can be viewed in two different ways. Figure 2.1 shows what would happen in a

simple blocks world scenario where block A is initially on top of B, which is on

the table, and where one unstacks A from B, places it on the table, picks up B, and

finally stacks this block on top of A. The information about this scenario can be

viewed as a sequence of states, where each state provides a value to all features (or

“state variables”) for a single common timepoint, or as a set of fluents, where each

fluent is a function of time which specifies the development of a single feature. We

sometimes use the terms “feature” and “fluent” interchangeably to refer to either a

specific property of the world or the function specifying its value over time.

Since there is an agent, there is usually also a set of actions that the agent can

perform. Such actions can only be performed when the requisite preconditions are

satisfied. Performing an action changes the state of the world according to a set of

given rules. Such rules are not necessarily deterministic. For example, the action

of tossing a coin can be modeled within the TAL framework, and there will be two

possible result states.

All of these concepts are modeled in the language L(ND). We will now provide

an overview of this language and the translation from L(ND) to the order-sorted

first-order base language L(FL).

2.3 The TAL-C Surface Language L(ND)

A narrative in L(ND) can be said to consist of two parts: The narrative background

specification (NBS), which provides background information that is common to all

Chapter 2. TAL: Temporal Action Logics 15

narratives for a particular domain, and the narrative specification (NS), which pro-

vides information specific to a particular instance of a reasoning problem.

All information about a narrative is represented as a set of labeled narrative

statements in L(ND), except for the vocabulary, which defines the constant sym-

bols, feature symbols, action symbols, and other symbols that are available for use

in narrative formulas. Since narrative examples used in the literature have tradi-

tionally been quite simple, the vocabulary has usually either been considered to be

implicit in the remainder of the narrative specification or been described informally

in the main text of the article. In this thesis, however, vocabularies will generally be

described in terms of labeled narrative declaration statements using a syntax bor-

rowed from the software tools VITAL (Kvarnström, 2005) and TALplanner (Chap-

ter 6).

Before providing a formal definition of the L(ND) language, we will introduce

most of the macros, formula types and statement classes using an example narra-

tive: An extended version of the Hiding Turkey Scenario (Sandewall, 1994).

Example 2.3.1 (Extended Hiding Turkey Scenario)
In the extended hiding turkey scenario, there is a turkey that may or may not be

deaf, and there is also a gun. First, we load the gun. Loading the gun makes some

noise, and unless the turkey is deaf, it will hide whenever there is noise. However,

if the turkey has been hiding for a while and there has been no noise, the turkey

will decide to come out in the open again. After a while, we fire the gun, and if the

turkey is not hiding at that time, it will die.

This scenario can be represented in TAL-C as the following narrative, the com-

ponents of which will be described in further detail in the following sections:

❞♦♠❛✐♥ turkey ✿❡❧❡♠❡♥ts { T1 }

❞♦♠❛✐♥ gun ✿❡❧❡♠❡♥ts { G1 }

❢❡❛t✉r❡ ❛❧✐✈❡(turkey), ❞❡❛❢(turkey), ❤✐❞✐♥❣(turkey) ✿❞♦♠❛✐♥ boolean

❢❡❛t✉r❡ ❧♦❛❞❡❞(gun) ✿❞♦♠❛✐♥ boolean

❢❡❛t✉r❡ ♥♦✐s❡ ✿❞♦♠❛✐♥ boolean

❛❝t✐♦♥ ▲♦❛❞(gun), ❋✐r❡(gun,turkey)

♣❡r✶ ∀t, turkey [Per(t, ❛❧✐✈❡(turkey)) ∧ Per(t, ❞❡❛❢(turkey)) ∧ Per(t, ❤✐❞✐♥❣(turkey))]

♣❡r✷ ∀t, gun [Per(t, ❧♦❛❞❡❞(gun))]

♣❡r✸ ∀t [Dur(t, ♥♦✐s❡, false)]

❞♦♠✶ ∀t, turkey [[t] ♥♦✐s❡ ∧ ¬❞❡❛❢(turkey) → [t + 1] ❤✐❞✐♥❣(turkey)]

❛❝s✶ [t✶, t✷] ▲♦❛❞(gun) R((t✶, t✷] ❧♦❛❞❡❞(gun)) ∧ I((t✶, t✷] ♥♦✐s❡)

❛❝s✷ [t✶, t✷] ❋✐r❡(gun, turkey)

([t✶] ❧♦❛❞❡❞(gun) ∧ ¬❤✐❞✐♥❣(turkey) → R((t✶, t✷] ¬❛❧✐✈❡(turkey))) ∧
([t✶] ❧♦❛❞❡❞(gun) → R((t✶, t✷] ¬❧♦❛❞❡❞(gun)))

❞❡♣✶ ∀t, turkey [[t] ¬❤✐❞✐♥❣(turkey) ∧ ¬❞❡❛❢(turkey) ∧ CT([t] ♥♦✐s❡) →
R([t + 1] ❤✐❞✐♥❣(turkey))]

❞❡♣✷ ∀t, turkey [[t, t + 9] ❤✐❞✐♥❣(turkey) ∧ ¬♥♦✐s❡ → R([t + 10] ¬❤✐❞✐♥❣(turkey))]

16 2.3. The TAL-C Surface Language L(ND)

♦❜s✶ [0] ❛❧✐✈❡(T1) ∧ ¬❧♦❛❞❡❞(G1) ∧ ¬❤✐❞✐♥❣(T1)

♦❝❝✶ [1, 4] ▲♦❛❞(G1)

♦❝❝✷ [5, 6] ❋✐r❡(G1, T1)

Since the narrative does not specify whether or not the turkey was deaf, there will

be two classes of models; one where the turkey is deaf, does not hide, and ends up

being shot, and one where it hears the noise, hides, and emerges from hiding ten

timepoints later. �

2.3.1 Narrative Background Specification

In the narrative background specification, persistence statements (labeled ♣❡r) allow

each fluent to be specified as being persistent (normally retaining its value from

the previous timepoint), durational (normally reverting to a default value), or dy-

namic (varying freely, subject to other constraints involving this fluent). Domain

constraints (labeled ❞♦♠) characterize acausal information which is always true in

the world being modeled. Action type specifications (labeled ❛❝s) provide generic

definitions of action types, while dependency constraints (labeled ❞❡♣) characterize

causal dependencies among fluents. The narrative background specification also

contains the vocabulary for the narrative.

Vocabulary

The vocabulary for the hiding turkey scenario requires three value domains: The

standard boolean domain, together with two domains for turkeys and guns. There

are five boolean fluents (❛❧✐✈❡, ❞❡❛❢, ❤✐❞✐♥❣, ❧♦❛❞❡❞, and ♥♦✐s❡), some of which take

turkeys or guns as parameters, and there are two actions (▲♦❛❞ and ❋✐r❡).

❞♦♠❛✐♥ turkey ✿❡❧❡♠❡♥ts { T1 }

❞♦♠❛✐♥ gun ✿❡❧❡♠❡♥ts { G1 }

❢❡❛t✉r❡ ❛❧✐✈❡(turkey), ❞❡❛❢(turkey), ❤✐❞✐♥❣(turkey) ✿❞♦♠❛✐♥ boolean

❢❡❛t✉r❡ ❧♦❛❞❡❞(gun) ✿❞♦♠❛✐♥ boolean

❢❡❛t✉r❡ ♥♦✐s❡ ✿❞♦♠❛✐♥ boolean

❛❝t✐♦♥ ▲♦❛❞(gun), ❋✐r❡(gun,turkey)

The boolean domain is always present in all narratives, and behaves as if it had

been specified in the following manner:

❞♦♠❛✐♥ boolean ✿❡❧❡♠❡♥ts { true, false }

Persistence Statements

Intuitively, the first four fluents in the extended hiding turkey scenario describe

properties that do not change unless something changes them, while the fifth, ♥♦✐s❡,

is different – there is no noise unless someone is currently making noise. This dis-

tinction between persistent and durational fluents is important. A persistent fluent

Chapter 2. TAL: Temporal Action Logics 17

can only change when an action or dependency constraint allows it to change (the

persistence assumption or inertia assumption). Otherwise, it retains the same value

it had at the previous timepoint. A durational fluent is associated with a default

value, and can only take on another value when an action or dependency constraint

allows it to (the default value assumption). At timepoints when no action or depen-

dency constraint explicitly allows it to take on another value, it will immediately

revert to its default value. Though this is not used in this narrative, a fluent can also

be dynamic if it is not declared to be persistent or durational. Since no persistence

or default value assumption is applied, dynamic fluents can vary freely over time

to satisfy observations and domain constraints.

Whether a fluent is persistent or durational – or neither – is defined in a set

of persistence statements, using the L(ND) macros Per and Dur. For a persistent

fluent f , Per(t, f) should be true, and for a durational fluent f with default value ω,

Dur(t, f , ω) should be true; the temporal argument allows persistence properties to

vary over time, though this flexibility is usually not used. Note that some earlier

TAL logics used a fixed nochange axiom instead of persistence statements, forcing all

fluents to be persistent. Using persistence statements provides a more flexible and

fine-grained approach to controlling the default behavior of fluents.

♣❡r✶ ∀t, turkey [Per(t, ❛❧✐✈❡(turkey)) ∧ Per(t, ❞❡❛❢(turkey)) ∧ Per(t, ❤✐❞✐♥❣(turkey))]

♣❡r✷ ∀t, gun [Per(t, ❧♦❛❞❡❞(gun))]

♣❡r✸ ∀t [Dur(t, ♥♦✐s❡, false)]

Domain Constraints

Domain constraints represent knowledge about logical fluent dependencies which

are not specific to a particular reasoning problem instance but which are known

to hold in every possible scenario taking place within a domain. In domain con-

straints, as well as other TAL formulas, the fact that a fluent f takes on a particular

value ω is denoted by the elementary fluent formula f =̂ ω. For the boolean do-

main, the formula f =̂ true (f =̂ false) can be abbreviated f (¬ f). Elementary flu-

ent formulas can be combined using boolean connectives and quantification over

values to form fluent formulas. The fixed fluent formula [τ] φ states that the fluent

formula φ holds at the timepoint τ.

Although no domain constraints are strictly needed for this scenario, we will

show one possible constraint as an example: If there is noise at some timepoint,

then all turkeys that are not deaf will be hiding at the next timepoint.

❞♦♠✶ ∀t, turkey [[t] ♥♦✐s❡ ∧ ¬❞❡❛❢(turkey) → [t + 1] ❤✐❞✐♥❣(turkey)]

Action Types

Actions can be invoked by the agent in order to change some properties in the

world. Loading a gun g in the extended hiding turkey scenario should cause

18 2.3. The TAL-C Surface Language L(ND)

❧♦❛❞❡❞(g) to become true, for example. But since the ❧♦❛❞❡❞ fluent is persistent,

simply stating that ❧♦❛❞❡❞(g) will be true at the end of the action invocation is not

sufficient. Instead, it is necessary to use a reassignment macro to explicitly release

this fluent from the persistence assumption at the specific point in time where it

should change values from false to true.

There are three different reassignment macros: X, R and I. They can all be

used with a temporal interval, for example R((τ, τ′] α), or a single timepoint, for

example I([τ] α). Each of these operators has the effect of releasing the fluents

occurring in α from the persistence and default value assumptions during the given

interval or at the given timepoint. However, the operators differ in whether they

place further constraints on the values of these fluents, and if so, at what time.

The X operator is used for occlusion. Its purpose is simply to allow the value

of the fluents in the formula α to vary at a timepoint or during an interval, and

therefore it does not further constrain the fluents occurring in α. Intuitively, the

X operator occludes (hides) any changes in a fluent value from the persistence or

default value constraints generated by the persistence statements in the narrative.

The R operator is used for reassignment, and ensures that α will hold at the final

timepoint in the interval. During the rest of the interval, the fluents occurring in α

are allowed to vary freely, unaffected by the persistence or default value assump-

tion (but still subject to other constraints that may also be present in the narrative).

The I operator is used for interval reassignment and is often but not always used

in combination with durational fluents. It ensures that α will hold during the entire

interval.

An action type specification uses reassignment macros to define what will happen

if and when a particular action is invoked. Note that it does not state that an action

does occur; this is specified in the narrative specification using action occurrence

statements.

In the extended hiding turkey scenario, there are two actions at our disposal.

We can ▲♦❛❞ a gun (❛❝s✶), which ensures that this particular gun is ❧♦❛❞❡❞ when the

action has been executed but also makes some ♥♦✐s❡ throughout the duration of the

action: The action definition forces ♥♦✐s❡ to be true in the entire interval (t1, t2], and

thereafter ♥♦✐s❡ will automatically revert to its default value, false. We can also ❋✐r❡

a gun (❛❝s✷), which results in the gun no longer being ❧♦❛❞❡❞ – and if the gun was

❧♦❛❞❡❞ when the ❋✐r❡ action was invoked, and the turkey we were aiming at was not

❤✐❞✐♥❣, the turkey will no longer be alive.

❛❝s✶ [t✶, t✷] ▲♦❛❞(gun) R((t✶, t✷] ❧♦❛❞❡❞(gun)) ∧ I((t✶, t✷] ♥♦✐s❡)

❛❝s✷ [t✶, t✷] ❋✐r❡(gun, turkey)

([t✶] ❧♦❛❞❡❞(gun) ∧ ¬❤✐❞✐♥❣(turkey) → R((t✶, t✷] ¬❛❧✐✈❡(turkey))) ∧
([t✶] ❧♦❛❞❡❞(gun) → R((t✶, t✷] ¬❧♦❛❞❡❞(gun)))

Chapter 2. TAL: Temporal Action Logics 19

Dependency Constraints

Actions must be explicitly triggered using action occurrence statements. Some

changes or activities in the world are instead triggered by conditions that hold or

that become true in the world. Such changes can be modeled using dependency con-

straints.

An interesting property of the turkeys in this domain is that they are afraid

of sounds: If a turkey is not ❞❡❛❢ and there is some ♥♦✐s❡, it will immediately hide.

This fact cannot be modeled as an acausal domain constraint, since such constraints

cannot provide a sufficient cause for the ♥♦✐s❡ fluent to change values. Neither can

it be modeled by an action, since actions must be invoked explicitly and cannot be

triggered automatically by conditions that hold in the world. Instead, it is modeled

using a dependency constraint. The constraint ❞❡♣✶ states that if a turkey is not

❞❡❛❢ and not ❤✐❞✐♥❣, and a ♥♦✐s❡ begins (the CT macro, “changes to true”), then at the

next timepoint, ❤✐❞✐♥❣ is explicitly assigned the value true. Similarly, if a turkey has

been ❤✐❞✐♥❣ for ten timepoints, and there has been no ♥♦✐s❡ during that time, it will

stop hiding (❞❡♣✷).

❞❡♣✶ ∀t, turkey [[t] ¬❤✐❞✐♥❣(turkey) ∧ ¬❞❡❛❢(turkey) ∧ CT([t] ♥♦✐s❡) →
R([t + 1] ❤✐❞✐♥❣(turkey))]

❞❡♣✷ ∀t, turkey [[t, t + 9] ❤✐❞✐♥❣(turkey) ∧ ¬♥♦✐s❡ → R([t + 10] ¬❤✐❞✐♥❣(turkey))]

2.3.2 Narrative Specification

In the narrative specification, observation statements (labeled ♦❜s) are intended to

represent observations of fluent values at specific timepoints while action occurrence

statements (labeled ♦❝❝) specify which instances of the generic action types occur

and during which time intervals.

Observation Statements

Observation statements are intended to describe specific facts that have been ob-

served to hold in the world. They provide information about a particular reasoning

problem instance within a domain, and are therefore part of the narrative specifi-

cation. In the example scenario, a number of facts have been observed in the initial

state: The turkey is alive but not hiding, and the gun is not loaded. We do not ob-

serve whether the turkey is deaf or not, and there is no need to state that there is no

noise, since the durational fluent ♥♦✐s❡ is false by default.

♦❜s✶ [0] ❛❧✐✈❡(T1) ∧ ¬❧♦❛❞❡❞(G1) ∧ ¬❤✐❞✐♥❣(T1)

Action Occurrence Statements

Action occurrence statements specify which actions actually do take place in a nar-

rative. Like observations, they are part of the narrative specification – the instance-

specific part of the narrative.

20 2.3. The TAL-C Surface Language L(ND)

For the hiding turkey scenario, two action occurrence statements are required,

specifying that the gun is loaded and fired.

♦❝❝✶ [1, 4] ▲♦❛❞(G1)

♦❝❝✷ [5, 6] ❋✐r❡(G1, T1)

2.3.3 The Language L(ND)

This section defines the surface language L(ND). The translation to the first-order

language L(FL) is presented in Section 2.4.1. The overline is used as abbreviation

of a sequence, when the contents of the sequence are obvious. For example, f (x, y)
means f (x1, ..., xn, y1, ..., ym).

Definition 2.3.1 (Basic Sorts)
There are a number of sorts for values Vi, including the boolean sort B with the

constants {true, false}. TAL is order-sorted, and a sort may be specified to be a

subsort of another sort. The sort V is a supersort of all value sorts.

There are a number of sorts for features Fi, each one associated with a value

sort dom(Fi) = Vj for some j. The sort F is a supersort of all fluent sorts.

There is also a sort for actions A and a temporal sort T . �

The sort T is assumed to be interpreted, but can be axiomatized in first-order logic

as a subset of Presburger arithmetics (Koubarakis, 1994) (natural numbers with

addition).

Definition 2.3.2 (Terms)
A value term, often denoted by ω, is a variable v or a constant v of sort Vi for some i,

an expression value(τ, f) where τ is a temporal term and f is a fluent term, or an

expression ❣(ω1, . . . , ωn) where ❣ : Vk1
× . . .×Vkn

→ Vi is a value function symbol

and each ωj is a value term of sort Vkj
.

A temporal term, often denoted by τ, is a variable t or a constant 0, 1, 2, 3, . . . or

s1, t1, . . ., or an expression of the form τ1 + τ2, all of sort T .

A fluent term, often denoted by f , is a feature variable or a feature expression

❢(ω1, . . . , ωn) where ❢ : Vk1
× . . . × Vkn

→ Fi is a feature symbol and each ωj is a

value term of sort Vkj
.

An action term Ψ is an expression A(ω1, . . . , ωn) where A : Vk1
× . . .× Vkn

→ A
is an action symbol and each ωj is a value term of sort Vkj

. �

Variables are typed and range over the values belonging to a specific sort. Although

the sort is sometimes specified explicitly in narratives, it is more common to simply

give the variable the same name as the sort but (like all variables) written in italics,

possibly with a prime and/or an index. For example, the variables turkey, turkey′

and turkey3 would be of the sort turkey. Similarly, variables named t or τ are

normally temporal variables, and variables named n are normally integer-valued

variables.

Chapter 2. TAL: Temporal Action Logics 21

The function value(τ, f) returns the value of the fluent f at the timepoint τ,

where [τ] f =̂ v iff value(τ, f) = v. The expression [τ] f =̂ g, where f and g are

fluent terms, is shorthand notation for [τ] f =̂ value(τ, g).

Definition 2.3.3 (Temporal and Value Formulas)
If τ and τ′ are temporal terms, then τ = τ′, τ < τ′ and τ ≤ τ′ are temporal for-

mulas. A value formula is of the form ω = ω′ where ω and ω′ are value terms, or

r(ω1, . . . , ωn) where r : Vk1
× . . .× Vkn

is a relation symbol and each ωj is a value

term of sort Vkj
. �

We will sometimes write τ ≤ τ′ < τ′′ to denote the conjunction τ ≤ τ′ ∧ τ′ < τ′′,

and similarly for other combinations of the relation symbols ≤ and <.

Definition 2.3.4 (Fluent Formula)
An elementary fluent formula, sometimes called an isvalue expression, has the form

f =̂ ω where f is a fluent term of sort Fi and ω is a value term of sort dom(Fi). A

fluent formula is an elementary fluent formula or a combination of fluent formulas

formed with the standard logical connectives and quantification over values. �

The elementary fluent formula f =̂ true (f =̂ false) can be abbreviated f (¬ f).

Definition 2.3.5 (Timed Formulas)
Let τ and τ′ be temporal terms and α a fluent formula. Then:

• [τ, τ′] α, (τ, τ′] α, [τ, τ′) α, (τ, τ′) α, [τ, ∞) α, (τ, ∞) α and [τ] α are fixed fluent

formulas,

• CT([τ] α), CF([τ] α) and C([τ] α) are change formulas,

• R([τ, τ′] α), R((τ, τ′] α), R([τ, τ′) α), R((τ, τ′]) α) and R([τ] α) are reassign-

ment formulas, and

• X([τ, τ′] α), X((τ, τ′] α), X([τ, τ′) α), X((τ, τ′]) α) and X([τ] α) are occlusion

formulas.

Fixed fluent formulas, change formulas, reassignment formulas and occlusion for-

mulas are called timed formulas. �

Definition 2.3.6 (Static Formula)
A static formula is a temporal formula, a value formula, a fixed fluent formula, a

change formula, true, false, or a combination of static formulas formed using the

standard logical connectives together with quantification over values and time. �

Note that the formulas true and false are not the same as the boolean values true
and false.

22 2.4. The TAL-C Base Language L(FL)

Definition 2.3.7 (Change Formula)
A change formula is a formula that has (or is rewritable to) the formQv(α1 ∨ ...∨ αn)
where Qv is a sequence of quantifiers with variables, and each αi is a conjunction

of static, occlusion and reassignment formulas. The change formula is called bal-

anced iff the following two conditions hold. (a) Whenever a feature f (ω) appears

inside a reassignment or occlusion formula in one of the αi disjuncts, it must also

appear in all other αi’s inside a reassignment or occlusion formula with exactly the

same temporal argument. (b) Any existentially quantified variable v in the for-

mula, whenever appearing inside a reassignment or occlusion formula, only does

so in the position f =̂ v. �

Definition 2.3.8 (Application Formula)
An application formula is any of the following: (a) a balanced change formula; (b)

Λ → ∆, where Λ is a static formula and ∆ is a balanced change formula; or (c) a

combination of elements of types (a) and (b) formed with conjunction and universal

quantification over values and time. �

Definition 2.3.9 (Occurrence Formula)
An occurrence formula has the form [τ, τ′] Ψ, where τ and τ′ are temporal terms and

Ψ is an action term. �

Definition 2.3.10 (Persistence Formula)
A persistence formula is an expression of the form Per(τ, f) where τ is a temporal

term and f is a fluent term, an expression of the form Dur(τ, f , ω) where τ is a

temporal term, f is a fluent term and ω is a value term, or a combination of persis-

tence formulas formed with conjunction and universal quantification over values

or time. �

Definition 2.3.11 (Narrative Statements)
An action type specification or action schema (labeled ❛❝s) has the form [t, t′] Ψ→ φ,

where t and t′ are temporal variables, Ψ is an action term and φ is an application

formula.

A dependency constraint (labeled ❞❡♣) is an application formula.

A domain constraint (labeled ❞♦♠) is a static formula.

A persistence statement (labeled ♣❡r) is a persistence formula.

An observation statement (labeled ♦❜s) is a static formula.

An action occurrence statement (labeled ♦❝❝) is an occurrence formula [τ, τ′] Ψ

where τ and τ′ are variable-free temporal terms and Ψ is a variable-free action term.

�

2.4 The TAL-C Base Language L(FL)

In order to reason about a particular narrative, it is first mechanically translated

into the base language L(FL), an order-sorted classical first-order language with

Chapter 2. TAL: Temporal Action Logics 23

+ Foundational Axioms

+ Circ(T)

+ Quantifier EliminationL(FL)

L(FL)

L(ND)

Trans()

1st−order

theory T

TAL

Narrative

1st−order

theory

Figure 2.2: The relation between L(ND) and L(FL)

equality using a linear discrete time structure (Figure 2.2). A circumscription policy

is applied to the resulting theory, foundational axioms are added, and quantifier

elimination techniques are used to reduce the resulting second order theory to first

order logic.

L(FL) uses the predicates Holds : T × F × V , Occlude : T × F , and Occurs :

T ×T ×A, where T is the temporal sort, F is a supersort of all fluent sorts and V is

a supersort of all value sorts. The Holds predicate expresses what value a fluent has

at each timepoint, and is used in the translation of fixed fluent formulas; for exam-

ple, the formula [0] ❛❧✐✈❡(turkey) =̂ true∧ ❧♦❛❞❡❞(gun) =̂ false can be translated into

Holds(0, ❛❧✐✈❡(turkey), true)∧Holds(0, ❧♦❛❞❡❞(gun), false). The Occlude predicate ex-

presses the fact that a persistent or durational fluent is exempt from its persistence

or default value assumption, respectively, at a given timepoint. It is used in the

translation of the R, I and X operators, which are intended to change the values of

fluents. Finally, the Occurs predicate expresses that a certain action occurs during a

certain time interval, and is used in the translation of action occurrence statements

and action type specifications.

2.4.1 Translation from L(ND) to L(FL)

The following translation function is used to translate L(ND) formulas into L(FL).

Definition 2.4.1 (Trans Translation Function)
Trans is called the expansion transformation, and is defined as follows. All variables

occurring only on the right-hand side are assumed to be fresh variables.

24 2.4. The TAL-C Base Language L(FL)

The formulas true and false need no translation:

Trans(true) = true

Trans(false) = false

Basic macros are translated into L(FL) predicates:

Trans([τ] f (ω)) = Holds(τ, f (ω), true)
Trans([τ] f (ω) =̂ ω) = Holds(τ, f (ω), ω)

Trans(X([τ] f (ω))) = Occlude(τ, f (ω))
Trans(X([τ] f (ω) =̂ ω)) = Occlude(τ, f (ω))

Trans([τ, τ′] A(ω)) = Occurs(τ, τ′, A(ω))

In some versions of TAL, the L(ND) functions Per and Dur are also translated into

L(FL) predicates. Here, they are translated directly into constraints on fluent val-

ues and occlusion.

Trans(Per(τ, f)) = ∀t.τ = t + 1∧ ¬Occlude(t + 1, f)→
∀v[Holds(t + 1, f , v)↔ Holds(t, f , v)]

Trans(Dur(τ, f , ω)) = ¬Occlude(τ, f)→ Holds(τ, f , ω)

Top-level connectives and quantifiers are left unchanged:

Trans(¬α) = ¬Trans(α)
Trans(α C β) = Trans(α) C Trans(β), where C ∈ {∧,∨,→,↔}.
Trans(Qv[α]) = Qv[Trans(α)], where Q ∈ {∀, ∃}.

Fixed fluent formulas can contain nested connectives and quantifiers, which are

transferred outside the scope of the temporal context [τ].

Trans([τ] Qv[α]) = Qv[Trans([τ] α)], where Q ∈ {∀, ∃}.
Trans([τ] ¬α) = ¬Trans([τ] α)

Trans([τ] α C β) = Trans([τ] α) C Trans([τ] β), where C ∈ {∧,∨,→,↔}.

Nested connectives and quantifiers can also occur within occlusion formulas. How-

ever, the translation of these formulas has to be modified somewhat to take into

account the fact that any occlusion formula should occlude all fluents occurring

within the scope of the occlusion operator: Even a disjunctive formula such as

X([τ] α ∨ β) should occlude all fluents in α and all fluents in β and is therefore

not equivalent to X([τ] α) ∨ X([τ] β) but to X([τ] α) ∧ X([τ] β). The translation

procedure takes this into account by removing negations inside the X operator,

translating connectives occurring inside X into conjunctions, and converting all

quantifiers inside X into universal quantification.

Trans(X([τ] ¬α)) = Trans(X([τ] α))
Trans(X([τ] α C β)) = Trans(X([τ] α) ∧ X([τ] β)), where C ∈ {∧,∨,→,↔}.
Trans(X([τ]Qv[α])) = ∀v[Trans(X([τ]α))], where Q ∈ {∀, ∃}.

Fixed fluent formulas can contain infinite temporal intervals. This is a shorthand

notation; infinity is not part of the temporal sort and disappears in the translation.

Chapter 2. TAL: Temporal Action Logics 25

Trans([τ, ∞) α) = ∀t[τ ≤ t→ Trans([t]α)]
Trans((τ, ∞) α) = ∀t[τ < t→ Trans([t]α)]

Finite temporal intervals are permitted both in fixed fluent formulas and in the

occlusion operator. Only one form of interval is shown; the extension to allow

open, closed and semi-closed intervals is trivial.

Trans([τ, τ′] α) = ∀t[τ ≤ t ≤ τ′ → Trans([t]α)]
Trans(X((τ, τ′] α)) = ∀t[τ < t ≤ τ′ → Trans(X([t]α))]

The R and I operators are defined as follows. Again, one form of interval is shown.

Trans(R((τ, τ′] α)) = Trans(X((τ, τ′], α)) ∧ Trans([τ]α)
Trans(R([τ] α)) = Trans(X([τ] α)) ∧ Trans([τ] α)

Trans(I((τ, τ′]α)) = Trans(X((τ, τ′] α)) ∧ Trans((τ, τ′] α)
Trans(I([τ] α)) = Trans(X([τ] α)) ∧ Trans([τ] α)

Finally, the CT “changes to true” operator is defined as follows, with the operators

CF (changes to false) and C (changes) added for symmetry.

Trans(CT([τ] α)) = ∀t[τ = t + 1→ Trans([t]¬α)] ∧ Trans([τ] α)
Trans(CF([τ] α)) = ∀t[τ = t + 1→ Trans([t]α)] ∧ Trans([τ] ¬α)
Trans(C([τ] α)) = Trans(CT([τ] α) ∨ CF([τ] α)) �

Example 2.4.1 (Extended Hiding Turkey Scenario, continued)
The following is the translation of the Extended Hiding Turkey Scenario intoL(FL).

Here, ¬Holds(τ, f , true) has sometimes been simplified into Holds(τ, f , false). Free

variables are assumed to be universally quantified.

♣❡r✶ ∀t, turkey[(∀t′.t = t′ + 1∧ ¬Occlude(t′ + 1, ❛❧✐✈❡(turkey))→
∀boolean.Holds(t′ + 1, ❛❧✐✈❡(turkey), boolean)↔ Holds(t′, ❛❧✐✈❡(turkey), boolean)) ∧
(∀t′.t = t′ + 1∧ ¬Occlude(t′ + 1, ❞❡❛❢(turkey))→
∀boolean.Holds(t′ + 1, ❞❡❛❢(turkey), boolean)↔ Holds(t′, ❞❡❛❢(turkey), boolean)) ∧
(∀t′.t = t′ + 1∧ ¬Occlude(t′ + 1, ❤✐❞✐♥❣(turkey))→
∀boolean.Holds(t′ + 1, ❤✐❞✐♥❣(turkey), boolean)↔ Holds(t′, ❤✐❞✐♥❣(turkey), boolean))]

♣❡r✷ ∀t, gun[(∀t′.t = t′ + 1∧ ¬Occlude(t′ + 1, ❧♦❛❞❡❞(gun))→
∀boolean.Holds(t′ + 1, ❧♦❛❞❡❞(gun), boolean)↔ Holds(t′, ❧♦❛❞❡❞(gun), boolean))]

♣❡r✸ ∀t[¬Occlude(t, ♥♦✐s❡)→ Holds(t, ♥♦✐s❡, false)]

❞♦♠✶ Holds(t, ♥♦✐s❡, true) ∧ ¬Holds(t, ❞❡❛❢(turkey), true)→
Holds(t + 1, ❤✐❞✐♥❣(turkey), true)

❛❝s✶ Occurs(t✶, t✷,▲♦❛❞(gun))→
Holds(t✷, ❧♦❛❞❡❞(gun), true) ∧
∀t[t✶ < t ≤ t✷ → Occlude(t, ❧♦❛❞❡❞(gun))] ∧
∀t[t✶ < t ≤ t✷ → Holds(t, ♥♦✐s❡, true)] ∧
∀t[t✶ < t ≤ t✷ → Occlude(t, ♥♦✐s❡)]

❛❝s✷ Occurs(t✶, t✷,❋✐r❡(gun, turkey))→
((Holds(t✶, ❧♦❛❞❡❞(gun), true) ∧Holds(t✶, ❤✐❞✐♥❣(turkey), false)→

Holds(t✷, ❛❧✐✈❡(turkey), false) ∧ ∀t[t✶ < t ≤ t✷ → Occlude(t, ❛❧✐✈❡(turkey))]) ∧
(Holds(t✶, ❧♦❛❞❡❞(gun), true)→

Holds(t✷, ❧♦❛❞❡❞(gun), false) ∧ ∀t[t✶ < t ≤ t✷ → Occlude(t, ❧♦❛❞❡❞(gun))]))

26 2.4. The TAL-C Base Language L(FL)

❞❡♣✶ ¬Holds(t, ❤✐❞✐♥❣(turkey), true) ∧ ¬Holds(t, ❞❡❛❢(turkey), true) ∧Holds(t, ♥♦✐s❡, true) ∧
∀u[t = u + 1→ ¬Holds(u, ♥♦✐s❡, true)]→
Holds(t + 1, ❤✐❞✐♥❣(turkey), true) ∧Occlude(t + 1, ❤✐❞✐♥❣(turkey))

❞❡♣✷ ∀u[t ≤ u∧ u ≤ t + 9→ Holds(u, ❤✐❞✐♥❣(turkey), true) ∧ ¬Holds(u, ♥♦✐s❡, true)]→
¬Holds(t + 10, ❤✐❞✐♥❣(turkey), true) ∧Occlude(t + 10, ❤✐❞✐♥❣(turkey))

♦❜s✶ Holds(0, ❛❧✐✈❡(T1), true) ∧Holds(0, ❧♦❛❞❡❞(G1), false) ∧Holds(0, ❤✐❞✐♥❣(T1), false)

♦❝❝✶ Occurs(1, 4,▲♦❛❞(G1))

♦❝❝✷ Occurs(5, 6,❋✐r❡(G1, T1)) �

2.4.2 Circumscription Policy

The logical theory which is the result of the translation is still under-constrained in

the sense that a number of implicit assumptions about fluent change in the world

remain to be characterized. In general, we want to encode the blanket assumption

that fluent values do not change unless there is a good reason for this to happen.

There are a number of legitimate reasons for fluents to change value, such as action

occurrences where the effects of the action change fluent values, or causal depen-

dencies between fluents where changes in some fluents force changes in others.

In the TAL formalism, all such legitimate reasons for change are represented ex-

plicitly using the reassignment macros R, I and X in dependency constraints and

action type definitions. When translated, these statements result in constraints on

the Occlude predicate.

In the logical theory, we want to formally encode the assumption that these are

the only reasons for fluents to be occluded. This can be achieved using a special

form of circumscription (McCarthy, 1980) called filtered circumscription (Doherty

& Łukaszewicz, 1994) which involves adding a second-order formula to the narra-

tive logical theory.

The formal definition of TAL circumscription policy will use the following ter-

minology:

• Let N denote the collection of narrative statements contained in a narrative

in L(ND), and letN♣❡r,N♦❜s,N♦❝❝,N❛❝s,N❞♦♠❝, andN❞❡♣❝ denote the sets of

persistence statements, observation statements, action occurrence statements,

action type specifications, domain constraint statements, and dependency

constraint statements in N , respectively.

• Let Γ denote the translation ofN into L(FL) using the Trans translation func-

tion, and let Γ♣❡r, Γ♦❜s, Γ♦❝❝, Γ❛❝s, Γ❞♦♠❝, and Γ❞❡♣❝ denote the persistence for-

mulas, observation formulas, action occurrence formulas, action type specifi-

cations, domain constraint formulas, and dependency constraint formulasin

Γ, respectively.

• Let Γ❢♥❞ denote the set of foundational axioms in L(FL), containing unique

names axioms, unique values axioms, etc.

Chapter 2. TAL: Temporal Action Logics 27

The Occlude predicate is circumscribed relative to the action definitions in Γ❛❝s and

the dependency constraints in Γ❞❡♣❝ with all other predicates fixed, and Occurs is

circumscribed relative to the action occurrence formulas in Γ♦❝❝ with all other pred-

icates fixed. Due to structural constraints on L(ND) statements, as specified in

the definitions of application formulas and balanced change formulas, quantifier

elimination techniques can then be used to translate the two second-order circum-

scriptive theories into logically equivalent first-order theories (Doherty et al., 1998;

Doherty, 1996), denoted by Circ(Γ❛❝s ∧ Γ❞❡♣❝; Occlude) and Circ(Γ♦❝❝; Occurs), re-

spectively.

The two resulting theories are combined and filtered with theL(FL) translations

of the persistence statements in Γ♣❡r (forcing persistent and durational fluents to

adhere to the persistence or default value assumptions), the domain constraints

in Γ❞♦♠❝, and the observations and timing constraints in Γ♦❜s, yielding the theory

Γ′ = Γ♣❡r ∧ Γ♦❜s ∧ Γ❞♦♠❝ ∧ Circ(Γ♦❝❝; Occurs) ∧ Circ(Γ❞❡♣❝ ∧ Γ❛❝s; Occlude). Adding

the L(FL) foundational axioms in Γ❢♥❞ then yields the theory ∆ = Γ′ ∧ Γ❢♥❞.

The theory ∆ is still a first-order theory, but lacks one important component:

There is no formal characterization of the linear discrete temporal structure used by

TAL. There are two alternatives: One can use an interpreted theory for the temporal

structure, or an axiomatization can be added in the shape of a second-order theory

Γt✐♠❡ corresponding to the Peano axioms without multiplication.

The expression Trans+(N) will denote the result of translating the narrative N
into L(FL) and applying this filtered circumscription policy. The L(ND) formula

γ is preferentially entailed by the L(ND) narrative N iff Trans+(N) |= Trans(γ).

Example 2.4.2 (Extended Hiding Turkey Scenario, continued)
The circumscription of the Occurs predicate in the action occurrences (♦❝❝) above

(that is, Circ(Γocc; Occurs)) is equivalent to the following first-order formula:

∀s, t, a[Occurs(s, t, a)↔ (s = 1∧ t = 4∧ a = ▲♦❛❞(G1)) ∨ (s = 5∧ t = 6∧ a = ❋✐r❡(G1, T1))]

The circumscription of the Occlude predicate in the action schemas (❛❝s) and depen-

dency constraints (❞❡♣) above (that is, Circ(Γ❞❡♣❝ ∧ Γ❛❝s; Occlude)) is equivalent to

the following set of first-order formulas:

∀t, turkey[Occlude(t, ❛❧✐✈❡(turkey))↔
t = 6∧ turkey = T1∧Holds(5, ❧♦❛❞❡❞(G1), true) ∧Holds(5, ❤✐❞✐♥❣(turkey), false)]

∀t, gun[Occlude(t, ❧♦❛❞❡❞(gun))↔
gun = G1∧ (2 ≤ t ≤ 4∨ t = 6∧Holds(5, ❧♦❛❞❡❞(G1), true))]

∀t, turkey[Occlude(t, ❞❡❛❢(turkey))↔ false]

∀t, turkey[Occlude(t, ❤✐❞✐♥❣(turkey))↔
turkey = T1∧
∃t′[t = t′ + 1∧Holds(t′, ❤✐❞✐♥❣(turkey), false) ∧Holds(t′, ❞❡❛❢(turkey), false) ∧

Holds(t′, ♥♦✐s❡, true) ∧ ∃u[t′ = u + 1∧Holds(u, ♥♦✐s❡, false)]] ∨
turkey = T1∧
∃t′[t = t′ + 10∧ ∀τ[t′ ≤ τ ≤ t′ + 9→ Holds(τ, ❤✐❞✐♥❣(turkey), true) ∧Holds(τ, ♥♦✐s❡, false)]]]

∀t[Occlude(t, ♥♦✐s❡)↔ 2 ≤ t ≤ 4] �

28 2.4. The TAL-C Base Language L(FL)

Part II

Extensions to TAL

29

Chapter 3
Tackling the Qualification

Problem using Fluent

Dependency Constraints

Since the first version of PMON, the TAL logics have provided a flexible and pow-

erful solution to the frame problem. Many aspects of the ramification problem were

solved in PMON-RC. This chapter contains an article called Tackling the Qualification

Problem using Fluent Dependency Constraints, written together with Patrick Doherty,

which presents one TAL-based approach for dealing with the qualification prob-

lem, one of the three well-known problems within the area of reasoning about ac-

tion and change. Except for removing those parts of the TAL description that were

already presented in this thesis, reformatting some narrative statements to ensure

a consistent style and fixing one or two minor typos, this article is unchanged from

the final version published in Computational Intelligence (Kvarnström & Doherty,

2000a).

3.1 Abstract

In the area of formal reasoning about action and change, one of the fundamental

representation problems is providing concise, modular and incremental specifica-

tions of action types and world models, where instantiations of action types are

invoked by agents such as mobile robots, and provided the preconditions to the

action are true, their invocation results in changes to the world model concomitant

with the goal-directed behavior of the agent. One particularly difficult class of re-

lated problems, collectively called the qualification problem, deals with the need

to find a concise, incremental and modular means of characterizing the plethora of

31

32 3.2. Introduction

exceptional conditions which might qualify an action, but generally do not, with-

out having to explicitly enumerate them in the preconditions to an action. We show

how fluent dependency constraints together with the use of durational fluents can

be used to deal with problems associated with action qualification using a tempo-

ral logic for action and change called TAL-Q. We demonstrate the approach using

action scenarios which combine solutions to the frame, ramification and qualifi-

cation problems in the context of actions with duration, concurrent actions, non-

deterministic actions and the use of both boolean and non-boolean fluents. The cir-

cumscription policy used for the combined problems is reducible to the first-order

case.

3.2 Introduction

The primary focus of research in the area of formal reasoning about action and

change considers representation problems associated with an autonomous agent,

such as a mobile robot (UGV) or an unmanned aerial vehicle (UAV), interacting

with a highly complex and dynamic environment in which the agent behaves in

a goal-directed manner. A primary goal of the research is to develop modeling

and verification tools which can be used by engineers in the development of such

agents and by the agents themselves, who require both representations of the envi-

ronment and limitations of their behavior in the environment, in order to execute

tasks to achieve goals. Due to the dynamic and causal nature of an agent’s interac-

tion with its environment, temporal logic formalisms are ideal candidates for world

modeling, task and planning specification and causal reasoning. The use of tempo-

ral logic formalisms provides a suitable basis for both specifying and verifying the

complex activity associated with agent interaction with complex environments.

When focusing on the type of complex environments associated with UGVs and

UAVs, it immediately becomes clear that it is in general computationally, epistemo-

logically, and ontologically infeasible to completely represent the environment an

agent is embedded in and the action types it has at its disposal when interacting

with its environment. This leads to the use of nonmonotonic extensions to temporal

formalisms which contribute to providing succinct and modular representations of

incomplete world model specifications and action type specifications. This article

will focus on the representation of action type specifications and agent task repre-

sentations in terms of narratives. In our approach, narratives consist of different

classes of statements, which include action type specifications, timed action occur-

rences, observations, domain and dependency constraints, and additional timing

information relating statements to each other. Narratives can be viewed as agent

programs to be executed by an agent, or as hypothetical courses of action an agent

can reason about when generating its own plans, or simply trying to understand

how its future actions will affect its external environment, or to what degree its past

actions have achieved its previous goals.

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 33

Three difficult modeling problems associated with the formal specification of

action types in the context of complex, dynamic environments are the frame, rami-

fication, and qualification problems. These problems have been a topic of continual

research in the action and change community. Briefly, the frame problem concerns

the need to find a concise and efficient means of representing and reasoning about

what does not change when an action or actions are executed by an agent. The

ramification problem concerns the need to separate the representation of the direct

effects of an action type description from the plethora of indirect effects that may

ensue when the action is executed successfully. An important aspect of the problem

is to deal with the context dependent and causal nature of the chains of indirect ef-

fects which may ensue. The qualification problem, which is the problem we will fo-

cus on in this article, concerns the need to find a concise, incremental and modular

means of characterizing the plethora of exceptional conditions which might qual-

ify an action, but generally do not, without having to explicitly enumerate them in

the precondition to the action type. A solution to one of these problems generally

implies a solution to the other two due to the interactions between preconditions,

postconditions, and indirect effects of action occurrences.

Ascertaining whether one has solutions to each of these problems is as difficult

as finding the solutions themselves. The reason for this is due to the fact that solu-

tions that may work well when based on a particular set of assumptions regarding

the ontological nature of the environment an agent is embedded in and particu-

lar epistemological constraints placed on the agent itself, may not work well when

these assumptions and constraints are relaxed. Rather than there being one frame,

ramification and qualification problem, we would claim that there are different so-

lutions for different combinations of epistemological and ontological assumptions.

This working hypothesis is well in-line with the approach used by Sandewall (1994)

in his study of the frame problem using the Features and Fluents framework.

For example, some ontological assumptions concerning action types are wheth-

er actions with duration, non-deterministic actions, or concurrent actions are pos-

sible. An epistemological assumption would be whether an agent has complete

knowledge about all the effects of an action, or whether one can assume complete

and accurate sensory data about the environment. An additional factor when eval-

uating a solution pertains to what types of reasoning tasks one has in mind for the

agent. If one is concerned with a predictive mechanism for the agent used when

generating a plan, a solution to the qualification problem which works here might

not work if one is concerned with a postdictive mechanism for the agent used after

executing a number of actions in a plan and gathering sensor data about the results.

In this article, we will first informally discuss some of the different ontological

and epistemological choices that may affect the nature of solutions to the qualifi-

cation problem. We will then present a complex narrative description, the Russian

Airplane Hijack Scenario (RAH), which in order to be adequately represented in any

logical formalism, would require robust solutions to the frame, ramification and

qualification problems. We say robust because a description of the RAH world re-

34 3.3. The Qualification Problem

quires the representation of concurrent actions, incomplete specification of states,

ramification with chaining, the use of non-boolean fluents, fine-grained dependen-

cies among objects in different fluent value domains, actions with duration, two

types of qualification (weak and strong) and the use of explicit time, in addition

to other features. To our knowledge, this provides one of the more challenging

benchmark examples in the literature. It is challenging in the sense that it involves

solutions to all three representation problems and the ontological assumptions per-

taining to allowable action types are relatively complex.

The RAH narrative description will be used as a vehicle for considering dif-

ferent facets of the qualification problem and demonstrating our solutions to the

problem. To do this, we will first introduce TAL-Q (Temporal Action Logic with

Qualification), an extension to the already existing TAL family of logics (Doherty

et al., 1998) which has sufficient expressivity to model the RAH scenario. TAL-Q is

an incremental extension of an earlier logic called TAL-C (Karlsson & Gustafsson,

1999), just as TAL-C is an incremental extension of TAL-RC (Gustafsson & Doherty,

1996). In fact, the logical language and minimization policy is roughly the same for

TAL-RC, TAL-C, and TAL-Q. The advantages of leaving the logic and minimization

policy intact are that the new class of narrative descriptions that can be represented

in TAL-Q subsumes previous classes and that any circumscribed scenario in TAL-Q

is provably and automatically reducible to a first-order theory implemented in an

on-line research tool developed by our group called VITAL (Kvarnström, 2005),

which permits the visualization and querying of narrative descriptions.

After introducing TAL-Q, we will use it to represent the RAH narrative descrip-

tion. This will be done in stages. Initially, we will represent the narrative under

the assumption that actions always succeed. We will then modify the representa-

tion with qualification conditions for action types and a mechanism for reasoning

about qualified action types based on the use of durational fluents and dependency

constraints. The use of durational fluents in combination with a simple form of cir-

cumscription provides a flexible means for incorporating a default mechanism into

TAL-Q.

We will then use TAL-Q to consider a number of additional aspects pertaining

to qualification in the context of different ontological choices such as the use of

concurrent actions. In addition, we will briefly consider two alternative approaches

to qualification that can be represented using TAL-Q. Finally, we will direct our

attention toward a number of benchmark examples in the literature, representing

them using TAL-Q, and then compare our approach to qualification with a number

of other approaches in the literature.

3.3 The Qualification Problem

Before it is possible to design or assess any approach to solving the qualification

problem, we must define in more detail what the qualification problem is.

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 35

Let us assume that there is an environment, a “real world”, in which actions can

be executed by one or more agents. Let us also assume that each action has a well-

defined intended effect. For example, in the well-known blocks world, the intended

effect of the action ♣✉t❞♦✇♥(x) is that in the resulting state, the block x the agent is

currently holding should be on the table and all other blocks should be unaffected

by the action.

When reasoning about this world using a temporal action logic, we need a cor-

rect description of the preconditions and effects of each action type that can be used

by an agent. If it is possible to find a model of the world that is both simple and cor-

rect, at least at some level of abstraction, it should be straightforward to find such

a description of preconditions and effects of actions. However, in more complex

worlds, describing an action may be far more difficult, and the resulting precondi-

tions may be extremely complicated. This complexity is often due to a large number

of conditions that are almost always false, but when satisfied, can cause the action

to fail to achieve its intended effects. We will call such exceptional conditions qual-

ifications, and if one or more of an action’s qualifications hold, the action will be

said to be qualified. (In some cases, even “non-exceptional” conditions will also be

considered as qualifications.)

The potentially large number of qualifications to an action leads to a number

of representational and implementational difficulties that are collectively called the

qualification problem. Some of these difficulties will be discussed below.

3.3.1 Restricting the Problem

The qualification problem is a complex problem with many different aspects, and it

would be very optimistic to assume that we can design a single solution that covers

all these aspects. Instead, it is necessary to determine in advance which aspects of

the problem should be addressed by the solution we are designing or assessing,

which reasoning tasks (such as prediction or planning) should be supported by

the solution, and which ontological and epistemological assumptions will be made

regarding the worlds for which the solution should be applicable and the agents

that will apply it. Below, we will consider these questions in some more detail.

Aspects of the Qualification Problem

Although the difficulties associated with the qualification problem are closely re-

lated, it is possible to isolate several aspects of the problem that may be tackled

separately. Some of these aspects pertain to the following:

• Due to incomplete knowledge about the world one is reasoning about, it may

be impossible, or at least very difficult, to find and enumerate all qualifica-

tions to an action. A classical example of this aspect of the qualification prob-

lem is the “potato in tailpipe” problem (Ginsberg & Smith, 1988): In order to

start a car, there must be nothing wrong with the battery, there must be gas in

36 3.3. The Qualification Problem

the tank, there must not be a potato in the tailpipe, and so on. No matter how

many conditions we manage to think of, there will surely always be more.

• Even when it is possible to know all qualifications to an action, the complex-

ity of these conditions may require a highly expressive logic, unless we are

willing to abstract away from some aspects of the world and be satisfied with

incomplete specifications and a mechanism to deal with this incompleteness.

• The information we do have about the conditions under which an action is

qualified needs to be represented in a modular manner, so that conditions

may be added or removed incrementally.

• Assuming that actions are normally not qualified, the need to explicitly prove

that each qualification condition does not hold may be computationally inef-

ficient.

In this article, we will mainly concentrate on the representational problems associ-

ated with qualification, that is, modular and incremental representations of quali-

fied action types.

Reasoning Tasks

In order to assess or design a solution to the qualification problem, we also need

to specify the reasoning tasks that will be used by an agent in achieving goals via

execution of actions. For example, an agent interested in determining why an action

failed using postdiction may need a different solution than an agent that is solely

interested in predicting the results of invoking a sequence of actions.

We will mainly consider off-line reasoning tasks such as prediction, postdiction

and planning.

Ontological and Epistemological Assumptions

It is also necessary to determine which ontological assumptions will be made re-

garding the world in which the solution will be applied, as well as which episte-

mological assumptions will be made about the agent’s knowledge of the world and

of the effects of its actions. Perhaps the most important such assumption is that of

what will happen in the world if the agent invokes a qualified action. The following

are some of the assumptions that may be reasonable, depending on the world that

is being modeled:

• Invoking a qualified action has no effect at all on the world.

• Invoking a qualified action affects the world, but we always know what ef-

fects it will have even when it is qualified.

• Invoking a qualified action affects the world in an unknown way, but only

during the time interval when the action is being executed.

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 37

• Invoking a qualified action affects the world in an unknown way, and may

trigger unknown chains of events that continue affecting the world after the

action has finished executing.

However, there are also many other assumptions that may affect the applicability

of a solution. The following are some examples of additional questions that need

to be answered:

• Is there complete information about the initial state in a narrative? Is there

any information about any other state in terms of observations made by the

agent?

• Can actions be context-dependent? Can they be non-deterministic? Can they

have duration, and if they can, do they have internal state (that is, may fluents

change, discretely or continuously, within the duration of an action)? Can

they have delayed effects? Can there be concurrent actions? If so, can actions

overlap partially?

• Can there be dynamic processes continuously taking place independently of

the actions invoked by the agent?

• In the presence of incomplete information and non-deterministic actions, are

there domain constraints that exclude certain “impossible” states? Are there

domain constraints that exclude certain “impossible” sequences of states? Can

domain constraints vary over time?

• Are actions allowed to have indirect side effects? Can side effects be delayed

(take place after the action has finished executing)? Can they trigger other

side effects?

Clearly, the more complex the ontological and epistemological assumptions are,

the more restricted our choices will be when attempting to solve the qualification

problem for that particular class of worlds. Consequently, we need to determine

these assumptions in advance.

Ideally, we would like to formally assess the correctness of different solutions to

the qualification problem relative to a given class of narrative descriptions, speci-

fied via epistemological and ontological assumptions as Sandewall (1994) has done

for the frame problem. However, extending Sandewall’s framework for qualifi-

cation – as well as ramification, concurrent actions, and other extensions we may

want to use in combination with qualification – is outside the scope of this arti-

cle. Instead, we will discuss in a more informal manner both some of the different

questions that need to be considered when a solution to the qualification problem is

designed and some of the effects the choice of reasoning task and our assumptions

about the class of worlds we are reasoning about may have on the answers to these

questions. We will then provide formal, but formally unassessed solutions using

TAL-Q. Some of the existing solutions in the literature will also be considered from

this point of view in Section 3.11.

38 3.3. The Qualification Problem

3.3.2 Designing a Solution

We have now considered four questions: Which aspects of the qualification prob-

lem a solution should address, which reasoning tasks it should support, which

ontological assumptions should be made regarding the worlds to which it is ap-

plicable, and which epistemological assumptions should be made regarding the

agents that should apply it. For each of these questions, the answer will depend

mainly on the class of problems we are trying to solve. For example, for anyone de-

veloping an agent controlling a UAV (unmanned aerial vehicle), the computational

aspects of the qualification problem are very important, both prediction, postdic-

tion and planning may be useful, and one must probably be able to model context-

dependent concurrent actions with duration.

However, there are also certain design choices that may be made more or less

independently of the problem or class of problems that should be solved. Some of

these choices will be discussed in this section.

How should qualification conditions be expressed?

By definition, an action is qualified if it is somehow prevented from having its in-

tended effects. There are basically two aspects to the problem. In an off-line mode,

for example, when an agent is generating a plan, a predictive mechanism might

simulate the possible future state of the world given that the agent executes a se-

quence or partially-ordered sequence of actions and find that the sequence violates

certain domain or dependency constraints. In this case, either the domain or depen-

dency constraints have been incorrectly specified, or the action type descriptions

are not precise enough and a qualification condition for one or more actions has to

be added. In an on-line mode, the agent actually executes sequences of actions and

finds that one or several have not achieved their intended effects. This information

is derived from actual sensory data. Since the world is its own model, either one

has inaccurately specified the ontological assumptions which pertain to the world,

or one of those rare qualifications has arisen and that qualification condition should

be added to the agent’s action type specification in an incremental manner so the

next time the condition arises, the action will not be executed due to the explicit

qualification. So, the qualification problem does not rule out adding a number of

qualifications to an action, but any solution tries to minimize the number of ex-

plicit qualifications per action, and those that are added are added in a modular

and incremental manner. Note that very little research has been done regarding the

on-line execution and modification of action types. Most of the research has focused

on generating the proper conclusions in off-line or simulation mode, assuming one

already has explicit information about at least some of the qualifications per action,

and on specifying a mechanism for adding new qualifications in an incremental

and modular manner. In this article, we will also focus on the off-line mode.

Most formalisms for reasoning about action and change are based on the two-

state assumption. There is an initial state in which an action is invoked and a result

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 39

state in which the effects of the action become true provided the preconditions to

the action are true in the initial state. TAL-Q is an exception due to its use of ac-

tions with duration and its use of explicit time. There are basically two classes of

solutions in the literature, one focusing on the initial state of an action and the other

focusing on the effect state.

When focusing on the initial state, one very straight-forward solution would

be to strictly treat qualification constraints as preconditions to actions – conditions

that must or must not hold in the state in which an action is invoked. For example,

the st❛rt action can be considered qualified if ♣♦t❛t♦✲✐♥✲t❛✐❧♣✐♣❡ is true in the state

where an action will be executed. Most solutions in this class encode an assumption

that if one can not explicitly prove that a known qualification to an action is true

then that action can be executed. If actions may have duration and internal state,

this approach can be extended by also allowing conditions at any time within the

interval when the action is executed – for example, even if there was no potato

in the tailpipe when the st❛rt action was invoked, one may be inserted during its

execution.

In approaches focusing on the effect state, such as (Ginsberg & Smith, 1988;

Lin & Reiter, 1994), an action is considered qualified whenever its intended effect

would contradict a domain constraint in the effect state. In a sense, this implies a

form of hypothetical reasoning which could only be used in off-line mode, where

one checks whether the execution of an action would lead to a contradiction in the

result state. In Ginsberg and Smith (1988), if this is the case, the action has no effect

and the execution and effect states for the action are the same. In the case of Lin

and Reiter (1994), a form of precompilation is used to modify the specified precon-

ditions of each action to include the negation of every condition that would cause

a contradiction. This assumes that one already has explicit qualification conditions

in the theory. As before, this approach can of course be extended to actions with

duration and internal state by considering an action qualified whenever it would

contradict a domain constraint at any time during its execution. Also, if domain

constraints can span multiple states (for example, relating fluents in one state to

fluents in its successor), an action could be considered qualified whenever execut-

ing it must eventually result in such a domain constraint being contradicted.

We will pursue the precondition-based approach with TAL-Q, but with a much

richer ontology of actions. This richer ontology would lead to problems in the latter

approach. For example, if actions can be executed concurrently, it could be the case

that the combined effect of two concurrent actions contradicts a domain constraint,

but either action alone does not. Do we predict that one action succeeds, which may

sometimes be the case, or that neither one does? Additional problems would arise

if we allowed delayed side effects, non-deterministic actions, or any of a number of

other features that have generally not been considered together with qualification.

These problems make the latter approach much less intuitive for these extensions

to the logics than it is for a situation calculus-type logic or belief-update approach

described in Lin and Reiter (1994) and Ginsberg and Smith (1988). Due to the added

expressivity of TAL-Q, these issues must be dealt with in our solution.

40 3.3. The Qualification Problem

What should be entailed about the effects of invoking a qualified action?

In a number of formalisms, one can reason not only about the effects of actions

that are unqualified, but also those that are qualified. In other words, an action is

invoked even though not all conditions which would guarantee its intended effects

are satisfied. Reasoning about this type of situation is perhaps more appropriate

when considering the on-line mode, but still has to be defined even for off-line

mode reasoning if the formalism allows invocation of qualified actions. Ideally,

we would like our approach to the qualification problem to be able to represent

whatever knowledge – or lack of knowledge – we have regarding the effects of

invoking actions, whether qualified or not.

However, there are cases where this might not make sense, or is simply unnec-

essary. Suppose for instance, we have an interest in the planning task in off-line

mode. In this case, reasoning about the effects of qualified actions does not make

much sense, since the point to generating a plan is to generate a sequence of ac-

tions we assume are all executable and have their intended effects. What would

be important is being able to reason about under what conditions an action might

be qualified so as to avoid using it under those conditions in the plan generation

phase. On the other hand, if one is using the formalism in on-line mode, reasoning

about the effects of invoking qualified actions may be very important because an

agent might on occasion invoke an action without being aware it is qualified – due

to faulty sensors, for example. In this case, being able to reason about at least some

of the effects of the action would be quite useful in a postdictive or diagnostic phase

of reasoning.

Whatever choice is made, it should be made very clear why the choice is being

made and what the ontological justification is. Quite often, the choice is simply a

side effect of the solution chosen for solving the qualification problem. As we shall

see in Section 3.11, many formalisms behave differently in this respect.

Should it be possible to reason about qualification within the logic?

One final design issue is whether qualifications to actions should be first-class ob-

jects which can be explicitly reasoned about in the formalism itself. This is particu-

larly important in on-line reasoning mode, where execution monitoring is a central

part of an agent’s execution mechanism and determines future courses of action

and modification of existing courses of action.

3.3.3 Reasoning about Undesirable Actions

A problem that often appears during planning is that of determining which actions

would have effects that are undesirable. Although this may at a first glance seem

unrelated to the qualification problem, it turns out that both problems can often be

specified in terms of conditions that hold when an action is invoked or constraints

that should not be violated by the effects of an action. Recall that this is the basis for

the two classes of solutions to the qualification problem discussed previously. The

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 41

difference between reasoning about qualified actions and reasoning about undesir-

able effects of actions may better be determined in terms of ontological assump-

tions placed on the worlds we are interested in. For example, should one make

explicit distinctions between types of qualifications to actions such as those that if

satisfied would make it physically impossible to execute the action satisfactorily,

or those that simply involve contingent restrictions associated with the domain in

question?

This appears to be the reason why some qualification examples in the litera-

ture are in fact examples of actions which would have their defined, intended, well-

known effects, but which are invoked in a context in which those effects are not

desirable. For example, in the lenient emperor scenario (Lin & Reiter, 1994), there is

a robot that can paint blocks, but an emperor allows at most one block to be yellow

at any given time. This is ensured by considering the action ♣❛✐♥t(block, yellow) to

be qualified whenever there is already a yellow block (and, of course, by preventing

the robot from executing any qualified action).

This approach works well when attempting to define a plan while avoiding

undesirable actions. On the other hand, suppose that there is already a yellow

block and that we want to predict what would happen if the robot tried to paint

another block yellow. Certainly, there is nothing inherently problematic about this

course of events even in the context of the emperor’s strange rule. Intuitively, the

action should succeed, with the conclusion that the robot invoked an action that

violates correct social behavior. In the example above, the action is considered to

be qualified and the conclusion will be that the action has in fact, failed.

Therefore, undesirable actions should probably not be handled in exactly the

same way as qualified actions, but they can probably be handled in a technically

very similar manner, and any solution to the qualification problem may also be

interesting in this respect. Several examples in the literature which relate to this

issue will be considered.

3.3.4 Summary

In summary, a solution to the qualification problem that works well for one rea-

soning task, under one ontological assumption, might not work well given another

reasoning task or another ontological assumption, and when the set of problems

one considers is extended, one may have to use a different approach previously

considered less than optimal.

Due to these considerations, there is probably no single “best” solution to the

qualification problem. Instead, there is likely to exist a set of good solutions, each

of which is useful for a given expressivity and for a given task. Unfortunately, the

solutions found in the literature often do not state explicitly what task and expres-

sivity they are intended to handle. This makes it difficult to compare solutions, or

build on one another’s work. This section’s intent was to point these issues out and

create a context for the rest of the article. We will now consider the RAH scenario

and its formalization in TAL-Q.

42 3.4. The Russian Airplane Hijack Scenario

3.4 The Russian Airplane Hijack Scenario

In the remainder of this article, we will use the methodology of representative ex-

amples as a means of considering and proposing a solution to the qualification

problem for a certain class of worlds. The scenario we will use is the Russian Air-

plane Hijack Scenario (RAH)1, previously published in Doherty and Kvarnström

(1998).

A Russian businessman, Boris, travels a lot and is concerned about both his hair and

safety. Consequently, when traveling, he places both a comb and a gun in his pocket. A

Bulgarian businessman, Dimiter, is less concerned about his hair, but when traveling by

air, has a tendency to drink large amounts of vodka before boarding a flight to subdue his

fear of flying. A Swedish businessman, Erik, travels a lot, likes combing his hair, but is

generally law abiding.

Now, one ramification of moving between locations is that objects in your pocket will

follow you from location to location. Similarly, a person on board a plane will follow the

plane as it flies between cities.

Generally, when boarding a plane, the only preconditions are that you are at the gate

and you have a ticket. However, if you try to board a plane carrying a gun in your pocket,

which will be the case for Boris, this should qualify the action. Also, a condition that could

sometimes qualify the boarding action is if you arrive at the gate in a sufficiently inebriated

condition, as will be the case for Dimiter. When the boarding action is qualified, attempting

to board should have no effect.

Boris, Erik and Dimiter already have their tickets. They start (concurrently) from their

respective homes, stop by the office, go to the airport, and try to board flight SAS609 to

Stockholm. Both Erik and Boris put combs in their pockets at home, and Boris picks up a

gun at the office, while Dimiter is already drunk at home and may or may not already have

a comb in his pocket. Who will successfully board the plane? What are their final locations?

What will be in their pockets after attempting to board the plane and after the plane has

arrived at its destination?

If the scenario is encoded properly and our intuitions about the frame, ramifi-

cation and qualification problems are correct then we should be able to entail the

following from the RAH scenario, assuming that Boris, Erik and Dimiter own the

combs comb1, comb2 and comb3, respectively:

1. Erik will board the plane successfully, eventually ending up at his destina-

tion.

2. An indirect effect of flying is that the person ends up at the same location as

the airplane. In addition, because items in pockets follow the person, a transi-

tive effect results where the items in the pocket are at the same location as the

plane. Consequently, Erik’s comb comb2 will also end up at his destination.

1This scenario is an elaboration and concretization of a sketch for a scenario proposed by Vladimir

Lifschitz in on-line discussions in the Electronic Transactions on Artificial Intelligence (ETAI/ENAI).

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 43

3. Boris will get as far as the airport with a gun and comb1 in his pocket. He

will be unable to board the plane.

4. Dimiter will get as far as the airport, and may or may not be able to board

the plane. If he is able to board the plane, he will eventually end up at his

destination. Otherwise, he will remain at the airport. In any case, if he initially

carried a comb, it will end up in the same location.

For this scenario, we assume that we know all possible reasons why an action may

be qualified, and we are mainly interested in representing qualifications in a mod-

ular and intuitive manner. We are also mainly interested in prediction.

This is a rather complex scenario, and modeling it requires a relatively expres-

sive logic. Unfortunately, many approaches to the qualification problem in the lit-

erature have been defined with very strong constraints placed on action types and

also use the two-state assumption. Modeling this scenario in such logics, or scaling

up the expressivity of such a logic to be able to model this scenario, would be diffi-

cult. In the next section, we will take advantage of the expressivity already part of

TAL-Q in defining a solution.

3.5 TAL-Q: Temporal Action Logic with Qualification

Our approach to handling the qualification problem is based on the use of TAL-Q

(Temporal Action Logic with Qualification), a member of the TAL (Temporal Action

Logics) family of logics for reasoning about action and change.

As it turns out, the approach we will present does not require any new predi-

cates or other changes to the high-level concepts used in previous TAL logics. In-

stead, it uses well-known concepts from older logics such as TAL-C (Karlsson &

Gustafsson, 1999) in a new and different way. Therefore, we will begin by describ-

ing the logic TAL-Q without considering the qualification problem. In Section 3.6,

we show how the RAH scenario can be modeled in TAL-Q under the assumption

that actions never fail, and in Section 3.7, we define our approach to solving the

qualification problem within TAL-Q and demonstrate it by applying it to the RAH

scenario. Since TAL-C has already been introduced in Chapter 2, the description of TAL-C

in this section has been removed.

3.6 Representing the RAH Scenario

In this section, we will show how the Russian Airplane Hijack Scenario can be

represented in TAL-Q if we do not consider qualifications to actions. This will

result in a scenario in which it is assumed that any attempt to board a plane always

succeeds, regardless of whether the person carries a gun or is drunk. In Section 3.7,

we will show how the scenario presented here can be modified in order to deal with

the qualification problem.

44 3.6. Representing the RAH Scenario

In order to simplify the presentation, being at the airport will be the only normal

precondition for boarding a plane.

All formulas in this section are written in the surface language L(ND). Appen-

dix 1 contains the same formulas, with the exception that the action type definitions

have been modified as in Section 3.7 and some new dependency constraints have

been added. Appendix 2 contains the translation of the formulas in Appendix 1

into the base logic L(FL).

3.6.1 Narrative Background Specification

First, it is necessary to determine which value domains, fluents and actions are

needed. For the Russian Airplane Hijack Scenario, we will need the standard bool-

ean value domain boolean = {true, false}, a domain location = {home1, home2,

home3, office, airport, run609, run609b, air} for locations, and a domain thing =

{ gun, comb1, comb2, comb3, boris, dimiter, erik, sas609 } containing everything

that has a location. We also define the subdomains runway = {run609, run609b}
for locations that are runways, plane = {sas609} for things that are airplanes,

person = {boris, dimiter, erik} for things that are people, and pthing = {gun,

comb1, comb2, comb3} for things that people can pick up.

We also need four fluents: ❧♦❝(thing) : location, ✐♥♣♦❝❦❡t(person, pthing) :

boolean, ♦♥♣❧❛♥❡(plane, person) : boolean, and ❞r✉♥❦(person) : boolean.

Four actions are necessary in this scenario: ♣✐❝❦✉♣(person, pthing) for picking

up things, tr❛✈❡❧(person, location, location) for traveling between locations in

the same city, ❜♦❛r❞(person, plane) for boarding an airplane, and ✢②(plane, runway,
runway) for flying between two runways.

Finally, we need to declare each of the four fluents persistent at all timepoints

using a set of persistence statements:

♣❡r✶ ∀t, thing [true→ Per(t + 1, ❧♦❝(thing))]

♣❡r✷ ∀t, person, pthing [true→ Per(t + 1, ✐♥♣♦❝❦❡t(person, pthing))]

♣❡r✸ ∀t, person [true→ Per(t + 1, ❞r✉♥❦(person))]

♣❡r✹ ∀t, plane, person [true→ Per(t + 1, ♦♥♣❧❛♥❡(plane, person))]

3.6.2 Initial State

The initial state in a TAL narrative (as well as any other state) can be completely

or incompletely specified using observation statements. For this scenario, we must

define the initial locations of all t❤✐♥❣s, as well as who is drunk in the initial state.

On the other hand, we do not observe which things are in whose pockets.

♦❜s✶ [0] ❧♦❝(boris) =̂ home1∧ ❧♦❝(gun) =̂ office∧ ❧♦❝(comb1) =̂ home1∧¬❞r✉♥❦(boris)
♦❜s✷ [0] ❧♦❝(erik) =̂ home2∧ ❧♦❝(comb2) =̂ home2∧ ¬❞r✉♥❦(erik)

♦❜s✸ [0] ❧♦❝(dimiter) =̂ home3∧ ❧♦❝(comb3) =̂ home3∧ ❞r✉♥❦(dimiter)
♦❜s✹ [0] ❧♦❝(sas609) =̂ run609

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 45

3.6.3 Action Definitions

Four actions were declared in the narrative background specification. The follow-

ing action type specification defines the meaning of those actions. For example,

if ✢②(plane, runway1, runway2) is invoked between t1 and t2, then assuming the air-

plane is initially at runway1, it will be in the air in the interval (t1, t2) and finally

end up at runway2 at time t2.

❛❝s✶ [t1, t2] ✢②(plane, runway1, runway2) ❀ [t1] ❧♦❝(plane) =̂ runway1 →
I((t1, t2) ❧♦❝(plane) =̂ air) ∧ R([t2] ❧♦❝(plane) =̂ runway2)

❛❝s✷ [t1, t2] ♣✐❝❦✉♣(person, pthing) ❀ [t1] ❧♦❝(person) =̂ value(t1, ❧♦❝(pthing))→
R((t1, t2] ✐♥♣♦❝❦❡t(person, pthing))

❛❝s✸ [t1, t2] tr❛✈❡❧(person, loc1, loc2) ❀ [t1] ❧♦❝(person) =̂ loc1 → R([t2] ❧♦❝(person) =̂ loc2)

❛❝s✹ [t1, t2] ❜♦❛r❞(person, plane) ❀ [t1] ❧♦❝(person) =̂ airport→
R([t2] ❧♦❝(person) =̂ value(t2, ❧♦❝(plane)) ∧ ♦♥♣❧❛♥❡(plane, person))

The following action occurrences are also needed. The exact timepoints used below

were not specified in the RAH scenario, but have been chosen arbitrarily. Alterna-

tively, exact timepoints could have been avoided by using non-numerical temporal

constants. Note, however, that many of the actions are concurrent, sometimes with

partially overlapping intervals.

♦❝❝✶ [1, 2] ♣✐❝❦✉♣(boris, comb1)

♦❝❝✷ [1, 2] ♣✐❝❦✉♣(erik, comb2)

♦❝❝✸ [2, 4] tr❛✈❡❧(dimiter, home3, office)

♦❝❝✹ [3, 5] tr❛✈❡❧(boris, home1, office)

♦❝❝✺ [4, 6] tr❛✈❡❧(erik, home2, office)

♦❝❝✻ [6, 7] ♣✐❝❦✉♣(boris, gun)

♦❝❝✼ [5, 7] tr❛✈❡❧(dimiter, office, airport)

♦❝❝✽ [7, 9] tr❛✈❡❧(erik, office, airport)
♦❝❝✾ [8, 10] tr❛✈❡❧(boris, office, airport)
♦❝❝✶✵ [9, 10] ❜♦❛r❞(dimiter, sas609)

♦❝❝✶✶ [10, 11] ❜♦❛r❞(boris, sas609)

♦❝❝✶✷ [11, 12] ❜♦❛r❞(erik, sas609)

♦❝❝✶✸ [13, 16] ✢②(sas609, run609, run609b)

3.6.4 Domain Constraints

We will define three domain constraints: No pthing can be carried by two persons

at the same time, no person can be on board two planes at the same time, and any

pthing in a person’s pocket must be at the same location as that person.

❞♦♠✶ ∀t, pthing, person1, person2

[person1 6= person2 ∧ [t] ✐♥♣♦❝❦❡t(person1, pthing)→ [t] ¬✐♥♣♦❝❦❡t(person2, pthing)]

❞♦♠✷ ∀t, person, plane1, plane2

[plane1 6= plane2 ∧ [t] ♦♥♣❧❛♥❡(plane1, person)→ [t] ¬♦♥♣❧❛♥❡(plane2, person)]

❞♦♠✸ ∀t, person, pthing [[t] ✐♥♣♦❝❦❡t(person, pthing)→ [t] ❧♦❝(pthing) =̂ value(t, ❧♦❝(person))]

3.6.5 Dependency Constraints

Now, apart from qualifications, only the side effects of actions remain to be mod-

eled: Anything on board an airplane should follow the airplane, and anything

a person carries should follow the person. The following two dependency con-

straints are sufficient for achieving this. For example, if someone is on board a

46 3.7. Representing the Qualification Problem in TAL-Q

plane and the location of the plane changes to loc, the location of the person also

changes to loc.

❞❡♣✶ ∀t, plane, person, loc [

[t] ♦♥♣❧❛♥❡(plane, person) ∧ CT([t] ❧♦❝(plane) =̂ loc)→ R([t] ❧♦❝(person) =̂ loc)]

❞❡♣✷ ∀t, person, pthing, loc [

[t] ✐♥♣♦❝❦❡t(person, pthing) ∧ CT([t] ❧♦❝(person) =̂ loc)→ R([t] ❧♦❝(pthing) =̂ loc)]

3.7 Representing the Qualification Problem in TAL-Q

We have now modeled most of the Russian Airplane Hijack Scenario in TAL-Q, but

we have not yet taken care of the qualifications defined by the scenario: Someone

who carries a gun cannot board a plane, and someone who is drunk may or may

not be able to board.

There are already a number of solutions to various aspects of the qualification

problem in the literature, some of which would be applicable to the TAL logics.

However, many of these solutions are dependent on the two-state assumption with

highly constrained action types. We would like to provide a solution that retains

the following features of TAL:

• Any state, including the initial state, can be completely or incompletely spec-

ified using observations and domain constraints.

• Actions can be context-dependent and non-deterministic. They can have du-

ration and internal state, and the duration may be different for different exe-

cutions of the action. There may be concurrent actions with partially overlap-

ping execution intervals.

• There can be dynamic processes continuously taking place independently of

any actions that may occur.

• Domain constraints can be used for specifying logical dependencies between

fluents generally true in every state or across states. They may vary over time.

• Actions can have side effects, which may be delayed and may affect the world

at multiple points in time. They may in turn trigger other delayed or non-

delayed side effects.

We would also like to retain the first-order reducibility of the circumscription ax-

iom. The following restrictions and assumptions will apply. As discussed in Sec-

tion 3.3.2, we will be satisfied with a solution where invoking a qualified action ei-

ther has no effect or has some well-defined effect. We will also restrict the solution

to the off-line planning and prediction problems, and not claim a complete solution

for the postdiction problem, which would require being able to conclude that an

action was qualified because its successful execution would have contradicted an

observation of some fluent value after that action was invoked.

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 47

3.7.1 Enabling Fluents

To handle the qualification problem, we will propose a solution based on defaults

where each action type in a narrative is associated with an enabling fluent, a boolean

durational fluent with default value true and with the same number and type of

arguments as the action type. This fluent will be used in the precondition of the

action, and will usually be named by prefixing “♣♦ss-” to the name of the action.

For example, the boarding action in the RAH scenario will be associated with an

enabling fluent ♣♦ss✲❜♦❛r❞(person, plane). We add a persistence statement for this

fluent and modify ❛❝s✹ as follows:

♣❡r✺ ∀t, person, plane [true→ Dur(t, ♣♦ss✲❜♦❛r❞(person, plane), true)]

❛❝s✹′ [t1, t2] ❜♦❛r❞(person, plane)

[t1] ♣♦ss✲❜♦❛r❞(person, plane) ∧ ❧♦❝(person) =̂ airport→
R([t2] ❧♦❝(person) =̂ value(t2, ❧♦❝(plane)) ∧ ♦♥♣❧❛♥❡(plane, person))

The other action types are modified in a similar way (see Appendix 1 for more

details).

Now, suppose that ❜♦❛r❞(person, plane) is executed between timepoints t1 and t2.

If ♣♦ss✲❜♦❛r❞(person, plane) is false at t1 for some reason, the action is qualified, or

disabled. On the other hand, if the fluent is true at t1, the action is enabled. Of course,

it can still be the case that the action has no effects, if other parts of its precondition

are false.

To generalize this, a context-independent action that should have no effect at all

when qualified can be defined using a simple action definition of the form2

❛❝s♠ [t1, t2] ❛❝t✐♦♥ [t1] ♣♦ss✲❛❝t✐♦♥∧ α→ R([t2] β)

where α is the precondition and β specifies the direct effects of the action (context-

dependent actions are defined analogously). However, we also wanted to be able

to define actions that do have some effects when they are qualified. This can be

done by defining a context-dependent action that defines what happens when the

enabling fluent is false:

❛❝s♥ [t1, t2] ❛❝t✐♦♥ ([t1] ♣♦ss✲❛❝t✐♦♥∧ α1 → R([t2] β1)) ∧
([t1] ¬♣♦ss✲❛❝t✐♦♥∧ α2 → R([t2] β2))

For example, suppose that whenever anyone tries to board a plane but the action

is qualified, they should be thrown in jail. In order to model this, we would add

a new persistent fluent ✐♥✲❥❛✐❧(person) : boolean and modify the boarding action

from Section 3.6.3 as follows:

❛❝s✹′′ [t1, t2] ❜♦❛r❞(person, plane)

([t1] ♣♦ss✲❜♦❛r❞(person, plane) ∧ ❧♦❝(person) =̂ airport→
R([t2] ❧♦❝(person) =̂ value(t2, ❧♦❝(plane)) ∧ ♦♥♣❧❛♥❡(plane, person))) ∧

([t1] ¬♣♦ss✲❜♦❛r❞(person, plane) ∧ ❧♦❝(person) =̂ airport→
R([t2] ✐♥✲❥❛✐❧(person)))

2Note that due to the regularity of the solution, such extensions could be implicit in an action macro,

thus avoiding unneeded clutter in the representation.

48 3.7. Representing the Qualification Problem in TAL-Q

In this alternative scenario, if anyone is at the airport and tries to board a plane,

and the action is qualified, they will be thrown in jail. If they are at the airport but

the action is not qualified, they will board the plane. If they are not at the airport,

none of the preconditions will be true, and invoking the action will have no effect.

Regardless of whether a qualified action has an effect or not, its enabling fluent

is a durational fluent with default value true. Therefore, the fluent will normally be

true, and the action will normally be enabled. In the remainder of this section, we

will examine some of the ways in which we can disable an action using strong and

weak qualification.

3.7.2 Strong Qualification

Let us start with strong qualification. When an action is strongly qualified, it should

definitely not succeed. This can be accomplished by forcing its enabling fluent to

be false at the timepoint at which the action is invoked.

For example, suppose that when a person has a gun in his pocket, it should be

impossible for that person to board a plane. Then, whenever ✐♥♣♦❝❦❡t(♣❡rs♦♥, ❣✉♥)
holds, we must make ♣♦ss✲❜♦❛r❞ false. This can be achieved using a dependency

constraint:

❞❡♣✸ ∀t, person, plane [[t] ✐♥♣♦❝❦❡t(person, gun)→ I([t] ¬♣♦ss✲❜♦❛r❞(person, plane))]

At any timepoint t when a person has a gun in his pocket, we use the I macro both

to occlude ♣♦ss✲❜♦❛r❞(person, plane) for all airplanes, thereby releasing it from the

default value axiom, and to make it false. This implies that as long as a person has

a gun in his pocket, ♣♦ss✲❜♦❛r❞ will be false for that person on all airplanes. If the

gun is later removed from the pocket, this dependency constraint will no longer be

triggered. At that time, assuming no other qualifications affect the enabling fluent,

it will automatically revert to its default value, true.

3.7.3 Weak Qualification

Although strong qualification can often be useful, we may sometimes want to ex-

press the fact that an action may succeed, or it may fail, depending on circum-

stances we may or may not be aware of. We call this weak qualification.

For example, we may want to model the fact that when a person is drunk, he

may or may not be able to board an airplane, depending on whether airport secu-

rity discovers this or not. We may not be able to determine within our model of

the RAH scenario whether airport security does discover that any given person

is drunk, and even if we could, it may be of no interest. In this case, whenever

❞r✉♥❦(person) holds, we must release ♣♦ss✲❜♦❛r❞ from the default value assumption:

❞❡♣✹ ∀t, person [[t] ❞r✉♥❦(person)→ X([t] ∀plane [¬♣♦ss✲❜♦❛r❞(person, plane)])]

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 49

At any timepoint t when a person is drunk, we occlude ♣♦ss✲❜♦❛r❞(person, plane)
for all airplanes, but since we do not state anything about the value of the enabling

fluent, it is allowed to be either true or false.

Although being able to state that an action may fail is useful in its own right,

it is naturally also possible to restrict the set of models further by adding more

statements to the scenario, which could make it possible to infer whether ♣♦ss✲❜♦❛r❞

(dimiter, sas609) is true or false at some or all timepoints. For example, we may

know that people boarding sas609 are always checked more carefully, so that it is

impossible for anyone who is drunk to be on board that airplane, which could be

expressed using a domain constraint. In the context of postdiction, observation

statements could be used in a similar manner. For example, adding the observation

statement obs5 [13] ♦♥♣❧❛♥❡(sas609, boris) to the narrative would allow us to infer

that Boris did in fact board the plane and that ♣♦ss✲❜♦❛r❞(boris, sas609) was in fact

true. He would then end up at his intended destination. If instead we added the

observation statement obs6 [13] ¬♦♥♣❧❛♥❡(sas609, boris), we could infer that he

was unable to board the plane and he did not end up at his destination.

The TAL-Q representation of the Russian Airplane Hijack Scenario from Section 3.4

is now complete. The full L(ND) narrative is listed in Appendix 1, and the trans-

lation into L(FL) is shown in Appendix 2.

The translation into L(FL) was done using VITAL (Kvarnström, 2005), a re-

search tool that can be used to study problems involving action and change within

TAL and generate visualizations of action scenarios and preferred entailments. VI-

TAL was also used for generating Figure 3.1 on page 66 which is a color-coded

summary of facts true in all preferred models of the RAH scenario. Light gray and

dark gray stand for true and false values for boolean fluents. Medium gray stands

for an unknown value, while black stands for a value which is unknown but will

be the same as that of the previous timepoint due to inertia. For non-boolean flu-

ents, “∗n∗” means that there are n possible values; the values are not shown in the

diagram due to lack of space.

In this scenario, Dimiter is drunk at all timepoints, and he attempts to board a

plane at time 9. There will be two classes of preferred models: In one class, Dimiter

will successfully board the plane, and in the other, he will not. As shown in Fig-

ure 3.1, we can not infer ♣♦ss✲❜♦❛r❞(dimiter, sas609) or its negation at any time-

point. In other words, we will not assume that the action succeeds merely because

it is possible that it will succeed.

It should be noted that this approach has similarities to a standard default so-

lution to the qualification problem, but with some subtle differences. For example,

it permits more control of the enabling precondition, even allowing it to change

during the execution of an action. More importantly, it involves no changes to the

minimization policy already used in TAL to deal with the frame and ramification

problems, and the circumscription policy inherits first-order reducibility.

50 3.8. Additional Aspects of the Qualification Problem

3.8 Additional Aspects of the Qualification Problem

3.8.1 Qualification and Concurrency

One of the requirements we stated previously was that our solution should be

able to handle concurrent actions. Here, there are two different cases, depend-

ing on whether the effects of the actions are independent or can interact in various

ways. As we have seen when modeling the RAH scenario, the former case does not

present a problem: Any number of people could attempt to board the plane at the

same time, and the correct, intuitive conclusions would be obtained.

However, the latter case is far more interesting, and presents a problem for ap-

proaches where actions are qualified when their successful execution would contra-

dict a domain constraint, due to the difficulties associated with determining exactly

which of all concurrent actions was the cause of the contradiction. It is more eas-

ily handled with an approach where qualifications are conditions evaluated in the

state where the action is invoked, such as our TAL-Q approach.

Assume, for example, that it is impossible for two people to board the same

airplane at the same time (a resource limitation problem). Similar situations have

already been considered in the context of TAL-C in Karlsson and Gustafsson (1999),

where bounds on concurrency and limited resources were handled using fluent

dependency constraints. In this approach, actions are decoupled from their effects

using influences, boolean durational fluents that indicate that the world is inclined

to change in some specific way, and a similar approach can be used for qualification.

Below, we will show how the specific problem mentioned above can be modeled in

TAL-Q using the same approach.

First, we add a new durational influence fluent ✇❛♥t✲t♦✲❜♦❛r❞(person, plane)
with default value false. We change the definition of ❜♦❛r❞ so that instead of alter-

ing the ♦♥♣❧❛♥❡ fluent directly, the action simply makes ✇❛♥t✲t♦✲❜♦❛r❞(person, plane)
true at a single timepoint. Then, we add a new dependency constraint ❞❡♣✺ that is

triggered whenever ✇❛♥t✲t♦✲❜♦❛r❞(person, plane) is true. This dependency constraint

contains what were previously the direct effects of the action.

❛❝s✹′′′ [t1, t2] ❜♦❛r❞(person, plane) I([t2] ✇❛♥t✲t♦✲❜♦❛r❞(person, plane))

❞❡♣✺ ∀t, person, plane [[t] ✇❛♥t✲t♦✲❜♦❛r❞(person, plane) ∧ ♣♦ss✲❜♦❛r❞(person, plane)→
I([t] ♦♥♣❧❛♥❡(plane, person))]

The scenario above is essentially a reformulation of the original RAH scenario, and

will entail exactly the same facts. However, it is modeled using the TAL-C influence

framework, which provides some additional flexibility in reasoning about actions

and their effects. Specifically, there is now a simple way to define what should

happen when two people try to board the same plane at the same time. Clearly,

for that airplane, ✇❛♥t✲t♦✲❜♦❛r❞(person, plane) will be true for more than one person,

and we must make ♣♦ss✲❜♦❛r❞(person, plane) false for all except one of them. We

add a new fluent ❝❛♥✲❜♦❛r❞(plane) : ♣❡rs♦♥ whose value at any given time is the

unique person that can board the plane at that time. We then add two dependency

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 51

constraints: One stating that if there is at least one person trying to board a certain

plane plane, then ❝❛♥✲❜♦❛r❞(plane) will be one of those people, and one stating that

❝❛♥✲❜♦❛r❞(plane) is the only person who can board plane.

❞❡♣✻ ∀t, plane [∃person [[t] ✇❛♥t✲t♦✲❜♦❛r❞(person, plane)]→
∃person2 [[t] ✇❛♥t✲t♦✲❜♦❛r❞(person2, plane) ∧ I([t] ❝❛♥✲❜♦❛r❞(plane) =̂ person2)]]

❞❡♣✼ ∀t, plane, person

[¬([t] ❝❛♥✲❜♦❛r❞(plane) =̂ person)→ I([t] ¬♣♦ss✲❜♦❛r❞(person, plane))]

It is easy to imagine several variations on this problem. For example, if two or more

people try to board a plane simultaneously, it could be the case that none of them

should succeed, or that there should be priorities (the “strongest” one should suc-

ceed). This can easily be modeled by adapting other techniques presented in Karls-

son and Gustafsson (1999).

3.8.2 Qualification: Not Only For Actions

As we have shown, this approach to qualification is based on general concepts

already present in earlier TAL logics, such as durational fluents and fluent de-

pendency constraints, instead of introducing new predicates, entailment relations

or circumscription policies specifically designed for dealing with the qualification

problem. This is appealing not only because we avoid introducing new complex-

ity into the logic, but also because reusing these more general concepts adds to the

flexibility of the approach. In this section, we will show how we can use exactly

the same approach to specify qualifications not only for actions but for any generic

rule or constraint.

Qualifying Qualification Constraints

When we initially considered the boarding action, the “natural” preconditions were

that one had to be at the airport; this is the precondition encoded in the definition

of ❜♦❛r❞ (❛❝s✹). Later, we found another condition that should qualify the action:

No one should be able to board a plane carrying a gun. Now, however, we may

discover that this qualification does not always hold: Airport security should be

able to board a plane carrying a gun.

Assuming that there is a fluent ✐s✲s❡❝✉r✐t②(person) : boolean, this exception to

the general qualification rule could of course be modeled by changing the depen-

dency constraint ❞❡♣✸ in the following way:

❞❡♣✸′ ∀t, person, plane

[[t] ✐♥♣♦❝❦❡t(person, gun) ∧ ¬✐s✲s❡❝✉r✐t②(person)→ I([t] ¬♣♦ss✲❜♦❛r❞(person, plane))]

However, we may later discover additional conditions under which it should be

possible for a person to board a plane with a gun, and we do not want to mod-

ify ❞❡♣✸ each time. Instead, the qualification itself should be qualified. This can

easily be done using the same approach as for actions. A new enabling fluent

❣✉♥s✲❢♦r❜✐❞❞❡♥(person, plane) : boolean is added for the qualification constraint,

and ❞❡♣✸ is modified as follows:

52 3.8. Additional Aspects of the Qualification Problem

❞❡♣✸′′ ∀t, person, plane [[t] ✐♥♣♦❝❦❡t(person, gun) ∧ ❣✉♥s✲❢♦r❜✐❞❞❡♥(person, plane)→
I([t] ¬♣♦ss✲❜♦❛r❞(person, plane))]

Now, we can qualify the qualification ❞❡♣✸ simply by making ❣✉♥s✲❢♦r❜✐❞❞❡♥ false

for some person and airplane. In order to do this, we add a new dependency con-

straint:

❞❡♣✽ ∀t, person, plane [[t] ✐s✲s❡❝✉r✐t②(person)→ I([t] ¬❣✉♥s✲❢♦r❜✐❞❞❡♥(person, plane))]

Weakening Qualifications

It may also be the case that we want to qualify a strong qualification in order to

“replace” it with a weak qualification. For example, suppose that a gun is made

of a special kind of plastic that may or may not be detected by airport security.

Assuming that we have already added dependency constraints ❞❡♣✸′′ and ❞❡♣✽ as

defined above, and that there is a fluent ❣✉♥✲✐s✲♣❧❛st✐❝ : boolean, we can achieve this

in two different ways. First, we can use strong qualification for the ❣✉♥s✲❢♦r❜✐❞❞❡♥

fluent, so that having a gun is definitely not a qualification to ❜♦❛r❞, and then add

a new weak qualification for the boarding action:

❞❡♣✾ ∀t, person, plane

[[t] ✐♥♣♦❝❦❡t(person, gun) ∧ ❣✉♥✲✐s✲♣❧❛st✐❝→ I([t] ¬❣✉♥s✲❢♦r❜✐❞❞❡♥(person, plane))]

❞❡♣✶✵ ∀t, person, plane

[[t] ✐♥♣♦❝❦❡t(person, gun) ∧ ❣✉♥✲✐s✲♣❧❛st✐❝→ X([t] ¬♣♦ss✲❜♦❛r❞(person, plane))]

Second, we can use weak qualification for the ❣✉♥s✲❢♦r❜✐❞❞❡♥ fluent, so that having

a gun may or may not qualify the boarding action:

❞❡♣✶✶ ∀t, person, plane

[[t] ✐♥♣♦❝❦❡t(person, gun) ∧ ❣✉♥✲✐s✲♣❧❛st✐❝→ X([t] ¬❣✉♥s✲❢♦r❜✐❞❞❡♥(person, plane))]

Qualifying Dependency Constraints

As we have just shown, the same technique we used for qualifying actions could

also be used for qualifying qualifications. Obviously, we could also apply the same

technique to other parts of a narrative, such as ordinary dependency constraints.

This allows us to express qualified side effects in TAL-Q, which we will demon-

strate in Section 3.10.2.

3.8.3 Defining Enabling Fluents

In some approaches, qualification conditions are directly tied to specific actions,

which can have certain advantages. For example, in our approach, it would have

been possible to avoid the need to declare each enabling fluent and to explicitly

include them in the corresponding action preconditions. This could be done by in-

troducing a fixed qualified(t, a) predicate expressing the fact that a specific action a

is qualified at a timepoint t, and then modifying the translation of action type speci-

fications from L(ND) into L(FL) in the appropriate manner. However, the fact that

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 53

enabling fluents are ordinary fluents turns out to give us some additional flexibility

in the way they are defined and used.

First, there is no strict requirement that a fluent must be enabling; we can also re-

verse its meaning and define a disabling fluent, if that is better suited for a particular

scenario.

Second, there is of course also no formal requirement that the name of an en-

abling fluent is named by prefixing “♣♦ss-” to the name of the action – this is only

a useful convention, which may be relaxed, especially when an enabling fluent is

used for qualifying something other than an action.

Third, although our examples always associate a single unique enabling fluent

with each action, it is possible to let multiple actions share the same enabling fluent,

and one can also use multiple enabling fluents for the same action in order to model

the fact that an action can be qualified for any of a set of possible reasons. This may

be very useful when modeling larger scenarios. For example, if there is a robot that

can move in four directions (actions ♠♦✈❡✲♥♦rt❤, ♠♦✈❡✲s♦✉t❤, ♠♦✈❡✲❡❛st and ♠♦✈❡✲

✇❡st), and anything that makes the robot unable to move affects either all or none

of these actions, we may want to use a single enabling fluent ♣♦ss✲♠♦✈❡.

3.8.4 Interacting Qualifications

Since we are using two kinds of qualification – weak and strong – we must consider

what will happen when an action is weakly and strongly qualified at the same time.

By definition, this means that both X([t] ¬♣♦ss✲❛❝t✐♦♥) and I([t] ¬♣♦ss✲❛❝t✐♦♥) hold

at the same timepoint t. But the X operator only releases the enabling fluent from

the default value assumption, while the I operator both releases it and constrains

its value – in this case, it forces ♣♦ss✲❛❝t✐♦♥ to be false. In other words, the strong

qualification takes precedence, and the action is strongly qualified.

3.8.5 Ramifications as Qualifications

Another problem related to the qualification problem occurs in formalisms where

ramification constraints and qualification constraints are expressed as domain con-

straints (Ginsberg & Smith, 1988; Lin & Reiter, 1994). Assume, for example, that

we are reasoning about the blocks world, and that we have the following domain

constraint (expressed using TAL syntax), stating that no two blocks can be on top

of the same block:

❞♦♠ ∀t, x, y, z [[t] ♦♥(x, z) ∧ ♦♥(y, z)→ x = y]

Now, suppose that the direct effect of the action ♣✉t(A, C) is ♦♥(A, C), and the ac-

tion is executed in a state where ♦♥(B, C) is true. Then, we cannot determine syn-

tactically whether the domain constraint should be interpreted as a ramification

constraint (since no two blocks can be on top of C, B must be removed) or as a

qualification constraint (since no two blocks can be on top of C, the action should

fail).

54 3.9. Alternative Approaches to the Qualification Problem

In TAL-Q, however, all indirect effects of an action must be expressed as directed

dependency constraints. Therefore, this problem simply does not arise. For ex-

ample, if we want a ramification constraint, we can use the following dependency

constraint:

❞❡♣ ∀t, x, y, z [[t] ♦♥(x, z) ∧ CT([t + 1] ♦♥(y, z)) ∧ x 6= y→ R([t + 1] ¬♦♥(x, z))]

If x is on z, and we then place y on z, then an indirect effect is that x is removed

from z.

On the other hand, if we want a qualification constraint, we can introduce an

enabling fluent ♣♦ss✲♣✉t(block, block) and add the following qualification condi-

tion:

❞❡♣ ∀t, x, y, z [[t] ♦♥(x, z) ∧ x 6= y→ I([t] ¬♣♦ss✲♣✉t(y, z))]

Clearly, the problem of determining whether a constraint should be interpreted as

a qualification or a ramification does not arise in this approach.

3.9 Alternative Approaches to the Qualification Problem

We have now presented one approach to solving the qualification problem within

the TAL framework, but this approach is certainly not the only one. Below, we will

examine in somewhat less detail some alternative approaches.

3.9.1 Using Domain Constraints

Although our main approach to the qualification problem is based on qualifying

an action whenever a condition holds in the state in which it is invoked, it is also

interesting to investigate approaches based on qualifying an action whenever its

execution would contradict a domain constraint.

One variation of this approach would involve simply adding the proper domain

constraints to the scenario, and concluding that an action is qualified whenever the

resulting narrative is inconsistent. For example, the constraint that no guns are

allowed on board airplanes can be stated as follows:

❞♦♠✹ ∀t, plane [[t] ¬(❧♦❝(gun) =̂ value(t, ❧♦❝(plane)))]

Now, assume that we add this constraint to the initial version of the RAH sce-

nario (from Section 3.6), where qualification was not considered. Since Boris tries

to board the plane carrying a gun, we can infer that the gun will be on board the

plane, but from ❞♦♠✹ we can infer that no gun will ever be on board a plane, so the

scenario is inconsistent, which means that some action must be qualified.

Obviously, this approach does not provide the correct conclusions about the re-

sults of invoking a qualified action, and due to the inconsistency it may not even

seem like a solution at all. However, as discussed in Section 3.3.2, there are some

cases where such approaches may still be useful, such as when we are doing plan-

ning. But even if this is the case, a more serious problem still occurs when this

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 55

approach is used together with non-deterministic actions or incomplete informa-

tion about the initial state. For example, suppose that Dimiter may (or may not)

have a gun in the initial state. If he tries to board a plane, ❞♦♠✹ will allow us to

infer that he did not have a gun, when the intuitive conclusion would have been

that the action may or may not be qualified.

3.9.2 Fault Fluents

By modifying the previous approach slightly, we can define another approach that

may also have its uses. Instead of stating that a certain domain constraint must

hold, we state that whenever it does not hold, a fault fluent should become true. For

example, ❞♦♠✹ from the previous section can be modified as follows:

❞♦♠✹′ ∀t, plane [[t] ❧♦❝(gun) =̂ value(t, ❧♦❝(plane))→ I([t] ❢❛✉❧t✲❣✉♥✲♦♥✲❛✐r♣❧❛♥❡)]

Now, whenever someone is on board a plane and is carrying a gun, ❢❛✉❧t✲❣✉♥✲♦♥✲

❛✐r♣❧❛♥❡ will be true. From this, the agent can infer that an action must have been

qualified.

This approach has several advantages. First, if some action is qualified, it is

easier to find out which one and why it was qualified, since only the fault fluents

need to be considered. Second, invoking a qualified action does not make the entire

narrative inconsistent. And third, incomplete information and non-deterministic

actions are not a problem. As before, suppose that Dimiter may (or may not) have

a gun in the initial state. If he tries to board a plane, there will be two classes

of models: One in which he did not have a gun and boards the plane without

triggering the ❢❛✉❧t✲❣✉♥✲♦♥✲❛✐r♣❧❛♥❡ fault fluent, and one where he did have a gun,

boards the plane, and does make ❢❛✉❧t✲❣✉♥✲♦♥✲❛✐r♣❧❛♥❡ true.

Unfortunately, the fault fluent approach still does not provide the correct con-

clusions if there is some qualified action, since it assumes that all actions succeed.

However, there is another use for this approach, for which it appears to be per-

fectly suited. As mentioned in Section 3.3.3, qualification has sometimes been used

for predicting whether the result of invoking a certain action would be undesirable.

This has usually resulted in predicting that invoking an undesirable action is im-

possible or has no effect, when in reality, invoking the action would be possible and

the action would have its undesirable effects.

Probably, what is needed for such scenarios is not the use of qualification but

the use of a similar mechanism for providing “undesirability” conditions in an intu-

itive and modular way. That can be provided by the fault fluent approach, since it

always predicts that an action succeeds, but can “flag” undesirable results by mak-

ing a fault fluent true. For this task, the fault fluent approach would provide the

correct results.

An interesting feature of this approach is that it can easily be combined with

our main approach: True qualifications may be expressed as conditions holding in

the invocation state, while undesirable results are expressed in terms of conditions

that should hold in the resulting state.

56 3.10. Additional Examples

3.10 Additional Examples

In this section, we will show how some qualification examples from the literature

can be represented in TAL-Q, and we will also show an extension to one of those

examples. Since the narrative type specifications are obvious from the examples,

they will be omitted.

3.10.1 Dead Birds Don’t Walk

We will begin with a relatively straightforward qualification example. There is a

turkey, Fred, who can take walks. One constraint on this world is that it is not

possible to walk when you are dead. Therefore, if Fred dies, one should conclude

that he is no longer walking. On the other hand, if the walk action for Fred is

invoked, we would intuitively want the action to be qualified – Fred should not

suddenly become alive in order to satisfy the domain constraint (McCain & Turner,

1995).

In the TAL-Q representation of this scenario, we use the two boolean fluents ❛❧✐✈❡

and ✇❛❧❦✐♥❣ mentioned above, but we also need one enabling fluent per action type

(❛❝s✶, ❛❝s✷). If Fred is not alive, he can not be walking (❞♦♠✶). A domain constraint

is not adequate for inferring directed side-effects for actions. In this case, we use a

dependency constraint (❞❡♣✶) stating that when Fred dies (not at every timepoint

where he is dead – note the use of CT , “changes to true”), he stops walking. We

also need a qualification (❞❡♣✷) stating that when Fred is dead (CT is not used), he

cannot start walking. Together with the observation statement ♦❜s✶ and the action

occurrences ♦❝❝✶ and ♦❝❝✷, this allows one to infer that Fred is initially walking,

then dies (and stops walking), and then cannot resume walking.

❛❝s✶ [t1, t2] ❉✐❡ [t1] ♣♦ss✲❞✐❡→ R([t2] ¬❛❧✐✈❡)
❛❝s✷ [t1, t2] ❲❛❧❦ [t1] ♣♦ss✲✇❛❧❦→ R([t2] ✇❛❧❦✐♥❣)

❞♦♠✶ ∀t [[t] ¬❛❧✐✈❡→ ¬✇❛❧❦✐♥❣]
❞❡♣✶ ∀t [CT([t] ¬❛❧✐✈❡)→ R([t] ¬✇❛❧❦✐♥❣)]
❞❡♣✷ ∀t [[t] ¬❛❧✐✈❡→ I([t] ¬♣♦ss✲✇❛❧❦)]
♦❜s✶ [0] ❛❧✐✈❡∧✇❛❧❦✐♥❣

♦❝❝✶ [0, 1] ❉✐❡

♦❝❝✷ [1, 2] ❲❛❧❦

3.10.2 A Simple Electric Circuit

Thielscher (1997) discusses qualified ramifications and presents a scenario in which

there is an electric circuit with two batteries bat1 and bat2, two switches sw1 and

sw2, and one light bulb. There is only one action, t♦❣❣❧❡(switch), whose only direct

effect is that the given switch is toggled.

If you close switch sw1, the first battery is connected to the light bulb. Normally,

this has the side effect that the light is turned on. But there are three qualifications

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 57

to this ramification: The light is not turned on if the bulb is broken, if bat1 is mal-

functioning, or if the wiring is loose. Similarly, if you close switch sw2, the second

battery is connected to the light bulb. Unfortunately, the voltage is too high, so usu-

ally, this will have the side effect that the bulb breaks. But here, there are also some

qualifications: The bulb does not break if bat2 is malfunctioning, or if the wiring is

loose. Finally, there is normally no light when the bulb is broken.

Although our approach does not handle qualification for postdiction, we can

easily handle the prediction problem for this scenario. One possible formalization

is the following, using the persistent fluents ❝❧♦s❡❞(switch), ❧✐❣❤t, ❜r♦❦❡♥, ♠❛❧❢✉♥❝

(battery) and ❧♦♦s❡✲✇✐r✐♥❣ and the enabling fluents ♣♦ss✲❧✐❣❤t, ♣♦ss✲❜r❡❛❦ and ♥♦✲

❧✐❣❤t✲✇❤❡♥✲❜r♦❦❡♥.

♦❜s✶ [0] ¬❝❧♦s❡❞(sw1) ∧ ¬❝❧♦s❡❞(sw2)

♦❜s✷ [0] ¬❜r♦❦❡♥∧ ¬❧♦♦s❡✲✇✐r✐♥❣∧ ∀battery [¬♠❛❧❢✉♥❝(battery)]

❛❝s✶ [t1, t2] t♦❣❣❧❡(switch) ([t1] ❝❧♦s❡❞(switch)→ R([t2] ¬❝❧♦s❡❞(switch))) ∧
([t1] ¬❝❧♦s❡❞(switch)→ R([t2] ❝❧♦s❡❞(switch)))

❞♦♠✶ ∀t [[t] ♥♦✲❧✐❣❤t✲✇❤❡♥✲❜r♦❦❡♥→ (❜r♦❦❡♥→ ¬❧✐❣❤t)]
❞❡♣✶ ∀t [[t] ♣♦ss✲❧✐❣❤t∧ CT([t] ❝❧♦s❡❞(sw1))→ R([t] ❧✐❣❤t)]

❞❡♣✷ ∀t [[t] ♣♦ss✲❜r❡❛❦ ∧ CT([t] ❝❧♦s❡❞(sw2))→ R([t] ❜r♦❦❡♥)]

❞❡♣✸ ∀t [[t] ❜r♦❦❡♥∨♠❛❧❢✉♥❝(bat1) ∨ ❧♦♦s❡✲✇✐r✐♥❣→ I([t] ¬♣♦ss✲❧✐❣❤t)]
❞❡♣✹ ∀t [[t] ♠❛❧❢✉♥❝(bat2) ∨ ❧♦♦s❡✲✇✐r✐♥❣→ I([t] ¬♣♦ss✲❜r❡❛❦)]

3.10.3 Yellow Blocks are Forbidden

Returning once more to scenarios where only actions are qualified, we will now

consider a scenario presented in Lin and Reiter (1994): A blocks world scenario

where blocks may have different colors. There is a single robot which can paint

blocks (♣❛✐♥t(block, color)), but since yellow is traditionally reserved for the em-

peror, the robot is not allowed to paint any block yellow. In Lin and Reiter (1994),

this is handled using qualification, by adding a domain constraint stating that no

block may be yellow. Consequently, in that approach, the preconditions of the ac-

tion ♣❛✐♥t(block, yellow) will always be false.

One possible translation to TAL-Q would use two domains, block and color,

a fluent ❝♦❧(block) : color representing the color of a block, and an enabling flu-

ent ♣♦ss✲♣❛✐♥t(block, color) : boolean with default value true, together with the

following L(ND) statements. (Note that in Lin and Reiter (1994), all fluents will

be undefined in the state resulting from invoking ♣❛✐♥t(x, yellow), while in our

approach, the action will have no effect.)

♦❜s✶ [0] ∀b [¬(❝♦❧(b) =̂ yellow)]

❛❝s✶ [t1, t2] ♣❛✐♥t(b, c) [t1] ♣♦ss✲♣❛✐♥t(b, c)→ R([t2] ❝♦❧(b) =̂ c)

❞❡♣✶ ∀t, b [I([t] ¬♣♦ss✲♣❛✐♥t(b, yellow))]

However, the fault fluent approach (Section 3.9.2) may be more appropriate, since

it is more likely that the action would actually succeed, even though its effects were

“illegal”:

58 3.10. Additional Examples

❛❝s✷ [t1, t2] ♣❛✐♥t(b, c) R([t2] ❝♦❧(b) =̂ c)

❞❡♣✷ ∀t, b [[t] ❝♦❧(b) =̂ yellow→ I([t] ❢❛✉❧t✲❜❧♦❝❦✲✐s✲②❡❧❧♦✇(b))]

Using this approach, we will predict that painting a block yellow will succeed, but

also that the fault fluent ❢❛✉❧t✲❜❧♦❝❦✲✐s✲②❡❧❧♦✇ will become true for that block: We

have performed an action that has undesirable results.

3.10.4 The Lenient Emperor

There is also a variation of the previous scenario in which the emperor is more

lenient and allows at most one yellow block to exist. If we had thought ahead

and provided an enabling fluent for ❞❡♣✶ above, we could have handled this by

qualifying the old qualification. Since we did not, we have to modify the existing

qualification ❞❡♣✶. For example, it can be replaced with the following constraint:

❞❡♣✶′ ∀t [∃b [[t] ❝♦❧(b) =̂ yellow]→ ∀b [I([t] ¬♣♦ss✲♣❛✐♥t(b, yellow))]]

If we want to be able to paint a yellow block yellow again, we can use the following

alternative:

❞❡♣✶′′ ∀t [∃b [[t] ❝♦❧(b) =̂ yellow]→
∀b [[t] ¬(❝♦❧(b) =̂ yellow)→ I([t] ¬♣♦ss✲♣❛✐♥t(b, yellow))]]

Again, the fault fluent approach may be more appropriate: If more than one block

is yellow, we signal an error for each yellow block.

❞❡♣✷′ ∀t [∃b1, b2 [[t] ❝♦❧(b1) =̂ yellow∧ ❝♦❧(b2) =̂ yellow∧ b1 6= b2]→
∀b [[t] ❝♦❧(b) =̂ yellow→ I([t] ❢❛✉❧t✲❜❧♦❝❦✲✐s✲②❡❧❧♦✇(b))]]

3.10.5 The Lenient Emperor – with Concurrency

An interesting variation of the lenient emperor scenario, which has not previously

been considered in the literature, arises when there may be more than one agent

in the world. For example, it may be the case that when no block is yellow, but a

number of agents concurrently attempt to paint two or more blocks yellow, exactly

one of them will succeed.

A similar scenario was discussed in Section 3.8.1, where at most one person

could board a plane at any given timepoint. That, however, would be analogous to

allowing at most one new yellow block at each timepoint. However, it turns out that

the concurrent lenient emperor scenario can be modeled in a similar manner. First,

we will reformulate the scenario using the TAL-C approach, using a durational

influence fluent ✇❛♥t✲t♦✲♣❛✐♥t(block, color):

♦❜s✶ [0] ∀b [¬(❝♦❧(b) =̂ yellow)]

❛❝s✶ [t1, t2] ♣❛✐♥t(b, c) I([t2] ✇❛♥t✲t♦✲♣❛✐♥t(b, c))

❞❡♣✶ ∀t, b, c [[t] ✇❛♥t✲t♦✲♣❛✐♥t(b, c) ∧ ♣♦ss✲♣❛✐♥t(b, c)→ R([t] ❝♦❧(b) =̂ c)]

Although the influence fluent is not strictly necessary for this example, it can still

be an advantage to model the scenario in this way due to the added flexibility in

case the scenario ever needs to be changed. In this case, however, the important

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 59

difference in the new scenario is that in ❞❡♣✶, ♣♦ss✲♣❛✐♥t must be true at the same

timepoint when the block should change color. This means that we only need to

make sure that whenever any block is yellow, no block except possibly that one can

be painted yellow. Note that this allows us to repaint a yellow block with the same

color, and it also allows us to concurrently paint one block yellow and paint an-

other, previously yellow block in another color.

❞❡♣✷ ∀t, b1, b2 [[t] ❝♦❧(b1) =̂ yellow∧ b1 6= b2 → I([t] ¬♣♦ss✲♣❛✐♥t(b2, yellow))]

For this scenario, the fault fluent approach would be identical to that for the non-

concurrent lenient emperor scenario.

3.11 Comparisons

Having considered some qualification examples and how they can be represented

in TAL-Q, we will now compare our approach to some other approaches in the

literature, beginning with McCarthy’s introduction of circumscription (1980, 1986)

and continuing with Lifschitz (1987), Shanahan (1997), Ginsberg and Smith (1988),

Lin and Reiter (1994), McCain and Turner (1995), and finally Thielscher (1996a,

1996b).

Although these approaches have many differences, there are also many impor-

tant similarities. Perhaps the most important of these similarities is that all of these

approaches are based on the assumption that there is a single agent executing a

simple sequence of actions without duration, and that all change in the world is

caused by that agent. For example, there can be no concurrent actions, no delayed

side effects, and no dynamic processes taking place in the background. Sometimes,

not even non-deterministic actions are allowed. In other words, these approaches

are not expressive enough to model the Russian Airplane Hijack Scenario.

For some of the approaches, it may be possible to extend them for more complex

worlds without requiring major changes, in other words, a graceful scaling up. As

we will see, however, several approaches are strongly dependent on the fact that

actions and side effects can be represented as a function from the current state and

the action to be performed to the successor state, or possibly the set of successor

states. This is especially true for the approaches where qualification is based on

constraints that must not be violated by an action, rather than on conditions that

must or must not hold when the action is invoked (Ginsberg & Smith, 1988; Lin &

Reiter, 1994).

3.11.1 McCarthy

McCarthy (1980) introduces circumscription and discusses how it can be used for

conjecturing that any action will succeed unless there is something preventing its

success. This is achieved using a prevents(reason, action, state) predicate which holds

whenever some specific reason prevents an action from having its usual effects in

60 3.11. Comparisons

the given state. Each such reason is then defined explicitly. For example, in a blocks

world, we may say that heavy blocks cannot be moved: ∀x, y, s.(tooheavy(x) →
prevents(weight(x), move(x, y), s)). The prevents predicate is circumscribed relative

to the conjunction of all such reasons, which allows us to predict that the action will

succeed unless one of its qualifications holds when the action is invoked.

Clearly, this is very similar to the way we defined our main approach in Sec-

tion 3.7. Like our approach, it can not be used for inferring qualifications based

on observing that an action failed, since prevents is only circumscribed relative to

the explicit qualification conditions. One important difference, however, is that our

approach does not minimize qualifications – we minimize the occlusion predicate,

which means that we minimize potential qualification. This is what allows us to

express weak qualification.

In McCarthy (1986), a slightly different approach is used within the situation

calculus. Instead of using a prevents predicate for qualification, a single ab (“abnor-

mal”) predicate is used for both qualification and many other tasks. The argument

of ab is an aspect, an abstract object. For example, in the blocks world, we can move

a block to a location unless the move action is abnormal in the first aspect: ∀x, l, s.

¬ab(aspect1(x, move(x, l), s)) → loc(x, result(move(x, l), s)) = l. Then, we may not

be able to lift heavy blocks: ∀x, l, s.(tooheavy(x)→ ab(aspect1(x, move(x, l), s))). An

interesting aspect of this approach is that if a qualified action is invoked, each fluent

which would normally have been affected is released from the inertia assumption,

but is not given a new value and is therefore allowed to vary freely. Fluents which

would not have been affected retain their previous values.

3.11.2 Lifschitz: Formal Theories of Action

Unfortunately, as Lifschitz (1987) notes, global minimization of abnormality is not

sufficient, since it sometimes leads to unintended models. He presents an alterna-

tive solution for the prediction task (or temporal projection), where it is assumed that

all changes in the values of fluents are caused by actions.

Two new predicates are added to the situation calculus: causes(a, p, f) expresses

that the action a causes the primitive fluent p to have the same value that the flu-

ent f had when the action was invoked, and precond(f , a) expresses that the fluent f

is a precondition to the action a. Given these new predicates, it is possible to define

any number of preconditions to an action in an incremental manner. The situation-

independent predicates causes and precond are then circumscribed, and an action is

assumed to succeed iff all its preconditions hold when the action is invoked. If any

of its preconditions do not hold, the action will be assumed to have no effect on the

world.

This approach produced the correct results for the scenarios where McCarthy’s

earlier approach failed. However, apart from allowing more complex worlds to

be modeled, the approach presented in Section 3.7 is also more flexible in the way

qualification conditions can be specified. For example, our qualification conditions

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 61

may vary over time, and may also depend on states other than the state in which

the action is invoked. Due to the fact that enabling fluents are not directly tied

to actions, we can also represent qualified qualifications and qualified side effects,

while Lifschitz’ approach does not allow side effects at all.

3.11.3 Shanahan: Solving the Frame Problem

Shanahan (1997) uses an approach similar to that of Lifschitz (1987), the main dif-

ference being that the precond predicate takes three arguments: precond(f , v, a) ex-

presses the fact that the action a is only executable when the fluent f has the value v.

Consequently, the two approaches share many of the same advantages and disad-

vantages. As in Lifschitz’ approach, if any precondition does not hold, an action

will be assumed to have no effect on the world.

3.11.4 Ginsberg and Smith:
Reasoning about Action II – The Qualification Problem

Ginsberg and Smith (1988) argue that specifying qualifications as preconditions to

actions often leads to complicated formulas, due to the need to take all possible

ramifications into account. Accordingly, they define a possible worlds approach in

which each action is associated with a set of qualification constraints having the

form of domain constraints. Given an action, the set of possible successors of the

current world is first calculated without considering the qualification constraints.

Then, any such world which does not satisfy all qualification constraints is dis-

carded. If no possible successor remains, the action was qualified, and is assumed

not to change the world at all.

This approach works very well for the examples examined by Ginsberg and

Smith. However, if concurrent actions or delayed side effects were allowed, it

would no longer be possible to reason about whether a single action would vio-

late a domain constraint: For concurrent actions, it would be necessary to take into

account all actions being performed at the same time, and it would be more difficult

to determine exactly which action should be qualified. Similarly, if delayed side ef-

fects were allowed, one would have to know exactly which actions are invoked up

to the time when the delayed side effect takes place. Qualified side effects would

of course be even more problematic, since one would have to determine somehow

whether it is the action itself or one of its side effects that should be qualified. In

other words, this approach would be quite difficult to extend to handle complex

scenarios such as the Russian Airplane Hijack Scenario.

3.11.5 Lin and Reiter: State Constraints Revisited

Lin and Reiter (1994) present a solution to the qualification problem within the

situation calculus. The solution is based on generating an exact definition of the

62 3.11. Comparisons

Poss(a, s) predicate, which states that it is possible to execute the action a in the

state s. The definition of Poss is generated using both a set Dnec of formulas of the

form Poss(a, s) ⊃ φ and a setDqual of domain constraints that must hold in the state

resulting from executing any action. The domain constraints in Dqual are regressed,

and the results are combined with the formulas in Dnec to form an exact definition

of Poss.

Since all qualification conditions are compiled into the definition of the Poss

predicate, it is possible to infer that an action is qualified by evaluating Poss in the

current situation. The situation do(a, s) resulting from executing a qualified action a

is completely undefined, since the successor state axioms only define fluent values

in situations resulting from executing actions whose preconditions hold.

Like the approach used by Ginsberg and Smith, this solution also depends on

the restricted expressivity of the logic being used – in fact, it does so to an even

greater degree, due to the compilation of qualification conditions into a definition

of Poss.

For example, if non-deterministic actions were allowed, we may only know

that an action may contradict a domain constraint, so finding an exact definition

of Poss would not be possible. Similarly, if actions with duration and internal state

were introduced, the compilation procedure would be far more complicated due

to the need to ensure that no intermediate state contradicts the domain constraints

in Dqual. If concurrent actions, delayed side effects or domain constraints referring

to multiple states or domain constraints depending on time were allowed, this ap-

proach could not be used at all, since it would not be sufficient to consider the single

action and situation used as arguments to the Poss predicate.

On the other hand, if the world one is reasoning about is simple enough, this

solution does provide a way of specifying qualification constraints that is often

more intuitive than using enabling fluents.

3.11.6 McCain and Turner:
A Causal Theory of Ramifications and Qualifications

McCain and Turner (1995) provide a combined solution to the ramification and

qualification problems in which every change must be caused. An action is qualified

if it would imply a change that it did not cause. Causal laws are expressed using the

form φ ⇒ ψ (if φ holds, ψ is caused to hold). Pure ramifications can be expressed

using the form True ⇒ φ, and pure qualifications using the form ¬φ ⇒ False, but

other forms of constraints can also be used.

A pure qualification ¬φ ⇒ False essentially defines a condition that must hold

in any state resulting from executing an action. It does not cause fluents to change

as a side effect of executing the action, but if the condition φ does not hold, False

must hold in any resulting state – so there can be no resulting state, which means

that the action was qualified. It is also possible to express “combined” ramification

and qualification constraints. For example, the constraint ¬Alive⇒ ¬Walking may

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 63

act as a ramification when Alive is caused to become false, but as a qualification

when Walking is caused to become true.

Since the result of invoking a qualified action in this approach is an empty set

of possible resulting states, it is not possible to reason about which value a fluent

would take on after a qualified action was invoked – it is only possible to determine

that the action would be qualified. Therefore, this approach is mainly useful for

planning, or for prediction in the case where we are not interested in the result of

invoking a qualified action.

If we consider an empty set of possible resulting states in this approach to be

equivalent to an inconsistent scenario in the TAL formalism, any qualification con-

straint that can be expressed in this approach – pure or not pure – can also be ex-

pressed using our alternative approach from Section 3.9.1. Each qualification con-

straint becomes an ordinary domain constraint, while each ramification constraint

is expressed as a fluent dependency constraint.

On an abstract level, this solution is very similar to the approaches used by

Ginsberg and Smith (1988) and Lin and Reiter (1994), in the sense that pure qualifi-

cations are domain constraints that must not be violated by an action. The solution

also has similar limitations in expressivity. However, the technical solution and

the reasoning behind it are different, and so are the sets of possible states resulting

from invoking a qualified action: In Ginsberg and Smith (1988) there was a single

possible resulting state where nothing had changed, in Lin and Reiter (1994) the

result was undefined, and in McCain and Turner (1995), there is no resulting state.

3.11.7 Thielscher: Causality and the Qualification Problem

Thielscher’s approach to the qualification problem (1996a, 1996b) is quite differ-

ent from the previous three approaches. In fact, it turns out to be more similar to

the approach we have presented in Section 3.7, in that it uses fluents to represent

qualifications. On the other hand, there are also quite a few differences.

Thielscher uses persistent disqualification fluents, which are assumed to be false

in the initial state unless something forces them to be true, while our enabling flu-

ents are durational, and are normally true in every state. While using durational

fluents has the advantage of not needing to explicitly make a disqualification fluent

false when a qualification no longer holds, Thielscher’s approach has the advantage

of being able to handle some cases of postdiction. For example, if the st❛rt action

can only be qualified when ♣♦t❛t♦ is true, and if we observe that the action is qual-

ified, then the conclusion would be that ♣♦t❛t♦ must have been true in the initial

state.

This, of course, does not handle the case where we initially observed that there

was no potato, then waited a while and tried to start the car, and starting failed.

Thielscher handles this using miraculous disqualification, which allows an action to

be qualified even though every explanation for its qualification is proven to be false,

and which is globally minimized at a higher priority than ordinary qualification.

64 3.11. Comparisons

(Unfortunately, this also allows us to prove that there was in fact no potato.) There

is also a method for qualifying ramification constraints within the same frame-

work (Thielscher, 1997).

The result of executing a sequence 〈a1, . . . , an〉 of actions is a state defined by the

function Res(〈a1, . . . , an〉), which is undefined when some action in the sequence is

qualified. However, an observation of the form F after 〈a1, . . . , an〉 is still defined

in this case, although it is always false for any formula F. This is yet another differ-

ent definition of the state resulting from invoking a qualified action: Not even the

tautology ⊤ is considered to hold.

But although this approach has certain advantages, it once again assumes a

world where there are no concurrent actions, no actions with duration and inter-

nal state, no dynamic processes in the background, no delayed side effects, and no

qualified side effects, and therefore, it would not be possible to model the Russian

Airplane Hijack Scenario with this approach.

3.11.8 Summary

We have compared our approach to six other approaches in the literature. There

turns out to be some similarities between all of these approaches, perhaps most

importantly that they are designed for simple worlds in which a single agent per-

forms actions in a sequential manner, and where any side effects – if allowed at all

– take place in the ending state of the action. Therefore, none of these approaches

are powerful enough to model the Russian Airplane Hijack Scenario, although for

simpler scenarios, they sometimes provide more intuitive methods for specifying

which actions are qualified.

There also appear to be two main approaches to the way in which qualification

conditions are specified: Either as conditions holding in the initial state or as do-

main constraints that must not be violated by actions. Here, Thielscher’s approach

is an exception: It is possible to directly observe the qualification of an action, after

which one can postdict the reasons for the qualification.

However, there is also one aspect in which the approaches are quite different:

If we execute a qualified action, what can be said about the resulting state? Most

approaches turn out to have their own answer to this question:

• In McCarthy (1986), the fluents that would ordinarily be affected by the action

are released from the inertia assumption in the resulting state, but all other

fluents remain inert. This could be emulated in TAL-Q using the X operator.

• In Lifschitz (1987), Shanahan (1997) and Ginsberg and Smith (1988), the action

has no effect on the world. This is normally also the case in TAL-Q, unless an

alternative effect has been specified.

• In Lin and Reiter (1994), the resulting state is completely undefined.

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 65

• In McCain and Turner (1995), there is no resulting state. This could be con-

sidered equivalent to an inconsistent scenario in TAL-Q.

• In Thielscher (1996a) and Thielscher (1996b), the result is a “state” in which

nothing holds – not even a tautology.

3.12 Conclusion

We have presented an approach to the qualification problem based on the use of

dependency constraints and durational fluents in the context of a highly expressive

temporal logic of action and change called TAL-Q. TAL-Q permits the use of action

types that are non-deterministic, context dependent, durational, and concurrent.

This degree of expressivity introduces additional issues in solving the qualification

problem not present in any of the previously proposed formalisms and solutions

in the literature. We have also tried to show that whether any given approach to

solving the qualification problem is useful or not often depends on both the reason-

ing task and the characteristics of the class of worlds we are interested in reasoning

about. Although many solutions have been proposed in the literature, they often

do not make such assumptions explicit, and often turn out to be useful only for

a small class of worlds. The intent of this article was to present a solution to the

qualification problem for TAL-Q in this context. Several of the ideas in the article

are tentative and will be pursued in future research. One of the more important

topics of research is to clarify the distinctions between on- and off-line reasoning

modes and how these modes affect solutions to the qualification problem. In ad-

dition, pursuing the formal assessment of correctness for the proposed solutions to

the qualification problem using TAL-Q is an important future research issue as are

more formal comparative analyses of the alternative formalisms considered in the

article.

Appendix 1: RAH Narrative in L(ND)

For a narrative background specification for this scenario, see Section 3.6.1.

PERSISTENCE STATEMENTS
per1 ∀t, thing [true→ Per(t + 1, ❧♦❝(thing))]

per2 ∀t, person, pthing [true→ Per(t + 1, ✐♥♣♦❝❦❡t(person, pthing))]

per3 ∀t, person [true→ Per(t + 1, ❞r✉♥❦(person))]

per4 ∀t, plane, person [true→ Per(t + 1, ♦♥♣❧❛♥❡(plane, person))]

per5 ∀t, person, plane [true→ Dur(t, ♣♦ss✲❜♦❛r❞(person, plane), true)]

per6 ∀t, person, pthing [true→ Dur(t, ♣♦ss✲♣✐❝❦✉♣(person, pthing), true)]

per7 ∀t, person, loc1, loc2 [true→ Dur(t, ♣♦ss✲tr❛✈❡❧(person, loc1, loc2), true)]

per8 ∀t, plane, runway1, runway2 [true→ Dur(t, ♣♦ss✲✢②(plane, runway1, runway2), true)]

66 3.12. Conclusion

0
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

lo
c
(g

u
n
):

V
a
lu

e
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
o

ff
ic

e
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

lo
c
(c

o
m

b
1
):

V
a
lu

e
h
o
m

e
1

h
o
m

e
1

h
o
m

e
1

h
o
m

e
1

h
o
m

e
1

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt

lo
c
(c

o
m

b
2
):

V
a
lu

e
h
o
m

e
2

h
o
m

e
2

h
o
m

e
2

h
o
m

e
2

h
o
m

e
2

h
o
m

e
2

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
ru

n
6

0
9

ru
n

6
0

9
a
ir

a
ir

ru
n

6
0

9
b

lo
c
(c

o
m

b
3
):

V
a
lu

e
h
o
m

e
3

h
o
m

e
3

h
o
m

e
3

h
o
m

e
3

*2
*2

*2
*2

*2
*2

*3
*3

*3
*3

*3
*3

*3

lo
c
(b

o
ri

s
):

V
a
lu

e
h
o
m

e
1

h
o
m

e
1

h
o
m

e
1

h
o
m

e
1

h
o
m

e
1

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt

lo
c
(d

im
it
e
r)

:
V

a
lu

e
h
o
m

e
3

h
o
m

e
3

h
o
m

e
3

h
o
m

e
3

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
*2

*2
*2

*2
*2

*2
*2

lo
c
(e

ri
k
):

V
a
lu

e
h
o
m

e
2

h
o
m

e
2

h
o
m

e
2

h
o
m

e
2

h
o
m

e
2

h
o
m

e
2

o
ff

ic
e

o
ff

ic
e

o
ff

ic
e

a
ir

p
o

rt
a

ir
p

o
rt

a
ir

p
o

rt
ru

n
6

0
9

ru
n

6
0

9
a
ir

a
ir

ru
n

6
0

9
b

lo
c
(s

a
s
6
0
9
):

V
a
lu

e
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
ru

n
6

0
9

ru
n

6
0

9
a
ir

a
ir

ru
n

6
0

9
b

in
p
o
c
k
e
t(

b
o
ri
s
,
g
u
n
):

V
a
lu

e

in
p
o
c
k
e
t(

b
o
ri
s
,
c
o
m

b
1
):

V
a
lu

e

in
p
o
c
k
e
t(

b
o
ri
s
,
c
o
m

b
2
):

V
a
lu

e

in
p
o
c
k
e
t(

b
o
ri
s
,
c
o
m

b
3
):

V
a
lu

e

in
p
o
c
k
e
t(

d
im

it
e
r,

 g
u
n
):

V
a
lu

e

in
p
o
c
k
e
t(

d
im

it
e
r,

 c
o
m

b
1
):

V
a
lu

e

in
p
o
c
k
e
t(

d
im

it
e
r,

 c
o
m

b
2
):

V
a
lu

e

in
p
o
c
k
e
t(

d
im

it
e
r,

 c
o
m

b
3
):

V
a
lu

e

in
p
o
c
k
e
t(

e
ri
k
,
g
u
n
):

V
a
lu

e

in
p
o
c
k
e
t(

e
ri
k
,
c
o
m

b
1
):

V
a
lu

e

in
p
o
c
k
e
t(

e
ri
k
,
c
o
m

b
2
):

V
a
lu

e

in
p
o
c
k
e
t(

e
ri
k
,
c
o
m

b
3
):

V
a
lu

e

p
o
s
s
_
b
o
a
rd

(b
o
ri
s
,
s
a
s
6
0
9
):

V
a
lu

e

o
s
s
_
b
o
a
rd

(d
im

it
e
r,

 s
a
s
6
0
9
):

V
a
lu

e

p
o
s
s
_
b
o
a
rd

(e
ri
k
,
s
a
s
6
0
9
):

V
a
lu

e

d
ru

n
k
(b

o
ri

s
):

V
a
lu

e

d
ru

n
k
(d

im
it
e
r)

:
V

a
lu

e

d
ru

n
k
(e

ri
k
):

V
a
lu

e

o
n
p
la

n
e
(s

a
s
6
0
9
,
b
o
ri
s
):

V
a
lu

e

o
n
p
la

n
e
(s

a
s
6
0
9
,
d
im

ite
r)

:
V

a
lu

e

o
n
p
la

n
e
(s

a
s
6
0
9
,
e
ri
k
):

V
a
lu

e

p
ic

k
u
p
(b

o
ri
s
,
c
o
m

b
1
)

p
ic

k
u
p
(e

ri
k
,
c
o
m

b
2
)

tr
a
v
e
l(
d
im

it
e
r,

 h
o
m

e
3
,
o
ff
ic

e
)

tr
a
v
e
l(
b
o
ri
s
,
h
o
m

e
1
,
o
ff
ic

e
)

tr
a
v
e
l(
e
ri
k
,
h
o
m

e
2
,
o
ff
ic

e
)

p
ic

k
u
p
(b

o
ri
s
,
g
u
n
)

tr
a
v
e
l(
d
im

it
e
r,

 o
ff
ic

e
,
a
ir
p
o
rt

)

tr
a
v
e
l(
e
ri
k
,
o
ff
ic

e
,
a
ir
p
o
rt

)

tr
a

v
e

l(
b

o
ri

s
,

o
ff

ic
e

,
a

ir
p

o
rt

)

b
o
a
rd

(d
im

it
e
r,

 s
a
s
6
0
9
)

b
o
a
rd

(b
o
ri
s
,
s
a
s
6
0
9
)

b
o
a
rd

(e
ri
k
,
s
a
s
6
0
9
)

fl
y
(s

a
s
6
0
9
,
ru

n
6
0
9
,
ru

n
6
0
9
b
)

Figure 3.1: Timelines for the Russian Airplane Hijack Scenario

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 67

OBSERVATIONS, ACTION OCCURRENCES AND TIMING
obs1 [0] ❧♦❝(boris) =̂ home1∧ ❧♦❝(gun) =̂ office∧ ❧♦❝(comb1) =̂ home1∧ ¬❞r✉♥❦(boris)
obs2 [0] ❧♦❝(erik) =̂ home2∧ ❧♦❝(comb2) =̂ home2∧ ¬❞r✉♥❦(erik)

obs3 [0] ❧♦❝(dimiter) =̂ home3∧ ❧♦❝(comb3) =̂ home3∧ ❞r✉♥❦(dimiter)
obs4 [0] ❧♦❝(sas609) =̂ run609
occ1 [1, 2] ♣✐❝❦✉♣(boris, comb1)

occ2 [1, 2] ♣✐❝❦✉♣(erik, comb2)

occ3 [2, 4] tr❛✈❡❧(dimiter, home3, office)

occ4 [3, 5] tr❛✈❡❧(boris, home1, office)

occ5 [4, 6] tr❛✈❡❧(erik, home2, office)

occ6 [6, 7] ♣✐❝❦✉♣(boris, gun)

occ7 [5, 7] tr❛✈❡❧(dimiter, office, airport)
occ8 [7, 9] tr❛✈❡❧(erik, office, airport)
occ9 [8, 10] tr❛✈❡❧(boris, office, airport)
occ10 [9, 10] ❜♦❛r❞(dimiter, sas609)

occ11 [10, 11] ❜♦❛r❞(boris, sas609)

occ12 [11, 12] ❜♦❛r❞(erik, sas609)

occ13 [13, 16] ✢②(sas609, run609, run609b)

ACTION TYPES
acs1 [t1, t2] ✢②(plane, runway1, runway2) ❀

[t1] ♣♦ss✲✢②(plane, runway1, runway2) ∧ ❧♦❝(plane) =̂ runway1 →
I((t1, t2) ❧♦❝(plane) =̂ air) ∧ R([t2] ❧♦❝(plane) =̂ runway2)

acs2 [t1, t2] ♣✐❝❦✉♣(person, pthing) ❀

[t1] ♣♦ss✲♣✐❝❦✉♣(person, pthing) ∧ ❧♦❝(person) =̂ value(t1, ❧♦❝(pthing))→
R((t1, t2] ✐♥♣♦❝❦❡t(person, pthing))

acs3 [t1, t2] tr❛✈❡❧(person, loc1, loc2) ❀

[t1] ♣♦ss✲tr❛✈❡❧(person, loc1, loc2) ∧ ❧♦❝(person) =̂ loc1 → R([t2] ❧♦❝(person) =̂ loc2)

acs4 [t1, t2] ❜♦❛r❞(person, plane) ❀ [t1] ♣♦ss✲❜♦❛r❞(person, plane) ∧ ❧♦❝(person) =̂ airport→
R([t2] ❧♦❝(person) =̂ value(t2, ❧♦❝(plane)) ∧ ♦♥♣❧❛♥❡(plane, person))

DOMAIN CONSTRAINTS
dom1 ∀t, pthing, person1, person2

[person1 6= person2 ∧ [t] ✐♥♣♦❝❦❡t(person1, pthing)→ [t] ¬✐♥♣♦❝❦❡t(person2, pthing)]

dom2 ∀t, person, plane1, plane2

[plane1 6= plane2 ∧ [t] ♦♥♣❧❛♥❡(plane1, person)→ [t] ¬♦♥♣❧❛♥❡(plane2, person)]

dom3 ∀t, person, pthing [[t] ✐♥♣♦❝❦❡t(person, pthing)→ [t] ❧♦❝(pthing) =̂ value(t, ❧♦❝(person))]

DEPENDENCY CONSTRAINTS
dep1 ∀t, plane, person, loc [[t] ♦♥♣❧❛♥❡(plane, person) ∧ CT([t] ❧♦❝(plane) =̂ loc)→

R([t] ❧♦❝(person) =̂ loc)]

dep2 ∀t, person, pthing, loc [[t] ✐♥♣♦❝❦❡t(person, pthing) ∧ CT([t] ❧♦❝(person) =̂ loc)→
R([t] ❧♦❝(pthing) =̂ loc)]

dep3 ∀t, person, plane [[t] ✐♥♣♦❝❦❡t(person, gun)→ I([t] ¬♣♦ss✲❜♦❛r❞(person, plane))]

dep4 ∀t, person, plane [[t] ❞r✉♥❦(person)→ X([t] ¬♣♦ss✲❜♦❛r❞(person, plane))]

68 3.12. Conclusion

INTERMEDIATE SCHEDULE STATEMENTS
The following statements are generated from the action type specifications.3

scd1 ∀t1, t2, plane, runway1, runway2. [t1, t2] ✢②(plane, runway1, runway2)→
([t1] ♣♦ss✲✢②(plane, runway1, runway2) ∧ ❧♦❝(plane) =̂ runway1 →
I((t1, t2) ❧♦❝(plane) =̂ air) ∧ R([t2] ❧♦❝(plane) =̂ runway2))

scd2 ∀t1, t2, person, pthing. [t1, t2] ♣✐❝❦✉♣(person, pthing)→
([t1] ♣♦ss✲♣✐❝❦✉♣(person, pthing) ∧ ❧♦❝(person) =̂ value(t1, ❧♦❝(pthing))→
R((t1, t2] ✐♥♣♦❝❦❡t(person, pthing)))

scd3 ∀t1, t2, person, loc1, loc2. [t1, t2] tr❛✈❡❧(person, loc1, loc2)→
([t1] ♣♦ss✲tr❛✈❡❧(person, loc1, loc2) ∧ ❧♦❝(person) =̂ loc1 → R([t2] ❧♦❝(person) =̂ loc2))

scd4 ∀t1, t2, person, plane. [t1, t2] ❜♦❛r❞(person, plane)→
([t1] ♣♦ss✲❜♦❛r❞(person, plane) ∧ ❧♦❝(person) =̂ airport→
R([t2] ❧♦❝(person) =̂ value(t2, ❧♦❝(plane)) ∧ ♦♥♣❧❛♥❡(plane, person)))

Appendix 2: RAH Narrative in L(FL)

PERSISTENCE STATEMENTS
per1 ∀t, thing, v [¬Occlude(t + 1, ❧♦❝(thing))→

(Holds(t, ❧♦❝(thing), v)↔ Holds(t + 1, ❧♦❝(thing), v))]

per2 ∀t, person, thing, v [¬Occlude(t + 1, ✐♥♣♦❝❦❡t(person, thing))→
(Holds(t, ✐♥♣♦❝❦❡t(person, thing), v)↔ Holds(t + 1, ✐♥♣♦❝❦❡t(person, thing), v))]

per3 ∀t, person, v [¬Occlude(t + 1, ❞r✉♥❦(person))→
(Holds(t, ❞r✉♥❦(person), v)↔ Holds(t + 1, ❞r✉♥❦(person), v))]

per4 ∀t, plane, person, v [¬Occlude(t + 1, ♦♥♣❧❛♥❡(plane, person))→
(Holds(t, ♦♥♣❧❛♥❡(plane, person), v)↔ Holds(t + 1, ♦♥♣❧❛♥❡(plane, person), v))]

per5 ∀t, person, plane [¬Occlude(t, ♣♦ss✲❜♦❛r❞(person, plane))→
Holds(t, ♣♦ss✲❜♦❛r❞(person, plane), true)]

per6 ∀t, person, pthing [¬Occlude(t, ♣♦ss✲♣✐❝❦✉♣(person, pthing))→
Holds(t, ♣♦ss✲♣✐❝❦✉♣(person, pthing), true)]

per7 ∀t, person, loc1, loc2 [¬Occlude(t, ♣♦ss✲tr❛✈❡❧(person, loc1, loc2))→
Holds(t, ♣♦ss✲tr❛✈❡❧(person, loc1, loc2), true)]

per8 ∀t, plane, runway1, runway2 [¬Occlude(t, ♣♦ss✲✢②(plane, runway1, runway2))→
Holds(t, ♣♦ss✲✢②(plane, runway1, runway2))]

OBSERVATIONS, ACTION OCCURRENCES AND TIMING
obs1 Holds(0, ❧♦❝(boris), home1) ∧Holds(0, ❧♦❝(gun), office) ∧

Holds(0, ❧♦❝(comb1), home1) ∧ ¬Holds(0, ❞r✉♥❦(boris), true)

obs2 Holds(0, ❧♦❝(erik), home2) ∧Holds(0, ❧♦❝(comb2), home2) ∧
¬Holds(0, ❞r✉♥❦(erik), true)

obs3 Holds(0, ❧♦❝(dimiter), home3) ∧Holds(0, ❧♦❝(comb3), home3) ∧
Holds(0, ❞r✉♥❦(dimiter), true)

obs4 Holds(0, ❧♦❝(sas609), run609)

occ1 Occurs(1, 2, ♣✐❝❦✉♣(boris, comb1))

3In this variation of TAL-C, the Occurs predicate is not used. Instead, action type specifications are

viewed as templates that are instantiated using action occurrence statements.

Chapter 3. Tackling the Qualification Problem using Fluent Dependency Constraints 69

occ2 Occurs(1, 2, ♣✐❝❦✉♣(erik, comb2))

occ3 Occurs(2, 4, tr❛✈❡❧(dimiter, home3, office))

occ4 Occurs(3, 5, tr❛✈❡❧(boris, home1, office))

occ5 Occurs(4, 6, tr❛✈❡❧(erik, home2, office))

occ6 Occurs(6, 7, ♣✐❝❦✉♣(boris, gun))

occ7 Occurs(5, 7, tr❛✈❡❧(dimiter, office, airport))
occ8 Occurs(7, 9, tr❛✈❡❧(erik, office, airport))
occ9 Occurs(8, 10, tr❛✈❡❧(boris, office, airport))
occ10 Occurs(9, 10, ❜♦❛r❞(dimiter, sas609))

occ11 Occurs(10, 11, ❜♦❛r❞(boris, sas609))

occ12 Occurs(11, 12, ❜♦❛r❞(erik, sas609))

occ13 Occurs(13, 16, ✢②(sas609, run609, run609b))

SCHEDULE STATEMENTS
scd1 ∀t1, t2, plane, runway1, runway2 [Occurs(t1, t2, ✢②(plane, runway1, runway2))→

(Holds(t1, ♣♦ss✲✢②(plane, runway1, runway2)) ∧Holds(t1, ❧♦❝(plane), runway1)→
∀t [t1 < t∧ t < t2 → Holds(t, ❧♦❝(plane), air) ∧Occlude(t, ❧♦❝(plane))] ∧
Holds(t2, ❧♦❝(plane), runway2) ∧Occlude(t2, ❧♦❝(plane)))]

scd2 ∀t1, t2, person, pthing [Occurs(t1, t2, ♣✐❝❦✉♣(person, pthing))→
(Holds(t1, ♣♦ss✲♣✐❝❦✉♣(person, pthing)) ∧
Holds(t1, ❧♦❝(person), value(t1, ❧♦❝(pthing)))→
Holds(t2, ✐♥♣♦❝❦❡t(person, pthing), true) ∧Occlude(t2, ✐♥♣♦❝❦❡t(person, pthing)))]

scd3 ∀t1, t2, person, loc1, loc2 [Occurs(t1, t2, tr❛✈❡❧(person, loc1, loc2))→
(Holds(t1, ♣♦ss✲tr❛✈❡❧(person, loc1, loc2)) ∧Holds(t1, ❧♦❝(person), loc1)→
Holds(t2, ❧♦❝(person), loc2) ∧Occlude(t2, ❧♦❝(person)))]

scd4 ∀t1, t2, person, plane [Occurs(t1, t2, ❜♦❛r❞(person, plane))→
(Holds(t1, ♣♦ss✲❜♦❛r❞(person, plane), true) ∧Holds(t1, ❧♦❝(person), airport)→
Holds(t2, ❧♦❝(person), value(t2, loc(plane))) ∧Holds(t2, ♦♥♣❧❛♥❡(plane, person), true) ∧
Occlude(t2, ❧♦❝(person)) ∧Occlude(t2, ♦♥♣❧❛♥❡(plane, person)))]

DOMAIN CONSTRAINTS
dom1 ∀t, pthing, person1, person2 [person1 6= person2 ∧

Holds(t, ✐♥♣♦❝❦❡t(person1, pthing), true)→ ¬Holds(t, ✐♥♣♦❝❦❡t(person2, pthing), true)]

dom2 ∀t, person, plane1, plane2 [plane1 6= plane2 ∧Holds(t, ♦♥♣❧❛♥❡(plane1, person), true)→
¬Holds(t, ♦♥♣❧❛♥❡(plane2, person))]

dom3 ∀t, person, pthing [Holds(t, ✐♥♣♦❝❦❡t(person, pthing), true)→
Holds(t, ❧♦❝(pthing), value(t, ❧♦❝(person)))]

DEPENDENCY CONSTRAINTS
dep1 ∀t, plane, person, loc [Holds(t, ♦♥♣❧❛♥❡(plane, person), true) ∧Holds(t, ❧♦❝(plane), loc) ∧

∀u [t = u + 1→ ¬Holds(u, ❧♦❝(plane), loc)]→
Holds(t, ❧♦❝(person), loc) ∧Occlude(t, ❧♦❝(person))]

dep2 ∀t, person, pthing, loc [Holds(t, ✐♥♣♦❝❦❡t(person, pthing), true) ∧
Holds(t, ❧♦❝(person), loc) ∧ ∀u [t = u + 1→ ¬Holds(u, ❧♦❝(person), loc)]→
Holds(t, ❧♦❝(pthing), loc) ∧Occlude(t, ❧♦❝(pthing))]

dep3 ∀t, person, plane [Holds(t, ✐♥♣♦❝❦❡t(person, gun), true)→
¬Holds(t, ♣♦ss✲❜♦❛r❞(person, plane), true) ∧Occlude(t, ♣♦ss✲❜♦❛r❞(person, plane))]

dep4 ∀t, person, plane [Holds(t, ❞r✉♥❦(person), true)→ Occlude(t, ♣♦ss✲❜♦❛r❞(person, plane))]

70 3.12. Conclusion

TEMPORAL STRUCTURE AND FOUNDATIONAL AXIOMS
Apart from the narrative formulas above, we need axioms Γt✐♠❡ for the temporal

structure: The Peano axioms without multiplication. We also need the foundational

axioms, Γ❢♥❞, which contain unique names axioms for the value sorts, fluent sorts,

and actions. The foundational axioms also contain a set of axioms that relate the

Holds predicate to the value function and ensure that each fluent has exactly one

value at each timepoint:

∀t, thing, loc [Holds(t, ❧♦❝(thing), loc)↔ value(t, ❧♦❝(thing)) = loc]

∀t, person, pthing, v

[Holds(t, ✐♥♣♦❝❦❡t(person, pthing), v)↔ value(t, ✐♥♣♦❝❦❡t(person, pthing)) = v]

∀t, person, v [Holds(t, ❞r✉♥❦(person), v)↔ value(t, ❞r✉♥❦(person)) = v]

∀t, plane, person, v [Holds(t, ♦♥♣❧❛♥❡(plane, person), v)↔ value(t, ♦♥♣❧❛♥❡(plane, person)) = v]

∀t, person, plane, v

[Holds(t, ♣♦ss✲❜♦❛r❞(person, plane), v)↔ value(t, ♣♦ss✲❜♦❛r❞(person, plane)) = v]

∀t, person, pthing, v

[Holds(t, ♣♦ss✲♣✐❝❦✉♣(person, pthing), v)↔ value(t, ♣♦ss✲♣✐❝❦✉♣(person, pthing)) = v]

∀t, person, loc1, loc2, v

[Holds(t, ♣♦ss✲tr❛✈❡❧(person, loc1, loc2), v)↔ value(t, ♣♦ss✲tr❛✈❡❧(person, loc1, loc2)) = v]

∀t, plane, runway1, runway2, v [Holds(t, ♣♦ss✲✢②(plane, runway1, runway2), v)↔
value(t, ♣♦ss✲✢②(plane, runway1, runway2)) = v]

Chapter 4
Elaboration Tolerance through

Object-Orientation

TAL separates domain information into different statement classes such as obser-

vations, domain constraints and dependency constraints. This is sufficient for do-

mains simple enough to be modeled in only a few logical statements, but for more

complex domains, more structure is needed. This is especially true if one wants to

build reusable domain models where individual aspects can be modified to suit

new variations and new changes in the domain. This chapter contains an arti-

cle called Elaboration Tolerance through Object-Orientation, which shows how object-

oriented modeling can be applied in order to structure TAL narratives and fa-

cilitate reuse. This article was published in Artificial Intelligence (Gustafsson &

Kvarnström, 2004), and like the article in the previous chapter, the only significant

changes that have been made are related to reformatting the article and removing

parts of the section describing the TAL logic.

4.1 Introduction

Traditionally, the semantic adequacy of formalisms for reasoning about action and

change (RAC) has primarily been tested using very small specialized domains that

highlight some particular point an author wants to make. These domains can usu-

ally be represented as a small number of simple formulas that are normally grouped

by type rather than structure.

However, with some of the classical RAC problems completely or partially solv-

ed, and with powerful tools available for reasoning about action scenarios, it is now

possible to model larger and more realistic domains. As soon as we start doing this,

it becomes apparent that there is an unfortunate lack of methodology for handling

71

72 4.1. Introduction

complex domains in a systematic manner. There are few (if any) principles of good

form, like the “No Structure in Function” principle from the qualitative reasoning

community (de Kleer & Brown, 1984).

The following are some questions that must be answered in order to develop

such a methodology:

Consistency: How can complex domains be modeled in a consistent and sys-

tematic way, to allow several developers to work on the same domain description

and to enable others to understand the resulting domain more easily?

Elaboration tolerance (McCarthy, 1998): How do we ensure that domains can

initially be modeled at a high level of abstraction, with the possibility to add fur-

ther details at a later stage without completely redesigning the domain description?

How do we design domain descriptions that can be modified in a convenient man-

ner to take account of new phenomena or changed circumstances?

Modularity and reusability: How can particular aspects of a domain be de-

signed as more or less self-contained modules? How do we provide support for

reusing modules?

In this article, we investigate the applicability of the object-oriented paradigm

(Abadi & Cardelli, 1996; Booch, 1991) to answering these questions. We model

the entities that appear in a domain as objects, encapsulated abstractions that offer

a well-defined interface to the surrounding world and hide the implementation-

specific details. The interface consists of methods that can be called by other objects.

Objects are instances of classes sharing the same attributes and methods. Classes

are ordered in an inheritance hierarchy where a class can be created as a subclass of

another class, inheriting the attributes and methods of the superclass and possibly

adding its own attributes and methods or redefining some of the inherited meth-

ods.

Modeling entities as objects and interacting with them using methods provides

a high degree of consistency in the domain model. The fact that attributes are hid-

den and accessed using methods increases elaboration tolerance, as does the ability

to extend existing classes with new functionality in a structured and well-defined

manner and to override existing functionality by re-implementing inherited meth-

ods. The modularity and reusability of a model are improved by modeling self-

contained classes that are independent of the implementations of other classes.

The object-oriented concepts used in this article could potentially be applied to

many different logics for reasoning and change, as long as they provide a certain

minimum amount of expressivity. However, a proper demonstration of the viabil-

ity of the approach requires a varied set of concrete examples. For these examples

we have chosen to use a single logic: TAL-C (Karlsson & Gustafsson, 1999).

In the first part of the article, we will introduce TAL-C (Section 4.2), show

how domains can be modeled in TAL-C in an object-oriented manner (Sections 5.3

and 5.4) and discuss some more complex issues related to object-orientation (Sec-

tion 5.5) and how this affects elaboration tolerance (Section 5.6). Then, the ideas

covered in the first part will be applied to the Missionaries and Cannibals domain

Elaboration Tolerance through OO 73

(Section 5.7). The 19 elaborations of this domain defined by McCarthy in his pa-

per on elaboration tolerance (1998) will also be covered (Section 5.8), and a way of

actually solving the problems within the logic is discussed (Section 5.9). An object-

oriented model of the Traffic World domain (Sandewall, 1999) is briefly mentioned

(Section 5.10). Finally, we conclude with related work (Section 5.11) and a discus-

sion of the results (Section 5.12).

4.2 The TAL family and the TAL-C Logic

This article will use TAL-C as a basis for applying concepts from object-oriented

modeling. A subset of this logic is implemented in the research tool VITAL (Kvarn-

ström, 2005), a platform-independent Java tool that can be downloaded from the

WWW. All narratives belonging to the subset supported by VITAL have a finite

number of models, and VITAL uses constraint propagation techniques to generate

all models (or any given number of models) of such narratives. This provides us

with an experimental platform where object-oriented narratives can be tested.

Since TAL-C has already been introduced in this thesis, most of the description of TAL-

C in this section has been removed. Please refer to Chapter 2 and the description of the

Extended Hiding Turkey Scenario in Section 2.3.

One new macro was introduced in this section: The Set macro, an alias for the interval

reassignment macro previously called I.

Apart from being more complex than many traditional benchmark problems

in the RAC community (the even more well-known Stanford Murder Mystery re-

quires only four short statements), the Extended Hiding Turkey Scenario presented

in Section 2.3 is fairly representative of the area. The statements are ordered by

type, with no special regard to the structure of the problem. The fluents are also

unstructured in the sense that there is no indication that ❛❧✐✈❡ and ❤✐❞✐♥❣ refer to

properties of a turkey while ❧♦❛❞❡❞ and ♥♦✐s❡ do not.

Although the hiding turkey domain is still comprehensible in this unorganized

form, it is clear that some additional structure will be valuable when modeling

more complex domains. The following section presents a way of applying the

object-oriented paradigm to modeling such domains.

4.3 Basic Object-Oriented Modeling in TAL-C

As has been shown previously (Karlsson & Gustafsson, 1999; Karlsson, Gustafs-

son, & Doherty, 1998; Kvarnström & Doherty, 2000a), the TAL logics are flexible

and fine-grained logics suitable for handling a wide class of domains. We will now

show how to use object-oriented modeling as a structuring mechanism for domain

descriptions, thereby supporting the modeling of more complex domains and in-

creasing the possibility of being able to reuse existing models when modeling re-

lated domains.

74 4.3. Basic Object-Oriented Modeling in TAL-C

To simplify the task of the domain designer, some extensions to the L(ND) syn-

tax will be introduced. These extensions are not essential, since the new macros

and statement classes can mechanically be translated into the older syntax. The

translations are implemented in the research tool VITAL.

The remainder of this section will show how classes are declared and how to

instantiate objects of a specific class. We will then go on to discuss how to declare

and use attributes (fields), and how to use three different types of methods: Acces-

sors, mutators, and constraint methods. This provides the basic functionality for

the object-oriented modeling of complex domains in TAL-C. Section 4.4 will cover

additional topics such as how to override a method.

4.3.1 Defining Classes and Objects

In TAL, domains are traditionally modeled using an unstructured set of boolean or

non-boolean fluents, each of which can take a number of arguments belonging to

specific value domains.

In our object-oriented approach, we will instead concentrate on classes and ob-

jects. Each class will be modeled as a finite value domain, and each object as a value

in that domain. Due to the order-sorted type structure used in TAL, inheritance hi-

erarchies for classes are easily supported by modeling subclasses as subdomains.

We will assume that the hierarchy has a single root called OBJECT.

Given the approach being used, it would be easy to introduce a ❝❧❛ss alias for the

ordinary ❞♦♠❛✐♥ declaration statement. However, this would mean that any class

declaration statement would have to explicitly enumerate all objects belonging to

the class. Instead, a new, more flexible syntax is introduced which allows class and

object declarations to be separated.

Defining Classes

The narrative type specification syntax in VITAL is extended to allow two forms

of class declaration statement. A statement of the form ❝❧❛ss NEWCLASS declares a

new top-level class named NEWCLASS, without a parent. Usually this is only used

for the OBJECT class. A statement of the form ❝❧❛ss SUB extends SUPER declares a

new subclass named SUB, with the parent class (superclass) SUPER. This makes SUB

a direct subclass of SUPER, and SUPER is a direct superclass of SUB.

A class SUB is a subclass of SUPER iff it is a direct subclass of SUPER or there is an

intermediate class INTER such that SUB is a direct subclass of INTER and INTER is a

subclass of SUPER. The superclass concept is defined similarly.

A simple water tank domain will be used as a running example. This domain

requires the standard root class OBJECT together with a domain TANK for water

tanks. We are also interested in modeling a special type of tank, a FLOWTANK,

which may have a flow of water into or out of the tank, as well as PIPEs between

the tanks.

Elaboration Tolerance through OO 75

❝❧❛ss OBJECT

❝❧❛ss TANK extends OBJECT

❝❧❛ss FLOWTANK extends TANK

❝❧❛ss PIPE extends OBJECT

Defining Objects

Objects are declared in the narrative type specification using object statements (la-

beled ♦❜❥). Declaring an object as a member of a class naturally also makes it a

member of its superclasses: Any FLOWTANK is automatically also a TANK and an

OBJECT.

♦❜❥ tank1 : TANK

♦❜❥ tank2, tank3 : FLOWTANK

♦❜❥ pipe1 : PIPE

Note that since classes correspond to value domains, it is possible to quantify over

all objects belonging to a given class. Also note that objects are not created at any

particular timepoint. They are declared in the narrative specification and exist at

all timepoints.

Translation

Because VITAL requires a single definition for each value domain, class declara-

tions and object declarations cannot be translated in isolation. Instead, the com-

plete set of class and object declarations are translated into TAL-C in the following

manner.

An object o is considered to be explicitly declared to belong to the class CL iff

there is an object declaration statement having the following form:

♦❜❥ . . . , oi, . . . : CL

Each class declaration statement ❝❧❛ss NEWCLASS for a top-level class NEWCLASS

is translated into the domain declaration statement ❞♦♠❛✐♥ NEWCLASS ✿❡❧❡♠❡♥ts

④ o1✱ ✳ ✳ ✳ ✱ on ⑥, where the objects o1, . . . , on are exactly those objects that are explicitly

declared to belong to NEWCLASS or to a subclass of NEWCLASS.

Each class declaration statement ❝❧❛ss NEWCLASS extends SUPER for a non-top-

level class NEWCLASS is translated into the domain declaration statement ❞♦♠❛✐♥

NEWCLASS ✿❡①t❡♥❞s SUPER ✿❡❧❡♠❡♥ts ④ o1✱ ✳ ✳ ✳ ✱ on ⑥, where the objects o1, . . . , on

are exactly those objects that are explicitly declared to belong to NEWCLASS or to a

subclass of NEWCLASS.

This leads to the following VITAL domain definitions for the classes and objects

declared above:

❞♦♠❛✐♥ OBJECT ✿❡❧❡♠❡♥ts ④ pipe1✱ tank1✱ tank2✱ tank3 ⑥

❞♦♠❛✐♥ TANK ✿❡❧❡♠❡♥ts ④ tank1✱ tank2✱ tank3 ⑥

❞♦♠❛✐♥ FLOWTANK ✿❡❧❡♠❡♥ts ④ tank2✱ tank3 ⑥

❞♦♠❛✐♥ PIPE ✿❡❧❡♠❡♥ts ④ pipe1 ⑥

76 4.3. Basic Object-Oriented Modeling in TAL-C

4.3.2 Using Attributes

As usual in object-oriented languages, each object can be associated with a set of at-

tributes, also known as fields. All objects of a certain class share the same attributes,

but the specific values of the attributes may differ between the objects. Below, we

show how attributes are modeled in TAL-C, how they are initialized, and how they

can be changed at specific points in time.

Defining Attributes

All attributes are specified in attribute declarations (labeled ❛ttr). For example, any

TANK has a current volume, a maximum volume, and a base area, all of which are

Real values.1 These attributes are persistent: They will not change unless explicitly

changed. This is specified as follows:

❛ttr TANK.✈♦❧✉♠❡ : Real

❛ttr TANK.♠❛①✈♦❧ : Real

❛ttr TANK.❛r❡❛ : Real

It is also possible to define attributes with arguments, which provides functionality

similar to the use of arrays or mappings in programming languages. For example,

if any water tank must keep track of exactly which pipes it is connected to, this can

be modeled using a boolean attribute ❝♦♥♥❡❝t❡❞ taking a pipe as an argument:

❛ttr TANK.❝♦♥♥❡❝t❡❞(PIPE) : boolean

An attribute is automatically translated into a fluent taking one additional argu-

ment – an object of the class to which the attribute belongs. Thus, the declarations

above are translated into the TAL fluents ✈♦❧✉♠❡(TANK) : Real, ♠❛①✈♦❧(TANK) :

Real, ❛r❡❛(TANK) : Real, and ❝♦♥♥❡❝t❡❞(TANK, PIPE) : boolean. Since time-depen-

dent fluents are used, any attribute can vary over time in a natural manner.

More formally, an attribute declaration ❛ttr CLS.❛ttr(s1, . . . , sn) : s where n ≥ 0

is translated into a feature declaration ❢❡❛t✉r❡ ❛ttr(CLS, s1, . . . , sn) : s.

Using the standard TAL-C syntax, the ✈♦❧✉♠❡ attribute of tank1 would be de-

noted by ✈♦❧✉♠❡(tank1). To permit the use of the standard object-oriented syntax

tank1.✈♦❧✉♠❡, we define obj.❛ttr(x1, . . . , xn)
❞❡❢

= ❛ttr(obj, x1, . . . , xn), where n ≥ 0; if

n = 0, the parentheses may be omitted. This syntax will also be applied to method

invocations.

Attributes in Subclasses

Due to the use of the order-sorted type structure in TAL-C, subclasses automatically

inherit the attributes of their parents, as in ordinary object-oriented languages. For

1Since TAL currently requires finite domains, it is necessary to specify upper and lower bounds on

the Real domain as well as the desired precision. This is also true for the Integer domain which will

be used in later examples. However, these limitations are not relevant to the modeling issues covered in

this article.

Elaboration Tolerance through OO 77

example, tank1, tank2 and tank3 all have a ✈♦❧✉♠❡, despite the fact that the latter

two are declared as FLOWTANK objects.

Naturally, subclasses can also add new attributes. For example, the FLOWTANK

class keeps track of the current flow of water in or out of the tank, which is modeled

as a ✢♦✇ attribute:

❛ttr FLOWTANK.✢♦✇ : Real

Initializing Attributes

Although it would have been possible to introduce special syntax for object ini-

tialization, similar to constructors in standard object-oriented languages, this only

appears to be natural in the case where complete information about all objects is

available.

The TAL logics allow the use of incomplete information – for example, due to

sensor accuracy, one might only know that the initial volume of water in a tank

is less than 0.02. Therefore, we still use plain TAL-C observation statements to

partially or completely initialize attributes at time 0.

♦❜s ∀tank.[0] tank.✈♦❧✉♠❡ ≤ 0.02

♦❜s [0] tank2.✢♦✇ =̂ 0∧ tank3.✢♦✇ =̂ 0.12

4.3.3 Methods

In a classical object-oriented view, a method is a sequence of code that is procedu-

rally executed when the method is invoked. In our approach, however, a method

is a set of formulas that must be satisfied whenever the method is invoked. Meth-

ods can be invoked over intervals of time, and several methods can be invoked

concurrently.

Three different kinds of methods are defined: Accessors (which query the state

of an object), mutators (which are called in order to change the state of an object),

and constraint methods (which are not explicitly invoked but are active at all time-

points).

Accessors

Accessors are used for querying the state of an object. This can be done simply by

retrieving the current value of an attribute, or by performing arbitrarily complex

calculations as long as these calculations can be expressed within the logic being

used.

An accessor is modeled using a return value fluent, a dynamic (non-persistent,

non-durational) fluent that takes on the desired return value at all timepoints. For

example, a simple q✉❡r②✲✈♦❧✉♠❡() method for a water tank can be modeled by in-

troducing a dynamic fluent q✉❡r②✲✈♦❧✉♠❡(TANK) : Real and adding the following

domain constraint:

78 4.3. Basic Object-Oriented Modeling in TAL-C

❛❝❝ [t] tank.q✉❡r②✲✈♦❧✉♠❡() =̂ value(t, tank.✈♦❧✉♠❡)

Although this type of accessor may not appear very useful at first glance, the inten-

tion is that the attributes of a class (such as ✈♦❧✉♠❡ in TANK) should be considered

private within that class, and that external callers should only use the externally

available interface, such as the q✉❡r②✲✈♦❧✉♠❡ accessor. Actually enforcing this inten-

tion would require additional support from the tools being used to reason about an

object-oriented narrative.

A slightly more complex accessor might determine whether the tank is full,

which is the case if its ✈♦❧✉♠❡ equals its maximum volume (♠❛①✈♦❧). This is done by

declaring a dynamic return value fluent q✉❡r②✲❢✉❧❧(TANK) : ❜♦♦❧❡❛♥ and using the

following domain constraint:

❛❝❝ [t] tank.q✉❡r②✲❢✉❧❧()↔ value(t, tank.✈♦❧✉♠❡) = value(t, tank.♠❛①✈♦❧)

Mutators

Mutators can be called to change the internal state of an object, and are modeled as

dependency constraints triggered by boolean invocation fluents.

To define a mutator ♠❡t❤♦❞ with n ≥ 0 arguments of sorts 〈s1, . . . , sn〉 in class

CLASS, it is first necessary to define a durational invocation fluent ♠❡t❤♦❞(CLASS,

s1, . . . , sn) with default value false. The method implementation consists of a de-

pendency constraint that is triggered for an object obj only when the invocation

fluent obj.♠❡t❤♦❞(x1, . . . , xn) is true. For example, a mutator s❡t✲✈♦❧✉♠❡(Real) can

be defined in class TANK as follows:

♣❡r ∀t, tank, v ∈ Real.Dur(t, tank.s❡t✲✈♦❧✉♠❡(v), false)

❞❡♣ ∀t, tank, v ∈ Real.[t] tank.s❡t✲✈♦❧✉♠❡(v)→ Set([t] tank.✈♦❧✉♠❡ =̂ v)

Calling the method requires making the invocation fluent true for the appropriate

arguments at the timepoint when the method should be invoked. As usual, this is

done using the Set macro, and therefore a TAL dependency constraint is required.

For example, the volume of tank1 can be set to 4.5 at time 2 as follows:

❞❡♣ Set([2] tank1.s❡t✲✈♦❧✉♠❡(4.5) =̂ true)

This is simplified further by defining Call(τ, f)
❞❡❢

= Set([τ] f =̂ true):

❞❡♣ Call(2, tank1.s❡t✲✈♦❧✉♠❡(4.5))

Constraint Methods

Constraint methods model behaviors that should always be active. Instead of being

triggered by invocation fluents, constraint methods are active at all timepoints. In a

sense, they could be viewed as mutators that are continuously invoked. This allows

many common RAC constructions such as state constraints to be expressed while

keeping an object-oriented viewpoint.

The fact that the volume of water in a FLOWTANK changes according to the flow

of water can be encoded as follows:

Elaboration Tolerance through OO 79

❞❡♣ Set([t + 1]tank.✈♦❧✉♠❡ =̂ value(t, tank.✈♦❧✉♠❡ + tank.✢♦✇))

This concludes the discussion of the most basic concepts in object-orientation: Clas-

ses, objects, attributes, and methods. The following section will show how to

reify the class structure in order to model method overriding in TAL-C, while Sec-

tion 4.5 demonstrates how some additional object-oriented concepts, such as ab-

stract classes and final methods, can be modeled.

4.4 Inheritance and Overriding

Although the concepts presented in the previous section are sufficient for modeling

many domains, it is still possible to improve the elaboration tolerance of the models

considerably by introducing the object-oriented concept of overriding: Allowing a

subclass to re-implement a method in order to refine or specialize it.

This requires a way of disabling a method implementation that is inherited from

a superclass, which is facilitated by providing the logic formulas with some addi-

tional information about the class structure used in a domain model.

4.4.1 Reifying the Class Structure

Since the TAL logics have no built-in support for allowing logic formulas to inspect

the class (sort) structure of a particular domain, it is necessary to reify this structure.

This can of course be done mechanically, and support for this is built into current

versions of VITAL (Kvarnström, 2005).

The class structure is reified by mechanically constructing a TAL value domain

classname containing all class names, and declaring and initializing a persistent

boolean fluent2 s✉❜❝❧❛ss(classname, classname), where s✉❜❝❧❛ss(c1, c2) is true iff c1

is a subclass of c2. For the water tank example, the definitions would be equivalent

to the following:

❞♦♠❛✐♥ classname ✿❡❧❡♠❡♥ts ④ OBJECT✱ TANK✱ FLOWTANK ⑥

❢❡❛t✉r❡ s✉❜❝❧❛ss(classname, classname) ✿❞♦♠❛✐♥ ❜♦♦❧❡❛♥

♣❡r ∀t, classname1, classname2.t > 0→ Per(t, s✉❜❝❧❛ss(classname1, classname2))

♦❜s ∀c1 ∈ classname, c2 ∈ classname
[0] s✉❜❝❧❛ss(c1, c2)↔

((c1 = FLOWTANK ∧ c2 = OBJECT) ∨
(c1 = FLOWTANK ∧ c2 = TANK) ∨
(c1 = TANK ∧ c2 = OBJECT))

Note that since s✉❜❝❧❛ss is persistent, it is sufficient to provide a value at time 0. This

value will automatically propagate to all timepoints.

2Although we do not intend to change subclass relations over time, TAL-C has no support for time-

independent functions and therefore a fluent must be used.

80 4.4. Inheritance and Overriding

In addition to this, it is sometimes necessary to be able to identify the exact type

of a certain object. To this end, an attribute ❝❧❛ss of type classname is added to the

root class OBJECT:

❛ttr OBJECT.❝❧❛ss : classname

This attribute is also initialized automatically during the translation of the object

declaration statements. In the water tank example, the following observations

would be generated:

♦❜s [0] tank1.❝❧❛ss =̂ TANK

♦❜s [0] tank2.❝❧❛ss =̂ FLOWTANK

♦❜s [0] tank3.❝❧❛ss =̂ FLOWTANK

♦❜s [0] pipe.❝❧❛ss =̂ PIPE

It should be emphasized that these domains and fluents are created automatically

during the translation process and need not be explicitly defined by the user.

4.4.2 Overriding Method Implementations

Suppose that a method ♠❡t❤♦❞ is defined and implemented in a class CLASS ∈
classname. This implementation of ♠❡t❤♦❞ will be active for any object of type

CLASS, including objects belonging to subclasses of CLASS.

When a new subclass SUB is created, we may want to override some of the meth-

ods defined in the superclass CLASS. This means not only adding a new implemen-

tation of the method for objects in SUB, but also disabling the old implementation

for those objects.

To allow this to be modeled in TAL-C it is necessary to reify the concept of over-

riding a method. We introduce the boolean fluent ♦✈❡rr✐❞❡(SUB,♠❡t❤♦❞, CLASS) ex-

pressing the fact that for objects belonging to SUB, any implementation of ♠❡t❤♦❞

in the superclass CLASS is overridden and should be disabled. This fluent is dura-

tional with default value false, since overriding should only occur when explicitly

forced.

All method implementations should then be conditionalized on not being over-

ridden, and should explicitly override implementations in superclasses.

The former is achieved by adding a suitable ♦✈❡rr✐❞❡ expression in the precondi-

tion of each method. For example, when s❡t✲✈♦❧✉♠❡ mutator declared in class TANK

is called for an object tank, the exact type of that object is tank.❝❧❛ss (which may be

TANK or FLOWTANK). Thus, the method should be disabled if for objects of this

type (tank.❝❧❛ss), the implementation of s❡t✲✈♦❧✉♠❡ in the class TANK is overridden

– in other words, if ♦✈❡rr✐❞❡(tank.❝❧❛ss, s❡t✲✈♦❧✉♠❡, TANK). The method is therefore

conditionalized as follows:

❞❡♣ ∀t, tank ∈ TANK, f ∈ Real
[t] tank.s❡t✲✈♦❧✉♠❡(f) ∧ ¬♦✈❡rr✐❞❡(tank.❝❧❛ss, s❡t✲✈♦❧✉♠❡, TANK)→
Set([t] tank.✈♦❧✉♠❡ =̂ f)

The latter is done by adding a statement on the following form each time a method

♠❡t❤♦❞ is defined in a class CURRENTCLASS:

Elaboration Tolerance through OO 81

❞❡♣ ∀t, SUPER ∈ classname, SUB ∈ classname
([t] s✉❜❝❧❛ss(CURRENTCLASS, SUPER)) ∧
([t] s✉❜❝❧❛ss(SUB, CURRENTCLASS) ∨ SUB = CURRENTCLASS)→
Set([t] ♦✈❡rr✐❞❡(SUB,♠❡t❤♦❞, SUPER))

This states that when a method is re-implemented in CURRENTCLASS, its inherited

implementation from any superclass SUPER is disabled for any object whose type

SUB is either exactly CURRENTCLASS or a subclass of CURRENTCLASS.

For convenience, the macro DisableInherited(CURRENTCLASS,♠❡t❤♦❞) will be

used as a shorthand for statements of this type. This yields the following final

definition of the s❡t✲✈♦❧✉♠❡ mutator:

❞❡♣ DisableInherited(TANK, s❡t✲✈♦❧✉♠❡)

❞❡♣ ∀t, tank ∈ TANK, v ∈ Real
[t] tank.s❡t✲✈♦❧✉♠❡(v) ∧ ¬♦✈❡rr✐❞❡(tank.❝❧❛ss, s❡t✲✈♦❧✉♠❡, TANK)→
Set([t] tank.✈♦❧✉♠❡ =̂ v)

4.5 Additional Object-Oriented Concepts

This section will briefly present some additional ideas regarding the use of object-

oriented modeling in a logic for reasoning about action and change. These ideas

build on the basic concepts presented in the previous two sections, but will not be

developed at the same level of detail. Rather, they are intended to demonstrate

the flexibility of the paradigm and show how it could be extended and modified in

various directions depending on the needs of the user.

4.5.1 Multiple Method Implementations

In the examples presented previously, a method always has a single implementa-

tion. However, there is no reason why this always has to be the case. For example,

a mutator could consist of multiple dependency constraints, all of which are trig-

gered by the same invocation fluent. This allows a more modular implementation

of complex methods. It also permits a subclass to add to the implementation of a

method, rather than replace it, simply by not calling the DisableInherited macro to

disable the implementation provided by the superclass. This resembles the ability

to call a superclass implementation of a method using s✉♣❡r.♠❡t❤♦❞(. . .) in the Java

programming language.

4.5.2 Preventing Overriding: Final Methods

In some object-oriented programming languages, a method implementation can be

marked as “final”, meaning that it cannot be overridden in a subclass.

Final methods can be defined in TAL-C by stating that they are never overrid-

den. For example, the s❡t✲✈♦❧✉♠❡ method from Section 4.4.2 could be made final by

adding the following statement:

82 4.5. Additional Object-Oriented Concepts

❛❝❝ ∀t, tank ∈ TANK.[t] ¬♦✈❡rr✐❞❡(tank.❝❧❛ss, s❡t✲✈♦❧✉♠❡, TANK)

Unlike most programming languages, this form of type checking is dynamic rather

than static. If a method is overridden despite being final, this will generate an

inconsistent narrative rather than an error during translation. VITAL will detect

such inconsistencies and report the error to the user.

4.5.3 Forcing Overriding: Abstract Methods

While final methods are implemented and cannot be overridden in subclasses, ab-

stract methods are not implemented and must be overridden in all subclasses. The

following statement can be used to declare that the ❣❡t✲❝♦❧♦r method is abstract in

the class TANK:

❛❝❝ ∀t, tank ∈ TANK.[t] ♦✈❡rr✐❞❡(tank.❝❧❛ss, ❣❡t✲❝♦❧♦r, TANK)

Note that this statement in itself is not sufficient for permitting the ♦✈❡rr✐❞❡ fluent

to be true. The fluent is durational, and can only take on the value true if it is

explicitly assigned that value, which is not the case in this formula. Instead, the

formula states that someone else must have assigned it the value true using the Set
macro, which would be done indirectly by an overriding method declaration using

the DisableInherited macro.

4.5.4 Abstract Classes

An abstract class cannot be instantiated. Such a class can be modeled using a simple

constraint of the following form:

❛❝❝ ∀t¬∃object.[t] object.❝❧❛ss =̂ CLASS

4.5.5 Class Methods

All methods shown up to now have been instance methods. For example, s❡t✲

✈♦❧✉♠❡ is called for an instance of the TANK class, and only alters the volume of

that specific instance. It is also possible to model class methods, which are associ-

ated with the class itself rather than with an instance.

A class accessor method can be defined in TAL-C using a return value fluent

that does not take an object as its first argument. Similarly, a class mutator can be

defined using an invocation fluent that does not take an object as its first argument.

For example, all tank volumes can be reset to zero using the following class method

in the TANK class:

❞❡♣ ∀t.[t] s❡t✲③❡r♦✲✈♦❧✉♠❡() ∧ ¬♦✈❡rr✐❞❡(TANK, s❡t✲③❡r♦✲✈♦❧✉♠❡, TANK)→
∀tank.Set([t] tank.✈♦❧✉♠❡ =̂ 0.0)

Note that this method is called directly, as in Call(7, s❡t✲③❡r♦✲✈♦❧✉♠❡()), without

specifying a tank object as in Call(7, tank1.s❡t✲✈♦❧✉♠❡(0)).

Elaboration Tolerance through OO 83

4.5.6 Access Control

For mutators, a form of cooperative access control can be implemented by adding

to the invocation fluent another argument representing the caller. Using the s❡t✲

✈♦❧✉♠❡ mutator as an example, the following changes would be made:

❞❡♣ DisableInherited(TANK, s❡t✲✈♦❧✉♠❡)

❞❡♣ ∀t, tank ∈ TANK, caller ∈ TANK, v ∈ Real
[t] tank.s❡t✲✈♦❧✉♠❡(caller, v) ∧ ¬♦✈❡rr✐❞❡(tank.❝❧❛ss, s❡t✲✈♦❧✉♠❡, TANK)→
Set([t] tank.✈♦❧✉♠❡ =̂ v)

In this definition, the caller argument must be a TANK, and consequently only a

TANK can call the s❡t✲✈♦❧✉♠❡ method. This is similar to a protected method in Java,

and could possibly be used to help ensure that encapsulation is respected. How-

ever, this only provides a purely cooperative form of access control, since anyone

wanting to call s❡t✲✈♦❧✉♠❡() could in principle simply send an arbitrary tank object

as the caller.

4.6 Elaboration Tolerance through Object-Orientation

According to McCarthy (1998), elaboration tolerance is “the ability to accept chang-

es to a person’s or a computer program’s representation of facts about a subject

without having to start all over”. Several ideas used in the object-oriented par-

adigm facilitate the creation of elaboration tolerant domain models. This is not

surprising, since the reasons behind the object-oriented paradigm include modu-

larization and the possibility to reuse code.

The structuring of objects, fluents, domain constraints and dependency con-

straints into a well-defined set of named classes, attributes and methods is a pow-

erful tool for increasing the readability of a domain definition. This helps provide a

better understanding of the domain, which is in itself a very important prerequisite

for being able to adapt and extend the definition.

The use of inheritance makes it possible to specialize a class, adding new at-

tributes, methods and constraints while reusing those features from the superclass

that are still useful in the new subclass. Using overriding, the behaviors of a super-

class can be changed without knowing implementation-specific details and without

the need for “surgery” (McCarthy’s term for modifying a domain description by

actually changing or removing formulas or terms rather than merely adding facts).

While the creation of a subclass does not alter the behavior of its superclass,

it is also possible to add new attributes and methods directly to an existing class

without the need to modify the existing parts of the class definition.

Adding a new class requires changes to the classname domain and the s✉❜✲

❝❧❛ss fluent. These changes are done automatically at translation time. Adding new

methods may also yield a new definition of the automatically generated Occlude

predicate (the TAL approach to solving the frame problem, as described in Appen-

dices A and B). However, the new definition can be created by analyzing the new

84 4.7. Missionaries and Cannibals

methods in isolation and adding new disjuncts to the existing definition of Occlude.

It is not necessary to start over from the beginning because a new class is added or

because a method is overridden.

The elaboration tolerance of this approach will now be tested using a concrete

example domain.

4.7 Missionaries and Cannibals

McCarthy (1998) illustrates his ideas regarding elaboration tolerance with 19 elab-

orations of the Missionaries and Cannibals Problem (MCP). We will begin by mod-

eling the basic, unelaborated domain using the object-oriented constructions pre-

sented above. In the next section we will show that the ability to override methods

and to add new methods and attributes in subclasses provides a natural way to

model many of the elaborations. Section 4.9 shows how the problem instances can

be solved by generating plans within the logic.

4.7.1 Overview of the Design

The basic version of the MCP is as follows:

Three missionaries and three cannibals come to a river and find a boat

that holds two. If the cannibals ever outnumber the missionaries on

either bank, the missionaries will be eaten. How shall they cross in order

to avoid anyone being eaten?

Although we know we will eventually need to model some elaborated versions of

the domain, we will attempt to ignore that knowledge and provide a model suitable

for this particular version of the MCP. This will provide a better test for whether the

object-oriented model is truly elaboration tolerant.

We will define classes for objects, boats, places, and banks (Figure 4.1). Like

Lifschitz (2000), we will initially model missionaries and cannibals as groups of a

certain size rather than as individuals, despite the fact that a few of the elaborations

do require individuals to be treated as such; this is also done to provide a better test

for elaboration tolerance. In the standard domain, there will be six (possibly empty)

groups: Missionaries and cannibals at the left bank, at the right bank, and on the

boat.

4.7.2 Object

The root class OBJECT has a ♣♦s attribute representing its position, which is a PLACE

(Section 4.7.3):

❝❧❛ss OBJECT

❛ttr OBJECT.♣♦s : PLACE

Elaboration Tolerance through OO 85

OBJECT

PLACE BOAT GROUP

CANGROUPBANK MISGROUP

Figure 4.1: Classes in the Missionaries and Cannibals Domain

The following methods are available for accessing and changing the position:

Accessor q✉❡r②✲♣♦s(): Returns the position of the object.

❞❡♣ DisableInherited(OBJECT, q✉❡r②✲♣♦s)

❞❡♣ [t] ¬♦✈❡rr✐❞❡(object.❝❧❛ss, q✉❡r②✲♣♦s, OBJECT)→
Set([t] object.q✉❡r②✲♣♦s() =̂ value(t, object.♣♦s))

Mutator s❡t✲♣♦s(PLACE): Sets the position of the object.

❞❡♣ DisableInherited(OBJECT, s❡t✲♣♦s)

❞❡♣ [t] ¬♦✈❡rr✐❞❡(object.❝❧❛ss, s❡t✲♣♦s, OBJECT) ∧ object.s❡t✲♣♦s(place)→
Set([t] object.♣♦s =̂ place)

In the remainder of this article, attributes will generally be assumed to have acces-

sors and mutators following this pattern.

4.7.3 Place

The standard problem contains three different places: The left and right river bank

and onboard the boat. This is modeled as a generic class PLACE with a subclass

BANK.

A PLACE may be connected to other places, which is represented using a boolean

attribute ❝♦♥♥❡❝t✐♦♥ with a PLACE argument.

❝❧❛ss PLACE extends OBJECT

❛ttr PLACE.❝♦♥♥❡❝t✐♦♥(PLACE) : boolean

Since the PLACE onboard the boat will be connected to the bank where it is cur-

rently located, and since the boat will move between the two banks, the ❝♦♥♥❡❝t✐♦♥

attribute will change dynamically over time. Therefore two mutator methods are

available, in addition to the standard query method.

86 4.7. Missionaries and Cannibals

Accessor q✉❡r②✲❝♦♥♥❡❝t✐♦♥(PLACE): Returns true if this PLACE is connected to the

given PLACE.

❞❡♣ DisableInherited(PLACE, q✉❡r②✲❝♦♥♥❡❝t✐♦♥)

❞❡♣ [t] ¬♦✈❡rr✐❞❡(place.❝❧❛ss, q✉❡r②✲❝♦♥♥❡❝t✐♦♥, PLACE)→
Set([t] place.q✉❡r②✲❝♦♥♥❡❝t✐♦♥(place′) =̂ value(t, place.❝♦♥♥❡❝t✐♦♥(place′)))

Mutator ❛❞❞✲❝♦♥♥❡❝t✐♦♥(PLACE): Connects this PLACE to another PLACE.

❞❡♣ DisableInherited(PLACE, ❛❞❞✲❝♦♥♥❡❝t✐♦♥)

❞❡♣ [t] ¬♦✈❡rr✐❞❡(place.❝❧❛ss, ❛❞❞✲❝♦♥♥❡❝t✐♦♥, OBJECT) ∧
place.❛❞❞✲❝♦♥♥❡❝t✐♦♥(place′)→

Set([t] place.❝♦♥♥❡❝t✐♦♥(place′) =̂ true) ∧
Set([t] place′.❝♦♥♥❡❝t✐♦♥(place) =̂ true)

Mutator r❡♠♦✈❡✲❝♦♥♥❡❝t✐♦♥(PLACE): Removes the connection from this PLACE to

another PLACE.

❞❡♣ DisableInherited(PLACE, r❡♠♦✈❡✲❝♦♥♥❡❝t✐♦♥)

❞❡♣ [t] ¬♦✈❡rr✐❞❡(place.❝❧❛ss, r❡♠♦✈❡✲❝♦♥♥❡❝t✐♦♥, OBJECT) ∧
place.r❡♠♦✈❡✲❝♦♥♥❡❝t✐♦♥(place′)→

Set([t] place.❝♦♥♥❡❝t✐♦♥(place′) =̂ false) ∧
Set([t] place′.❝♦♥♥❡❝t✐♦♥(place) =̂ false)

4.7.4 Bank

A BANK is a PLACE where a boat can be located. The standard MCP has two banks:

The left bank and the right bank.

❝❧❛ss BANK extends PLACE

This class adds no new methods or attributes. Instead, the constraints on a BOAT

will guarantee that it is always located at a BANK.

4.7.5 Group

A GROUP represents a group of people in a certain location; subclasses such as

CANGROUP and MISGROUP will be used for specific types of people. It adds two

new methods and a s✐③❡ attribute specifying the number of people in the group.

❝❧❛ss GROUP extends OBJECT

❛ttr GROUP.s✐③❡ : Integer

Accessor q✉❡r②✲❝❛♥✲♠♦✈❡✲t♦(GROUP): In the basic domain, people can move from

one group to another only if they are groups of the same type and the two groups

are connected. For example, people cannot move from a missionary group to a

cannibal group, or teleport from the left bank to the right bank. For simplicity, we

Elaboration Tolerance through OO 87

make the return value fluent durational with default value false, and explicitly set

it to true only when necessary.

❞❡♣ DisableInherited(GROUP, q✉❡r②✲❝❛♥✲♠♦✈❡✲t♦)

❞❡♣ [t] ¬♦✈❡rr✐❞❡(group.❝❧❛ss, q✉❡r②✲❝❛♥✲♠♦✈❡✲t♦, GROUP) ∧
group.q✉❡r②✲♣♦s().q✉❡r②✲❝♦♥♥❡❝t✐♦♥(group′.q✉❡r②✲♣♦s()) ∧
group.❝❧❛ss =̂ group′.❝❧❛ss)→

Set([t]group.q✉❡r②✲❝❛♥✲♠♦✈❡✲t♦(group′) =̂ true)

Mutator ♠♦❞✐❢②✲❣r♦✉♣(GROUP, n): Calling group.♠♦❞✐❢②✲❣r♦✉♣(group2, n) moves n

people from group to group2, if n is positive – otherwise, it moves |n| people in the

other direction. It is the caller’s responsibility to use q✉❡r②✲❝❛♥✲♠♦✈❡✲t♦() to ensure

that the change is in fact “legal”, and to ensure that a sufficient number of people

is available in the source group. It is also the caller’s responsibility to ensure that

symmetry is retained: If group.♠♦❞✐❢②✲❣r♦✉♣(group2, n) is called, the corresponding

method group2.♠♦❞✐❢②✲❣r♦✉♣(group,−n) must also be called.

The implementation of this method is somewhat complex due to the fact that

people could potentially move concurrently between multiple groups. For exam-

ple, one person could move from group1 to group2 while another moves from

group2 to group3 and two from group3 to group1. The cumulative effects of these

concurrent method calls must be taken into account.

For this reason, ♠♦❞✐❢②✲❣r♦✉♣ does not follow the standard pattern where each

invocation triggers a separate instance of a formula. Instead, a single dependency

constraint sums the arguments of all concurrent invocations:3

❞❡♣ DisableInherited(GROUP,♠♦❞✐❢②✲❣r♦✉♣)

❞❡♣ [t] ¬♦✈❡rr✐❞❡(group.❝❧❛ss,♠♦❞✐❢②✲❣r♦✉♣, GROUP)→
Set([t + 1] group.s✐③❡ =̂ value(t, group.s✐③❡) + ∑

{〈g,x〉 | g∈GROUP∧[t] group.♠♦❞✐❢②✲❣r♦✉♣(g,x)}

x

The macro people_at(τ, GROUP, place) will denote the number of people at place of

the given type GROUP at time τ:

people_at(τ, GROUP, place) =

∑
{g | g∈GROUP∧[τ] g.q✉❡r②✲♣♦s()=̂place}

value(τ, g.q✉❡r②✲s✐③❡())

For example, given that left denotes the left bank, the macro expression people_at
(7, CANGROUP, left) denotes the number of cannibals on the left bank at time 7,

and people_at(7, GROUP, left) denotes the total number of people on the left bank

at time 7.

3Throughout this article we will use summation over a set as a shorthand. Since TAL-C uses finite

domains, each expression can be rewritten as a finite expression using plain addition.

88 4.7. Missionaries and Cannibals

4.7.6 Cannibals

A CANGROUP is a group of cannibals. The class extends GROUP and adds one new

method.

❝❧❛ss CANGROUP extends GROUP

Constraint ❡❛t✲♠✐ss✐♦♥❛r✐❡s(): Specifies that there cannot be more cannibals than

missionaries at any place. This constraint rules out any state where the cannibals

would be able to eat a missionary.

Note that whenever a boat is at a river bank, anyone in the boat is considered

to be at the same place as anyone on the bank. For this reason we define the macro

people-in-boats-near(τ, GROUP, place), denoting the number of people in boats at

the given place place, belonging to a group of the given type GROUP, at time τ:

people-in-boats-near(τ, GROUP, place) =

∑
{〈boat,g〉 | [τ] g.q✉❡r②✲♣♦s()=̂boat.q✉❡r②✲♦♥❜♦❛r❞()∧boat.q✉❡r②✲♣♦s()=̂place}

value(τ, g.q✉❡r②✲s✐③❡())

Then, if totalmis is the total number of missionaries in a certain location (or in boats

at that location), then either this must be zero or it must be greater than the total

number of cannibals.

❞❡♣ DisableInherited(CANGROUP, ❡❛t✲♠✐ss✐♦♥❛r✐❡s)

❛❝❝ [t] ¬♦✈❡rr✐❞❡(cangroup.❝❧❛ss, ❡❛t✲♠✐ss✐♦♥❛r✐❡s, CANGROUP) ∧
cangroup.q✉❡r②✲♣♦s✐t✐♦♥() =̂ place∧

totalmis = people_at(t, MISGROUP, place) +

people-in-boats-near(t, MISGROUP, place)→
totalmis = 0∨
totalmis >= people_at(t, CANGROUP, place) +

people-in-boats-near(t, CANGROUP, place)

4.7.7 Missionaries

A MISGROUP is a group of missionaries. The class extends GROUP and adds no new

methods or attributes.

❝❧❛ss MISGROUP extends GROUP

4.7.8 Boat

A BOAT is used to cross the river. Its ♦♥❜♦❛r❞ attribute points to the PLACE onboard

the boat (which is the ♣♦s of any GROUP onboard the boat).

Elaboration Tolerance through OO 89

❝❧❛ss BOAT extends OBJECT

❛ttr BOAT.♦♥❜♦❛r❞ : PLACE

There are two new methods:

Constraint ❜♦❛t✲❧✐♠✐t(): There must never be more than two passengers onboard a

boat.

❞❡♣ DisableInherited(BOAT, ❜♦❛t✲❧✐♠✐t)

❞❡♣ [t] ¬♦✈❡rr✐❞❡(boat.❝❧❛ss, ❜♦❛t✲❧✐♠✐t, BOAT)→
people_at(t, GROUP, value(t, boat.q✉❡r②✲♦♥❜♦❛r❞())) ≤ 2

Mutator ♠♦✈❡✲t♦(BANK): The ♠♦✈❡✲t♦ method is a low-level mutator that moves

the boat to another BANK. This involves altering the ♣♦s attribute, but also remov-

ing the connection from the boat to its current location as well as adding a new

connection from the boat to its new location.

❞❡♣ DisableInherited(BOAT,♠♦✈❡✲t♦)

❞❡♣ [t] ¬♦✈❡rr✐❞❡(boat.❝❧❛ss,♠♦✈❡✲t♦, BOAT) ∧
boat.♠♦✈❡✲t♦(bank) ∧
boat.q✉❡r②✲♣♦s() = oldbank→

Call(t + 1, boat.q✉❡r②✲♦♥❜♦❛r❞().r❡♠♦✈❡✲❝♦♥♥❡❝t✐♦♥(oldbank)) ∧
Call(t + 1, boat.s❡t✲♣♦s(bank)) ∧
Call(t + 1, boat.q✉❡r②✲♦♥❜♦❛r❞().❛❞❞✲❝♦♥♥❡❝t✐♦♥(bank))

4.7.9 Setting Up the Problem Instance

In order to set up a problem instance, we first have to instantiate some objects.

The boat will be called vera, there will be two banks (left and right), and there are

groups of missionaries and cannibals in all three places.

♦❜❥ left, right : BANK

♦❜❥ onvera : PLACE

♦❜❥ vera : BOAT

♦❜❥ cleft, cvera, cright : CANGROUP

♦❜❥ mleft, mvera, mright : MISGROUP

The following observation statements specify the attributes of these objects:

♦❜s [0] vera.♣♦s =̂ left∧ vera.♦♥❜♦❛r❞ =̂ onvera
♦❜s [0] cleft.♣♦s =̂ left∧ cleft.s✐③❡ =̂ 3

♦❜s [0] cvera.♣♦s =̂ onvera
♦❜s [0] cright.♣♦s =̂ right
♦❜s [0] mleft.♣♦s =̂ left∧mleft.s✐③❡ =̂ 3

♦❜s [0] mvera.♣♦s =̂ onvera
♦❜s [0] mright.♣♦s =̂ right
❛❝❝ [0] group.s✐③❡ =̂ 0↔ (group 6= mleft∧ group 6= cleft)

90 4.8. Elaborations of the MCP Domain

❛❝❝ [0] place1.❝♦♥♥❡❝t✐♦♥(place2)↔
((place1 = left∧ place2 = onvera) ∨
(place1 = onvera∧ place2 = left))

This completes the modeling of the basic Missionaries and Cannibals Domain. In

the next section we will describe 19 elaborations of this domain, and in Section 4.9,

we will show how to solve the problems within the logic.

4.8 Elaborations of the MCP Domain

McCarthy (1998) considers 19 different elaborations of the basic Missionaries and

Cannibals domain, and discusses the requirements these domains place on a for-

malism used for modeling them and on a system for reasoning about and solving

the problems. These elaborations will now be modeled in TAL-C using the object-

oriented model of the MCP domain as a basis. The relations between the elabora-

tions are shown in Figure 4.2.

The elaborations are often rather vaguely formulated, and we do not claim to

have captured every aspect of each problem or that the formalism always allows

the elaborations to be expressed as succinctly as possible. We concentrate on the

modeling of the domains rather than on the computational properties of a reasoner

finding plans for problem instances or proving that no plan exists. However, we do

feel that most of the main points of the domain elaborations have been modeled in

a reasonable manner.

Earlier versions of the domain definitions are available as part of the VITAL tool,

which can be downloaded from the web (Kvarnström, 2005). The current versions

will be added in the next release of VITAL.

4.8.1 Domain and Problem Specifications

We will consider each problem to consist of two parts. The domain specification de-

fines the classes being used together with their attributes and the inheritance hi-

erarchy, while the problem specification defines the object instances being used in a

specific problem instance together with the initial values of their attributes.

Our focus has been on elaboration tolerance for the domain specification. Each

elaboration may add new classes, or add new methods or attributes to existing

classes. Note that no part of the original L(ND) domain specification is removed

or modified in any of the elaborations.

Although it would have been possible to use similar techniques to model the

problem specification in Section 4.7.9 in a defeasible manner, we instead make the

assumption that one is generally interested in solving many different problems in

the same general domain and that the specific problem instances (such as the num-

ber of missionaries and cannibals, the set of river banks, and which places are con-

Elaboration Tolerance through OO 91

(#7)

(#6)Carry three (#4)

Rowboat (#1)

Four of each (#3) Food (#18)

One oar (#5)

Hats (#2)

Row quickly (#17)Hungry

Individuals

Not everyone rows

Original

Big Cannibal (#8)

Two sets of people (#19)

Island (#16)

Damage (#15)

Leak (#14)

Bridge (#13)

Stolen boat (#12)

Conversion (#11)

Jesus (#10)

Big cannibal, small missionary (#9)

Figure 4.2: Elaborations of the Missionaries and Cannibals domain

nected) are generated from scratch each time. The problem instance definitions for

the elaborations below are generally trivial and will usually be omitted.

4.8.2 The Boat Is a Rowboat (#1)

In the first elaboration by McCarthy, we find out that the boat is in fact a rowboat.

This requires a new class ROWBOAT, subclass of BOAT, and vera must be made an

instance of ROWBOAT.

However, no new information is given regarding rowboats. The elaborated sce-

nario is essentially similar to the original problem – with the important exception

that if further information about rowboats is presented in the future, we will be

able to draw additional or different conclusions about vera.

❝❧❛ss ROWBOAT extends BOAT

♦❜❥ vera : ROWBOAT

4.8.3 Missionaries and Cannibals Have Hats (#2)

In the second elaboration, the missionaries and cannibals have hats, all different.

The hats may be exchanged among the missionaries and cannibals.

92 4.8. Elaborations of the MCP Domain

Viewing Missionaries and Cannibals as Individuals

While missionaries and cannibals used to be interchangeable and could be modeled

as groups, they must now be seen as individuals. A class for persons is added,

together with a ❣r♦✉♣ attribute that keeps track of the group to which the person

belongs. This attribute should be initialized to suitable values in the initial state.

❝❧❛ss PERSON extends OBJECT

❛ttr PERSON.❣r♦✉♣ : GROUP

What remains is ensuring that a person always belongs to the right group. The only

method moving people between groups is GROUP.♠♦❞✐❢②✲❣r♦✉♣(), but this method

only specifies how many people should move to another group, not which people

should move. Adapting this method to a model containing individuals may seem

to be a quite complicated task, and it might even seem like this elaboration is be-

yond the capabilities of our logic. Fortunately, this is not the case.

The solution lies in making the ❣r♦✉♣ attribute dynamic – allowing it to vary

freely over time without a persistence assumption – and then constraining it using

a new addition to ♠♦❞✐❢②✲❣r♦✉♣(). The additional constraint essentially states that if

n people should move from group1 to group2, then there should be exactly n indi-

viduals who previously belonged to group1 and now instead belong to group2. Note

that we do not override ♠♦❞✐❢②✲❣r♦✉♣: We merely add to its previous definition.

Constraint ♠♦❞✐❢②✲❣r♦✉♣(GROUP2, n): Suppose that at some timepoint, the method

group1.♠♦❞✐❢②✲❣r♦✉♣(group2, n) is invoked, where group1 and group2 are two differ-

ent groups.

The definition of this method in the superclass (Section 4.7.5) states that if n is

positive, then n people should move from group1 to group2. This means that exactly

n individuals that used to belong to group1 should now belong to group2. This is

achieved using the first method implementation below.

On the other hand, if n is negative, then −n people should move in the other

direction. But in this case, group2.♠♦❞✐❢②✲❣r♦✉♣(group1,−n) must also be called, ac-

cording to the original constraints on ♠♦❞✐❢②✲❣r♦✉♣ in Section 4.7.5. Since −n is

positive, this case is also handled by the first method implementation below.

❛❝❝ [t] ¬♦✈❡rr✐❞❡(group1.❝❧❛ss,♠♦❞✐❢②✲❣r♦✉♣, GROUP) ∧
[t + 1] group1.♠♦❞✐❢②✲❣r♦✉♣(group2, n) ∧
n ≥ 0∧
group1 6= group2 →

∑{p | p∈PERSON∧[t] p.❣r♦✉♣=̂group1∧[t+1] p.❣r♦✉♣=̂group2}
1 = max(0, n)

Yet another case occurs if for some timepoint t and some some distinct pair of

groups group1 and group2, the method is not invoked at all (for any n). In this case,

no person at all should move from group1 to group2. The rule above does not guar-

antee this, since if the method is not invoked at all for a certain pair of groups, the

antecedent of the implication cannot hold. An additional method implementation

is required, which is used when the method is not called:

Elaboration Tolerance through OO 93

❛❝❝ [t] ¬♦✈❡rr✐❞❡(group1.❝❧❛ss,♠♦❞✐❢②✲❣r♦✉♣, GROUP) ∧
[t + 1] ¬∃n[group1.♠♦❞✐❢②✲❣r♦✉♣(group2, n)] ∧
group1 6= group2 →

∑{p | p∈PERSON∧[t] p.❣r♦✉♣=̂group1∧[t+1] p.❣r♦✉♣=̂group2}
1 = 0

Note that the final line could also be written as follows:

¬∃person[[t] person.❣r♦✉♣ =̂ group1 ∧ [t + 1] person.❣r♦✉♣ =̂ group2]

These two method implementations are sufficient to extend the group model into

a model with individuals, together with a new problem instance definition where

six PERSON objects are declared and placed into the groups on the left bank. This

hybrid group/individual model is admittedly somewhat more complex than a pure

individual-based model, but it is nevertheless interesting to see that the model can

be adjusted in this way without having to remove or completely rewrite existing

classes and methods.

It should be noted that this implementation makes it impossible to move n ≥ 0

people from group to group2 and at the same time move n′ ≥ 0 people from group

to group2, where n 6= n′. Although one could possibly interpret this to mean that

n + n′ people move from group to group2, this would only introduce complications

that are generally unnecessary.

Hats

Given the domain presented above, where the missionaries and cannibals are seen

as individuals, adding hats and the possibility to exchange them is trivial. A new

class for hats is added, together with a new ❤❛t attribute for determining which hat

belongs to which person:

❝❧❛ss HAT extends OBJECT

❛ttr PERSON.❤❛t : HAT

Accessor and mutator methods for the ❤❛t attribute are added. Also, a method for

exchanging hats is added to PERSON:

Mutator ❡①❝❤❛♥❣❡✲❤❛ts(PERSON): Exchange hats with the given person.

❞❡♣ DisableInherited(PERSON, ❡①❝❤❛♥❣❡✲❤❛ts)

❞❡♣ [t] ¬♦✈❡rr✐❞❡(person.❝❧❛ss, ❡①❝❤❛♥❣❡✲❤❛ts, PERSON) ∧
person.❡①❝❤❛♥❣❡✲❤❛ts(person′)→

Call(t + 1, person.s❡t✲❤❛t(value(t, person’.❣❡t✲❤❛t()))) ∧
Call(t + 1, person′.s❡t✲❤❛t(value(t, person.❣❡t✲❤❛t())))

Finally, six hats must be created and the ❤❛t attribute must be initialized.

94 4.8. Elaborations of the MCP Domain

4.8.4 Four of Each (#3)

There are four missionaries and four cannibals.

In our terminology, this is a change in the problem specification rather than in

the domain specification. The problem specification is therefore modified accord-

ingly:

♦❜s [0] cleft.♣♦s =̂ left∧ cleft.s✐③❡ =̂ 4

♦❜s [0] mleft.♣♦s =̂ left∧mleft.s✐③❡ =̂ 4

♦❜s . . .

4.8.5 The Boat Can Carry Three (#4)

In the fourth elaboration, the boat can carry three people, while in the original

MCP, the number of people onboard a BOAT was restricted to two. Although it was

obvious that it would be useful to be able to model boats of varying capacities, we

nonetheless deliberately chose to hardcode the capacity in the original ❜♦❛t✲❧✐♠✐t

method in order to test the elaboration tolerance of the model. Thus, we now need

to create a subclass that overrides the old constraint. But this time, it will be done

the right way:

❝❧❛ss SIZEBOAT extends BOAT

❛ttr SIZEBOAT.❝❛♣❛❝✐t② : Integer

Constraint ❜♦❛t✲❧✐♠✐t(): Ensure that the capacity is not exceeded.

❞❡♣ DisableInherited(SIZEBOAT, ❜♦❛t✲❧✐♠✐t)

❛❝❝ [t] ¬♦✈❡rr✐❞❡(sizeboat.❝❧❛ss, ❜♦❛t✲❧✐♠✐t, SIZEBOAT)→
people_at(t, GROUP, value(t, sizeboat.q✉❡r②✲♦♥❜♦❛r❞())) ≤
value(t, sizeboat.q✉❡r②✲❝❛♣❛❝✐t②✭✮)

Using the ❝❛♣❛❝✐t② attribute it is now possible to model boats with arbitrary limits

on the number of passengers.

4.8.6 One Oar on Each Bank (#5)

Suppose that the boat is a rowboat, and that there is initially one oar on each bank.

Suppose also that one person can cross the river with a single oar, but that two

people will need both oars to cross together.

Modeling this as an extension of elaboration 1 requires a new class for oars, and

two oars must be created and placed in their initial positions. These oars can later

be moved between connected positions using s❡t✲♣♦s().

❝❧❛ss OAR extends OBJECT

♦❜❥ oar1, oar2 : OAR

♦❜s [0] oar1.♣♦s =̂ left
♦❜s [0] oar2.♣♦s =̂ right

Elaboration Tolerance through OO 95

It is also necessary to ensure that the boat only moves when a sufficient number

of oars are available. One person can row using one oar, and two persons can row

using two oars – in other words, the number of people in the boat must not exceed

the number of oars.

❞❡♣ DisableInherited(ROWBOAT, ♦❛r✲❧✐♠✐t)

❛❝❝ [t] ¬♦✈❡rr✐❞❡(rowboat.❝❧❛ss, ♦❛r✲❧✐♠✐t, ROWBOAT) ∧
rowboat.q✉❡r②✲♦♥❜♦❛r❞() =̂ place→

people_at(t, GROUP, place) ≤ ∑o | o∈OAR∧[t] o.q✉❡r②✲♣♦s()=̂place 1

4.8.7 Not Everybody Can Row (#6 and #7)

In elaboration 6, only one cannibal and one missionary can row (which leaves the

problem solvable), while in elaboration 7, no missionary can row (which makes

it unsolvable). These elaborations extend elaboration 1 (the rowboat). Two new

classes for rowing cannibals and rowing missionaries are introduced, and the prob-

lem initialization is changed accordingly (for example, six new groups are added):

❝❧❛ss ROWCANGROUP extends CANGROUP

❝❧❛ss ROWMISGROUP extends MISGROUP

♦❜❥ rcleft, rcvera, rcright : ROWCANGROUP

♦❜❥ rmleft, rmvera, rmright : ROWMISGROUP

♦❜s . . .

The new constraint method BOAT.r♦✇✲❧✐♠✐t() ensures that no boat moves unless

there is someone aboard who can row.

❞❡♣ DisableInherited(BOAT, r♦✇✲❧✐♠✐t)

❛❝❝ [t] ¬♦✈❡rr✐❞❡(boat.❝❧❛ss, r♦✇✲❧✐♠✐t, BOAT) ∧
boat.q✉❡r②✲♣♦s() 6=̂ value(t + 1, boat.q✉❡r②✲♣♦s())→

people_at(t, ROWCANGROUP, boat.q✉❡r②✲♦♥❜♦❛r❞()) +

people_at(t, ROWMISGROUP, boat.q✉❡r②✲♦♥❜♦❛r❞()) > 0

4.8.8 Big Cannibal (#8)

In the eighth elaboration, one cannibal is too big to fit into the boat with another

person. A new group class for big cannibals is introduced, and the problem speci-

fication is changed accordingly:

❝❧❛ss BIGCANGROUP extends CANGROUP

♦❜❥ bcleft, bcvera, bcright : BIGCANGROUP

♦❜s . . .

A new constraint method is added to this class, to ensure that if any big cannibals

are on board a boat, then there is exactly one person on board that boat:

❞❡♣ DisableInherited(BIGCANGROUP, s✐③❡✲❧✐♠✐t)

❛❝❝ [t] ¬♦✈❡rr✐❞❡(bigcangroup.❝❧❛ss, s✐③❡✲❧✐♠✐t, BOAT) ∧
people_at(t, BIGCANGROUP, boat.q✉❡r②✲♦♥❜♦❛r❞()) > 0→
people_at(t, GROUP, boat.q✉❡r②✲♦♥❜♦❛r❞()) =̂ 1

96 4.8. Elaborations of the MCP Domain

4.8.9 Big Cannibal, Small Missionary (#9)

There is a big cannibal and a small missionary. The big cannibal can eat the small

missionary if they are alone in the same place.

To model this elaboration, we add the classes SMALLMISGROUP for small mis-

sionaries and BIGCANGROUP for large cannibals together with a constraint method

❡❛t✲s♠❛❧❧ that ensures that a small missionary and a big cannibal are never isolated

together.

❝❧❛ss SMALLMISGROUP extends MISGROUP

❝❧❛ss BIGCANGROUP extends CANGROUP

❞❡♣ DisableInherited(BIGCANGROUP, ❡❛t✲s♠❛❧❧)

❛❝❝ [t] ¬♦✈❡rr✐❞❡(bigcangroup.❝❧❛ss, ❡❛t✲s♠❛❧❧, BIGCANGROUP) ∧
people_at(t, BIGCANGROUP, place) = 1∧
people_at(t, SMALLMISGROUP, place) = 1→
people_at(t, GROUP, place) > 2

4.8.10 Jesus (#10)

One of the missionaries is Jesus Christ, who can walk on water. A new group class

is created, and objects are instantiated and initialized for each position:

❝❧❛ss JESUSGROUP extends MISGROUP

♦❜❥ jleft, jvera, jright : JESUSGROUP

♦❜s . . .

The q✉❡r②✲❝❛♥✲♠♦✈❡✲t♦() method from Section 4.7.5 is then overridden with a varia-

tion that does not require the origin and the destination to be connected.

Accessor q✉❡r②✲❝❛♥✲♠♦✈❡✲t♦(JESUSGROUP′): Jesus objects can move between non-

connected places (that is, cross the river without a boat).

❞❡♣ DisableInherited(JESUSGROUP, q✉❡r②✲❝❛♥✲♠♦✈❡✲t♦)

❞❡♣ [t] ¬♦✈❡rr✐❞❡(jesusgroup.❝❧❛ss,♠♦✈❡✲♣❡rs♦♥s, JESUSGROUP) ∧
jesusgroup.❝❧❛ss =̂ jesusgroup′.❝❧❛ss)→

Set(jesusgroup.q✉❡r②✲❝❛♥✲♠♦✈❡✲t♦(jesusgroup′) =̂ true)

4.8.11 Conversion (#11)

Three missionaries together can convert an isolated cannibal. Add a constraint

method ❝♦♥✈❡rt in class MISGROUP:

❞❡♣ DisableInherited(MISGROUP, ❝♦♥✈❡rt)

❞❡♣ [t] ¬♦✈❡rr✐❞❡(misgroup.❝❧❛ss, ❝♦♥✈❡rt, MISGROUP) ∧
people_at(t, MISGROUP, place) ≥ 3∧
people_at(t, CANGROUP, place) = 1→
Call(t + 1, misgroup.♠♦❞✐❢②✲❣r♦✉♣(misgroup, 1)) ∧
Call(t + 1, misgroup.♠♦❞✐❢②✲❣r♦✉♣(cangroup,−1))

Elaboration Tolerance through OO 97

This elaboration takes advantage of the true concurrency in TAL-C (Karlsson &

Gustafsson, 1999). For example, ♠♦❞✐❢②✲❣r♦✉♣ automatically handles the situation

where a cannibal is boarding a boat while another is being converted to a mission-

ary.

4.8.12 The Boat Might Be Stolen (#12)

Whenever a cannibal is alone in a boat, there is a 1/10 probability that he will

steal it. Although TAL-C has no support for probability reasoning, it is possible

to determine the probability that any particular boat will be stolen using an at-

tribute ♣r♦❜✲♥♦t✲st♦❧❡♥ initialized to 1.0. Whenever a cannibal is alone in a boat,

the constraint method ✉♣❞❛t❡✲♣r♦❜ multiplies ♣r♦❜✲♥♦t✲st♦❧❡♥ by 0.9; the value of

boat.♣r♦❜✲♥♦t✲st♦❧❡♥ at the final timepoint of a model is the probability of that partic-

ular plan succeeding.

❛ttr BOAT.♣r♦❜✲♥♦t✲st♦❧❡♥ : Real

♦❜s ∀boat.[0]boat.♣r♦❜✲♥♦t✲st♦❧❡♥ =̂ 1.0

❞❡♣ DisableInherited(BOAT, ✉♣❞❛t❡✲♣r♦❜)

❞❡♣ [t] ¬♦✈❡rr✐❞❡(boat.❝❧❛ss, ✉♣❞❛t❡✲♣r♦❜, BOAT) ∧ boat.q✉❡r②✲♦♥❜♦❛r❞() =̂ place∧
people_at(t, GROUP, place) = 1∧
people_at(t, CANGROUP, place) = 1→
Set([t + 1] boat.♣r♦❜✲♥♦t✲st♦❧❡♥ =̂ 0.9 ∗ value(t, boat.♣r♦❜✲♥♦t✲st♦❧❡♥))

4.8.13 The Bridge (#13)

There is a bridge. The capacity of the bridge is not specified, but as long as at least

two people can cross simultaneously, an arbitrary number of people can cross. Add

a BRIDGE class and ensure that its capacity limit is respected.

❝❧❛ss BRIDGE extends PLACE

❛ttr BRIDGE.❝❛♣❛❝✐t② : Integer

❞❡♣ DisableInherited(BRIDGE, ❜r✐❞❣❡✲❧✐♠✐t)

❛❝❝ [t] ¬♦✈❡rr✐❞❡(bridge.❝❧❛ss, ❜r✐❞❣❡✲❧✐♠✐t, BRIDGE)→ people_at(t, GROUP, bridge) ≤
value(t, bridge.q✉❡r②✲❝❛♣❛❝✐t②✭✮)

Then instantiate a bridge, provide it with a capacity and connect it to the left and

right banks.

4.8.14 The Boat Leaks (#14)

In elaboration 14, the boat leaks and must be bailed. Add a new durational boolean

attribute ❜❛✐❧❡❞ with default value false. The intention is that bailing the boat at a

specific timepoint makes ❜❛✐❧❡❞ true at that timepoint. A constraint method requires

that the boat always be bailed (but does not cause the boat to be bailed – the user,

or the controller, must call the ❜❛✐❧ method).

98 4.8. Elaborations of the MCP Domain

❛ttr BOAT.❜❛✐❧❡❞ : boolean

❞❡♣ DisableInherited(BOAT, ❜❛✐❧)

❞❡♣ [t] ¬♦✈❡rr✐❞❡(boat.❝❧❛ss, ❜❛✐❧, BOAT)→ I([t] boat.s❡t✲❜❛✐❧❡❞(true))

❞❡♣ DisableInherited(BOAT,♠✉st✲❜❛✐❧)

❛❝❝ [t] ¬♦✈❡rr✐❞❡(boat.❝❧❛ss,♠✉st✲❜❛✐❧, BOAT)→ [t] boat.q✉❡r②✲❜❛✐❧❡❞()

4.8.15 The Boat Can Be Damaged (#15)

The boat may suffer damage and have to be taken back to the left side for repairs.

In this elaboration, the boat cannot move between banks instantaneously. We add a

new bank onriver and a new class SLOWBOAT for boats that spend some time on the

river before arriving at the destination. We also add a temporal constant crosstime

representing the amount of time required to cross the river.

❝❧❛ss SLOWBOAT extends BOAT

❛ttr SLOWBOAT.❡♠❡r❣❡♥❝② : BOOLEAN

♦❜❥ onriver : BANK

The ♠♦✈❡✲t♦ method, which is responsible for moving the boat to another BANK,

must also be overridden and split into two parts: (1) move the boat to onriver, and

(2) after crosstime timepoints, if there has been no emergency, move it to the desired

bank. The second part takes advantage of TAL-C’s ability to handle delays (Do-

herty & Gustafsson, 1998; Karlsson et al., 1998).

Mutator ♠♦✈❡✲t♦(BANK): Move the boat to another bank, with a delay.

❞❡♣ DisableInherited(SLOWBOAT,♠♦✈❡✲t♦)

❞❡♣ [t] ¬♦✈❡rr✐❞❡(slowboat.❝❧❛ss,♠♦✈❡✲t♦, SLOWBOAT) ∧
slowboat.♠♦✈❡✲t♦(bank) ∧
slowboat.q✉❡r②✲♣♦s() = oldbank→

Call(t + 1, slowboat.q✉❡r②✲♦♥❜♦❛r❞().r❡♠♦✈❡✲❝♦♥♥❡❝t✐♦♥(oldbank)) ∧
Call(t + 1, slowboat.s❡t✲♣♦s(onriver))

❞❡♣ [t] ¬♦✈❡rr✐❞❡(slowboat.❝❧❛ss,♠♦✈❡✲t♦, SLOWBOAT) ∧
slowboat.♠♦✈❡✲t♦(bank) ∧

[t + 1, t + crosstime] ¬slowboat.q✉❡r②✲❡♠❡r❣❡♥❝②()→
Call(t + crosstime, slowboat.s❡t✲♣♦s(bank)) ∧
Call(t + crosstime, slowboat.q✉❡r②✲♦♥❜♦❛r❞().❛❞❞✲❝♦♥♥❡❝t✐♦♥(bank))

If there is an emergency, the second dependency constraint above will not be trig-

gered, and the boat will not end up at its intended destination. Instead, the boat

should move to the left bank and be repaired.

Constraint ❡♠❡r❣❡♥❝②✲❜❡❤❛✈✐♦r: If there are people on board and repairs are neces-

sary, automatically move to the left bank for repairs.

Elaboration Tolerance through OO 99

❞❡♣ DisableInherited(SLOWBOAT, ❡♠❡r❣❡♥❝②✲❜❡❤❛✈✐♦r)

❞❡♣ [t] ¬♦✈❡rr✐❞❡(slowboat.❝❧❛ss, ❡♠❡r❣❡♥❝②✲❜❡❤❛✈✐♦r, SLOWBOAT) ∧
slowboat.q✉❡r②✲❡♠❡r❣❡♥❝②() ∧

people_at(t, BOAT, slowboat.q✉❡r②✲♦♥❜♦❛r❞()) > 0→
Call(t + 1, slowboat.s❡t✲♣♦s(left)) ∧
Call(t + 1, place.❛❞❞✲❝♦♥♥❡❝t✐♦♥(left)) ∧
Call(t + 1, slowboat.s❡t✲❡♠❡r❣❡♥❝②(⊥))]

4.8.16 The Island (#16)

If an island is added, the problem can be solved with four missionaries and four

cannibals. It is sufficient to change the number of people initially present on the

left bank and add an island object:

♦❜❥ island : BANK

4.8.17 Four Cannibals, Four Missionaries, Row Quickly (#17)

Elaboration 17 is defined as follows by McCarthy:

There are four cannibals and four missionaries, but if the strongest of

the missionaries rows fast enough, the cannibals won’t have gotten so

hungry that they will eat the missionaries. This could be made precise

in various ways, but the information is usable even in vague form.

First, two new group classes are introduced: One for strong missionaries, and one

for cannibals that may or may not be hungry. The necessary instances are created

and initialized.

❝❧❛ss HCANGROUP extends CANGROUP

❝❧❛ss STMISGROUP extends MISGROUP

♦❜❥ hcleft, hcvera, hcright : HCANGROUP

♦❜❥ smleft, smvera, smright : STMISGROUP

♦❜s . . .

A new boolean attribute is introduced to keep track of whether the cannibals in a

certain group are hungry or not. In the initial state, nobody is hungry.

❛ttr HCANGROUP.❤✉♥❣r② : boolean

♦❜s ∀hcangroup.[0] hcangroup.❤✉♥❣r② =̂ false

The old ❡❛t✲♠✐ss✐♦♥❛r✐❡s constraint stated unconditionally that the missionaries must

never be outnumbered by the cannibals in any location. This constraint must be

weakened slightly: If none of the cannibals at a certain location are hungry, it does

not matter whether the missionaries are outnumbered or not.

100 4.8. Elaborations of the MCP Domain

❞❡♣ DisableInherited(HCANGROUP, ❡❛t✲♠✐ss✐♦♥❛r✐❡s)

❛❝❝ [t] ¬♦✈❡rr✐❞❡(hcangroup.❝❧❛ss, ❡❛t✲♠✐ss✐♦♥❛r✐❡s, HCANGROUP) ∧
hcangroup.q✉❡r②✲♣♦s✐t✐♦♥() =̂ place∧
hcangroup.q✉❡r②✲❤✉♥❣r②() ∧

totalmis = people_at(t, MISGROUP, place) +

people-in-boats-near(t, MISGROUP, place)→
totalmis = 0∨
totalmis >= people_at(t, HCANGROUP, place) +

people-in-boats-near(t, HCANGROUP, place)

What remains is determining exactly when the cannibals should become hungry.

The information given by McCarthy could be interpreted in many different ways.

It would be possible to model the strength of each person, let the amount of time

required to cross the river depend on the strength of the rowers, and let every can-

nibal become hungry at, say, time 10. Although this could be modeled in TAL-C, we

choose a simpler interpretation where the cannibals immediately become hungry

when the strong missionary is no longer in the boat.

❞❡♣ DisableInherited(HCANGROUP, ❜❡❝♦♠❡✲❤✉♥❣r②)

❞❡♣ [t] ¬♦✈❡rr✐❞❡(hcangroup.❝❧❛ss, ❜❡❝♦♠❡✲❤✉♥❣r②, HCANGROUP) ∧
t ≥ 1∧
people_at(t, STMISGROUP, boat.q✉❡r②✲♦♥❜♦❛r❞()) < 1→
Call(t + 1, hcangroup.s❡t✲❤✉♥❣r②(true))

4.8.18 Four Cannibals, Four Missionaries, Food (#18)

Like in the previous elaboration, there are four missionaries and four cannibals,

and the cannibals are initially not hungry. The difference is that in this elaboration,

the missionaries have some food that they can give to the cannibals whenever they

become hungrier. As McCarthy notes, this requires comparing a situation and a

successor situation, which is clearly not a problem in TAL-C.

This is a quite complex elaboration. Since the level of hunger cannot be as-

sociated with a group, it requires treating people as individuals, and we will use

elaboration 2 as the starting point. To this we will have to add a way of determining

when to feed the cannibals, and keep track of how hungry they are and how much

food each missionary has.

We begin by creating the subclasses FOODCANGROUP and FOODMISGROUP, in

which some new methods will be added and others will be overridden. We also

need the classes MISSIONARY and CANNIBAL, subclasses of PERSON (which was

inherited from elaboration 2).

❝❧❛ss FOODCANGROUP extends CANGROUP

❝❧❛ss FOODMISGROUP extends MISGROUP

❝❧❛ss MISSIONARY extends PERSON

❝❧❛ss CANNIBAL extends PERSON

Elaboration Tolerance through OO 101

♦❜❥ cleft, cvera, cright : FOODCANGROUP

♦❜❥ mleft, mvera, mright : FOODMISGROUP

♦❜❥ misA, misB, misC, misD : MISSIONARY

♦❜❥ canA, canB, canC, canD : CANNIBAL

Cannibals can have different levels of hunger, modeled as an integer attribute. Mis-

sionaries have a certain amount of food. This must be initialized at time zero, and

arbitrary numbers have been used below.

❛ttr CANNIBAL.❤✉♥❣❡r : Integer

❛ttr MISSIONARY.❢♦♦❞ : Integer

♦❜s [0] canA.❤✉♥❣❡r =̂ 1∧ canB.❤✉♥❣❡r =̂ 0∧
canC.❤✉♥❣❡r =̂ 0∧ canD.❤✉♥❣❡r =̂ 0

♦❜s [0] misA.❢♦♦❞ =̂ 3∧misB.❢♦♦❞ =̂ 1∧
misC.❢♦♦❞ =̂ 7∧misD.❢♦♦❞ =̂ 7

The ❢❡❡❞ method feeds a cannibal a certain amount of food. As in the ♠♦❞✐❢②✲❣r♦✉♣

method, two dependency constraints sum the arguments of all concurrent method

invocations.

❞❡♣ DisableInherited(MISSIONARY, ❢❡❡❞)

❞❡♣ [t] ¬♦✈❡rr✐❞❡(missionary.❝❧❛ss, ❢❡❡❞, MISSIONARY)→
Set([t + 1]missionary.❢♦♦❞ =̂ value(t, missionary.❢♦♦❞)−

∑
{〈c,x〉 | c∈CANNIBAL∧[t] missionary.❢❡❡❞(c,x)}

x

❞❡♣ [t] ¬♦✈❡rr✐❞❡(missionary.❝❧❛ss, ❢❡❡❞, MISSIONARY)→
Set([t + 1]cannibal.❤✉♥❣❡r =̂ value(t, cannibal.❤✉♥❣❡r)+

∑
{〈m,x〉 | m∈MISSIONARY∧[t] m.❢❡❡❞(cannibal,x)}

x

If a cannibal is becoming hungrier, the missionaries may or may not feed him.

❞❡♣ DisableInherited(MISSIONARY, ❞♦✲❢❡❡❞)

❞❡♣ [t] ¬♦✈❡rr✐❞❡(missionary.❝❧❛ss, ❞♦✲❢❡❡❞, MISSIONARY) ∧
missionary.q✉❡r②✲❣r♦✉♣() =̂ foodmisgroup∧
cannibal.q✉❡r②✲❣r♦✉♣() =̂ foodcangroup∧
foodmisgroup.q✉❡r②✲♣♦s() =̂ foodcangroup.q✉❡r②✲♣♦s() ∧

[t + 1] cannibal.q✉❡r②✲❤✉♥❣❡r() > value(t, cannibal.q✉❡r②✲❤✉♥❣❡r())→
∃n.0 ≤ n ≤ 1∧Call(t + 2, missionary.❢❡❡❞(cannibal, n))

The cannibals must become hungrier now and then. For example, they might be-

come hungrier at time 2 and 4:

❞❡♣ t = 2∨ t = 4→ Set([t + 1] cannibal.❤✉♥❣❡r =̂ value(t, cannibal.❤✉♥❣❡r) + 1

Finally, the original ❡❛t✲♠✐ss✐♦♥❛r✐❡s constraint stated unconditionally that the mis-

sionaries must never be outnumbered by the cannibals in any location. Again, this

constraint must be weakened slightly: If none of the cannibals at a certain location

has a hunger level greater than 2, it does not matter whether the missionaries are

outnumbered or not.

102 4.9. Solving the Missionaries and Cannibals Problems

❞❡♣ DisableInherited(FOODCANGROUP, ❡❛t✲♠✐ss✐♦♥❛r✐❡s)

❛❝❝ [t] ¬♦✈❡rr✐❞❡(foodcangroup.❝❧❛ss, ❡❛t✲♠✐ss✐♦♥❛r✐❡s, FOODCANGROUP) ∧
foodcangroup.q✉❡r②✲♣♦s✐t✐♦♥() =̂ place∧
(∃cannibal.cannibal.❣❡t✲❣r♦✉♣() =̂ foodcangroup∧

cannibal.❣❡t✲❤✉♥❣❡r() > 2) ∧
totalmis = people_at(t, FOODMISGROUP, place) +

people-in-boats-near(t, FOODMISGROUP, place)→
totalmis = 0∨
totalmis >= people_at(t, FOODCANGROUP, place) +

people-in-boats-near(t, FOODCANGROUP, place)

4.8.19 Two Sets of People (#19)

In the final elaboration, there are two sets of missionaries and cannibals too far apart

along the river to interact. A new attribute s❛♠❡✲s❡t keeps track of which banks

belong to the same “set”, and must be initialized using observation statements:

❛ttr BANK.s❛♠❡✲s❡t(BANK) : boolean

♦❜s [0] left.s❛♠❡✲s❡t(right) ∧ . . .

The following constraint method ensures that the origin and destination are in the

same set.

❞❡♣ DisableInherited(BOAT,♠♦✈❡✲s❛♠❡✲s❡t)

❞❡♣ [t] ¬♦✈❡rr✐❞❡(boat.❝❧❛ss,♠♦✈❡✲s❛♠❡✲s❡t, BOAT)→
boat.q✉❡r②✲♣♦s().q✉❡r②✲s❛♠❡✲s❡t(value(t + 1, boat.q✉❡r②✲♣♦s()))

4.8.20 Classes in the
Elaborated Missionaries and Cannibals Problems

In the elaborations presented above we created a number of new classes that extend

the class hierarchy shown in Figure 4.1. An overview of the new class hierarchy is

shown in Figure 4.3.

4.9 Solving the Missionaries and Cannibals Problems

Though the main focus of this article is on modeling, we would also like to actually

solve the Missionaries and Cannibals problem instances presented by McCarthy. In

other words, given that the missionaries and cannibals are located on the left river

bank, a suitable set of actions (or method invocations) should be found that moves

everyone to the right bank without any missionaries being eaten.

Although one could use the model only for prediction and then apply standard

planning algorithms to solve each problem, we instead choose to build on the ideas

for automatic control presented in Gustafsson (2001) and model a controller within

the logic. Since the different elaborations have slightly different demands on the

Elaboration Tolerance through OO 103

OBJECT

OAR

HAT

PERSON

PLACE

BOAT

MISSIONARY

CANNIBAL

BANK

BRIDGE

ROWBOAT

SIZEBOAT

SLOWBOAT

ROWCANGROUP

TOOBIGCANGROUP

BIGCANGROUP

HCANGROUP

FOODCANGROUP

ROWMISGROUP

SMALLMISGROUP

JESUSGROUP

STMISGROUP

FOODMISGROUP

GROUP

Figure 4.3: Classes in the Elaborated Missionaries and Cannibals Problems

controller, it will be modeled as another class whose methods can be overridden in

subclasses, providing another test of the elaboration tolerance of the object-oriented

approach.

The main idea behind the controller is that whenever there is a choice between

different actions that could be invoked, this choice is modeled using an incom-

pletely specified constraint method. For example, whenever a boat can move, a

constraint method in the controller will call the boat’s s❡t✲♣♦s method to move it,

but the exact destination will not be specified.

Every logical model of the resulting narrative corresponds to a different set of

actions that could potentially be taken by the missionaries and cannibals, given

that the cannibals never outnumber the missionaries in any location as required by

❡❛t✲♠✐ss✐♦♥❛r✐❡s() (Section 4.7.6). What remains is choosing a model that actually

achieves the goal, rather than just containing missionaries and cannibals moving

around randomly. To achieve this, we assume (like Lifschitz, 2000) that we know

the length t∗ of the plan to be generated. By constraining the state at time t∗ to

be a solution state, where everyone is at the right river bank, we ensure that any

remaining logical model must correspond to a valid plan.4 The value t∗ is made

4Note that this procedure depends on the fact that all incomplete information corresponds to possible

choices of actions rather than incomplete knowledge about the world.

104 4.9. Solving the Missionaries and Cannibals Problems

available in the narrative as a temporal constant, and will be used in some of the

controller methods.

For the original problem, we know that the minimal plan length is 12. The

plan lengths for the 19 elaborations will be shown together with the timing results

in Section 4.9.3, and the goals must of course also be altered for those elaborations

that involve different group types or a larger number of missionaries and cannibals.

♦❜s t∗ = 12

♦❜s [t∗] mright.s✐③❡ =̂ 3∧ cright.s✐③❡ =̂ 3

4.9.1 A Controller for the Original Problem

The controller for the original problem will consist of a class CONTROLLER with a

set of constraint methods defined below. One instance must be created in every

elaboration.

❝❧❛ss CONTROLLER extends OBJECT

♦❜❥ ctrl : CONTROLLER

Allowing People to Move

The first step in defining the controller is allowing people to move randomly be-

tween groups in connected locations. This is done by adding the following method:

Constraint ♠♦✈❡✲♣❡rs♦♥s(): Moves an unspecified number of people (possibly zero)

between compatible groups in connected locations, where the compatibility is test-

ed using the q✉❡r②✲❝❛♥✲♠♦✈❡✲t♦ method. For example, if there is a group of cannibals

group1 on the left bank and a group of cannibals group2 on the boat, and the boat

is at the left bank (the places are connected), then cannibals may move between

group1 and group2. Note that GROUPs never move – people move by changing the

size of two groups. Also note that the number of people moving from group1 to

group2 can naturally be equal to zero.

The exact number of people moved by this method will be constrained indi-

rectly by the goal as described above.

❞❡♣ DisableInherited(CONTROLLER,♠♦✈❡✲♣❡rs♦♥s)

❞❡♣ [t] ¬♦✈❡rr✐❞❡(controller.❝❧❛ss,♠♦✈❡✲♣❡rs♦♥s, CONTROLLER) ∧
group1.q✉❡r②✲❝❛♥✲♠♦✈❡✲t♦(group2)→

∃n [−value(t, group2.q✉❡r②✲s✐③❡()) ≤ n∧ n ≤ value(t, group1.q✉❡r②✲s✐③❡()) ∧
Call(t + 1, group1.♠♦❞✐❢②✲❣r♦✉♣(group2,−n)) ∧
Call(t + 1, group2.♠♦❞✐❢②✲❣r♦✉♣(group1, n))]

Elaboration Tolerance through OO 105

Allowing Boats to Move

The second step consists of forcing the boat to move to another randomly selected

bank whenever anyone is onboard. The following method is added to BOAT:

Constraint ♠♦✈❡✲❜♦❛t(): If anybody is onboard a boat, the boat automatically moves

to another (unspecified) BANK. The destination bank is unspecified, and will be

constrained indirectly by the goal.

❞❡♣ DisableInherited(CONTROLLER,♠♦✈❡✲❜♦❛t)

❞❡♣ [t] ¬♦✈❡rr✐❞❡(controller.❝❧❛ss,♠♦✈❡✲❜♦❛t, CONTROLLER) ∧
people_at(t, GROUP, value(t, boat.q✉❡r②✲♦♥❜♦❛r❞())) > 0→
∃bank[[t] boat.q✉❡r②✲♣♦s() 6=̂ bank ∧

Call(t, boat.♠♦✈❡✲t♦(bank))]

Additional Control: Don’t be Stupid

In addition to the nondeterministic choice of actions provided by the methods

above, it is also possible to introduce some more “intelligence” in the controller

by adding further constraints on the acceptable state sequence.

There is no point in allowing a state to repeat.

Constraint ♥♦✲r❡♣❡t✐t✐♦♥s(): At each timepoint, at least one group should change

sizes.

❞❡♣ DisableInherited(CONTROLLER, ♥♦✲r❡♣❡t✐t✐♦♥s)

❛❝❝ [t] ¬♦✈❡rr✐❞❡(controller.❝❧❛ss, ♥♦✲r❡♣❡t✐t✐♦♥s, CONTROLLER)→
∃group.value(t, group.q✉❡r②✲s✐③❡()) 6= value(t + 1, group.q✉❡r②✲s✐③❡())

There should be at least one person on the boat, except at the first and last timepoint

in the plan. This avoids plans where everyone leaves the boat but nobody else

boards it, leaving it empty for a period of time.

Constraint ❜♦❛t✲♥♦t✲❡♠♣t②(): There should be someone on the boat.

❞❡♣ DisableInherited(CONTROLLER, ❜♦❛t✲♥♦t✲❡♠♣t②)

❛❝❝ [t] ¬♦✈❡rr✐❞❡(controller.❝❧❛ss, ❜♦❛t✲♥♦t✲❡♠♣t②, CONTROLLER)→
∀t.t > 0∧ t < t∗ − 1→ ∑

{g | g∈GROUP∧
[t] g.q✉❡r②✲♣♦s()=̂onvera}

value(t, g.q✉❡r②✲s✐③❡()) > 0

4.9.2 Additions for the Elaborations

Although the controller presented above is sufficient for the original version of the

Missionaries and Cannibals domain, some of the elaborations alter basic properties

of the domain and require further elaborations of the controller.

106 4.9. Solving the Missionaries and Cannibals Problems

One Oar on Each Bank (#5)

In the fifth elaboration, there is one oar on each bank. To solve this problem, a

cannibal must row alone to the other bank, pick up the second oar, and then row

back. This means that there must be an interval of time where no groups change

sizes, so ♥♦✲r❡♣❡t✐t✐♦♥s must be modified in a new controller class OARCONTROLLER:

If there is an oar in a position near the rowboat, then no groups have to change.

An instance of OARCONTROLLER should then be created instead of an instance of

CONTROLLER.

❝❧❛ss OARCONTROLLER extends CONTROLLER

♦❜❥ ctrl : OARCONTROLLER

Constraint ♥♦✲r❡♣❡t✐t✐♦♥s(): At each timepoint, at least one group should change

sizes.

❞❡♣ DisableInherited(OARCONTROLLER, ♥♦✲r❡♣❡t✐t✐♦♥s)

❛❝❝ [t] ¬♦✈❡rr✐❞❡(oarcontroller.❝❧❛ss, ♥♦✲r❡♣❡t✐t✐♦♥s, OARCONTROLLER)→
∃oar.[t + 1]oar.q✉❡r②✲♣♦s().q✉❡r②✲❝♦♥♥❡❝t✐♦♥(rowboat.q✉❡r②✲♦♥❜♦❛r❞()) ∨
∃group.value(t, group.q✉❡r②✲s✐③❡()) 6= value(t + 1, group.q✉❡r②✲s✐③❡())

In addition to this relaxation of ♥♦✲r❡♣❡t✐t✐♦♥s, it is also necessary to extend the con-

troller to take an oar whenever one is available.

Constraint t❛❦❡✲♦❛rs(): If a rowboat is at a river bank where an oar is available, then

the oar should be moved into the boat.

❞❡♣ DisableInherited(OARCONTROLLER, t❛❦❡✲♦❛rs)

❞❡♣ [t] ¬♦✈❡rr✐❞❡(oarcontroller.❝❧❛ss, t❛❦❡✲♦❛rs, OARCONTROLLER) ∧
oar.q✉❡r②✲♣♦s() =̂ rowboat.q✉❡r②✲♣♦s()→

Call(t + 1, oar.s❡t✲♣♦s(rowboat.q✉❡r②✲♦♥❜♦❛r❞()))

The Bridge (#13)

If there is a bridge, the boat does not necessarily have to be used at all timepoints.

The ❜♦❛t✲♥♦t✲❡♠♣t② constraint has to be disabled, which is done by overriding it in a

new controller subclass BRIDGECONTROLLER without providing a new implemen-

tation.

❝❧❛ss BRIDGECONTROLLER extends CONTROLLER

♦❜❥ ctrl : BRIDGECONTROLLER

❞❡♣ DisableInherited(BRIDGECONTROLLER, ❜♦❛t✲♥♦t✲❡♠♣t②)

Elaboration Tolerance through OO 107

The Boat Leaks (#14)

If the boat can leak, the controller must be extended to call the bail action at all

timepoints.

❝❧❛ss BAILCONTROLLER extends CONTROLLER

♦❜❥ ctrl : BAILCONTROLLER

❞❡♣ DisableInherited(BAILCONTROLLER, ❞♦✲❜❛✐❧)

❞❡♣ [t] ¬♦✈❡rr✐❞❡(bailcontroller.❝❧❛ss, ❞♦✲❜❛✐❧, BAILCONTROLLER)→
Call(t, bailboat.❜❛✐❧())

The Boat Can Be Damaged (#15)

In elaboration 15, the boat can be damaged, and the action of moving to another

river bank had to be split into two events: Moving to the river, and then after

crosstime timepoints, arriving at the destination. The original controller states that

groups must always change sizes from t to t + 1, which clearly cannot be the case

in this scenario. Instead, the groups must change sizes from time t to time t +
crosstime, unless there was an emergency.

❝❧❛ss SLOWCONTROLLER extends CONTROLLER

♦❜❥ ctrl : SLOWCONTROLLER

❞❡♣ DisableInherited(SLOWCONTROLLER, ♥♦✲r❡♣❡t✐t✐♦♥s)

❛❝❝ [t] ¬♦✈❡rr✐❞❡(slowcontroller.❝❧❛ss, ♥♦✲r❡♣❡t✐t✐♦♥s, SLOWCONTROLLER) ∧
[t + 1, t + crosstime− 1]¬slowboat.q✉❡r②✲❡♠❡r❣❡♥❝②()→
∃group.value(t, group.q✉❡r②✲s✐③❡()) 6= value(t + 1, group.q✉❡r②✲s✐③❡())

An additional precondition is required for ♠♦✈❡✲❜♦❛t: The controller should not call

♠♦✈❡✲t♦ for a boat when that boat is on the river.

❞❡♣ DisableInherited(SLOWBOAT,♠♦✈❡✲❜♦❛t)

❞❡♣ [t] ¬♦✈❡rr✐❞❡(slowcontroller.❝❧❛ss,♠♦✈❡✲❜♦❛t, SLOWCONTROLLER) ∧
boat.q✉❡r②✲♣♦s() 6= onriver∧

people_at(t, GROUP, value(t, boat.q✉❡r②✲♦♥❜♦❛r❞())) > 0→
∃bank[[t] boat.q✉❡r②✲♣♦s() 6=̂ bank ∧

Call(t, boat.♠♦✈❡✲t♦(bank))]

4.9.3 Results

The timings in Table 4.1 on the next page were generated by the research tool VI-

TAL (Kvarnström, 2005) using Java 1.3.1 and the HotSpot Server virtual machine

on an 1800 MHz Pentium 4 machine. The total number of time steps in each plan is

shown (including one step for initialization) together with the total amount of time

required for generating the plan. Times are specified in seconds. We also provide

some comparisons with the 10 elaborations implemented by Lifschitz (2000) in the

Causal Calculator (McCain & the Texas Action Group, 1997), which was run on an

unspecified machine.

108 4.9. Solving the Missionaries and Cannibals Problems

Elaboration Steps Time (VITAL) Time (CC)

Original 12 1.5 17.6

1 12 1.5 −
2 12 6.5 −
3 Unsolvable

4 12 2.8 18

5 14 2.5 44

6 14 5.2 273

7 Unsolvable

8 16 11.3 9746

9 12 7.8 22

10 6 1.7 −
11 12 2.3 55

12 12 1.8 −
13 5 1.6 2

14 12 1.7 9

15 36 5.2 −
16 16 165.5 1894

17 10 3.8 7361

18 14 24.0 −
19 12 16.6 −

Table 4.1: Test Results for the Missionaries and Cannibals Problems

The timings are not directly comparable and should not be taken as claims re-

garding the efficiency of the two approaches. This is especially true because (at

least in VITAL) timings depend very much on the exact formulation of an elabora-

tion, and could change drastically simply by altering the order in which objects are

declared.

Two of the problems were unsolvable. We have not proved this within the logic:

The logic-based controller used to solve the remaining 17 problems is not a full

planner, and like the Causal Calculator, it requires as input the length of the plan

to be generated. Proving that no plan (of arbitrary length) would solve these two

problem instances would require additional reasoning outside the logic, for exam-

ple by using depth first search with cycle checking. This procedure is complete due

to the finite state space generated by any given problem instance and due to the fact

that the applicability of an action only depends on the state in which it is invoked.

Elaboration Tolerance through OO 109

4.10 Traffic World

The object-oriented framework presented in this article has also been used for mod-

eling the Traffic World scenario proposed in the Logic Modeling Workshop (Sande-

wall, 1999), previously modeled by Henschel and Thielscher (1999) using the Fluent

Calculus (Thielscher, 1998). This domain consists of cars moving in a road net-

work represented as a graph structure, together with a TAL-C controller class that

“drives” a car.

4.11 Related Work

Much work has been done in combining ideas found in object-oriented languages

with the area of knowledge representation. One such area is description logics

(Borgida, Brachman, McGuinness, & Resnick, 1989; Brachman, Fikes, & Levesque,

1983), languages tailored for expressing knowledge about concepts (similar to class-

es) and concept hierarchies. They are usually given a Tarski style declarative se-

mantics, which allows them to be seen as sub-languages of predicate logic. Starting

with primitive concepts and roles, one can use the language constructs (such as

intersection, union and role quantification) to define new concepts and roles. The

main reasoning tasks are classification and subsumption checking.

Description logic hierarchies are very dynamic, and it is possible to add new

concepts or objects at runtime that are automatically sorted into the correct place in

the concept hierarchy. Some work has been done in combining description logics

and reasoning about action and change (Artale & Franconi, 1998).

The modeling methodology presented in this article uses a different kind of

class hierarchy that is fixed at translation time. Classes are explicitly positioned in

the hierarchy, and classes and objects cannot be constructed once the narrative has

been translated. Also, description logics do not use methods or explicit time, both

of which are essential in the work presented here.

The approach presented in this chapter bears more resemblance to object-orient-

ed programming languages such as Prolog++ (Moss, 1994), C++ or Java. In most

such languages, however, a method is a sequence of code that is procedurally exe-

cuted when the method is invoked. In our approach, a method is a set of rules that

must be satisfied whenever the method is invoked. Since delays can be modeled in

TAL-C, methods can be invoked over intervals of time and complex processes can

be modeled using methods. It is also possible to invoke multiple methods concur-

rently.

An interesting approach to combining logic and object-orientation is Amir’s

object-oriented first-order logic (Amir, 1999, 2000), which allows a theory to be con-

structed as a graph of smaller theories. Each subtheory communicates with the

other via interface vocabularies. The algorithms for the object-oriented first-order

110 4.12. Conclusions

logic suggest that the added structure of object-orientation can be used to signifi-

cantly increase the speed of theorem proving.

The work by Morgenstern (1998) illustrates how inheritance hierarchies can be

used to work with industrial sized applications. Well-formed formulas are attached

to nodes in an inheritance hierarchy and the system is applied to business rules

in the medical insurance domain. A special mechanism is used to construct the

maximally consistent subset of formulas for each node.

4.12 Conclusions

This article has presented a way to do object-oriented modeling in an existing logic

of action and change, allowing large domains to be modeled in a more systematic

way and providing increased reusability and elaboration tolerance.

The main difference between our work and other approaches to combining

knowledge representation and object-orientation is due to the explicit timeline in

TAL. Methods can be called over time periods or instantaneously, concurrently or

with overlapping time intervals. Methods can relate to one state only or describe

processes that take many timepoints to complete.

Although a few new macros have been introduced in this article, those macros

are merely syntactic sugar serving to simplify the construction of domain descrip-

tions. Thus, the most important contribution is not the syntax but the structure that

is enforced on standard TAL-C narratives to improve modularity and reusability. It

is also reasonable to believe that the added structure could be used to make theo-

rem proving in L(FL) more efficient, although the current version of VITAL does

not take advantage of this.

4.13 Acknowledgements

This research is supported in part by the Swedish Research Council for Engineer-

ing Sciences (TFR), the WITAS Project under the Wallenberg Foundation and the

ECSEL/ENSYM graduate studies program.

Part III

TALplanner

111

Chapter 5
Planning

Up to this point, the work presented in this thesis has generally assumed the ex-

istence of a predefined set of actions to be performed. The new methodology

for modeling qualifications in TAL requires all action occurrences to be specified

in advance. Our work on using object-oriented modeling techniques to increase

elaboration tolerance does use a simple “controller”, based on fluent dependency

constraints with incompletely specified trigger conditions, which can be said to

autonomously determine which actions to perform – but this technique was only

intended as a proof of concept, and cannot be expected to be as efficient or as ver-

satile as a true planner built for the express purpose of determining which actions

should be performed in order to achieve a predetermined goal.

This chapter begins by briefly describing the planning problem1, the concepts

involved in formally modeling a planning domain, and the different levels of ex-

pressivity that may be required to model planning domains of varying complexity.

We continue by describing forward-chaining planning, one of several common ap-

proaches to solving the problem of actually finding a plan. The last section of this

chapter describes TLPlan (Bacchus & Kabanza, 2000), a forward-chaining planner

based on the idea of allowing the user to specify additional control information in

the shape of temporal formulas that help guide the planner towards the goal.

The introduction to planning in this chapter is intended to provide the necessary

background for the presentation of TALplanner, a new planner where planning

domains are modeled in TAL and where the search strategy is based on the ideas

pioneered by TLPlan. TALplanner itself is the topic of the remaining chapters. As

indicated below, these chapters are loosely based on a number of published papers

and articles on TALplanner, though much of the material is extensively rewritten

and some is completely new.

1See also Ghallab, Nau, and Traverso (2004) for a complete presentation of the state of the art in

planning.

113

114

Chapter 6 shows how concepts related to planning domains and planning prob-

lem instances can be modeled in TAL. Two different methods for representing con-

trol formulas in TAL are presented. The first method involves using purely TAL-

based control formulas together with a new formula evaluation framework devel-

oped to allow such formulas to be tested efficiently and incrementally in the state

sequence generated by a plan candidate. The second method is based on introduc-

ing tense macros into TAL, thereby enabling the use of a modified version of the

progression algorithm used in TLPlan and facilitating a benchmark comparison

between TALplanner and TLPlan. Some preliminary benchmark results from an

early TALplanner article are provided (Doherty & Kvarnström, 1999; Kvarnström

& Doherty, 2000b; Doherty & Kvarnström, 2001; Kvarnström, 2002).

The first version of TALplanner was restricted to generating sequential plans.

Relaxing this restriction to generate concurrent plans involves changes to the search

space traversed by the forward-chaining search algorithm. Perhaps more impor-

tantly, concurrency invalidates the assumption that each action in a plan is the only

possible cause for change within its own execution interval. The interactions be-

tween concurrent actions must therefore be governed by stronger rules than those

between sequential actions, in order to ensure that conflicting actions are not al-

lowed to execute concurrently while still permitting an extensive use of concur-

rency where this does not have detrimental effects. Several different methods for

controlling concurrency are discussed in Chapter 7, together with an extension to

the modeling language to allow a succinct representation of resource constraints

(Kvarnström et al., 2000; Kvarnström & Doherty, 2000b).

Chapter 8 demonstrates how significant performance improvements can be a-

chieved by applying existing and new domain analysis techniques to control for-

mulas. In some cases, these techniques also allow the planner to automatically

transform part of a control formula into a precondition, permitting such conditions

to be tested at an earlier stage in the planning process and thereby further decreas-

ing the number of search nodes to be expanded (Kvarnström, 2002).

Chapter 9 contains the results from two international planning competitions, in-

cluding benchmark comparisons with other state-of-the-art planners and descrip-

tions of the control formulas that were developed for several of the competition do-

mains in the most recent competition (Kvarnström & Doherty, 2000b; Kvarnström

& Magnusson, 2003).

Chapter 10 concludes the TALplanner part of the thesis with a discussion of

some of the research that has been done during the project and the lessons that

have been learned.

Chapter 5. Planning 115

5.1 Introduction to Planning

In its most general form, the planning problem can be defined as the task of deter-

mining what you need to do in order to achieve a given goal. Some possible goals

could be “the drawer should be open”, “block A should be on top of block B”,

“this 15-puzzle should be solved”, “I should have an ice-cream”, “all orders should

be packed and mailed by tomorrow”, “everyone who is currently in the burning

building should be at least one block away”, “there should be a human settlement

on Mars”, or “there should be world peace by noon tomorrow”. The resulting plan

should describe in some formal manner what to do in order to achieve the goal,

most likely in terms of a set of actions that should be performed and some con-

straints on the order in which they should be performed.

Trying to find an algorithm that solves all instances of this rather general prob-

lem – an algorithm that always succeeds in finding a valid plan given any possible

goal – might be slightly too ambitious, though. As a first step it is therefore neces-

sary to define and formalize a more constrained version of the planning problem.

5.1.1 Expressivity versus Domain Dependence

If the planning problem as expressed above is too general, the question is to what

extent it should be constrained. This discussion will be facilitated by the introduc-

tion of two concepts: Planning domains and problem instances. These concepts

will be discussed in more detail later in this chapter.

A planning domain is characterized by a set of general concepts relevant for solv-

ing an entire class of related problem instances. For example, the previously men-

tioned goal “block A should be on top of block B” may be taken from the standard

blocks world domain, which is characterized by the existence of a table and a set

of blocks, by the fact that any block may be either on the table or on top of another

block (allowing towers of blocks to be formed), and by the ability to pick up blocks

and move them to the table or place them on top of other blocks. Note that no men-

tion is made of which blocks are present or which blocks are on top of each other,

only that there are blocks and that blocks can be on top of each other.

A problem instance is a concrete problem within a particular planning domain.

The specification of a problem instance includes the entities or objects involved, a

set of initial conditions, and a goal that should be achieved. In the blocks world

domain, for example, a problem instance specification may state that there are four

blocks named A, B, C and D, that all blocks are initially on the table, and that the

goal is to place the blocks in two towers where A is on top of B and where C is on

top of D.

Clearly, an algorithm which is only capable of generating plans for one particu-

lar problem instance is not interesting and should not be considered to be a planner.

An algorithm limited to a single fixed planning domain might still be both inter-

esting and useful, though, as long as it is applicable to all problem instances for

116 5.1. Introduction to Planning

this domain. For example, there are planners specific to the blocks world domain,

which are able to generate action sequences that transform a certain configuration

of blocks into another more desirable configuration but are incapable of handling

even minor changes to the domain without modifying the planner itself (for ex-

ample Kibler & Morris, 1981; Gupta & Nau, 1992; Slaney & Thiébaux, 2001). Such

domain-dependent or domain-specific planners can use algorithms and data structures

strictly adapted to a single domain, which can enable numerous optimizations for

speed as well as memory usage. On the other hand, much of the work that goes

into optimizing a domain-dependent planner can be rendered obsolete if any of the

basic assumptions made about the domain were to change.

Most research in the field of planning is not concerned with domain-dependent

planners, but with general planners where a formal description of the planning

domain is part of the input to the planning algorithm. Numerous formalisms for

describing planning domains as well as problem instances have been developed

over the years, some of the more well-known ones being STRIPS (Fikes & Nilsson,

1971), ADL (Pednault, 1989), the Action Description Language, and a number of

variations of PDDL, the Planning Domain Definition Language (Ghallab, Howe,

Knoblock, McDermott, Ram, Veloso, Weld, & Wilkins, 1998; Fox & Long, 2003;

Edelkamp & Hoffmann, 2004).

Planners with the ability to take a domain description as input are generally

called domain-independent planners. It is important to realize that this distinction be-

tween domain dependence and independence is not as clear-cut as it may seem at

first glance. There is considerable variation in the expressivity permitted in the do-

main definition languages of different planners. More expressive languages allow

a wider range of domains to be modeled, and could therefore be said to entail a

higher degree of domain-independence.

The differences in expressivity between various domain definition languages

become even more apparent if we take the view that expressivity is measured in

terms of what can be modeled conveniently in a given language, rather than in terms

of what planning problems can be solved through potentially complex transforma-

tions of planning problems into this language (though the concept of “convenient

modeling” would admittedly be difficult to formalize). For example, an operator

with conditional effects can be emulated using multiple operators where each pre-

condition corresponds to the original precondition together with a combination of

effect conditions, but this requires a transformation that generates an exponential

number of operator types. Similarly, some planners allow the use of a finite sub-

set of the integers and provide direct support for common numeric operations and

relations. Even in planners that do not directly support integers, numbers can be

modeled using explicitly enumerated constants (n0, n1, n2, . . .) together with ex-

plicitly enumerated definitions of any relations and functions that may be required

for those constants (❧❡sst❤❛♥✭n0✱n1✮, ♣❧✉s✭n2✱n2✱n4✮, and so on), but in practice this

is only feasible for smaller subsets of the integers.

Chapter 5. Planning 117

5.1.2 Classical Planning

Even though few planners share exactly the same level of expressivity, there are

some constraints that could be said to be common for the majority of planners in

the literature. Most of these constraints were influenced by the early STRIPS plan-

ner (the Stanford Research Institute Problem Solver, Fikes & Nilsson, 1971), and

these constraints define what is often called classical planning. Though not even

this concept is completely well-defined, there are some common properties that are

almost universally agreed upon.

Classical planning uses a finite state-based representation of the world, where

the agent has complete and correct knowledge about the initial state of the world

and the preconditions and effects of the actions it can perform. Actions are viewed

as single-step operations, disregarding any temporal structure within the execution

of an action. Goals in classical planners can only constrain the final state that results

from executing a plan. Constraints on what happens before that state – for example,

that before one ends up at the goal location one should also visit two other locations

in a certain order – generally cannot be modeled in a natural manner.

Another assumption in classical planning, which is so basic that it is sometimes

not even stated explicitly, is that nothing changes in the world except when the

agent executes an action. This means that there is no need for the more complex

plan structures used in conditional plans, where sensor actions can be used in con-

junction with conditional statements and loops in order to make a plan adaptable to

currently unknown aspects of the eventual execution environment: The agent has

complete information about the initial state and can determine exactly what would

happen if a certain potential plan would be executed, without having to consider

the actions of other agents or events that occur naturally in the world. Given this

assumption, planning can be separated from execution, and there is no need to con-

sider execution monitoring (verifying that the intended effects actually materialize

and that no required conditions are violated), replanning (creating a new plan in

case an unexpected event causes the original plan to fail), or plan repair (modify-

ing the original plan appropriately in case of unexpected events, without starting

over from the beginning).

In order to give an intuitive picture of what can be done using classical plan-

ning, we will now present a small set of classical benchmark domains. We will then

introduce some of the concepts and terminology involved in the field of planning

using these domains as a source of concrete examples. At the same time, we will

mention some of the basic limitations of classical planners as well as a number of

possible extensions and relaxations that can be made in order to support the mod-

eling of more complex domains and more elaborate plan structures. Many of these

extensions have already been implemented in various planning algorithms in the

literature. Note, however, that the intention is not to give a definition of the bound-

ary between classical and non-classical planning – again, there is no consensus on

the precise limits of classical planning, and no such definition is required for the

118 5.1. Introduction to Planning

Figure 5.1: A Gripper Problem Instance

work presented here. Neither is the spectrum of possibilities discussed below in-

tended to be exhaustive. For example, concepts only used by hierarchical planners

will not be covered.

5.1.3 Planning Domain Examples

The following three planning domains are commonly used as benchmark domains

in the literature. Since we have not yet introduced a formalism for describing plan-

ning domains, the descriptions below will be somewhat informal, but should still

serve to give an intuitive understanding of the domains. Additional planning do-

mains will be presented in Chapter 9.

Example 5.1.1 (Gripper Domain)
The gripper domain is one of the simplest planning domains in the literature. As

such, it has been used widely in benchmark testing and exists in several variations

with numerous minor differences. In what is probably the most common variation

there is a single robot with one or more grippers, which can be used to pick up or

drop objects (typically balls). There are two rooms, and the robot can move freely

between the rooms. In the initial state, all objects are located in one of the rooms,

usually called room A. The goal requires all objects to be in the other room, usually

called room B.

Figure 5.1 shows a problem instance from a variation of the gripper domain

where the robot, robby, has two grippers, left and right. The problem instance is

quite tiny, containing only two rooms and two balls, both of which are initially in

roomA and both of which should eventually end up in roomB. �

Example 5.1.2 (Blocks World)
The blocks world, originally due to Winograd (1972), consists of a finite number of

blocks together with a table and a single crane which can be used to move the

blocks. Each block is either on the table or on top of another block. There is enough

space for all blocks to be on the table simultaneously, though there cannot be more

than one block on top of a given block at any given time. Blocks can be stacked in

towers of arbitrary height.

Chapter 5. Planning 119

A

B

C

D

E

C

E

B

D

A

Initial state Goal state

Figure 5.2: A Blocks World Problem Instance

The initial state of a blocks world problem instance provides a unique configu-

ration of blocks. The goal may be to move the blocks into another unique configu-

ration, or it may specify the location of some blocks (A must be on top of B) while

ignoring the location of other blocks (B can be on the table or on another block).

An example of completely specified initial and goal configurations for a small

five-block problem instance can be seen in Figure 5.2. �

Example 5.1.3 (Logistics Domain)
The standard logistics domain contains a number of cities, each of which contains

one or more locations. At some of these locations, there may be packages. The

packages can be transported between locations in the same city using trucks. Some

locations are airports, and there are a number of airplanes that can be used to trans-

port packages between different airports.

The goal is usually to deliver each package from its initial location to its des-

tination. In the worst case, each object may have to be transported by truck from

its original location to an airport, by airplane to another airport, and then by truck

from that airport to its final location, thus requiring up to nine actions per package

when loading and unloading actions are included.

Figure 5.3 contains a small example problem instance with four cities (city-1
through city-4), eight locations (two in every city), six packages to be transported

(package-1 through package-6), four trucks (truck-1 through truck-4), and one air-

plane (plane-1). Though not indicated in the figure, four of the locations are air-

ports, one in each city: city1-2, city2-2, city3-2, and city4-2. The arrows in the figure

indicate intended destinations for each package; note that package-1 is intended to

remain in its initial location city2-1. In this example, there are no destinations spec-

ified for trucks or airplanes. �

It is easy to dismiss these domains as being too simplified compared to real-world

problems. The logistics domain, for example, does not model space restrictions

in trucks and airplanes, timetables for airplanes, fuel costs, driver availability, or

even the amount of time required to move between two locations. Nevertheless,

the domains are both important and useful, even for planners expressive enough

to handle more elaborate versions of the same problems, because they provide con-

crete examples of certain structures that also occur in more complex domains.

120 5.1. Introduction to Planning

Figure 5.3: A Logistics Problem Instance

The gripper domain provides the quintessential example of a planning domain

with a high degree of redundancy. For example, as long as the goal is for all balls

to end up in the second room, it does not matter which ball the robot picks up

first, and it does not matter which gripper is used. This means that the operator

♣✐❝❦(ball, gripper), with one instance for each combination of ball and gripper in a

problem instance, could in essence be condensed into the operator ♣✐❝❦✲r❛♥❞♦♠✲❜❛❧❧✲

✐♥✲r❛♥❞♦♠✲❣r✐♣♣❡r, which only has one instance regardless of the size of the problem

instance, as long as the planner is clever enough to detect that balls and grippers

are interchangeable.

In the blocks world, even when the planner has managed to satisfy almost all

ground facts required by the goal, it may still be very far from actually reaching a

goal state – because even if a tower of blocks is “almost” correct, a single discrep-

ancy at the bottom will force you to tear down the entire tower in order to make it

possible to repair the problem. This is especially difficult for some planners because

in some sense it requires moving away from the intended goal, moving blocks that

were already on top of their intended destination blocks.

Finally, the logistics domain provides an example of a highly concurrent do-

main, where failing to make use of this concurrency (such as driving more than one

truck at the same time) will lead to a very inefficient plan.

5.1.4 Describing the World: States, State Variables, and Objects

In classical planning, it is assumed that the dynamic world for which we are creat-

ing plans can be described in terms of a finite set of state variables which can gener-

ally take a number of arguments. In the blocks world, for example, there is usually

a boolean state variable called ♦♥(block1, block2) which takes on the value true if

Chapter 5. Planning 121

block1 is on top of block2 and the value false otherwise. In the logistics domain,

✐♥(obj, truck) might be used to represent the fact that a certain package is inside a

certain truck.

Some planners are limited to such boolean state variables, which could be viewed

as predicates in first-order logic. This means that the color of a block has to be mod-

eled as a predicate ❤❛s✲❝♦❧♦r(block, col), and one has to take care that a block is not

assigned two colors at once. Other planners also allow you to directly model non-

boolean properties, where ❝♦❧♦r✲♦❢(block) might be a function whose value is the

color of the given block.

If state variables can take arguments, there is usually also a well-defined finite

set of objects that can be used to instantiate the arguments. In a logistics planning

problem, for example, there might be exactly four trucks (truck-1 through truck-4)

and six packages (package-1 through package-6). For some planners, there is only

one object domain, and state variables are untyped. This would mean that both

✐♥✭package-1✱ truck-1✮ and ✐♥✭truck-2✱ truck-1✮ would be possible, though being

able to model the latter fact might not be very useful. Most modern planners do

allow the use of types, permitting the user to specify that ✐♥ takes a package and a

truck as arguments.

A state is essentially an instantaneous snapshot of the world, and provides a

value for each of the state variables. Sometimes this world is an artificial one, as

when we are creating plans to be executed in a simulation inside a computer, and

then the state variables may provide a complete description of all aspects of the

world. Other times, the dynamic world for which a plan should be generated may

in fact be the real world, in which case a state can obviously only be an abstract

model of the true state of the world. The expressive power of the planning formal-

ism being used provides an upper bound for the level of detail that can be achieved

in the model, though it is common to use a less precise model than the formal-

ism allows, either because additional detail is not necessary for the task at hand

or because additional detail would be prohibitively expensive in terms of time and

space requirements for the planner. For example, roads and road networks are

rarely modeled in the logistics domain, even though this would not pose a prob-

lem in common domain definition languages such as STRIPS, ADL and PDDL. In-

stead, trucks are usually modeled as being able to move between arbitrary locations

within a city in a single time step, most likely because logistics problems have his-

torically been difficult to solve with fully automated domain-independent planners

even when this artificial abstraction is applied.

Some planners make explicit use of states, for example using methods such as

forward-chaining to find solution plans by searching the state space corresponding

to a planning problem instance (Section 5.2). This is not a requirement, though:

There is a wide variety of other planning paradigms, some of which never work

with complete states at all, although an overview of these paradigms is outside the

scope of this thesis. Nevertheless, the concept of “state” is often useful in under-

standing the work performed by a planner.

122 5.1. Introduction to Planning

Defined Predicates

In addition to ordinary state variables, which are given a value in the initial state

and are updated using action effects, some planners also support the use of vari-

ables that are defined in terms of other variables. Such state variables are sometimes

called defined predicates, as opposed to the ordinary basic or primary predicates.

As an example, consider a version of the gripper domain where there are mul-

tiple robots, each of which has multiple grippers. This may be modeled in terms of

basic predicates such as ❤❛s(robot, gripper) and ✐s✲❝❛rr✐❡❞✲✐♥(object, gripper). The sec-

ondary predicate ✐s✲❝❛rr✐❡❞✲❜②(object, robot) can then be defined to hold exactly when

there exists a gripper which belongs to the robot and which is holding the object,

without the need for action effects that explicitly update the ✐s✲❝❛rr✐❡❞✲❜② predicate

each time the ❤❛s or ✐s✲❝❛rr✐❡❞✲✐♥ predicates are updated. Creating such secondary

concepts may make it easier to create a domain definition as well as easier to un-

derstand it once it has been written, especially for more complex domains where

an entire hierarchy of secondary concepts may be used.

5.1.5 The Beginning of Time: The Initial State

Many planners require complete information about the initial state of the world –

the state of the world just before the plan that is being generated would be executed.

This information is often provided to the planner in the shape of a set of positive

ground literals that hold in the world. The closed world assumption is then applied:

All literals that are not explicitly mentioned to be true are assumed to be false. This

is mainly a representational convenience, useful because most predicates usually

have far more negative than positive instances. In the blocks world, for example,

it is sufficient to state ♦♥✭A✱B✮ – block A is on top of block B – without having to

explicitly list all the blocks that A is not on top of.

Some planners instead use a more general first-order representation allowing

(and requiring) the specification of both positive and negative instances of literals.

There are also planners that allow incomplete information about the initial state.

This is clearly more useful for real-world domains, where not all information may

be known to the planner in advance, but leads to additional problems both in terms

of representation (how to represent the knowledge that does exist) and in terms of

added complexity during the search for a plan, as discussed briefly in Section 5.1.8.

5.1.6 What to Achieve: Goals

In classical planning, a goal is defined in terms of a set of acceptable goal states

(or as a set of logical formulas characterizing the goal states). Any combination of

actions that leads from the initial state to a goal state is a valid plan, regardless of

what may happen along the way to that state. For the blocks world, the goal is a

specific configuration of blocks, or possibly a set of acceptable configurations. In

Chapter 5. Planning 123

the logistics domain, the goal usually specifies destinations for all packages, while

the final locations of airplanes and trucks are often left unconstrained.

One can also imagine other goal types than purely state-based ones. For exam-

ple, some planners permit the specification of temporally extended goals that relate

to the entire sequence of states generated by a plan. Such goals may include main-

tenance goals as well as safety goals, such as the goal that a robot should never

visit a certain set of dangerous locations at any time during the execution of a plan.

Other types of non-classical goals might include goals with temporal deadlines or

goals which must be achieved at some point in the execution of a plan but which

need not necessarily still hold in the final state.

5.1.7 Doing Something: Operators and Actions

In order to be able to create a plan with some level of confidence that the plan ac-

tually achieves a certain goal, an agent must have a reasonably good idea about

what it can do – what actions it can perform, how those actions affect the exter-

nal world, and how the effects vary given different initial conditions. In the most

general case, the agent might be expected to infer this information by performing

random actions and observing their effects, or it may at least be expected to handle

occasional exceptions from general action descriptions when an action fails to have

its intended effects. In classical planning, however, this is considered far too diffi-

cult. Instead, the agent is assumed to have a complete and correct description of all

available actions.

There is no general agreement on the difference between operators and actions.

The following terminology will be used here: An operator is a template that can take

arguments and can be instantiated into a set of concrete actions by replacing argu-

ment variables with objects of the proper type. An action can also be called an oper-

ator instance for further emphasis on the fact that it is an instantiation of a template.

The blocks world commonly uses the operators ♣✐❝❦✉♣(block), ♣✉t❞♦✇♥(block),

st❛❝❦(block1, block2) and ✉♥st❛❝❦(block1, block2), although there are also versions us-

ing a smaller number of more powerful operators. The first operator has instances

such as ♣✐❝❦✉♣(A) and ♣✐❝❦✉♣(B), if A and B are objects of type block in the current

problem instance. The logistics domain often uses the operators ❧♦❛❞✲tr✉❝❦(truck,

obj) and ❧♦❛❞✲♣❧❛♥❡(plane, obj) to load packages into vehicles, ✉♥❧♦❛❞✲tr✉❝❦(truck, obj)
and ✉♥❧♦❛❞✲♣❧❛♥❡(plane, obj) to unload packages, and ❞r✐✈❡✲tr✉❝❦(truck, loc1, loc2) and

✢②✲❛✐r♣❧❛♥❡(plane, airport1, airport2) to drive or fly vehicles between two locations.

Each operator has a precondition that determines which of its instances the plan-

ner is allowed to invoke in any given state. For example, a package can only be

loaded into a truck if the package and the truck are at the same location, and you

can only pick up a block if it is at the top of a tower and you are not already holding

a block. In some planners this condition is limited to being a simple conjunction of

literals, while other planners allow arbitrary first-order logic formulas, including

disjunctions and quantifiers. The precondition may be constrained to referring to

124 5.1. Introduction to Planning

the state where the action is invoked, or it may be allowed to refer to the entire

interval of time during which the action is being executed.

Each operator definition must also specify exactly how the world is affected

when it is invoked, in terms of a set of effects.

In classical planning, all effects are assumed to be deterministic: Given com-

plete knowledge about the state where the action is invoked, it is possible to pre-

dict exactly how the action will affect the environment. For example, invoking ♣✉t✲

❞♦✇♥✭block✮ in the blocks world will definitely cause ♦♥t❛❜❧❡✭block✮ to become true

and ❤♦❧❞✐♥❣✭block✮ to become false. Less restricted planners may also want to deal

with non-deterministic or probabilistic effects.

Many planners allow the use of conditional effects, where some effects only take

place if a certain condition holds in the state where an operator instance is invoked.

These conditions should not be confused with preconditions. If the precondition

of an action does not hold, the action must not be invoked. If the condition of

a conditional effect does not hold, the action can be invoked, but this particular

conditional effect will not take place.

Conditional effects permit operators to have different effects when invoked in

different world states. In many domains, though, it may be difficult to determine

in advance the exact effects an operator would have in all possible states. Assume,

for example, a variation of the logistics domain where trucks have limited carrying

capacities. What would happen if one attempted to load additional packages into

a truck which according to our model has no remaining space? Perhaps the pack-

age would still fit into the truck, because our model was pessimistic and there was

in fact some additional space available. If not, perhaps there is a robotic package

loader which will try to follow the plan and load the package despite lacking suf-

ficient space. What would happen then? Would the package fail to be loaded, or

would it be pushed into the truck with enough force to damage the package itself or

some of the previously loaded packages? Would some packages that were already

loaded fall out of the truck?

Clearly, this relates to the ramification and qualification problems in the area

of reasoning about action and change. In the planning area, these problems are

sidestepped by only allowing operators to be invoked in situations where their

preconditions are known to hold. By strengthening the preconditions of an oper-

ator to a sufficient degree, the question of what would happen under any other

circumstances is rendered irrelevant. For example, if the preconditions guarantee

that one only attempts to load packages into trucks that are known to have suffi-

cient remaining carrying capacities, the planner does not need to know what would

happen if it tried to load packages into trucks that are already full.

In classical planning, the internal temporal structure of an operator is quite limited:

Operators are assumed to be without temporal constraints, and simply model a

single state transition from an invocation state to an effect state. Some planners

go beyond the classical framework and allow actions to have duration. This is

Chapter 5. Planning 125

becoming more and more common, perhaps partly because actions with duration

were required in the Third International Planning Competition (IPC-2002, Long &

Fox, 2003). The duration of an action may be fixed, or it may be determined by the

arguments and the state in which it is invoked: The time required to fly between

two cities depends on the speed of the airplane and the distance between the two

cities. Some planners also support actions for which the planner can freely choose

the duration, possibly within a given bound.

Some planners allow effects to take place at multiple points in time during the

execution of the action, as opposed to only taking place at the start and end of the

action. This richer temporal structure may in some cases be irrelevant when se-

quential plans are generated, because in that case only the final state resulting from

invoking an operator is important. On the other hand, it can be absolutely neces-

sary when modeling concurrent domains where interactions between concurrent

actions have to be taken into account, because of possible conflicts or synergistic

effects. Planners that do not directly support effects at arbitrary timepoints must

instead model such effects using multiple actions or other mechanisms.

5.1.8 Combining Actions into Plans

In our terminology, a plan is an executable set or sequence of actions. A plan which

also achieves the goal of a particular problem instance will be called a solution or

solution plan.2

Since there can be dependencies between the actions that make up a plan, there

is a need for some kind of temporal structure determining the order in which these

actions should be performed. A large variety of temporal plan structures have been

used by planners in the literature, ranging in complexity.

As noted above, many classical planners are limited to single-step actions where

there is no duration associated with the execution of an action.

Some of these planners generate a totally ordered sequence of actions (Fig-

ure 5.4, top row). There are domains for which this is a reasonable restriction which

does not have a significant impact on the quality of the resulting plans. For highly

concurrent domains such as the logistics domain, though, actually executing such a

sequential plan would be highly inefficient, with at most one vehicle being allowed

to move at any given time.

Other classical planners generate a partially ordered set of single-step actions

(Figure 5.4, second row), where the agent is free to execute certain actions in paral-

lel or in arbitrary order as long as certain other actions have already been executed.

Graphplan-style planners (Blum & Furst, 1997; Koehler, Nebel, Hoffmann, & Di-

mopoulos, 1997) generate plans consisting of a totally ordered sequence of action

sets, where the actions within an action set can be executed in arbitrary order as

long as they are executed before any action in the next set (Figure 5.4, third row).

2In some articles and papers in the literature, only solutions are called plans.

126 5.1. Introduction to Planning

A
1

A
2

A
9

A
7

A
6

A
5

A
8

A
4

A
3

A
1

A
2

A
6

A
5

A
4

A
3

A
1

A
2

A
3

A
4

A
5

A
6

A
1

A
2

A
3

A
4

A
7

A
8

A
9

Figure 5.4: Plan Structures

Planners which can use actions with duration may need more complex plan

structures, where each action is annotated with the temporal interval where it is to

be executed (Figure 5.4, fourth row). Such structures could be extended further by

allowing temporal intervals to be only partially specified, or by permitting speci-

fications of minimum or maximum temporal distances between two actions in the

plan.

Classical planners assume complete knowledge about the world, but in the real

world, uncertainty is quite common. In order to improve the fidelity of the plan-

ner’s approximation of reality, it may be necessary to add support for incompletely

specified initial states or incompletely specified action effects. If the agent must

deal with such incomplete knowledge the plan structure may also have to change,

depending on the technique chosen to deal with this incompleteness. In confor-

mant planning, the planner should find an ordinary sequential plan where it can be

guaranteed that the goal will be achieved given the knowledge which is available

to the planner before the execution phase begins, by making sure that no actions

in the final solution plan depend on unknown information. In conditional plan-

ning, the agent also has access to sensing actions which can be used to increase the

knowledge of the agent during the execution phase. Conditional plans may include

branching, where different actions should be performed depending on the actual

state of the world, which may in turn depend on the actual outcome of earlier ac-

Chapter 5. Planning 127

tions performed by the agent. Conditional plans may also contain loops, where a

conditional subplan may have to be executed multiple times until some condition

is satisfied. In the remainder of the thesis we will not deal with sensing actions or

incomplete knowledge.

Ideally the choice of plan structure should be defined according to the abilities

of the agent or agents which will eventually execute the plan. In the logistics do-

main, for example, each vehicle is clearly able to move independently of other ve-

hicles, and the potential for concurrency ought to be taken advantage of. In a more

elaborate version of the standard logistics domain where distances are modeled, the

time required to drive between two locations would be strongly dependent on the

distance between the locations, requiring the use of partially overlapping actions

as opposed to Graphplan-style concurrency in order to create reasonable plans.

In some cases using a plan structure able to express any plan the agent can exe-

cute might be computationally infeasible (at least for current planning algorithms),

and then it might be necessary to use a different temporal structure which is less

suited to the agent but which at least makes it possible to find a solution. However,

it should also be noted that using a more elaborate plan structure could actually be

a computational advantage in certain cases: If the set of possible candidate plans is

strictly larger, there are more alternatives open to the planner, which could poten-

tially make the task of finding a solution easier.

5.1.9 Plan Quality Criteria

For most non-trivial domains, there are a multitude of ways that any reachable

goal can be achieved. Some subtasks are independent of each other and can be

performed in any order. Some objects in the domain may be functionally identical,

so that it does not matter which object is used – for example, if there are two empty

trucks available at the same location in a logistics problem instance and only one is

required, either truck could be used with identical results. Also, for many actions

there is an inverse action with the opposite effects, and arbitrarily many instances

of these actions can be added to a plan. Simple cycle checking removes some of

those plans, but not those where other actions take place inbetween: When a truck

in the logistics domain drives from A to B, a package is loaded into another truck,

and the first truck drives back from B to A, this leads to three distinct states with

no easily detectable cycle.

Consequently, it is usually possible to find a large number of solutions satisfying

any given reachable goal, and usually some of them are “better” in some sense and

should be preferred over others. In the most general case, we want to find a solution

which optimizes a given function. For example, in an extended logistics domain

where fuel is modeled, we might want to find a solution that minimizes fuel usage

while still achieving all goals. The level of support for optimization varies greatly

between different planners.

128 5.2. Forward-Chaining Planning

Quite a few planners unconditionally try to find a solution containing as few

actions as possible, and do not allow the user to specify a function to be minimized

or maximized. Some of these planners guarantee that the resulting plan will be

optimal in the number of actions, while others only make a reasonable attempt to

create a short plan.

Graphplan-style planners (Blum & Furst, 1997; Koehler et al., 1997), which usu-

ally do not support explicit action durations, guarantee that a generated plan con-

tains a minimum number of temporal steps but ignore the number of concurrent

actions within each temporal step. In other words, such planners prefer to return a

plan with 150 actions where the inherent parallelism in the domain allows the plan

to be executed in 10 steps, rather than a plan with 40 actions partitioned into 11

temporal steps.

Some planners which support explicitly specified action durations guarantee

that a minimum-duration plan is found, even though this plan might contain a

larger number of actions than other valid plans. The Graphplan approach has also

been extended in this manner (Smith & Weld, 1999).

Still other planners permit the user to specify a function that should be mini-

mized, where this function may refer to the length of the plan or to other properties

such as fuel usage.

5.1.10 Domains and Problem Instances

We have now discussed a number of different types of information that must be

available to a planner in order to solve a specific planning problem.

Some of this information relates to the general structure of the world for which

plans should be created. This information is usually considered to define a planning

domain. For classical planners, the domain specification defines a set of state vari-

ables, a set of operators (and their preconditions and effects), and for planners with

typed objects, a set of object types. This is similar to the narrative background spec-

ification (NBS) in TAL (Section 2.3), with the exception that the NBS also defines the

sets of objects belonging to each type.

The rest of this information is far more likely to change across different invo-

cations of the planner. This information defines a planning problem instance for the

given domain, and includes a specification of the initial state, the goal, and the ac-

tual (possibly typed) objects. This is similar to the narrative specification (NS) in

TAL.

5.2 Forward-Chaining Planning

Given a planning domain description and a planning problem instance, it is not

immediately obvious what would be the best way to find a plan that achieves

the given goal. A large number of different methods have been investigated, but

Chapter 5. Planning 129

somewhat surprisingly, one of the most straight-forward approaches – forward-

chaining – has had a renaissance during the last few years, with planners such as

HSP (Bonet & Geffner, 1998), FF3 (Hoffmann & Nebel, 2001), and TLPlan (Bacchus

& Kabanza, 2000) providing better performance and higher expressivity than many

earlier state-of-the-art planners that used more complex search methods.

The search space for a forward-chaining sequential planner can be viewed from

at least two similar but somewhat different perspectives.

First, the search space can be defined as a graph where each node is a state and

where there is an edge between two nodes (states) n1 and n2 iff there exists an action

that would lead from n1 to n2. The graph induced by this definition is naturally

directed, but it is not acyclic. In the blocks world, for example, it is possible to pick

up a block and immediately put it down again, leading to a cycle of length 2 in the

search graph.

Second, the search space can be defined as a tree where each node is a plan

(Figure 5.5, described below). This tree can be defined inductively: The empty plan

is necessarily executable and must therefore belong to the tree, and given any plan p

in the tree, if the action a is applicable in the state resulting from executing p, then

〈p; a〉 is a child of p. In other words, the root node corresponds to the empty plan,

and each subsequent node is generated by appending exactly one action to the plan

of the parent node. Note that according to this definition, the same final state can

be associated with many different nodes within the search tree, if that state can be

reached through more than one possible sequence of actions. This definition will

be used in the remainder of the thesis.

Figure 5.2 on page 119 shows an example problem instance from the blocks

world, with an initial configuration of blocks on the left hand side and a goal con-

figuration on the right hand side. The initial configuration is replicated in Fig-

ure 5.5, which also shows part of the search space for this problem instance; due to

space considerations, we do not display complete plans in each node but instead

display the new action being added in each node as a label on the incoming edge,

with abbreviated operator names. In the initial node (the empty plan), the planner

is visiting the initial state, where only two actions are applicable: ✉♥st❛❝❦(C, B)
and ✉♥st❛❝❦(E, D). If the first action is applied, three new actions become ap-

plicable: ♣✉t❞♦✇♥(C), st❛❝❦(C, B), and st❛❝❦(C, E). Note that the initial node and

〈✉♥st❛❝❦(C, B); st❛❝❦(C, B)〉 are different nodes, but both nodes generate the same

final state, since the second action undoes the effect of the first action. The node

label “C” indicates that a state cycle can be detected. Given the use of single-step

actions and given that only the invocation state of an action is relevant to the ap-

plicability of that action, any plan containing a state cycle is redundant: There must

exist a corresponding shorter plan where the action subsequence generating the

state cycle has been removed. Thus, any plan containing a state cycle can be pruned

from the search tree.

3❤tt♣✿✴✴✇✇✇✳♠♣✐✲s❜✳♠♣❣✳❞❡✴⑦❤♦✛♠❛♥♥✴✛✳❤t♠❧

130 5.2. Forward-Chaining Planning

C

Cun(C,B)

un(E
,D
)

u
n
(E
,D
)

pu
(C
)

st(C,B)

st(C
,E
)

un(C,E)

C

un(B,A) C

st(B,C)

st(B,A)

pu
(B
)

un
(B
,A
)

pi(C)

C
un(B,C)

pi(A)

C

pi(B)

pi(A)
un(C

,E)

Cst(B,A)

st(B
,E)

st(B,C)

st(
E,B

)

Cst(E,D)

st(E,C)

Cun(B,E)

pi(C)

pi(A
)

pi(A
)

C

un(E,D)
un(B,C)

pi(C)

pi(D)

un(E
,B)

un(B,A)

C

un(E,C)

pi(D
)

C

E

Initial state

B

A D

Figure 5.5: Part of the Forward Chaining Search Space for Figure 5.2

Forward-chaining planners begin at the initial node and search the tree for a

path leading to a goal state. This very straight-forward paradigm has a definite

advantage: At any point in the search process, the planner always has a complete

description of the entire sequence of states generated by the current plan candidate

– at least this is the case if the initial state is completely defined and plan operators

are deterministic, which is always the case in classical planning. This, in turn, facili-

tates the use of complex operator types with quantified conditional effects, disjunc-

tive preconditions, and indirect effects, which can be considerably more difficult to

add to some other kinds of planning algorithms.

This, of course, leaves open the question of which search algorithm should be

used in order to find a goal state effectively and efficiently within the forward-

Chapter 5. Planning 131

chaining search tree.

At first, one might consider using standard search algorithms such as breadth

first or iterative deepening. But if the shortest plan consists of 100 actions, and

the branching factor is 1000 (that is, there are 1000 applicable actions at each step),

breadth first search would have to investigate 1000100 = 10300 nodes – and more

importantly, would have to store most of those nodes in memory, which would

clearly be impossible. Using iterative deepening would require less memory, but

would still require too much time. Even at 1012 nodes per second (which will not be

realistic for many years to come, since it corresponds to testing 300 nodes per clock

cycle on today’s fastest processors), finding a plan using pure iterative deepening

could require 10280 years, though it could be found earlier if an optimal or near-

optimal plan would happen to be found in the part of the tree that was searched

first. It is clear that using these algorithms would lead to very inefficient planners,

due to the combinatorial explosion in the number of potential plans when the size

of a planning problem increases. But this problem is not inherent in the concept

of forward-chaining: It is caused by using “blind” brute force search algorithms

without any form of goal-directed behavior.

One can identify two main categories of techniques being used for goal-directed

search in recent forward-chaining planners.

Some planners use various forms of heuristics to guide the search process. The

heuristic function helps determine which nodes and branches should be investi-

gated before others, and can either be automatically extracted from the planning

domain and problem instance or be specified explicitly by the user. Since the heuris-

tic function is generally not perfect, occasionally misjudging which branch would

lead to the goal more quickly, nodes that are less preferred by the heuristic function

are saved so that the planner can return to them at a later stage. HSP (Bonet &

Geffner, 1998) and FF (Hoffmann & Nebel, 2001) are two very successful planners

that automatically determine a heuristic function given a planning domain and a

problem instance.

Other planners use domain-independent or domain-dependent pruning, actu-

ally removing search nodes completely from the tree. Cycle checking is a simple

form of domain-independent pruning, where a node is pruned if it visits a state

that has already been visited on the path from the root node. In the blocks world,

picking up a block, stacking it on another block, unstacking it again and returning

it to the table would lead to such a state cycle. Any plan containing these four ac-

tions would still be executable if the actions were to be removed. The final state

generated by the plan would be identical, so as long as the goal only constrains

the final state, as opposed to placing constraints on the path taken before that state

is reached, it would be satisfied in the abbreviated plan iff it was satisfied in the

original plan.

As will be described in the next section, Blockhead and TLPlan are two planners

that prune the search tree using domain-dependent pruning techniques.

132 5.3. Blockhead, TLPlan, and Control Formulas

5.3 Blockhead, TLPlan, and Control Formulas

All the different types of information discussed in Section 5.1 are more or less re-

quired in order to specify the planning problem to be solved. For example, in or-

der to determine in advance whether an operator sequence will be executable, a

planner needs information about operators and about the initial state where plan

execution will begin, and in order to determine whether the goal is achieved, com-

plete information about the acceptable goal states is also needed. Planners which

only depend on this type of information are often called knowledge-sparse or fully

automated planners.

Some planners also accept additional information which is in some sense redun-

dant but which may help improve the performance of the planner or the quality of

the solution plan. In the PRODIGY planner, for example, it is possible to specify

rules that specify which subgoals should be solved before other subgoals, or rules

that determine which operator arguments should be preferred over others (Car-

bonell, Blythe, Etzioni, Gil, Joseph, Kahn, Knoblock, Minton, Pérez, Reilly, Veloso,

& Wang, 1992; Veloso, Carbonell, Pérez, Borrajo, Fink, & Blythe, 1995). Planners

using heuristic search methods may allow the user to specify heuristic evaluation

functions explicitly rather than using a built-in function. The input to a hierar-

chical task network (HTN) planner contains a set of task decomposition rules that

determine how the main objective (“goal”) is decomposed into primitive actions

(Sacerdoti, 1975; Tate, 1977; Vere, 1983; Wilkins, 1988; Currie & Tate, 1991; Erol,

Hendler, & Nau, 1994; Nau, Cao, Lotem, & Muños-Avila, 2001; Nau, Au, Ilghami,

Kuter, Murdock, Wo, & Yaman, 2003). In addition to specifying true constraints

inherent in the domain being modeled, such rules can also be used to provide a

significant measure of additional information to the planner

Planners that accept additional information may be completely dependent upon

this information or may have reasonable performance even with a pure problem

specification. In either case, they are sometimes called knowledge-based or hand-

tailored planners. They have also occasionally been called domain-dependent plan-

ners, although it could be argued that this is a misnomer, because just like know-

ledge-sparse planners, knowledge-based planners are generally applicable to arbi-

trary domains as long as the proper domain specification is provided as part of the

input. What is truly domain-dependent is not the planner but the domain speci-

fication – but then again, even knowledge-sparse planners require domain speci-

fications, and even those domain specifications must necessarily contain domain-

specific information such as operator definitions. Knowledge-based planners may

require additional types of information, but this is merely a difference in degree,

not a difference in kind.

It should be emphasized that just as there is no binary distinction between

domain-dependent and domain-independent planners, there is no binary distinc-

tion between hand-tailored and fully automated planners. Many “fully automated”

planners perform considerably better given some tuning for each specific domain

Chapter 5. Planning 133

– but this tuning is hidden in command line arguments rather than being openly

specified in a domain description. Even those planners that have no such command

line arguments could potentially be made even more fully automated if they could

automatically determine some information about operators or the initial state from

their execution environment. In addition, some “hand-tailored” planners such

as PbR (Ambite, 1998; Ambite, Knoblock, & Minton, 2000; Ambite & Knoblock,

2001) can to some extent generate the additional information themselves in a pre-

processing step, further blurring the boundary between the two kinds of planners.

5.3.1 Blockhead: A Domain-Dependent Planner

Consider once more the blocks world search tree in Figure 5.5 on page 130. Cycle

checking has already pruned some nodes from this tree, but most of the tree still

remains. If we consider the tree more carefully, though, we can see a few opera-

tor sequences that are obviously bad, sequences that the planner could potentially

detect in order to backtrack and try a more promising approach. For example, the

plan 〈✉♥st❛❝❦(C, B), st❛❝❦(C, E)〉 would place C on top of block E. If the goal re-

quires C to be on top of E, then this might initially appear to be a good move. But

E is not in its final location. It will eventually have to be moved to its final location,

and if there are blocks on top of it, those blocks will first have to be removed. In

this situation, it would be a good idea to forbid the planner from placing C on top

of E, forcing it to prune this search node, backtrack, and try other solutions such as

placing C on the table instead. This will always be a viable alternative, given that

the table in the standard blocks world never runs out of space.

This principle, which can also be stated more succinctly as “only add blocks

to good towers”, is one of the four rules that were used in Blockhead, a domain-

specific blocks world planner by Kibler and Morris (1981). Each of the four rules

pruned branches corresponding to actions that definitely would not take the plan-

ner closer to the goal, actions where there were definitely better alternatives avail-

able – as the authors expressed it, “don’t be stupid”.

Though no precise benchmark results were published, the authors reported that

the techniques used in Blockhead led to significant reductions in the number of

nodes visited by the planner and thereby significant performance improvements.

5.3.2 TLPlan: A Hand-Tailored Planner

Blockhead was truly a domain-dependent planner, written for the blocks world.

TLPlan, on the other hand, is a domain-independent planner with an extended

domain description language permitting the user to write explicit domain-specific

control rules that help control the search process, determining which nodes should

or should not be pruned (Bacchus & Kabanza, 2000).

Control rules for a forward-chaining planner could potentially take many dif-

ferent shapes. In TLPlan, control rules are formulas expressed using a variation of

134 5.3. Blockhead, TLPlan, and Control Formulas

the modal tense logic LTL, Linear Temporal Logic (Emerson, 1990). We will use the

terms control rule and control formula interchangeably.

LTL is defined by taking a standard first-order language and adding four tem-

poral modalities: ❯ (until), ✸ (eventually), ✷ (always), and © (next). Formulas in

LTL are interpreted over timelines, sequences 〈s0, s1, . . .〉 of states (called worlds in

TLPlan terminology), where each state is an interpretation for the original first-

order language. The semantics of an LTL formula is defined relative to a current

state, a position within the sequence of states. Intuitively, © α means that α holds

in the next state along the timeline, ✷ α means that α holds in the current state and

all future states, ✸ α means that α holds in the current state or some future state,

and α ❯ β means that β will eventually hold, and for the entire interval of time until

it does, α holds. See Emerson (1990) or Bacchus and Kabanza (2000) for a precise

definition of LTL.

Bacchus and Kabanza add to LTL a goal modality, ❣♦❛❧, where the formula ❣♦❛❧(φ)
is true iff φ holds in every acceptable goal state, or equivalently, iff the goal entails φ.

This additional modality is the key to enabling control rules to provide a measure

of goal-directed guidance to the planner. Since the TLPlan implementation is re-

stricted to using conjunctive goals, entailment checks can be made efficiently and

do not require theorem proving.

To ensure that quantified formulas can be evaluated by iteration over a finite set

of values, Bacchus and Kabanza use bounded quantifiers of the form ∀[x : α(x)].φ
and ∃[x : α(x)].φ, where α is a positive literal that can only hold for finitely many

value constants and where the quantified formula φ only has to be evaluated for

those x that satisfy α(x). This also improves performance: Rather than letting the

planner iterate over all value constants mentioned in a problem instance, or forcing

it to automatically choose a literal from which to extract a set of values to iterate

over, the user can manually specify a literal likely to hold only for a small set of

values.

Example 5.3.1 (Blocks World, continued)
If a block is placed on top of the destination of another block, then this action must

eventually be undone in order to reach the goal configuration. Such actions may

be necessary in a bounded blocks problem, where the table does not have sufficient

space for all blocks, but they are never required in the standard blocks world.

In other words, it is always the case that if you are currently holding a block x,

which might potentially be placed on top of some clear block y, and there is a goal

that z should be on top of y, and x is not in fact the same block as z, then at the next

timepoint you should not have placed x on top of y.

✷ ∀[x : ❤♦❧❞✐♥❣(x)]∀[y : ❝❧❡❛r(y)]∀[z : ❣♦❛❧(♦♥(z, y))].x 6= z→ ©¬♦♥(x, y) �

Example 5.3.2 (Blocks World, continued)
Assume the existence of a defined predicate ❣♦♦❞t♦✇❡r✭b✮ which holds iff b is the

topmost block in a tower which does not violate the goal, that is, a tower in which

Chapter 5. Planning 135

C

C

P

un(C
,B)

un(E,D)

un(E,D)

pu(
C)

st(C,B)

st(C,E)

un
(B
,A
)

pi(C)

Cst(B,A)

P

st(B
,E)

P

st(B,C)

P

st(E
,B)

Cst(E,D)
st(E,C)

un(B,A)

C

un(E,C)

pi(D
)

Figure 5.6: Pruning a Forward Chaining Search Space

no blocks will have to be moved. Then the Blockhead rule “only add blocks to good

towers” can be succinctly represented as follows:

✷ ∀[x : ❝❧❡❛r(x)] ¬❣♦♦❞t♦✇❡r(x)→ ©¬∃[y : ♦♥(y, x)] true

(The consequent of the implication should state that there is no block y on top of x,

but because of the use of bounded quantification, this condition becomes integrated

into the bound. Only true remains to the right of the existential quantifier.) �

These two simple rules reduce the search space considerably. Though this effect is

far more visible for larger problem instances with greater depth and higher branch-

ing factors, it can also be seen for smaller problem instance, as in Figure 5.6 which

shows a pruned version of the search space originally shown in Figure 5.5. The

node label “P” indicates a node that has been pruned due to a control rule.

5.3.3 Testing Control Formulas Using Progression

Though we have stated that control formulas help the planner determine which

nodes should be pruned, we have up to this point been somewhat vague regarding

the exact manner in which this is done.

Control rules are intended to improve the goal-directedness of a forward-chain-

ing planner, and therefore its performance, by allowing parts of the search space

to be pruned. This naturally cannot be achieved by waiting until a plan has been

found that satisfies the classical goal and then testing whether the plan also satisfies

all control rules. Instead, it requires a condition that can be tested in intermediate

nodes in the search tree.

One potential approach would be to prune every intermediate node that does

not satisfy all control rules. This may initially seem quite reasonable, until the real-

ization dawns that some control formulas that are violated in a certain search node

136 5.3. Blockhead, TLPlan, and Control Formulas

can be satisfied in its children. To see how this can be the case, we appeal to yet

another control formula for the blocks world.

Example 5.3.3 (Blocks World, continued)
The blocks world control rule from Example 5.3.1 is applicable when holding a

block, and places certain restrictions on the locations where this block can be put

down. In some cases it is possible to strengthen this constraint. For example, if the

crane is currently holding a block whose final destination is clear (nothing is on top

of it) and is a good tower (will not have to be removed), then clearly this is where

the block should be put down.

✷ ∀[x:❤♦❧❞✐♥❣(x)]∀[y:❣♦❛❧(♦♥(x,y))] ❝❧❡❛r(y) ∧ ❣♦♦❞t♦✇❡r(y)→ © ♦♥(x,y) �

Unlike the first two control formulas, which stated what must not happen, this for-

mula places requirements on changes that must take place in the world – under

certain circumstances, you must place block x on top of block y. If this formula

were to be evaluated in a state sequence where block x had just been picked up,

then the formula would be violated, simply because the action stacking the block

on top of its destination had not yet been added to the plan.

A more reasonable semantics would state that all control formulas should hold

in the final solution. Without the need to consider what might hold in the prefixes

of a solution, it is far less likely that a domain designer would inadvertently write

a control rule that prunes branches that could have led to good solutions. Inner

nodes can still be pruned from the search tree as long as it can be proven that there

is a control formula that must be violated in all of its descendants.

TLPlan uses a formula progression algorithm to achieve a similar semantics,

with a slight difference: Control formulas are only viewed as guidance, not as goals,

and do not necessarily need to be satisfied in the final solution. This difference is

usually not important for classical planning domains, but care should be taken not

to use TLPlan control formulas as a means of implementing temporally extended

goals such as safety goals. For example, the control formula ✸ φ can never be vi-

olated, because the progression algorithm always assumes φ might be satisfied in

some future state – even if φ = false.4

Consider a finite or infinite sequence of states 〈s0, s1, s2, . . .〉 and a modal tense

logic formula φ that should hold in this sequence. Progressing this formula through

the state s0 yields a formula φ+ that should hold in the remainder of the state se-

quence: φ holds in 〈s0, s1, . . .〉 iff φ+ holds in 〈s1, s2, . . .〉. If the information in s0

was sufficient to prove that the formula must be false, regardless of the what comes

after s0 in the timeline, the progression algorithm may immediately return false.

In the following, ⊗ denotes a binary logical connective, and the expression

φ[x 7→ c] denotes the formula resulting from replacing all free occurrences of x

in the formula φ with the constant c.

4The TLPlan implementation also allows the specification of temporally extended goals (Bacchus &

Kabanza, 1996a, 1998), modal temporal formulas that must be satisfied by the solution plan. However,

this cannot be used in combination with state-based goals, and also prevents the use of the ❣♦❛❧ modality.

Chapter 5. Planning 137

Definition 5.3.1 (Progression for LTL Formulas)
1 procedure Pr♦❣r❡ss(φ, s)
2 if φ contains no temporal modalities

3 if s |= φ return true else return false
4 if φ = φ1 ⊗ φ2 return Pr♦❣r❡ss(φ1, s)⊗ Pr♦❣r❡ss(φ2, s)
5 if φ = ¬φ1 return ¬Pr♦❣r❡ss(φ1, s)
6 if φ = © φ1 return φ1

7 if φ = φ1 ❯ φ2 return Pr♦❣r❡ss(φ2, s) ∨ (Pr♦❣r❡ss(φ1, s) ∧ φ)
8 if φ = ✸ φ1 return Pr♦❣r❡ss(φ1, s) ∨ φ

9 if φ = ✷ φ1 return Pr♦❣r❡ss(φ1, s) ∧ φ

10 if φ = ∀[x : γ(x)]φ return
∧

c:s|=γ(c) Pr♦❣r❡ss(φ[x 7→ c], s)
11 if φ = ∃[x : γ(x)]φ return

∨
c:s|=γ(c) Pr♦❣r❡ss(φ[x 7→ c], s)

Unnecessary occurrences of the truth constants true and false are removed from

the result using the standard rules ¬false = true, (false ∧ α) = (α ∧ false) =
false, (false∨ α) = (α ∨ false) = α, ¬true = false, (true∧ α) = (α ∧ true) =
α, and (true∨ α) = (α ∨ true) = true. �

Recall that each node in the forward-chaining search tree corresponds to a plan,

and that each plan is associated with a state sequence that would be generated if

the plan were to be executed starting in the initial state. TLPlan introduces one

additional item of information for each node: A control formula, which has been

progressed through the state sequence associated with the node.

The initial node corresponds to the empty plan, and its associated state sequence

only contains one state: The initial state, as specified by the user. No further states

have yet been created. Consequently, the control formula associated with this node

is generated by conjoining the initial control formulas specified by the user and

progressing the resulting conjunction through the initial state.

Applying an operator instance to an existing node n in a sequential forward-

chaining search tree always yields one or more new states at the end of the state

sequence for n. The control formula associated with n is progressed through the

new states, resolving all references to fluents in those states, and the new node

being generated is labeled with the progressed formula.

If progression returns the formula false at any point, the planner can immedi-

ately backtrack, knowing that the formula is violated in all possible extensions to

the current plan candidate.

In addition to providing a reasonable semantics for control rules, this method

also ensures that control formulas never have to be evaluated in the same state

twice, which is very important for the performance of TLPlan. On the other hand,

a potentially large progressed control formula must be stored in each open search

node, which can considerably increase the memory consumption of the planner.

As demonstrated by Bacchus and Kabanza (2000), this technique led to some

very impressive improvements in efficiency for many well-known benchmark do-

mains when compared to planners such as Blackbox (Kautz & Selman, 1998, 1999)

138 5.3. Blockhead, TLPlan, and Control Formulas

and IPP (Koehler et al., 1997), two of the leading competitors in the First Interna-

tional Planning Competition (IPC-1998, held at the AIPS-1998 conference: McDer-

mott, 1998).

Chapter 6
TALplanner

This chapter introduces TALplanner, a new planner which is inspired by the use of

temporal control formulas in TLPlan (Bacchus & Kabanza, 2000). TALplanner has

some similarities to TLPlan, but also some significant differences, the most obvious

one being the use of a TAL-based logic which has given the planner its name. Some

of the most important similarities and differences between the two planners will

be covered in the following section, together with a brief overview of the structure

of the planner and its use of TAL. The remaining sections in this chapter will go

into considerably more detail regarding the way planning domains and control

formulas are modeled in TAL and the extensions that have been made to TAL in

order to model certain planning-specific concepts. A set of preliminary benchmark

comparisons for an early version of TALplanner will also be presented.

6.1 An Overview of TALplanner

As mentioned in the introduction to this thesis, one of the many design goals for

TALplanner was the intention to develop a planner using the TAL semantics for

actions and world descriptions. The TAL logics are specifically developed for rea-

soning about action and change, and given a few planning-related extensions, one

logic in particular, TAL-C (Chapter 2; Karlsson & Gustafsson, 1999), provides a

suitable framework for modeling complex, potentially concurrent actions as well

as most other concepts required to succinctly capture the essential features of a

planning domain (Section 6.2).

Using TAL in this manner provides a declarative first-order semantics for plan-

ning domains, an important difference from TLPlan where only control formulas

are based on the use of logic and actions are instead modeled using an operational

semantics. But unlike Green’s approach (1969), which involved not only represent-

ing planning domains in logic but also generating plans using a resolution theo-

139

140 6.1. An Overview of TALplanner

rem prover, the declarative semantics of TAL serves mainly as a specification for

the proper behavior of the planning algorithm. The TALplanner implementation

generates plans using standard procedural forward-chaining search methods (Sec-

tion 6.3) together with a search tree which is pruned with the help of temporal

control formulas.

Though the use of control formulas is inspired by TLPlan, there are extensive

differences in how the two planners test whether a plan satisfies or violates a given

control formula. These differences were initially prompted by the different proper-

ties of Linear Temporal Logic (LTL), used for control formulas in TLPlan, and TAL,

which should preferably be used for control formulas in TALplanner in order to

avoid the need to mix two logics in one planner. Whereas LTL is a modal temporal

logic with tense operators that can be used together with a progression algorithm,

TAL uses explicit time, which is less suitable for progression. TAL-based control

formulas are therefore tested in a different manner, involving a pre-processing

phase generating formulas suitable for incremental evaluation in successive plan

candidates (Section 6.4). The formulas yielded by this pre-processing are amenable

to further analysis and optimizations, which has in turn considerably improved

the performance of TALplanner (Chapter 8). Because of the desire to compare the

two types of control formulas within the same implementation, and because each

turns out to have the potential for higher performance for different classes of for-

mulas, tense formulas can also be emulated within TAL and used together with a

progression algorithm (Section 6.5). The current version of TALplanner integrates

the separate progression-based and evaluation-based algorithms presented in early

papers (Doherty & Kvarnström, 1999; Kvarnström et al., 2000), allowing both types

of control formulas to be used in the same planning domain.

Extensions to TAL-C. The high-level L(ND) language for the TAL-C logic must

be extended somewhat in order to allow the specification of goals and control for-

mulas. Additional extensions have been introduced in order to provide more suc-

cinct representations of certain planning-related concepts even though they could

in fact be modeled in pure TAL-C. Eventually, the extended logic may become a

new planning-specific TAL logic named TAL-P. For the moment, however, changes

are still being made to the logic, and the intermediate version is viewed only as

a temporary extension to the macro language L(ND) from TAL-C. The extended

version of L(ND) is denoted by L(ND)∗.
As for several other extensions to the TAL logics, the intention behind L(ND)∗

has been to avoid changing the standard first-order TAL base logicL(FL), each new

addition being accompanied with an extension to the Trans() translation function

translating L(ND)∗ formulas into L(FL) (Section 2.4.1). In a sense, this has been

an interesting research topic in itself: To what extent can TAL be adapted to the

planning task without modifications to the original L(FL) language? As will be

seen, there are concepts that could have been modeled in a more elegant manner

had this restriction been lifted. On the other hand, using the same base logic across

Chapter 6. TALplanner 141

+ Circ(T’)

+ Foundational Axioms

+ Circ(T)

+ Quantifier Elimination

+ F.A.

+ Q.E.L(FL) L(FL)

L(FL)L(FL)

L(ND)*

Trans() Trans()

L(ND)*

1st-order

1st-order

theory Goal

1st-order

theory

TAL

Goal Narrative

TALPlanner TAL

Plan Narrative

1st-order

theory T’theory T

Figure 6.1: The relation between TAL and TALplanner

multiple versions of TAL also has advantages in terms of facilitating comparisons

between TAL logics as well as retaining existing results from research based on the

standard version of L(FL).

Expressivity. Though TAL-C provides an expressive semantics for domain descrip-

tions, it is not necessarily a good idea to introduce all of this expressivity into TAL-

planner at once. Instead, it would be better to use a smaller subset of TAL-C in the

first version of the planner, and then to incrementally introduce higher levels of ex-

pressivity in a series of well-defined extensions to the basic TALplanner algorithms.

A number of such extensions have been made since the first version of TALplanner.

Most of these extensions have already been integrated into the current description

of the modeling language as specified in Section 6.2. The main exception to this is

the support for concurrency, which will be discussed separately in Chapter 7.

Planning as Narrative Generation. Due to the narrative-based nature of TAL,

it may be useful to view planning as a form of narrative generation. Figure 6.1

contains an extended version of the diagram previously shown in Figure 2.2 on

page 23. As seen in the top row of this figure, the input to TALplanner is a narra-

tive in the extended macro language L(ND)∗. This narrative is sometimes called

a goal narrative, emphasizing the fact that it specifies a planning problem instance,

and is usually denoted by N . The goal narrative consists of two parts: A domain

description, defining among other things the operators that are available to the

planner, and a problem instance description, defining the initial state and the goal.

TALplanner uses this high-level description of a planning problem to search for a

set of TAL-C action occurrences (plan steps) that can be added to this narrative so

142 6.2. Representing Planning Problems in TAL

that in the corresponding logical model, a goal state is reached. If this succeeds, the

output is a new TAL narrative in L(ND)∗ where the appropriate set of TAL action

occurrences has been added. This narrative is sometimes called a plan narrative,

emphasizing the fact that it represents a solution to a planning problem. Both goal

narratives and plan narratives can be translated into L(FL) (the second row in the

figure). As in pure TAL-C, a number of foundational axioms are required, and a

standard TAL circumscription policy is applied, yielding complete definitions of

the Occlude and Occurs predicates (the third row). Further details will be presented

in Section 6.2.10.

6.2 Representing Planning Problems in TAL

This section introduces L(ND)∗, a new TAL-based macro language for use in ap-

plications related to planning. Many concepts and definitions used by L(ND)∗

are inherited from the TAL-C version of L(ND) as specified in Chapter 2, though

there are also a number of new formula classes and statement classes as well as

a number of restrictions compared to L(ND). To better show where TALplanner

and L(ND)∗ fall in the spectrum of expressivity for domain modeling, the section

is loosely based on the same structure as Section 5.1.

Notational Conventions. All formulas and L(ND) statements in the following

chapters will be shown using the input syntax for TALplanner, with the exception

of some connectives and quantifiers that may be written using the ordinary logical

symbols for increased clarity.

Variables are typed. Value variables are usually given the same name as the cor-

responding sort written in italics, possibly with a prime and/or an index. For ex-

ample, block, block′ and block3 would be variables of sort block. Similarly, variables

named t or τ are normally temporal variables, and variables named n are normally

integer-valued variables. All free variables are implicitly universally quantified.

6.2.1 Single Timepoint Formulas and Terms

In the following, there will sometimes be a need for formulas or terms that only ref-

erence fluent values at a single specific timepoint. This requires restrictions on the

two different ways of specifying a temporal context for a fluent term: The temporal

context prefix [τ] and the fluent value function value(τ, f).

Definition 6.2.1 (Single Timepoint Formula)
A single timepoint formula for the timepoint τ is a static formula where all fixed fluent

formulas are of the form [τ] α (where α is a fluent formula) and all occurrences of

the value function are of the form value(τ, f) (where f is a fluent term). �

Chapter 6. TALplanner 143

Definition 6.2.2 (Single Timepoint Value Term)
A single timepoint value term for the timepoint τ is a value term where all occurrences

of the value function are of the form value(τ, f) (where f is a fluent term). �

Definition 6.2.3 (Single Timepoint Fluent Term)
A single timepoint fluent term for the timepoint τ is a fluent term where all occur-

rences of the value function have the form value(τ, f) (where f is a fluent term). �

6.2.2 Describing the World: States, State Variables, and Objects

As in most planners, we assume that the current state of the world can be described

in terms of a finite set of typed state variables, each of which takes a fixed number

of typed arguments. These state variables can easily be represented as TAL flu-

ents. Except for defined fluents (Section 6.2.3), all fluents are implicitly declared

persistent.1

TAL uses an order-sorted type system, and can therefore directly represent a

hierarchical type structure rather than representing types as unary predicates or as

a flat set of types. There is a standard sort boolean = {true, false}. Additional

sorts can be defined by the user. As explained in Chapter 2, type information has

generally been specified informally in the description of a TAL narrative, and we

will continue to use the VITAL and TALplanner input syntax to describe these parts

of the vocabulary, with an extension to allow TAL value domain specifications to

be split into domain declarations (placed in the planning domain specification) and

object definitions (placed in each problem instance specification).

TALplanner also allows the use of numeric types. In order to keep the semantics

of these types clear, only integers and fixed point numbers (that is, numbers with a

fixed number of decimals) are allowed, and lower and upper bounds must be de-

clared for each numeric type. All of the standard arithmetic operators are available

for the numeric types and are given an interpretation through semantic attachment.

Example 6.2.1 (Logistics Domain, continued)
The logistics domain was first defined in Example 5.1.3 on page 119. A hierarchy

of seven types is defined for the entities present in the logistics domain: The type

loc (location) has the subtype airport. All locations are in a city. The type thing

has the subtypes obj and vehicle, the latter of which has the subtypes truck and

plane. Types are defined in terms of value domains and are therefore declared using

the label ❞♦♠❛✐♥, not to be confused with a planning domain.

There are two boolean fluents, ❛t(thing,loc) and ✐♥(obj,vehicle). The city-

valued fluent ❝✐t②✲♦❢ demonstrates the use of non-boolean state variables: At any

timepoint, ❝✐t②✲♦❢(loc) =̂ city means that the location loc is in the city city.

1Though there would be no intrinsic problem in allowing the use of durational fluents, existing plan-

ning domains only use persistent fluents. Limiting the planner to using persistent fluents streamlines

the presentation of certain concepts.

144 6.2. Representing Planning Problems in TAL

❞♦♠❛✐♥ city, loc, thing

❞♦♠❛✐♥ airport ✿♣❛r❡♥t loc

❞♦♠❛✐♥ obj, vehicle ✿♣❛r❡♥t thing

❞♦♠❛✐♥ truck, plane ✿♣❛r❡♥t vehicle

❢❡❛t✉r❡ ❛t(thing,loc) ✿❞♦♠❛✐♥ boolean

❢❡❛t✉r❡ ✐♥(obj,vehicle) ✿❞♦♠❛✐♥ boolean

❢❡❛t✉r❡ ❝✐t②✲♦❢(loc) ✿❞♦♠❛✐♥ city

The logistics problem instance in Figure 5.3 on page 120 uses the following objects:

♦❜❥❡❝ts ✿❞♦♠❛✐♥ loc ✿❡❧❡♠❡♥ts { city1-1, city1-2, city2-1, city2-2,

city3-1, city3-2, city4-1, city4-2 }

♦❜❥❡❝ts ✿❞♦♠❛✐♥ airport ✿❡❧❡♠❡♥ts { city1-2, city2-2, city3-2, city4-2 }

♦❜❥❡❝ts ✿❞♦♠❛✐♥ city ✿❡❧❡♠❡♥ts { city1, city2, city3, city4 }

♦❜❥❡❝ts ✿❞♦♠❛✐♥ obj ✿❡❧❡♠❡♥ts { package-1, package-2, package-3,

package-4, package-5, package-6 }

♦❜❥❡❝ts ✿❞♦♠❛✐♥ truck ✿❡❧❡♠❡♥ts { truck-1, truck-2, truck-3, truck-4 }

♦❜❥❡❝ts ✿❞♦♠❛✐♥ plane ✿❡❧❡♠❡♥ts { plane-1 } �

Example 6.2.2 (Gripper Domain, continued)
The gripper domain was first defined in Example 5.1.1 on page 118. This domain

uses the value domains obj for objects (including the robot robby), ball for balls (a

subtype of obj), room for rooms, and gripper for grippers. The fluent ❧♦❝ specifies

the location of objects, ❢r❡❡ specifies whether a given gripper is free, and ✐s✲❝❛rr✐❡❞✲✐♥

specifies whether the robot is carrying a certain object in a certain gripper.

❞♦♠❛✐♥ obj

❞♦♠❛✐♥ ball ✿♣❛r❡♥t obj

❞♦♠❛✐♥ room, gripper

❢❡❛t✉r❡ ❧♦❝(obj) ✿❞♦♠❛✐♥ room

❢❡❛t✉r❡ ❢r❡❡(gripper) ✿❞♦♠❛✐♥ boolean

❢❡❛t✉r❡ ✐s✲❝❛rr✐❡❞✲✐♥(ball, gripper) ✿❞♦♠❛✐♥ boolean

The gripper problem instance in Figure 5.1 on page 118 uses the following objects:

♦❜❥❡❝ts ✿❞♦♠❛✐♥ obj ✿❡❧❡♠❡♥ts { robby }

♦❜❥❡❝ts ✿❞♦♠❛✐♥ ball ✿❡❧❡♠❡♥ts { ball1, ball2 }

♦❜❥❡❝ts ✿❞♦♠❛✐♥ room ✿❡❧❡♠❡♥ts { roomA, roomB }

♦❜❥❡❝ts ✿❞♦♠❛✐♥ gripper ✿❡❧❡♠❡♥ts { left, right }

Objects declared to belong to a particular value domain are automatically also

members of all ancestor domains. Thus, obj will contain three objects: robby,

which is explicitly declared to belong to the domain, and ball1 and ball2, which

are members of obj by virtue of being declared to belong to the subdomain ball.

�

Chapter 6. TALplanner 145

Example 6.2.3 (Blocks World, continued)
In the blocks world planning domain, first defined in Example 5.1.2 on page 118,

there is only one value domain: block, containing a set of blocks. There are five

fluents: ♦♥(block1, block2) holds if block1 is on top of block2, while ♦♥t❛❜❧❡(block) holds

if block is on the table. If a block is neither on the table nor on top of another block,

we must be holding it, which is modeled using the fluent ❤♦❧❞✐♥❣(block). A block

is clear iff it is possible to place another block on top of it, which is modeled using

the fluent ❝❧❡❛r(block). Finally, the hand is empty iff it is not holding a block, which

is modeled using the fluent ❤❛♥❞❡♠♣t②. Following the standard formulation, all

fluents in this domain are boolean.

❞♦♠❛✐♥ block

❢❡❛t✉r❡ ♦♥(block, block) ✿❞♦♠❛✐♥ boolean

❢❡❛t✉r❡ ❝❧❡❛r(block), ♦♥t❛❜❧❡(block) ✿❞♦♠❛✐♥ boolean

❢❡❛t✉r❡ ❤♦❧❞✐♥❣(block), ❤❛♥❞❡♠♣t② ✿❞♦♠❛✐♥ boolean

The example problem instance in Figure 5.2 uses the following objects:

♦❜❥❡❝ts ✿❞♦♠❛✐♥ block ✿❡❧❡♠❡♥ts { A, B, C, D, E } �

6.2.3 Defined Predicates and Fluents

As noted in the introduction to planning, it often makes sense to define concepts

in a planning domain hierarchically, specifying a set of primary predicates which

are directly affected by actions as well as a set of secondary predicates which are

defined in terms of formulas. TALplanner is not limited to boolean predicates and

therefore supports the more general concept of defined (possibly non-boolean) flu-

ents.

Each defined fluent is declared in the narrative background specification. The

TALplanner fluent declaration syntax is extended with a new flag, ✿❞❡✜♥❡❞, for this

purpose. The definition of a defined fluent should be specified in terms of a fluent

definition statement, also in the narrative background specification.

Definition 6.2.4 (Fluent Definition Statement)
A fluent definition statement, labeled ❞❡✜♥❡, is one of the following:

• A labeled statement ❞❡✜♥❡ [t] f (v1, . . . , vn) : φ, where t is a temporal variable,

f is a boolean feature name, v1 through vn are distinct value variables of sorts

corresponding to the argument sorts of f , and φ is a single timepoint formula

for t where t and v1, . . . , vn may occur as free variables.

• A labeled statement ❞❡✜♥❡ [t] f (v1, . . . , vn) : ω, where t is a temporal vari-

able, f is a non-boolean feature name, v1 through vn are distinct value vari-

ables of sorts corresponding to the argument sorts of f , and ω is a single

timepoint value term for t where t and v1, . . . , vn may occur as free variables.

�

146 6.2. Representing Planning Problems in TAL

Example 6.2.4 (Gripper Domain, continued)
In the gripper domain, it would be possible to create a boolean defined fluent

✐s✲❝❛rr✐❡❞(ball) which is true exactly when there exists a gripper carrying the given

ball, that is, exactly when ∃gripper[✐s✲❝❛rr✐❡❞✲✐♥(ball, gripper)]. This example can be

modeled as follows:

❢❡❛t✉r❡ ✐s✲❝❛rr✐❡❞(ball) ✿❞♦♠❛✐♥ boolean ✿❞❡✜♥❡❞

❞❡✜♥❡ [t] ✐s✲❝❛rr✐❡❞(ball) : [t] ∃gripper [✐s✲❝❛rr✐❡❞✲✐♥(ball, gripper)] �

The Semantics of Defined Fluents

Ordinary fluents are given a unique value in the initial state. The inertia assump-

tion is applied, ensuring that each fluent retains the value from the previous time-

point except at those timepoints where an action explicitly assigns a new value.

Defined fluents, on the other hand, should have the same value as a formula or

as a value term. They are therefore implicitly declared dynamic, implying that they

are not constrained by an inertia assumption or a default value assumption. This

leaves the task of ensuring that each defined fluent takes on the intended value at

all points in time. Without loss of generality, the remainder of this discussion will

mainly be restricted to the case of boolean defined fluents, defined in terms of a

logic formula.

In the simplest case, a fluent definition formula may only refer to primary (non-

defined fluents). This is the case in the gripper example above, where the defini-

tion formula only refers to the ✐s✲❝❛rr✐❡❞✲✐♥ fluent. In this case, finding the value of

a fluent instance is quite easy. In terms of an operational semantics, the planner

should simply evaluate the definition formula. In terms of a declarative semantics,

the fluent should take on the value true iff the definition formula holds, which can

easily be achieved by translating each fluent definition statement into a TAL do-

main constraint. Given that the primary fluents on which the definition depends

already have definite values, this is guaranteed to provide a unique value to each

instance of the defined fluent at any point in time.

Definition 6.2.5 (Translation of Fluent Definition Statements)
Fluent definition statements are translated into L(FL) as follows:

• Trans([t] f (v1, . . . , vn) : φ) = Trans(∀t, v1, . . . , vn[[t] f (v1, . . . , vn)↔ φ])

• Trans([t] f (v1, . . . , vn) : ω) = Trans(∀t, v1, . . . , vn[[t] f (v1, . . . , vn) =̂ ω]) �

Example 6.2.5 (Gripper Domain, continued)
The fluent definition statement in Example 6.2.4 can be translated into the following

L(FL) domain constraint:

❞♦♠ ∀t, ball [Holds(t, ✐s✲❝❛rr✐❡❞(ball), true) ↔
∃gripper [Holds(t, ✐s✲❝❛rr✐❡❞✲✐♥(ball, gripper), true)]] �

Chapter 6. TALplanner 147

If fluent definition formulas may refer to defined fluents, but cannot refer back

to the fluent being defined (either directly or indirectly through the definitions of

other defined fluents), the value of a fluent instance can be found in the same man-

ner. In operational terms, evaluating such a fluent definition formula may lead to

further calls to the formula evaluator for nested defined fluents, but such calls will

eventually be grounded in the evaluation of primary fluents.

Difficulties only arise when a fluent definition formula may directly or indirectly

refer back to the fluent instance being defined. In terms of a declarative first-order

semantics, such recursive definitions may lead to unintended models. For example,

at first glance it might appear as if a recursively defined fluent could be used to

define the transitive closure of the ♦♥ fluent in the blocks world:

❞❡✜♥❡ [t] ❛❜♦✈❡(x, y) : [t] ♦♥(x, y) ∨ ∃z [♦♥(x, z) ∧ ❛❜♦✈❡(z, y)]

Unfortunately, it is well known that the transitive closure of a relation cannot be

defined in first order logic, which means that our first-order translation of this for-

mula, as defined above, cannot provide the intended definition of ❛❜♦✈❡.

This can of course be “solved” by using a more powerful semantics. The plan-

ning domain definition language PDDL2.2 (Edelkamp & Hoffmann, 2004) uses a

semantics where predicate definitions are viewed as derivation rules where a de-

fined predicate holds iff it can be derived using successive applications of these

derivation rules, with syntactic restrictions to ensure that the order in which rules

are applied is unimportant. This addition to PDDL2.1 was made explicitly in or-

der to permit the modeling of transitive closures. TLPlan (Bacchus & Kabanza,

2000) uses an operational semantics based on recursive formula evaluation which

also allows the modeling of transitive closures. For example, evaluating the flu-

ent ❛❜♦✈❡✭A✱B✮ leads to a recursive call to the formula evaluator for the formula

♦♥✭A✱B✮ ∨ ∃z ❬ ♦♥✭A✱z✮ ∧ ❛❜♦✈❡✭z✱B✮ ❪.

The TALplanner implementation also supports recursively defined fluents, with

a semantics identical to that of TLPlan. A new version of TAL-C will eventually be

developed based on a fixpoint base logic (Immerman, 1998) rather than a first-order

base logic, at which time there will also be a logic-based semantics for recursively

defined fluents.

6.2.4 The Beginning of Time: The Initial State

TALplanner currently requires complete information about all fluents in the ini-

tial state (time 0). This information is specified in terms of initialization statements

providing facts known to hold at time 0.

The planner is not limited to plain observations of facts, but permits the use

of arbitrary fluent formulas, including existential quantification and disjunction, as

long as these formulas define a unique initial state. Compared to planners that use a

simple list of initial facts together with a closed world assumption (CWA) where all

148 6.2. Representing Planning Problems in TAL

facts that are not explicitly listed are assumed to be false, this representation is less

compact but also more flexible. (For convenience, the TALplanner implementation

also allows a variation of CWA initialization.)

Definition 6.2.6 (Initialization Statement)
An initialization statement, labeled ✐♥✐t, is a single timepoint formula for time 0. �

Example 6.2.6 (Gripper Domain, continued)
The following example shows the specification of the initial state for the gripper

problem instance in Figure 5.1 on page 118. In this initial state, all grippers are free

and the robot and all balls are in room A.

✐♥✐t ∀gripper, ball [[0] ❢r❡❡(gripper) ∧ ¬✐s✲❝❛rr✐❡❞✲✐♥(ball, gripper)]

✐♥✐t ∀obj [[0] ❧♦❝(obj) =̂ roomA] �

Example 6.2.7 (Logistics Domain, continued)
The initial state of the logistics problem instance in Figure 5.3 on page 120 can be

defined as follows:

✐♥✐t [0] ❝✐t②✲♦❢(city1-1) =̂ city-1 ∧ ❝✐t②✲♦❢(city1-2) =̂ city-1 ∧ . . .

✐♥✐t [0] ∀thing, loc [❛t(thing, loc)↔
thing=package-1 ∧ loc=city2-1 ∨
thing=package-2 ∧ loc=city1-2 ∨ . . . ∨
thing=truck-1 ∧ loc=city1-1 ∨ . . . ∨
thing=plane-1 ∧ loc=city4-2]

✐♥✐t [0] ∀obj, vehicle [¬✐♥(obj, vehicle)] �

Example 6.2.8 (Blocks World, continued)
The initial state of the blocks world problem instance from Figure 5.2 on page 119

can be defined as follows:

✐♥✐t [0] ❤❛♥❞❡♠♣t② ∧ ∀block [¬❤♦❧❞✐♥❣(block)]

✐♥✐t [0] ∀block [❝❧❡❛r(block)↔ block=C ∨ block=E]

✐♥✐t [0] ∀block [♦♥t❛❜❧❡(block)↔ block=A ∨ block=D]

✐♥✐t [0] ∀block1, block2 [♦♥(block1, block2)↔
block1=C ∧ block2=B ∨ block1=B ∧ block2=A ∨ block1=E ∧ block2=D] �

6.2.5 What to Achieve: Goals

Classical state-based goals provide a set of constraints that should be satisfied by

the final state reached by executing a solution plan, when starting from a given

initial state.

In a sense, one could argue that classical goals are subsumed by control for-

mulas and therefore do not have to be supported explicitly in TALplanner. After

all, the intention behind control formulas is to provide the ability to place arbitrary

constraints on the state sequence generated by executing a solution plan. Such

Chapter 6. TALplanner 149

arbitrary constraints must clearly be able to model simple state goals. Instead of

requiring that the final state satisfy the formula φ, one could require that the state

sequence satisfy the formula ∃t.[t, ∞) φ – there should be a timepoint t after which

the state goal φ holds indefinitely.

Nevertheless, we still consider classical goals to be important enough to warrant

a separate statement class. This also enables control rules to refer to the classical

goals, providing additional pruning power (next section).

TALplanner supports classical state-based goals, which provide a set of con-

straints on the state that should be reached by executing a solution plan when

starting from a given initial state. Since TAL-C has no statement type for goals,

a new statement type has been added to L(ND)∗. This statement type allows goal

statements to be specified using a set of fluent formulas describing the set of goal

states.

Definition 6.2.7 (Goal Statement)
A goal statement inL(ND)∗, labeled ❣♦❛❧, is formed from elementary fluent formulas

having the form f =̂ ω using conjunction and universal quantification over values,

where f is a fluent term containing no nested fluent terms and ω is a value term

containing no fluent terms. As a shorthand notation, f =̂ true can also be written f .

�

The restriction to conjunctive goals with no nested fluent terms is mainly intended

to streamline the presentation of the L(FL) semantics for goal statements and goal

expressions (next section). Arbitrary disjunctive and existential goals are in fact

allowed in the implementation. A formal semantics for such goals, partly based

on formula rewriting during translation into L(FL), has been presented in earlier

publications (Kvarnström & Doherty, 2000b). A cleaner and more elegant (but still

equivalent) semantics is expected to be facilitated by future extensions to TAL and

L(FL).

It should be noted that although explicit negations are not allowed in goal state-

ments, negative goals of the form ¬❛t(object, location) can be written as ❛t(object,

location) =̂ false. Also note again that it will be possible to express more complex

goals, not limited to the final state, using control rules.

For a planner such as TALplanner, where operators can be executed over an ex-

tended period of time, there is a question of whether it is sufficient that the planner

visits a goal state at some point during the execution of an action or whether the

planner must achieve a persisting goal state at the end of the execution of the final

action in the plan. TALplanner currently requires a persisting goal state, though

this is not a fundamental property of the planner but a design decision that could

easily be changed. This leads to the following translation of goal statements:

• Trans(❣♦❛❧ φ) = Trans(∃t.[t, ∞) φ)

After applying an action, the planner tests whether the current narrative entails

the conjunction of all goal formulas. If it does, a persisting goal state has been

150 6.2. Representing Planning Problems in TAL

achieved (because φ must hold from some arbitrary timepoint t until infinity), and

the current plan candidate can be returned as a solution.

Example 6.2.9 (Logistics, Gripper and Blocks, continued)
The goal specification for the logistics problem instance in Figure 5.3 on page 120

can be written as follows:

❣♦❛❧ ❛t(package-1, city2-1) ∧ ❛t(package-2, city1-2)

❣♦❛❧ ❛t(package-3, city1-1) ∧ ❛t(package-4, city1-1)

❣♦❛❧ ❛t(package-5, city4-2) ∧ ❛t(package-6, city3-1)

The following goal specification for a gripper problem instance requires all balls to

be in room B and requires all grippers to be free, but does not constrain the location

of the robot. This is consistent with the goal for the problem instance in Figure 5.1

on page 118.

❣♦❛❧ ∀ball [❧♦❝(ball) =̂ roomB] ∧ ∀gripper [❢r❡❡(gripper)]

The following goal statements are one possible description of the blocks world goal

state described in Figure 5.2 on page 119.

❣♦❛❧ ❝❧❡❛r(B) ∧ ♦♥(B,E) ∧ ♦♥(E,C) ∧ ♦♥t❛❜❧❡(C)

❣♦❛❧ ❝❧❡❛r(A) ∧ ♦♥(A,D) ∧ ♦♥t❛❜❧❡(D) �

6.2.6 The Goal Modality: Querying the Goal

TLPlan control rules use a goal modality to test whether or not the goal of the

current problem instance requires a certain formula to hold: If γ is the conjunction

of all goal formulas, then the formula ❣♦❛❧(φ) holds iff γ |= φ, where φ may contain

variables bound outside the goal modality. This is key to the pruning power of

control rules, and a formula class similar to the goal modality must therefore be

provided by TALplanner.

As discussed in the previous section, this presentation is limited to conjunctive

goals. For such goals, the information present in the goal specification can be cap-

tured by a simple syntactic transformation during the translation from L(ND)∗ to

L(FL). The intention behind this transformation is to generate, for each original

fluent f : dom1 × · · · × domn → dom explicitly defined in a narrative, a function

❣♦❛❧ f : dom1 × · · · × domn × dom → {true, false} that can be queried to determine

whether or not the goal forces the fluent to take on a particular value in dom. For

example, the fluent ❧♦❝(obj) : location should give rise to a boolean function

❣♦❛❧❧♦❝(obj, location), where ❣♦❛❧❧♦❝(robby, roomA) holds if and only if the goal

entails that robby is in roomA. This function will then replace the use of a modal-

ity in TLPlan.

Because the goal modality is only concerned with the classical state-based goal,

which is constant and does not vary over time, a timeless ❣♦❛❧ f function would suf-

fice for our intentions. However, TAL does not permit the specification of timeless

Chapter 6. TALplanner 151

functions. Therefore, each ❣♦❛❧ f function is modeled as a fluent, called a goal flu-

ent. We arbitrarily choose to use the value of this fluent at time 0 to represent the

constraints placed on the corresponding original fluent by the goal.

The intention is that [0] ❣♦❛❧ f (x, ω) should be true if and only if the goal γ

entails that f (x) =̂ ω. This is achieved using TAL durational fluents, a somewhat

strange name for fluents whose instances automatically revert to a default value

when not explicitly forced to take on another value. Each goal fluent is durational

with default value false. What remains is to force an appropriate subset of all goal

fluents to be true, which can be achieved by generating for each goal statement a

new TAL dependency constraint where each goal expression f (x) =̂ ω is replaced

with I([0] ❣♦❛❧ f (x, ω) =̂ true).

Goal expressions can now be introduced as a new type of atomic formula in

L(ND)∗.

Definition 6.2.8 (Goal Expression)
A goal expression is an atomic formula having the form ❣♦❛❧(f =̂ ω), where f is a

fluent term and ω is a value term, neither of which contains any occurrences of the

value function. �

Goal expressions are translated as follows:

• Trans(❣♦❛❧(f (x) =̂ ω)) = Trans([0] ❣♦❛❧ f (x, ω) =̂ true)

This notation can easily be extended to allow conjunctions, disjunctions, and quan-

tification within the scope of the ❣♦❛❧ macro by observing the following equiva-

lences, which hold for conjunctive goals:

• ❣♦❛❧(φ ∧ ψ) ≡ ❣♦❛❧(φ) ∧ ❣♦❛❧(ψ)

• ❣♦❛❧(φ ∨ ψ) ≡ ❣♦❛❧(φ) ∨ ❣♦❛❧(ψ)

• ❣♦❛❧(∃x.φ) ≡ ∃x.❣♦❛❧(φ)

• ❣♦❛❧(∀x.φ) ≡ ∀x.❣♦❛❧(φ)

6.2.7 Doing Something: Operators and Actions

Since TAL-C is a logic for reasoning about action and change, it has a notion of

actions that can be used for modeling planning operators. Effects can be specified

using the R or I assignment operators, and conditional effects are easily modeled

as well.

The only downside of using TAL operator definitions is their flexibility, which

gives them a relative lack of structure. For example, there is no distinction be-

tween operator preconditions and conditions used for conditional effects, and the

fact that there can be many levels of quantification and many levels of effect con-

ditions means that operator analysis is unnecessarily complex. For simplicity, we

152 6.2. Representing Planning Problems in TAL

therefore introduce a more structured operator definition macro, which can be more

easily handled by the planner but which can still be translated into a plain L(FL)
action definition. This is in line with the standard TAL practice of preserving the

logical base language L(FL) and its semantics but providing different variations of

the high-level macro language L(ND) that are adapted to special tasks.

Before presenting a formal specification, we will provide an overview of the

new operator macro using a concrete example from the gripper domain: The ♠♦✈❡✲

t♦ operator, which moves the robot and all balls currently carried by the robot to

another room. This operator could be formalized in plain L(ND) as follows:

❛❝t✐♦♥ ♠♦✈❡✲t♦(room)

❛❝s✸ [s,t] ♠♦✈❡✲t♦(room)

[s] ❧♦❝(robby) 6=̂ room→
R([t] ❧♦❝(robby) =̂ room) ∧
∀ball [[s] ∃gripper [✐s✲❝❛rr✐❡❞✲✐♥(ball,gripper)]→ R([t] ❧♦❝(ball) =̂ room)] ∧
t=s+1

Note the constraint t❂s✰✶ which ensures that the action has unit duration. Using

the new operator macro in L(ND)∗, the same operator could instead be defined as

follows:

♦♣❡r❛t♦r ♠♦✈❡✲t♦(room) ✿❛t s

✿❞✉r❛t✐♦♥ 1

✿♣r❡❝♦♥❞ [s] ❧♦❝(robby) 6=̂ room

✿❝♦♥t❡①t

✿❡✛❡❝ts [s+1] ❧♦❝(robby) := room

✿❝♦♥t❡①t

✿❢♦r❛❧❧ ball

✿❝♦♥❞✐t✐♦♥ [s] ∃gripper [✐s✲❝❛rr✐❡❞✲✐♥(ball, gripper)]

✿❡✛❡❝ts [s+1] ❧♦❝(ball) := room

This operator specification encapsulates information about a specific operator type. It

specifies the name and the formal arguments of the operator, including a temporal

variable which serves as a formal invocation timepoint. It also contains a dura-

tion specification, required for actions with extended duration, and a precondition

which must only refer to the state where the operator is invoked. Finally, there must

be a complete specification of all (possibly quantified and/or conditional) effects of

the operator. This is provided in terms of one or more context specifications, each of

which contains one or more effect specifications.

Definition 6.2.9 (Operator Specification; Invocation Timepoint Function)
An operator specification2 in L(ND)∗ is a labeled statement having the following

form, where ♦ is an operator name, v1 through vn are distinct value variables serv-

ing as formal parameters, the invocation timepoint s is a temporal variable, the

2Redefined in Definition 7.2.1 on page 197 for concurrency.

Chapter 6. TALplanner 153

duration specification τ is a temporal term, the precondition φ is a single timepoint

formula for s, and c1 through cm are context specifications for the invocation time-

point s (as defined below).

• ♦♣❡r❛t♦r ♦(v1, . . . , vn) ✿❛t s ✿❞✉r❛t✐♦♥ τ ✿♣r❡❝♦♥❞ φ

✿❝♦♥t❡①t c1 . . . ✿❝♦♥t❡①t cm

For brevity, the formal invocation time variable for ♦ as specified by the ✿❛t clause

will sometimes be denoted by ✐♥✈(o).

Omitting the precondition specification (✿♣r❡❝♦♥❞ φ) is equivalent to specifying

✿♣r❡❝♦♥❞ true. Omitting the duration specification is equivalent to specifying ✿❞✉r❛✲

t✐♦♥ ✶. For actions with only one context specification, the ✿❝♦♥t❡①t keyword can be

omitted. �

Notation: Operators are often denoted by o. In a narrative with n operator defin-

itions, operators may be denoted by oi where the superscript index identifies the

operator type (0 ≤ i < n). In a plan containing m action instances, operators may

be denoted by oj where the subscript index indentifies the index of the operator

within the plan (0 ≤ j < m). Consequently, the operator oi
j is an operator of type i

occurring as the j:th action in a plan. Operator arguments are denoted by ω where

arbitrary value terms are allowed and by c in concrete plans where only constant

value arguments are allowed. Overlines (c) indicate implicit sequences of argu-

ments.

An operator specification can contain a number of context specifications, each of

which encapsulates a set of conditional quantified effects.

Definition 6.2.10 (Context Specification)
A context specification3 for the invocation timepoint s has the following form, where

v1 through vn are distinct value variables, φ is a single timepoint formula for s, and

e1 through em are effect expressions for s (as defined below):

• ✿❢♦r❛❧❧ v1, . . . , vn ✿❝♦♥❞✐t✐♦♥ φ ✿❡✛❡❝ts e1, . . . , em

If quantification is not required, the quantifier section (✿❢♦r❛❧❧ v1, . . . , vn) can be omit-

ted. If no context condition is required, the condition section (✿❝♦♥❞✐t✐♦♥ φ) can be

omitted; this is equivalent to specifying ✿❝♦♥❞✐t✐♦♥ true. �

An effect expression specifies a single effect taking place at a single timepoint or

during an interval. Interval effects are mainly useful in concurrent domains, where

more than one operator instance may affect a fluent at any given time, and are

interpreted as forcing a fluent to take on a certain value at all timepoints during

the specified interval. If the temporal interval is empty or negative (τ′ < τ below),

the fluent will not be affected at all. This is useful in certain special cases; see

Section 7.2.3 on page 200 for an example.

3Redefined in Definition 7.3.4 on page 202 for resources.

154 6.2. Representing Planning Problems in TAL

Definition 6.2.11 (Effect Expression)
An effect expression for the invocation timepoint s has one of the following forms,

where τ and τ′ are temporal terms, f is a single timepoint fluent term for s, and ω

is a single timepoint value term for s:

• ❬s + τ❪ f ✿❂ ω

• ❬s + τ✱s + τ′❪ f ✿❂ ω �

Correctness of Operator Specifications

In addition to the syntactical structure specified above, operator definitions must

satisfy a small number of additional temporal constraints. Operator durations must

be strictly positive, and operator specifications where action effects may take place

in or before the invocation state, or after the specified action duration, are not valid.

More formally, given an operator with duration δ, and an effect ❬s + τ❪ f ✿❂ ω or

❬s + τ✱s + τ′❪ f ✿❂ ω, it must be the case that δ > 0, τ > 0, τ ≤ δ and τ′ ≤ δ.

Verifying this aspect of operator specifications in advance can be complicated,

since both action durations and effect timepoints may depend on the invocation

state and cannot be evaluated without access to the specific goal narrative to which

an action instance is added. The current implementation verifies correctness for

each action added to a plan, ensuring that no invalid plans are generated even if

invalid operator specifications are provided as input to the planner.

Action Applicability

It must be possible to determine whether or not an operator instance is applicable

in a given goal narrative, during a given temporal interval, with a given set of pa-

rameters. In order for a specific instance of an operator to be applicable, the corre-

sponding precondition must be satisfied, the specified duration must correspond to

the duration of the interval where the action should be executed, and those condi-

tional or unconditional effects that actually take place should not contradict either

each other or effects from other actions already present in the narrative.

Definition 6.2.12 (Applicable Action)
Let o(x) be an operator with formal arguments x, invocation timepoint s, precondi-

tion φ and duration δ. Then, the action o(c) is applicable over the temporal interval

[τ, τ′] in a goal narrative N iff the following conditions hold:

• Trans+(N) |= Trans(φ[s 7→ τ, x 7→ c])

• Trans+(N) |= Trans(τ′ − τ = δ[s 7→ τ, x 7→ c])

• Trans+(N ∪ {[τ, τ′] o(c)}) 6|= false �

Chapter 6. TALplanner 155

The precondition and the duration constraints are easily checked by evaluating

them in the invocation state. Conditional and unconditional effects can simply be

applied by adding the new operator instance (action occurrence) to the existing goal

narrative – if they are contradictory, the resulting narrative will be inconsistent.

Note that because the planner will need to construct an explicit state-based model

of the goal narrative, consistency checking is essentially free.

Note the difference in intention between the applicability criteria specified in this

section and the correctness criteria in the previous section: An action that does not

satisfy applicability criteria is still a valid action, though it cannot be applied in the

given context. An action that does not satisfy correctness criteria is always invalid,

even if this only occurs in specific contexts.

Context-Dependent Durations in TAL

It should be possible for the duration of each operator to be dependent on the spe-

cific arguments with which it is invoked as well as on the current state of the world.

For example, the time required to drive between two locations might depend on the

distance between these locations. This could be modeled using an integer-valued

fluent ❞✐st❛♥❝❡(location, location) whose value is interpreted as a duration, ex-

cept that in the current version of TAL-C the ❞✐st❛♥❝❡ fluent cannot be used where a

temporal term is expected, because the value sorts Vi are considered to be distinct

from the temporal sort T .

This is a minor technical issue which can be fixed by a simple change to the

current order-sorted type structure of TAL-C, for example by allowing fluents to

take values from a finite subsort of the temporal sort. For now, operators with

context-dependent duration are supported in TALplanner through a conversion

function ♠❛❦❡t✐♠❡() defined through semantic attachment, converting values in a

numeric value sort Vi to timepoints in the temporal sort T . This function can also

be used in effect specifications to specify the timepoints at which effects take place.

An example of the use of ♠❛❦❡t✐♠❡() is shown in the concurrent logistics domain in

Section 7.1.1.

Comparison with PDDL

In recent versions of the commonly used domain definition language PDDL (Fox &

Long, 2003; Edelkamp & Hoffmann, 2004), operator durations can be modeled but

effects can only take place at the start or the end of a durative action. Like Smith

(2003) we argue that allowing effects to take place at arbitrary timepoints permits

many processes to be modeled as single operators and that this is in fact a natural

way of modeling certain types of processes that cannot be stopped once initiated.

The alternative workaround, using multiple operator types with artificial precon-

ditions and effects that ensure the entire chain of required operators is executed in

156 6.2. Representing Planning Problems in TAL

proper order, leads to unnecessary complexity and obscures the true planning do-

main. TALplanner effect specifications therefore contain a timepoint or an interval

of time where an effect should take place, specified as an offset from the operator

invocation timepoint.

Another conceptual difference between the TAL semantics and the PDDL semantics

relates to the interpretation of timing specifications for action effects. The authors of

PDDL2.1 argue that the instantaneous effects present in PDDL2.1 action definitions

are in fact only abstractions of a true model where effects take place over intervals

of time. Therefore, if an action causes a logical condition φ to become true at time τ,

this condition is considered a “moving target” and one cannot immediately apply

another action that depends on φ at the same time τ – though one can apply it at

τ + ǫ for an arbitrary ǫ > 0.

Though we do recognize the difficulties involved in providing a crisp and well-

defined logical model of a real world domain where exact action timings can never

be determined in advance, we believe the PDDL2.1 semantics only adresses a very

narrow philosophical aspect of this problem, adding unnecessary complexity for

no real gain. Because fluent values are only considered to be undetermined at a

single instant of time, an effect modifying a fluent f at (for example) time 4 still

allows the previous value of f to be used at time 3.999999 and allows the newly

assigned value to be used at time 4.000001. Therefore, the fact that the value of f is

undetermined at time 4 is only relevant for our model of the real world if the true

effect did indeed materialize exactly at time 4 – and the difficulty or impossibility

of determining this timepoint in advance was the only reason for introducing the

“moving target” concept in the first place. If the effect instead materialized at time

4.02, the PDDL semantics allowed another action to rely on the new value too early.

If it materialized at time 3.78, the PDDL semantics introduced an unnecessary de-

lay.

A more complete treatment of this issue would involve allowing actions to have

incompletely specified durations, where driving between two locations might take

between 3.12 and 4.27 units of time, and allowing actions to specify intervals of

time where fluents are partly or completely undefined up to a specific point in time

where an effect is guaranteed to have materialized. The use of intervals rather than

instants where fluents are undefined leads to a true increase in expressive power,

and is directly supported by TAL though not yet implemented in TALplanner.

Translation into L(FL)

The definition of the Trans translation function can be extended as follows in order

to translate operator specifications (labeled ♦♣❡r❛t♦r), context specifications, and

effect specifications into TAL-C action schemas (labeled ❛❝s). Note that Trans❝♦♥
and Trans❡✛ generate L(ND) formulas that are eventually translated into L(FL) by

Trans♦♣.

Chapter 6. TALplanner 157

• Trans(♦♣❡r❛t♦r ♦(v1, . . . , vn) ✿❛t s ✿❞✉r❛t✐♦♥ δ ✿♣r❡❝♦♥❞ φ

✿❝♦♥t❡①t c1 . . . ✿❝♦♥t❡①t cm) =
∀s, s′, v1, . . . , vn.

Occurs(s, s′, ♦(v1, . . . , vn))→ Trans(φ→
∧m

i=1 Trans❝♦♥(s, ci))

• Trans❝♦♥(s, ✿❢♦r❛❧❧ v1, . . . , vn ✿❝♦♥❞✐t✐♦♥ φ ✿❡✛❡❝ts ψ1, . . . , ψm) =
∀v1, . . . , vn[φ→

∧m
i=1 Trans❡✛(s, ψi)]

• Trans❡✛(s, [s + τ, s + τ′] f := ω) = I([s + τ, s + τ′] f =̂ ω)

• Trans❡✛(s, [s + τ] f := ω) = I([s + τ] f =̂ ω)

Example Operator Definitions

The following examples show operator definitions from the logistics domain and

the gripper domain. Further examples, making use of variable action durations as

well as other features of TALplanner operator descriptions, can be found in Chap-

ter 7 and in Chapter 9.

Example 6.2.10 (Logistics Domain, continued)
In the logistics domain, packages can be loaded into trucks or airplanes and can

naturally also be unloaded. Trucks can drive between arbitrary locations within a

single city, and planes can fly between airports. This is usually modeled using a

total of six operators, with different operators for different types of vehicles. For

example, there are usually two operators for loading packages into vehicles:

♦♣❡r❛t♦r ❧♦❛❞✲tr✉❝❦(obj, truck, loc) ✿❛t s

✿♣r❡❝♦♥❞ [s] ❛t(obj, loc) ∧ ❛t(truck, loc)

✿❡✛❡❝ts [s+1] ❛t(obj, loc) := false, [s+1] ✐♥(obj, truck) := true

♦♣❡r❛t♦r ❧♦❛❞✲♣❧❛♥❡(obj, plane, loc) ✿❛t s

✿♣r❡❝♦♥❞ [s] ❛t(obj, loc) ∧ ❛t(plane, loc)

✿❡✛❡❝ts [s+1] ❛t(obj, loc) := false, [s+1] ✐♥(obj, plane) := true

Given a sufficiently flexible type system this is not necessary. TALplanner uses the

order-sorted type system of TAL, and both truck and airplane have been modeled

as subtypes of vehicle, allowing a single ❧♦❛❞ operator to be used:

♦♣❡r❛t♦r ❧♦❛❞(obj, vehicle, loc) ✿❛t s

✿♣r❡❝♦♥❞ [s] ❛t(obj, loc) ∧ ❛t(vehicle, loc)

✿❡✛❡❝ts [s+1] ❛t(obj, loc) := false, [s+1] ✐♥(obj, vehicle) := true

Similarly, a single ✉♥❧♦❛❞ operator can be used for both types of vehicles. The tasks

of driving and flying are sufficiently different to merit separate operator definitions,

though, because a truck can drive between arbitrary locations but only within a

single city, while an airplane can move between different cities but can only visit

locations that are airports.

158 6.2. Representing Planning Problems in TAL

♦♣❡r❛t♦r ✉♥❧♦❛❞(obj, vehicle, loc) ✿❛t s

✿♣r❡❝♦♥❞ [s] ✐♥(obj, vehicle) ∧ ❛t(vehicle, loc)

✿❡✛❡❝ts [s+1] ✐♥(obj, vehicle) := false, [s+1] ❛t(obj, loc) := true

♦♣❡r❛t♦r ❞r✐✈❡(truck, loc1, loc2) ✿❛t s

✿♣r❡❝♦♥❞ [s] ❛t(truck, loc1) ∧ ❝✐t②✲♦❢(loc1) =̂ ❝✐t②✲♦❢(loc2) ∧ loc1 6= loc2

✿❡✛❡❝ts [s+1] ❛t(truck, loc1) := false, [s+1] ❛t(truck, loc2) := true

♦♣❡r❛t♦r ✢②(plane, airport1, airport2) ✿❛t s

✿♣r❡❝♦♥❞ [s] ❛t(plane, airport1) ∧ airport1 6= airport2

✿❡✛❡❝ts [s+1] ❛t(plane, airport1) := false, [s+1] ❛t(plane, airport2) := true

Note that we use the traditional definitions of the ✐♥ and ❛t predicates, where objects

that are currently inside a vehicle are not considered to be at a location. �

Example 6.2.11 (Gripper Domain, continued)
Three operators are available to the robot in the gripper domain. The robot can

pick up a ball in any free gripper, as long as the ball is in the same location and

the robot is not already carrying it. It can always drop a ball that it is carrying.

Finally, it can move to another room, which changes not only the location of the

robot but also the location of any ball that it is currently carrying, demonstrating

the use of quantified conditional effects.. As in the logistics domain, there is no map

modeling connections between rooms. Instead, the robot is able to move directly

from any room to any other room.

♦♣❡r❛t♦r ♣✐❝❦(ball, gripper) ✿❛t s

✿♣r❡❝♦♥❞ [s] ❧♦❝(ball) =̂ ❧♦❝(robby) ∧ ❢r❡❡(gripper) ∧
¬∃gripper’ [✐s✲❝❛rr✐❡❞✲✐♥(ball, gripper’)]

✿❡✛❡❝ts [s+1] ✐s✲❝❛rr✐❡❞✲✐♥(ball, gripper) := true,

[s+1] ❢r❡❡(gripper) := false

♦♣❡r❛t♦r ❞r♦♣(ball, gripper) ✿❛t s

✿♣r❡❝♦♥❞ [s] ✐s✲❝❛rr✐❡❞✲✐♥(ball, gripper)

✿❡✛❡❝ts [s+1] ✐s✲❝❛rr✐❡❞✲✐♥(ball, gripper) := false,

[s+1] ❢r❡❡(gripper) := true

♦♣❡r❛t♦r ♠♦✈❡✲t♦(room) ✿❛t s

✿♣r❡❝♦♥❞ [s] ❧♦❝(robby) 6=̂ room

✿❝♦♥t❡①t

✿❡✛❡❝ts [s+1] ❧♦❝(robby) := room

✿❝♦♥t❡①t ✿❢♦r❛❧❧ ball ✿❝♦♥❞✐t✐♦♥ [s] ∃gripper [✐s✲❝❛rr✐❡❞✲✐♥(ball, gripper)]

✿❡✛❡❝ts [s+1] ❧♦❝(ball) := room �

6.2.8 Combining Actions into Plans

A plan is an executable set or sequence of actions, and a plan which also entails the

goal and all control rules is called a solution or a solution plan.

Chapter 6. TALplanner 159

Due to the use of actions with non-unit duration in TALplanner, even purely

sequential plans must contain timing information. This information will consist

of an exact numeric execution interval for each action in the plan, and therefore it

seems reasonable to reuse the standard TAL concept of action occurrences for this

purpose rather than introducing new planning-specific structures.

An action occurrence has the form [τ, τ′] o(ω), denoting the invocation of the

operator o with the arguments ω between times τ and τ′. TAL actions must occur

over non-empty intervals of time, implying that τ < τ′. A concrete example for the

logistics domain would be [0, 1] ❧♦❛❞(package-5, truck-1, city1-1).

Since action occurrences include explicit timing information, there is strictly

speaking no need to provide additional structure in order to maintain proper order-

ing and timing relations: Plans can be viewed simply as sets of action occurrences,

without loss of information. Despite this, it is sometimes useful to represent se-

quential plans as sequences or tuples rather than as sets, given that the TALplanner

search procedure always adds one action at a time. These two representations will

be used interchangeably.

Definition 6.2.13 (Sequential Plan)
A sequential plan for a goal narrative N is a tuple of ground fluent-free action oc-

currences with the following constraints. First, the empty tuple is a sequential plan

for N . Second, given a sequential plan p = 〈[τ1, τ′1] o1(c1), . . . , [τn, τ′n] on(cn)〉 for

N , its successors are exactly those sequences adding one new action occurrence

[τn+1, τ′n+1] on+1(cn+1) satisfying the following constraints:

1. Let N ′ = N ∪ {[τ1, τ′1] o1(c1), . . . , [τn, τ′n] on(cn)} be the original goal narra-

tive N combined with the existing plan. Then, the new action on+1(cn+1)
must be applicable over the interval [τn+1, τ′n+1] in N ′. This implies that its

preconditions are satisfied, that its effects are not internally inconsistent and

do not contradict the effects of the operator instances already present in the

sequence, and that the duration τ′n+1 − τn+1 is consistent with the duration

given in the operator specification.

2. The first action starts at time 0: τ1 = 0.

3. Each action occurrence follows the preceding action occurrence with no gaps:

For all 1 < k ≤ n, τk = τ′k−1. �

Definition 6.2.14 (Sequential Solution)
A sequential solution4 for a goal narrative N is a sequential plan p for N such that

Trans+(N ∪ p) |= Trans(N❣♦❛❧), where Trans+ is the narrative translation procedure

for L(ND)∗ as defined in Section 6.2.10. �

4Redefined in Definition 6.4.2 on page 168 to add support for control rules.

160 6.2. Representing Planning Problems in TAL

6.2.9 Domains and Problem Instances

A TAL narrative has traditionally been specified as a single structure containing

what the planning community would view as two separate structures: A domain

definition and a problem instance definition. The implementation of TALplanner

has an extended parser which allows the domain definition and the problem in-

stance definition to be specified separately. Though this has some effect on the

efficiency of the planner, allowing it to do more extensive pre-processing on the

domain definition before being given a sequence of problem instances to solve, this

should mainly be considered an implementation detail. For the purposes of this

thesis, the information specified to the planner will usually be considered to con-

sist of a single goal narrative.

6.2.10 The Extended Language L(ND)∗

Most of the planning-related language extensions to TAL-C have now been intro-

duced, including new statement classes for operator definitions, goal statements,

and definitions for defined fluents. Two additional statement classes remain to be

presented: TAL-based control rules with explicit time, labeled ❝♦♥tr♦❧, and con-

trol rules using tense operators (introduced as macros in L(ND)∗), labeled t❝♦♥tr♦❧.

These statement classes will be examined in the following sections, together with

a more extensive discussion of the properties of control rules and how they are

used in TALplanner. Before that, it is time for an overview of the new language

and a revision of the TAL-C translation procedure and circumscription policy from

Section 2.4.2.

The following definition provides an overview of the statement classes used in

the planning-specific TAL macro language L(ND)∗.

Definition 6.2.15 (Narrative Components in L(ND)∗)
A narrative in L(ND)∗ consists of the following statement classes.

• Operator specification statements, labeled ♦♣❡r❛t♦r (Definition 6.2.9).

• Fluent definition statements, labeled ❞❡✜♥❡ (Definition 6.2.4).

• Initialization statements, labeled ✐♥✐t (Definition 6.2.6).

• Action occurrence statements, labeled ♦❝❝. As in plain L(ND), an action

occurrence statement is an occurrence formula [τ, τ′] Ψ where τ and τ′ are

variable-free temporal terms and Ψ is a variable-free action term.

• Goal statements, labeled ❣♦❛❧ (Definition 6.2.7).

• TAL control statements, labeled ❝♦♥tr♦❧ (Definition 6.4.1 on page 167).

• Tense control statements, labeled t❝♦♥tr♦❧ (Definition 6.5.2 on page 180). �

Chapter 6. TALplanner 161

Note that action occurrence statements must not be present in the initial goal nar-

rative specified as input to the planner. They are added incrementally as a plan is

being built. Also note that the definition above does not include statements related

to the vocabulary of a planning domain: Value domains, objects, and features.

Translation. We identify two separate aspects of translating L(ND)∗ narratives.

The Trans translation function is responsible for translating a single unstructured

formula into L(FL), while the narrative translation procedure discussed in Sec-

tion 2.4.2, denoted by Trans+, is responsible for translating a complete structured

narrative consisting of a number of labeled statements belonging to a predefined

set of statement classes. This separation is necessary due to the use of filtered cir-

cumscription, where the Occlude and Occurs predicates should be circumscribed

relative to only a subset of the statement classes used in L(ND)∗.
As new macros have been added to the new language L(ND)∗, the Trans func-

tion has been extended incrementally. The following list summarizes the extensions

to the translation function.

• Trans([t] f (v1, . . . , vn) : φ) = Trans(∀t, v1, . . . , vn[[t] f (v1, . . . , vn)↔ φ])

• Trans([t] f (v1, . . . , vn) : ω) = Trans(∀t, v1, . . . , vn[[t] f (v1, . . . , vn) =̂ ω])

• Trans(❣♦❛❧ φ) = Trans(∃t.[t, ∞) φ), for goal statements φ

• Trans(❣♦❛❧(f (x) =̂ v)) = Trans([0] ❣♦❛❧ f (x, v) =̂ true)

• Trans(♦♣❡r❛t♦r ♦(v1, . . . , vn) ✿❛t s ✿❞✉r❛t✐♦♥ δ ✿♣r❡❝♦♥❞ φ

✿❝♦♥t❡①t c1 . . . ✿❝♦♥t❡①t cm) =
∀s, s′, v1, . . . , vn.

Occurs(s, s′, ♦(v1, . . . , vn))→ Trans(φ→
∧m

i=1 Trans❝♦♥(s, ci)).

• Trans❝♦♥(s, ✿❢♦r❛❧❧ v1, . . . , vn ✿❝♦♥❞✐t✐♦♥ φ ✿❡✛❡❝ts ψ1, . . . , ψm) =
∀v1, . . . , vn[φ→

∧m
i=1 Trans❡✛(s, ψi)]

• Trans❡✛(s, [s + τ, s + τ′] f := ω) = I([s + τ, s + τ′] f =̂ ω)

• Trans❡✛(s, [s + τ] f := ω) = I([s + τ] f =̂ ω)

What remains is to extend the narrative translation procedure for the new state-

ment classes. To do this, we also add three new L(FL) statement classes for control

formulas, tense control formulas and goals, using the same labels as in L(ND)∗.
Though this may appear to be in conflict with our desire to keep the base logic

L(FL) unchanged, the addition of new statement classes is in fact a very minor

modification that keeps the underlying structure and circumscription policy intact.

162 6.2. Representing Planning Problems in TAL

In the following,

• N denotes the collection of narrative statements contained in a goal narrative

in L(ND)∗.

• N♣❡r denotes the set of implicitly specified persistence statements in N char-

acterizing the behavior of persistent and durational fluents, where defined

fluents are assumed to be dynamic (neither persistent nor durational), fluents

representing the goal state are durational as specified in Section 6.2.6, and all

other fluents are assumed to be persistent. Γ♣❡r = Trans(N♣❡r) denotes the

corresponding translation into L(FL).

• N✐♥✐t denotes the set of initialization statements inN characterizing the initial

state, and Γ♦❜s = Trans(N✐♥✐t) the corresponding translation into observation

statements in L(FL).

• N♦❝❝ denotes the set of action occurrence statements inN , for a goal narrative

where the planning algorithm has already added a set of action occurrences,

and Γ♦❝❝ = Trans(N♦❝❝) the corresponding translation into L(FL).

• N♦♣ denotes the set of operator definition statements in N , and Γ❛❝s = Trans

(N♦♣) the corresponding translation into action type specifications in L(FL).

• N❝♦♥tr♦❧ denotes the set of TAL-based control formulas in N , and Γ❝♦♥tr♦❧ =
Trans(N❝♦♥tr♦❧) the corresponding translation into static formulas in L(FL).

• Nt❝♦♥tr♦❧ denotes the set of tense control formulas in N , and Γt❝♦♥tr♦❧ = Trans

(Nt❝♦♥tr♦❧) the corresponding translation into static formulas in L(FL).

• N❞❡✜♥❡ denotes the set of fluent definition statements in N , and Γ❞♦♠❝ =
Trans(N❞❡✜♥❡) the corresponding translation into domain constraints inL(FL).

• N❣♦❛❧ denotes the set of goal statements in N , and Γ❣♦❛❧ = Trans(N❣♦❛❧) the

corresponding translation into static formulas in L(FL).

• N❞❡♣❝ denotes the set of dependency constraints providing values for goal flu-

ents as defined in Section 6.2.6, and Γ❞❡♣❝ = Trans(N❞❡♣❝) the corresponding

translation into dependency constraints in L(FL).

• Γ❢♥❞ denotes the set of foundational axioms in L(FL), which contains unique

names axioms, unique values axioms, etc.

• Γt✐♠❡ denotes the set of axioms representing the temporal base structure.

Since the timepoints in TAL-C use the natural numbers structure, we use the

Peano axioms without multiplication.

Chapter 6. TALplanner 163

The Occlude predicate is circumscribed relative to the action definitions in Γ❛❝s and

the dependency constraints in Γ❞❡♣❝ with all other predicates fixed, and Occurs is

circumscribed relative to the action occurrence formulas in Γ♦❝❝ with all other pred-

icates fixed. Due to structural constraints on L(ND) statements, quantifier elimina-

tion techniques can then be used to translate the two second-order circumscriptive

theories into logically equivalent first-order theories (Doherty et al., 1998; Doherty,

1996), denoted by Circ(Γ❛❝s ∧ Γ❞❡♣❝; Occlude) and Circ(Γ♦❝❝; Occurs), respectively.

The two resulting theories are combined and filtered with theL(FL) translations

of the persistence statements in Γ♣❡r (forcing persistent and durational fluents to

adhere to the persistence or default value assumptions), the domain constraints

in Γ❞♦♠❝, and the observations and timing constraints in Γ♦❜s, yielding the theory

Γ′ = Γ♣❡r ∧ Γ♦❜s ∧ Γ❞♦♠❝ ∧ Circ(Γ♦❝❝; Occurs) ∧ Circ(Γ❞❡♣❝ ∧ Γ❛❝s; Occlude). Adding

the L(FL) foundational axioms in Γ❢♥❞ then yields the theory ∆ = Γ′ ∧ Γ❢♥❞.

The theory ∆ is still a first-order theory, but lacks one important component:

There is no formal characterization of the linear discrete temporal structure used by

TAL. There are two alternatives: One can use an interpreted theory for the temporal

structure, or an axiomatization can be added in the shape of a second-order theory

Γt✐♠❡ corresponding to the Peano axioms without multiplication.

In the remainder of the thesis, Trans+(N) will denote the result of translating

the goal narrative N into L(FL) and applying this filtered circumscription policy.

The L(ND)∗ formula γ is preferentially entailed by the L(ND)∗ goal narrative N
iff Trans+(N) |= Trans(γ).

Note that whereas most statement types in TAL provide information about what

is definitely the case in a general domain or in a particular problem instance, goals

and control formulas are statements about the desired state of the world. There-

fore, though goals and control formulas are part of a translated narrative, they

are not used when determining what is entailed by this narrative – obviously, that

would allow the planner to immediately conclude that the goal is satisfied. In other

words, these formulas are present in the translation in the shape of Γ❝♦♥tr♦❧, Γt❝♦♥tr♦❧

and Γ❣♦❛❧, but they are not part of Trans+(N). TALplanner uses the translated for-

mulas during the planning phase, testing whether or not they are entailed by the

Trans+(N ∪ p), where p is a set of action occurrences representing a plan.

Notation. We will say that a set of action occurrences p entails a formula φ iff

Trans+(N ∪ p) |= Trans(φ), where the narrative N is often to be understood from

the context.

6.3 The Basic TALplanner Algorithm

The TALplanner algorithm is based on the use of a forward-chaining search proce-

dure, where the search tree is usually traversed using depth first search. Although

this procedure would be extremely inefficient without the addition of search con-

trol knowledge, it is still a complete planning algorithm, due to the use of cycle

164 6.3. The Basic TALplanner Algorithm

checking together with the restriction to finite domains where only a finite number

of world states are possible.

The definition of depth first search is quite trivial. Nevertheless, we will now

present a version of the TALplanner depth first search procedure. This will serve

as a concrete basis for several definitions as well as an extensible skeleton to which

control rule checking will eventually be added. Explanations follow after this defi-

nition.

Definition 6.3.1 (TALplanner Without Control)
Input: A goal narrative N .

Output: A plan narrative which entails the goal N❣♦❛❧.

1 procedure ❚❆▲♣❧❛♥♥❡r✲✇✐t❤♦✉t✲❝♦♥tr♦❧(N)
2 γ←

∧
N❣♦❛❧ Conjunction of all goal statements

3 ♥♦❞❡← 〈0, 〈〉〉 〈next invocation time, plan〉

4 ❖♣❡♥← 〈node〉 Stack (depth first search)

5 while ❖♣❡♥ 6= 〈〉 do
6 〈τ, p〉 ← pop(❖♣❡♥) Current plan candidate

7 N ′′ ← N ∪ p Complete goal narrative with plan

8 if Trans+(N ′′) |= false then backtrack Consistency check (def. 6.2.12)

9 if s❡q✉❡♥t✐❛❧✲❝②❝❧❡✲❝❤❡❝❦(N ′′, τ) then backtrack (defined below)

10 if Trans+(N ′′) |= Trans(γ) then Goal entailed

11 return N ′′

12 else Not a solution, but check children

13 for all actions A = [τ, τ′] oi(c) applicable over [τ, τ′] in N ′′ do
14 push 〈τ′, 〈p; A〉〉 onto ❖♣❡♥

15 fail �

The goal narrative provided as input to TALplanner encapsulates both a planning

domain definition and a problem instance specification. The TALplanner algorithm

begins by extracting the goal statements from this goal narrative and generating an

initial search node, which contains the end time of the last action in the plan, which

is also the time when the next new action should be invoked given that sequential

plans are being generated (0 in the initial node), and the current plan candidate (the

empty tuple). The initial search node is pushed onto a stack in order to maintain a

depth first search order.

As long as the stack is not empty, a search node 〈τ, p〉 is popped from the stack.

Adding the current plan candidate p to the original goal narrative N yields a nar-

rative N ′′ which may or may not be a solution to the current planning problem.5

The planner must then test whether the plan has inconsistent effects, leading to

an inconsistent narrative. Note again that since the planner must build an explicit

model of the state sequence generated by the current plan, inconsistency checking

is essentially free. TALplanner also tests whether the current plan has a state cy-

cle (see also the detailed description under “cycle checking” below). If the plan is

5An intermediate narrative called N ′ will be added in the next version of the algorithm (Defini-

tion 6.4.4 on page 170).

Chapter 6. TALplanner 165

door: closed
loc: outside

door: open
loc: outside

door: open
loc: inside

door: closed
loc: inside

door: open
loc: inside

Initial State enterHouse openDoor

Figure 6.2: Cycle Checking: Not Inside Actions

inconsistent or leads to a state cycle, it must be discarded, and the planner back-

tracks, retrieving another search node from the stack. Otherwise, the plan is either

a solution or a valid inner node whose children should be examined. The plan

is a solution if and only if the complete goal narrative N ′′ (translated into L(FL),

augmented with foundational axioms and circumscribed according to the TAL cir-

cumscription policy) entails the goal (translated into L(FL)). If this is not the case,

the planner should generate new search nodes for those actions that are applicable

at the next action invocation timepoint τ, pushing the new nodes onto the depth

first search stack.

Assuming the planner succeeds in finding a plan forN , the result is the L(ND)∗

narrative N ′′ = N ∪ p, where p is the set of action occurrences (plan steps) gener-

ated by the planning algorithm.

6.3.1 Cycle Checking

TALplanner allows the use of cycle checking to prune the search tree.

Let us first consider cycle checking in the context of sequential planning with

single-step operators, without control rules. In this setting, each action appended

to a plan gives rise to exactly one new state. If this state has already been visited at

an earlier point in the plan, there is a state cycle. It is clear that for any solution that

contains this cycle, there is a shorter solution where the cycle – or more correctly, the

subsequence of actions that caused the cycle – has been removed. Therefore, any

action giving rise to a new state cycle can be pruned, without loss of correctness.

Then consider operators with extended duration. If a new action turns out to

produce a final state that was previously temporarily achieved at an inner point

during the execution of an action, then the argument above is no longer valid. Fig-

ure 6.2 shows a domain where there is a temporally extended action for entering a

house, where as a first step the door is opened, after which the person steps inside

and the door is closed. There is also a separate action for opening the door with-

out stepping over the threshold. Executing these actions in sequence produces a

sequence of four new states to be added after the initial state. The third and fifth

states in the resulting state sequence are identical, but this does not mean that the

plan should be pruned. The state cycle does not correspond to a specific subse-

quence of actions, but to the tail of one action (after the timepoint when the state

166 6.3. The Basic TALplanner Algorithm

was temporarily achieved) followed by a subsequence of complete actions. Clearly

it is impossible to remove a partial action, and consequently the existence of a solu-

tion containing this cycle does not imply the existence of a shorter solution. There-

fore, the cycle checking algorithm below must only consider those states that are

generated at the end of an action occurrence.

Definition 6.3.2 (Sequential Cycle Checker)
Input: A goal narrative N and the end timepoint of the last action tmax.

Output: true if the plan should be discarded, false otherwise.

1 procedure s❡q✉❡♥t✐❛❧✲❝②❝❧❡✲❝❤❡❝❦(N , tmax)
2 for t from 0 to tmax − 1 do
3 if N contains no action occurrence [τ, τ′] o(ω) where τ < t < τ′ then
4 if the state at t is identical to the state at tmax then
5 return true
6 return false �

Cycle checking will be revisited for concurrent plans with resources in Section 7.4.

6.3.2 Implementation Notes

The algorithm in Definition 6.3.1 above is necessarily abstracted from the current

implementation of TALplanner. A few important implementation details also de-

serve a brief mention here.

Formula evaluation in state sequences. From the algorithm description above,

it may appear that TALplanner uses theorem proving techniques to test whether

a goal narrative entails a formula. This is not the case. Instead, an explicit state

sequence is generated, and formula evaluation techniques are used to test whether

or not a formula is entailed by the corresponding narrative. The state sequence is

generated incrementally as the search space is explored, with extensive structure

sharing and reuse in order to minimize memory usage.

First order representation. The fact that TALplanner always maintains a first or-

der representation, as opposed to generating ground instances of all actions and

fluents, has proven quite useful in many parts of the planner. For example, when

the planner tests which instances of an action are applicable in each state, it sepa-

rates preconditions into parts dependent on no arguments, the first argument, the

first two arguments, and so on. In the blocks world, the precondition of the ♣✐❝❦✉♣

operator includes the condition ❤❛♥❞❡♠♣t②. If ❤❛♥❞❡♠♣t② is false, the planner can

immediately conclude that no instance of ♣✐❝❦✉♣ is applicable. Similarly, the pre-

condition of st❛❝❦ requires that the destination is ❝❧❡❛r, allowing the planner to iter-

ate over only those destinations that satisfy the ❝❧❡❛r predicate when searching for

applicable instances of st❛❝❦. Suitable candidates for iteration are chosen automati-

cally, with automatic rearrangement of the order of operator arguments to improve

iteration performance in certain cases.

Chapter 6. TALplanner 167

Generating search nodes. The last two lines in the planning algorithm above ex-

amine all potentially applicable operator instances, explicitly generating one new

search node for each applicable instance. Given sufficiently strong search control

knowledge, only a few of these nodes may ever have to be visited, and the time

spent testing the applicability of the remaining nodes is wasted. Therefore, the

TALplanner implementation instead generates a single higher-level search node

from which concrete search nodes can be generated on demand for a single oper-

ator type at a time. It would also be possible to take this scheme one step further

and examine only a single operator instance at a time, but this would negate many

of the performance advantages of retaining a first-order operator representation as

discussed in the previous paragraph.

6.4 TALplanner with TAL-based Control Rules

Though TALplanner can emulate the tense control formulas and progression algo-

rithm used by TLPlan, most of our research has been focused on the use of pure

TAL-based control formulas. The first part of this section presents a semantics for

such formulas, specifying when a search node should or should not be pruned.

An important property of formula progression is the fact that it allows control

formulas to be checked incrementally as each search node adds one or more new

states to the state sequence of the parent node. The second part of this section

presents a method for pre-processing pure TAL-based control formulas, generating

a new set of constraints that can also be checked incrementally in each search node.

The method is effective for several formula classes that are commonly used for

domain-dependent control, and for these classes, formula evaluation performance

is approximately on par with formula progression performance with the benefit

of not requiring the storage of progressed control formulas in each search node,

thereby reducing memory requirements. More importantly, the method also pro-

vides the basic framework supporting the domain analysis techniques presented in

Chapter 8, which can provide dramatic performance improvements.

6.4.1 The Semantics of TAL Control Formulas

In order to provide a clean semantics for TAL-based control rules, each control rule

will be viewed as a temporally extended goal that must be satisfied (entailed) by

the final plan narrative generated by TALplanner. This is a difference from TLPlan,

where control rules are only viewed as goal guidance: In TLPlan, generated so-

lutions do not necessarily entail all control rules, due to the use of a progression

algorithm which is not strong enough to detect all types of control rule violations.6

6For example, TLPlan can easily generate plans given the control rule ✸ false, which cannot possibly

be satisfied by any plan.

168 6.4. TALplanner with TAL-based Control Rules

Definition 6.4.1 (TAL Control Rule, TAL Control Statement)
A TAL control rule is a static formula. A TAL control statement, labeled ❝♦♥tr♦❧, con-

sists of a TAL control rule. �

The definition of sequential solution (Section 6.2.8) must now be amended to ac-

count for the fact that solutions must entail all control rules.

Definition 6.4.2 (Sequential Solution)
A sequential solution for a goal narrative N is a sequential plan p for N such that

Trans+(N ∪ p) |= Trans(N❣♦❛❧ ∧N❝♦♥tr♦❧). �

As can be seen in the examples below, the implementation allows control rules to

be named as an aid to determining which control rules cause the planner to back-

track. Names have no semantics and are strictly speaking not part of the L(ND)∗

language.

Example 6.4.1 (Control Rules for the Logistics Domain)
The following three simple control rules for the logistics domain are inspired by

the control rules used by TLPlan. An object should only be loaded into a plane if

a plane is required to move it, that is, if the goal requires it to be at a location in

another city. If an object has been unloaded from a plane, it must be the case that

the object should be in the current city. If an object is at its destination, it should not

be moved.

❝♦♥tr♦❧ ✿♥❛♠❡ "♦♥❧②✲❧♦❛❞✲✐♥t♦✲♣❧❛♥❡✲✇❤❡♥✲♥❡❝❡ss❛r②"

∀t, obj, plane, loc.

[t] ¬✐♥(obj, plane) ∧ ❛t(obj, loc) ∧ [t+1] ✐♥(obj, plane)→
∃loc’ [❣♦❛❧(❛t(obj, loc’)) ∧ [t] ❝✐t②✲♦❢(loc) 6=̂ ❝✐t②✲♦❢(loc’)]

❝♦♥tr♦❧ ✿♥❛♠❡ "♦♥❧②✲✉♥❧♦❛❞✲❢r♦♠✲♣❧❛♥❡✲✇❤❡♥✲♥❡❝❡ss❛r②"

∀t, obj, plane, loc.

[t] ✐♥(obj, plane) ∧ ❛t(plane, loc) ∧ [t+1] ¬✐♥(obj, plane)→
∃loc’ [❣♦❛❧(❛t(obj, loc’)) ∧ [t] ❝✐t②✲♦❢(loc) =̂ ❝✐t②✲♦❢(loc’)]

❝♦♥tr♦❧ ✿♥❛♠❡ "♦❜❥❡❝ts✲r❡♠❛✐♥✲❛t✲❞❡st✐♥❛t✐♦♥s"

∀t, obj, loc.

[t] ❛t(obj, loc) ∧ ❣♦❛❧(❛t(obj, loc))→ [t+1] ❛t(obj, loc) �

Further control rule examples will be shown in Chapter 9.

6.4.2 Using Control Rules for Pruning

Any given node in a search tree, or any given plan, can be viewed from two quite

different perspectives.

Nodes as representatives for subtrees. In some cases, we are interested in what

is true in the current plan candidate and all potential descendants. This is the case

when testing whether or not a plan should be pruned from the search tree. Given a

Chapter 6. TALplanner 169

search node n corresponding to a plan p that satisfies all control formulas, it is not

necessarily the case that all ancestors of n (all prefixes of p) satisfy these formulas.

Conversely, a search node that violates a control formula may have descendants

that satisfy all control formulas. In order to preserve all valid solutions in the search

tree, the planner should therefore only prune a node if it can prove that the node

and all its descendants must violate a control rule, taking all possible extensions of

the current plan into consideration. This leads to the question of which facts that

are true in the current plan candidate will remain true in all descendants.

Consider the case when a search node 〈τ, p〉 has just been retrieved from the

search stack. The last action in p is executed during the interval [τ0, τ] for some τ0.

All children of this node will contain one new action invoked at time τ (the last two

lines in the planning algorithm). Due to the definition of TALplanner operators,

the effects of this action must take place strictly later than τ. The children of this

action, in turn, must be invoked at timepoints strictly later than τ and therefore

also cannot have effects at or before τ. Thus, the state sequence at [0, τ] is “fixed”,

in the sense that it must remain the same for the plan p and all descendants. If the

planner can prove that a control rule is violated using only facts about fluents in the

interval [0, τ], then the control rule will definitely remain violated in all descendant

search nodes.

The fact that fluent values are only known in the interval [0, τ] can also be de-

scribed in terms of lack of any knowledge about the “future” timepoints in (τ, ∞).

In TLPlan, this lack of knowledge is handled implicitly using a formula progres-

sion algorithm, which step by step evaluates control formulas through those states

that become fixed, stopping before the unfixed future is reached. TALplanner in-

stead uses an explicit declarative model of its incomplete knowledge, which can be

succinctly captured by occluding all fluents in the narrative after time τ, thereby

releasing them from the inertia assumption. This is done in the definition of N ′

below, using the ♦❝❝❧✉❞❡✲❛❧❧✲❛❢t❡r function. Because the planner no longer makes

the inertia assumption after τ, the only facts entailed by the narrative are those

facts that are explicitly specified in the narrative and those facts that are implied by

applying inertia in [0, τ].
Explicitly modeling incomplete knowledge will be particularly useful in the

concurrent version of TALplanner. If the latest action occurrence in a plan takes

place at [τ0, τ], the sequential planner can immediately assume complete knowl-

edge of fluent values at all timepoints up to τ, because no new actions can be added

earlier than τ. The concurrent planner, on the other hand, can still add new actions

as early as τ0. It will still have complete knowledge up to τ0, but only partial knowl-

edge about later states. The fact that this partial knowledge is correctly modeled

and can be taken advantage of is essential to the efficiency of the concurrent plan-

ner.

Definition 6.4.3 (♦❝❝❧✉❞❡✲❛❧❧✲❛❢t❡r)
By ♦❝❝❧✉❞❡✲❛❧❧✲❛❢t❡r(N , τ) we will denote the finite collection of narrative statements

{❞❡♣ X((τ, ∞) f) | f is a fluent in N} occluding all fluents in the narrative N . �

170 6.4. TALplanner with TAL-based Control Rules

Nodes as plan candidates. In some cases, we are interested in what is true in the

current plan candidate, under the assumption that no further changes will ever

be made. This is the case when testing whether or not a plan entails the goal of

the current planning problem instance: If it does, then it will be returned without

further modification. The information available in this plan is then equivalent to

that available in the original goal narrative N together with the current plan p,

translated into L(FL) using the Trans+ translation procedure which also performs

circumscription and adds the required TAL foundational axioms. One vital prop-

erty of this translation is that the inertia (persistence) assumption can be applied at

all timepoints, allowing the planner to infer a specific value for any fluent at any

arbitrary point in time. This variation of the goal narrative is denoted byN ′′ below.

Given this background, we can now extend the TALplanner algorithm by intro-

ducing control knowledge. Lines that are modified from the previous version are

marked with a hollow triangle (✄). New lines are marked with a filled triangle (◮).

Definition 6.4.4 (TALplanner With Naive Control)
Input: A goal narrative N .

Output: A plan narrative entailing the goalN❣♦❛❧ and the control formulasN❝♦♥tr♦❧.

1 procedure ❚❆▲♣❧❛♥♥❡r✲♥❛✐✈❡✲❝♦♥tr♦❧(N)
2 γ←

∧
N❣♦❛❧ Conjunction of all goal statements

◮3 φ←
∧
N❝♦♥tr♦❧ Conjunction of all TAL control rules

4 ♥♦❞❡← 〈0, 〈〉〉 〈next invocation time, plan〉

5 ❖♣❡♥← 〈node〉 Stack (depth first search)

6 while ❖♣❡♥ 6= 〈〉 do
7 〈τ, p〉 ← pop(❖♣❡♥) Current plan candidate

◮8 N ′ ← N ∪ p ∪ ♦❝❝❧✉❞❡✲❛❧❧✲❛❢t❡r(N , τ) No knowledge about future

◮9 if Trans+(N ′) |= ¬Trans(φ) then backtrack Control violated

10 N ′′ ← N ∪ p Narrative with complete knowledge

11 if Trans+(N ′′) |= false then backtrack Consistency check (def. 6.2.12)

12 if s❡q✉❡♥t✐❛❧✲❝②❝❧❡✲❝❤❡❝❦(N ′′, τ) then backtrack
✄13 if Trans+(N ′′) |= Trans(γ ∧ φ) then Goal and control entailed

14 return N ′′

15 else Not a solution, but check children

16 for all actions A = [τ, τ′] oi(c) applicable over [τ, τ′] in N ′ do
17 push 〈τ′, 〈p; A〉〉 onto ❖♣❡♥

18 fail �

Compared to the TALplanner algorithm without control, this algorithm introduces

a new narrative version N ′, constructed by occluding all fluents after time τ, the

end of the last action in the plan. This provides the planner with a correct view

of those facts that are true not only in the current plan but also in all descendants.

This narrative is used for testing whether there is an inconsistency as well as when

checking for state cycles, as in the previous version of the algorithm. It is also used

Chapter 6. TALplanner 171

to test whether control rules are violated in this plan and all extensions to the plan,

in which case the planner must backtrack. When testing whether a plan should

be accepted as a solution, though, complete knowledge about the future should

be assumed. As in the previous algorithm, this is done done using the narrative

variationN ′′, which does not add occlusion for all fluents and therefore retains the

inertia assumption for all fluents after the end of the last action in the plan.

For intermediate search nodes, the planner only tests whether the negation of

a control formula is entailed by a plan. The opposite case, where the control for-

mula itself is entailed by an intermediate search node and could have been removed

from the narrative to avoid re-evaluation in descendant nodes, is quite uncommon:

Almost all control formulas refer to conditions that must hold throughout the exe-

cution of a plan, and such properties are unlikely to be proven to hold when only

a prefix of the final solution is being examined. Therefore, the planner only tests

whether control formulas φ are entailed when it appears that a solution may have

been found, that is, after verifying that the goal statements γ are satisfied by the

current plan candidate.

6.4.3 Testing Control Formulas Incrementally

Though the naive TALplanner algorithm specified above satisfies the desired se-

mantics for TAL-based control rules, it does so quite inefficiently: It re-evaluates all

control formulas in each search node, failing to make use of the fact that adding a

new action to a plan gives rise to one or more new states but leaves a large prefix of

the state sequence intact. For better performance, control formulas should instead

be evaluated in an incremental manner.

In TLPlan, this is achieved using a progression algorithm. Each time an action

is added to a plan, the modal control formula associated with the parent search

node is progressed through the new states generated by this action, yielding a new

control formula to be used as a label for the newly generated search node. If the pro-

gression algorithm returns false, the planner can immediately backtrack, knowing

that the formula is also violated in all descendant nodes.

This method is suitable for a number of logics that use future tense operators,

and is reasonably efficient in that it ensures that fluents do not need to be evaluated

in newly generated states more than once. However, it is less suitable for TAL

formulas with explicit time, and it also has a secondary weakness in that fluents

occurring in a progressed formula need to be evaluated at least once in every newly

generated state. For TALplanner, we have instead constructed a new framework

for incrementally testing TAL-based control formulas, which will eventually lead to

new optimization opportunities where it may be shown in advance that a formula

cannot be violated by a given operator (Chapter 8). The formulas generated in this

framework are called pruning constraints.

172 6.4. TALplanner with TAL-based Control Rules

Definition 6.4.5 (Pruning Constraints)
A tuple of pruning constraints 〈✐♥✐t, ✐♥❝r, ✜♥❛❧〉 for a goal narrative N consists of the

following:

• One set of initial pruning constraints ✐♥✐t.

• For each operator type oi in N with formal invocation timepoint s and for-

mal arguments x1
i , . . . , x

mi
i a set ✐♥❝ri(s, x1

i , . . . , x
mi
i) of incremental pruning con-

straints where the variables indicated in parentheses may occur free in the

constraints.

• One set of final pruning constraints ✜♥❛❧. �

The final pruning constraints should generally be applied relative to the last end

timepoint of any action in a solution plan. A new temporal constant tmax is defined

for this purpose. The value of tmax cannot be determined until a final solution is

accepted. This constant will therefore only be given a value when a plan is con-

sidered as a solution candidate, under the assumption that no further changes will

be made. This can be achieved either by adding the corresponding observation

statement toN ′′, as done in the modified TALplanner algorithm in Definition 6.4.8

below, or by substituting tmax with its value before evaluating the formulas in ✜♥❛❧.

Definition 6.4.6 (Temporal Constant tmax)
Let p = 〈[τ1, τ′1] o1(c1), . . . , [τn, τ′n] on(cn)〉 be a sequential or concurrent solution.

Then, the temporal constant tmax should denote the maximum of all end timepoints

of actions in this plan: tmax = maxn
i=1 τ′i . �

Pruning constraints should completely replace control formulas, and the set of con-

straints generated from a control formula must therefore have identical pruning

power. This concept can be formalized as follows.

Definition 6.4.7 (Valid Pruning Constraints)
The pruning constraints 〈✐♥✐t, ✐♥❝r, ✜♥❛❧〉 are valid pruning constraints for a goal nar-

rative N with TAL-based control formulas N❝♦♥tr♦❧ iff for every plan candidate

p = 〈[τ1, τ′1] oi1
1 (c1), . . . , [τn, τ′n] oin

n (cn)〉 for N , the conjunction
∧
N❝♦♥tr♦❧ is equiv-

alent to ✐♥✐t ∧
∧n

k=1 ✐♥❝rik [✐♥✈(oik) 7→ τk, xik 7→ ck] ∧ ✜♥❛❧[tmax 7→ τ′n], where ✐♥✐t con-

tains the initial pruning constraints, each ✐♥❝rik [✐♥✈(oik) 7→ τk, xik 7→ ck] contains the

incremental pruning constraints for one operator instance in the plan instantiated

with the actual invocation timepoint and actual arguments, and ✜♥❛❧[tmax 7→ τ′n]
contains the final pruning constraints where tmax is instantiated according to its de-

finition. �

Initial pruning constraints are intended to be tested in the initial (empty) plan.

The incremental pruning constraints ✐♥❝ri are intended to be tested after an in-

stance of an operator of the corresponding type oi has been added to the plan, gen-

erating a new search node. Incremental pruning constraints should be tested at

Chapter 6. TALplanner 173

timepoints that are relative to the invocation time of a particular action in a plan,

and therefore the formal invocation timepoint ✐♥✈(oi) of the operator oi may occur

free in such constraints and will be substituted with the actual invocation time-

point during the planning process. Allowing different constraints to be generated

for each operator type will permit certain types of control formulas to be instanti-

ated only at the effect timepoints of a particular operator type, improving efficiency,

and also serves as a preparation for the domain analysis techniques to be presented

in Chapter 8, where knowledge extracted from each operator type will be used to

simplify incremental pruning constraints related to that specific operator type. This

is also where TALplanner will make use of the fact that the formal arguments xik of

the operator oi may occur free in ✐♥❝ri.

Final constraints are intended to be tested immediately before accepting a plan

as a solution to a planning problem instance.

Note again that initial pruning constraints will be tested in the initial plan, which

only contains information about the initial state. It would seem quite reasonable to

assume that they would only be allowed to refer to this state, but no such conditions

are present in the definitions above. On the contrary, the correctness condition for

initial pruning constraints refers to these constraints holding in the final plan, with-

out constraining what should hold in the initial plan, and similarly for incremental

and final pruning constraints.

This is intentional. Because TALplanner correctly models incomplete knowl-

edge about future states, limiting pruning constraints to referring to completely

defined states would be unnecessarily restrictive. If an initial pruning constraint

should happen to refer to the unknown future, the planner may be unable to de-

termine at the present stage of the planning process whether or not the constraint

will be guaranteed to hold in the solution plan, but this condition will always be

detected – the planner will “know that it does not know”. The formula will then

be added to a queue of conditions that must be tested again in the future, when the

relevant information may have become available.

Nevertheless, there is a cost associated with this procedure: Every time a for-

mula is added to a queue of conditions, a pointer to the formula itself, together

with a set of applicable variable bindings, must be stored in the search node to be

processed again at a later stage in the search process. Therefore, in the ideal case,

initial constraints should only evaluate fluents in the initial state, incremental con-

straints should only evaluate fluents in the new states generated by a newly added

action, and final constraints should only ensure that the final tail of states where no

more action takes place does not violate the original control formulas. This is the

case for almost all pruning constraints generated in practice. This is a significant

advantage over a progression framework which always, unconditionally, gener-

ates a new progressed control formula for each expanded search node – not only

in theory but also in practice. As will be seen in the benchmarks in Section 6.7,

the progression-based version of TALplanner requires considerably more memory

174 6.4. TALplanner with TAL-based Control Rules

than the evaluation-based version, to the extent that problems that can be solved

easily with the latter planner may be unsolvable within reasonable memory limits

with the former one.

Due to the desire to keep control rules stateless as much as possible, we do not

anticipate being able to process all types of control formulas with optimal efficiency,

but as it turns out, the full power of control rules rarely has to be utilized in most

domains. Instead, almost all control rules tend to follow a fixed set of patterns that

fit very well into the current formula analysis framework (Section 6.4.4). Rules that

do not satisfy these patterns can still be treated in the same manner, though some-

what less efficiently. For example, if a control formula is placed in ✐♥✐t, leaving ✜♥❛❧

and all ✐♥❝ri empty, the new TALplanner algorithm below will behave identically to

the naive TALplanner algorithm from Definition 6.4.4 on page 170.

Adding support for incremental control formulas and condition queuing to the al-

gorithm from Definition 6.4.4 on page 170 yields the following modified algorithm:

Definition 6.4.8 (TALplanner with Incremental Control)
Input: A goal narrative N .

Output: A plan narrative entailing the goalN❣♦❛❧ and the control formulasN❝♦♥tr♦❧.

1 procedure ❚❆▲♣❧❛♥♥❡r✲✐♥❝r❡♠❡♥t❛❧✲❝♦♥tr♦❧(N)
2 γ←

∧
N❣♦❛❧ Conjunction of all goal statements

◮3 〈✐♥✐t, ✐♥❝r, ✜♥❛❧〉 ← ❣❡♥❡r❛t❡✲♣r✉♥✐♥❣✲❝♦♥str❛✐♥ts(N❝♦♥tr♦❧)
✄4 ♥♦❞❡← 〈✐♥✐t, 0, 〈〉〉 〈condition queue, next invocation time, plan〉

5 ❖♣❡♥← 〈node〉 Stack (depth first search)

6 while ❖♣❡♥ 6= 〈〉 do
✄7 〈C, τ, p〉 ← pop(❖♣❡♥) Current plan candidate

8 N ′ ← N ∪ p ∪ ♦❝❝❧✉❞❡✲❛❧❧✲❛❢t❡r(N , τ) No knowledge about future

◮9 for all constraints α in C do Check queued constraints

◮10 if Trans+(N ′) |= Trans(α) then C ← C \ {α} Remove satisfied constraint

◮11 elsif Trans+(N ′) |= Trans(¬α) then backtrack Constraint violated

✄12 N ′′ ← N ∪ p ∪ {tmax = τ} Narrative with complete knowledge

13 if Trans+(N ′′) |= false then backtrack Consistency check (def. 6.2.12)

14 if s❡q✉❡♥t✐❛❧✲❝②❝❧❡✲❝❤❡❝❦(N ′′, τ) then backtrack
✄15 if Trans+(N ′′) |= Trans(γ ∧ C ∧ ✜♥❛❧) then Goal + queued + final ctrl satisfied

16 return N ′′

17 else Not a solution, but check children

18 for all actions A = [τ, τ′] oi(c) applicable over [τ, τ′] in N ′ do
◮19 C′ ← C ∪ ✐♥❝ri[τ, c] Old conditions + incr control

✄20 push 〈C′, τ′, 〈p; A〉〉 onto ❖♣❡♥

21 fail �

Compared to the previous version of the TALplanner algorithm, this algorithm is

modified by splitting control rules into initial, incremental and final pruning con-

Chapter 6. TALplanner 175

straints. The procedure that generates these pruning constraints will be described

later in this chapter.

Whereas control rules usually refer to the complete state sequence generated

by a final solution and are therefore unlikely to be entailed by intermediate search

nodes, initial and incremental pruning constraints are intended to refer to limited

intervals of time. Each such constraint that is applicable to a plan should there-

fore eventually be proven true – usually before the final solution is found but not

necessarily immediately after the constraint has been posted. Consequently, the

planner must keep track of which constraints have already been proven to hold in

a plan and all its descendants and which constraints must be tested again when

more information is available. This is done by extending the search state with a

set of constraints that are not yet known to hold (the condition queue C). This set

is initialized using the initial pruning constraints, and each time a new action is

added, the corresponding set of incremental pruning constraints are added. Note

that incremental pruning constraints are instantiated using the actual arguments

and invocation timepoint of the action. Only free variables occurring in the con-

straints are substituted. After adding these constraints, all constraints in C – new

and previously queued – are tested. If a constraint is satisfied, it can be discarded.

If its negation is entailed, the planner must backtrack. If the status of the constraint

cannot be determined, the constraint remains in the condition queue.

When a plan has passed the preliminary tests, the planner must test whether

it is also a solution. As before, this should be done using the goal narrative N ′′

where the planner assumes complete knowledge about the future. Compared to

the previous version of the algorithm, there is one minor difference: The tempo-

ral constant tmax is set to τ, the end timepoint of the last action in the plan. This

constant should only be referred to in final pruning constraints, and is intended to

allow such constraints to place conditions on the final infinite tail of identical states

that follows the last action in any finite plan.

Finally, if a plan is not a solution but does not appear to violate control rules, its

successors should be created and pushed onto the stack of open plan candidates.

This now also involves adding the incremental pruning constraints for each action

to the condition queue for the corresponding search node.

6.4.4 Generating Pruning Constraints

The original control rules specified by the domain designer should be automatically

analyzed in order to generate initial, incremental and final pruning constraints.

Below, three common control formula classes are considered in detail.

State Constraints

A state constraint is a control formula ∀t.φ(t) where φ does not refer to states at any

other time than t (that is, φ is a single timepoint formula for t).

176 6.4. TALplanner with TAL-based Control Rules

For such formulas, φ[t 7→ 0] is added to ✐♥✐t. For each operator type oi with

formal invocation timepoint ✐♥✈(oi) and for each conditional or unconditional effect

of this operator with temporal offset τ, the formula φ[t 7→ ✐♥✈(oi) + τ] is added to

✐♥❝ri. Nothing is added to ✜♥❛❧.

The state constraint is guaranteed to be tested in the initial state and at each

timepoint where fluent values may have changed, which is equivalent to testing

it at all timepoints. It is also guaranteed only to be tested at timepoints where the

planner has complete knowledge, since the effect timepoints where it is tested must

be within the execution interval of an action and no future effects may affect fluents

in this interval given the current assumption of sequential planning.

Lemma 6.4.9
Given a single state constraint ∀t.φ(t), the analysis procedure above produces a

valid set of pruning constraints 〈✐♥✐t, ✐♥❝r, ✜♥❛❧〉. �

Proof: We should prove that for any goal narrative N and plan candidate p =

〈[τ1, τ′1] oi1
1 (c1), . . . , [τn, τ′n] oin

n (cn)〉 for N , the original formula ∀t.φ(t) is equivalent

to ✐♥✐t ∧
∧n

k=1 ✐♥❝rik [s 7→ τk, xik 7→ ck] ∧ ✜♥❛❧[tmax 7→ τ′n], where ✐♥✐t, ✐♥❝r and ✜♥❛❧ are

the constraints generated by the procedure above.

Assume ∀t.φ(t) holds. Any formula having the form φ[t 7→ τ] for some tem-

poral term τ is an instantiation of φ at some specific point in time, and must also

hold, since φ holds at all timepoints. By the construction of ✐♥✐t, ✐♥❝r and ✜♥❛❧, all

conjuncts in ✐♥✐t ∧
∧n

k=1 ✐♥❝rik [s 7→ τk, xik 7→ ck] ∧ ✜♥❛❧[tmax 7→ τ′n] have this form, so

the conjunction also holds.

Assume ✐♥✐t ∧
∧n

k=1 ✐♥❝rik [s 7→ τk, xik 7→ ck] ∧ ✜♥❛❧[tmax 7→ τ′n] and prove that

∀t.φ(t) holds. Because the formula φ(t) is a single timepoint formula for t, its value

is only affected by the state at time t and by atemporal constants. Therefore, assum-

ing that all fluent values are identical at two timepoints τ and τ′, it must necessarily

be the case that φ(τ) holds iff φ(τ′) holds. Thus, the fact that φ(t) holds at all t can

be verified by testing φ(t) in all distinct states along the timeline. The state at time 0

is tested by the single constraint in ✐♥✐t. Due to the inertia assumption, primary flu-

ents can only change at timepoints where effects occur. Defined fluents at time t are

defined by a single timepoint formula for t and can therefore also only change at

timepoints where effects occur. Therefore, it is sufficient to test φ(t) at timepoints

where effects occur. The construction of ✐♥❝r guarantees that this happens.

Note that an interval effect for the interval [τ, τ′] only generates one instantiation

of the state constraint, at time τ. Only state transitions are relevant, and because

interval effects force a single fluent to take on the same value throughout the entire

interval, the only potential state transition caused by an interval effect is at the

beginning of the interval.

Chapter 6. TALplanner 177

Triggered State Transition Constraints

A triggered state transition constraint is a control formula ∀t.φ(t) where φ only refers

to states in [t, t + 1] and where φ written in disjunctive normal form includes the

two disjuncts [t] f =̂ ω and [t + 1] f =̂ ω′, where f is a fluent and ω and ω′ are

value terms that cannot take on the same value. This type of constraint is quite

common – all constraints in Example 6.4.1 on page 168 are of this type – and can

only be false if the fluent f changes values from t to t + 1.

For such formulas, nothing is added to ✐♥✐t. For each operator type oi with for-

mal invocation timepoint ✐♥✈(oi) and for each conditional or unconditional effect of

this operator with temporal offset τ, the formula φ[t 7→ ✐♥✈(oi) + τ − 1] is added

to ✐♥❝ri. Because τ is guaranteed to be at least 1, the temporal term ✐♥✈(oi) + τ − 1

is well-defined even with a restriction to non-negative time. Nothing is added to

✜♥❛❧.

Lemma 6.4.10
Given a single triggered state transition constraint ∀t.φ(t), the analysis procedure

above produces a valid set of pruning constraints 〈✐♥✐t, ✐♥❝r, ✜♥❛❧〉. �

Proof: We should prove that for any goal narrative N and plan candidate p =

〈[τ1, τ′1] oi1
1 (c1), . . . , [τn, τ′n] oin

n (cn)〉 for N , the original formula ∀t.φ(t) is equivalent

to ✐♥✐t ∧
∧n

k=1 ✐♥❝rik [s 7→ τk, xik 7→ ck] ∧ ✜♥❛❧[tmax 7→ τ′n], where ✐♥✐t, ✐♥❝r and ✜♥❛❧ are

the constraints generated by the procedure above.

Assume ∀t.φ(t) holds. Any formula having the form φ[t 7→ τ] for some τ is an

instantiation of φ at some specific point in time, and must also hold, since φ holds

at all timepoints. By the construction of ✐♥✐t, ✐♥❝r and ✜♥❛❧, all conjuncts in ✐♥✐t ∧
∧n

k=1 ✐♥❝rik [s 7→ τk, xik 7→ ck] ∧ ✜♥❛❧[tmax 7→ τ′n] have this form, so the conjunction

also holds.

Assume ✐♥✐t ∧
∧n

k=1 ✐♥❝rik [s 7→ τk, xik 7→ ck] ∧ ✜♥❛❧[tmax 7→ τ′n] and prove that

∀t.φ(t) holds. By the definition of this type of state transition constraint, φ(t) can

only be false if there is a change in the value of a specific fluent from time t− 1 to

time t. Due to the inertia assumption, primary fluents can only change at timepoints

where effects occur. Defined fluents at time t are defined by a single timepoint

formula for t and can therefore also only change at timepoints where effects occur.

Therefore, it is sufficient to test φ(t) at t = τ − 1 for each effect taking place at

time τ. The construction of ✐♥❝r guarantees that this happens.

Example 6.4.2 (Logistics Domain, continued)
The six operators of the standard logistics domain were defined in Example 6.2.10

on page 157. All operators share the constant duration 1 and use the formal invo-

cation timepoint ✐♥✈(oi) = s.

The three control rules for the logistics domain that were shown in Example 6.4.1

on page 168 are examples of triggered state transition constraints.

For ♦♥❧②✲❧♦❛❞✲✐♥t♦✲♣❧❛♥❡✲✇❤❡♥✲♥❡❝❡ss❛r②, the following formula is added to each ✐♥❝ri:

178 6.4. TALplanner with TAL-based Control Rules

∀obj, plane, loc.

[s] ¬✐♥(obj, plane) ∧ ❛t(obj, loc) ∧ [s+1] ✐♥(obj, plane)→
∃loc’ [❣♦❛❧(❛t(obj, loc’)) ∧ [s] ❝✐t②✲♦❢(loc) 6=̂ ❝✐t②✲♦❢(loc’)]

For ♦♥❧②✲✉♥❧♦❛❞✲❢r♦♠✲♣❧❛♥❡✲✇❤❡♥✲♥❡❝❡ss❛r②, the following formula is added to each

✐♥❝ri:

∀obj, plane, loc.

[s] ✐♥(obj, plane) ∧ ❛t(plane, loc) ∧ [s+1] ¬✐♥(obj, plane)→
∃loc’ [❣♦❛❧(❛t(obj, loc’)) ∧ [s] ❝✐t②✲♦❢(loc) =̂ ❝✐t②✲♦❢(loc’)]

For ♦❜❥❡❝ts✲r❡♠❛✐♥✲❛t✲❞❡st✐♥❛t✐♦♥s, the following formula is added to each ✐♥❝ri:

∀obj, loc.

[s] ❛t(obj, loc) ∧ ❣♦❛❧(❛t(obj, loc))→ [s+1] ❛t(obj, loc) �

State Transition Constraints

A state transition constraint is a control formula ∀t.φ(t) where φ only refers to states

in [t, t + 1]. For such formulas, φ[t 7→ 0] is added to ✐♥✐t. For each operator type oi

with formal invocation timepoint ✐♥✈(oi) and for each conditional or unconditional

effect of this operator with temporal offset τ, the formula φ[t 7→ ✐♥✈(oi) + τ] ∧
φ[t 7→ ✐♥✈(oi) + τ − 1] is added to ✐♥❝ri. Nothing is added to ✜♥❛❧.

Lemma 6.4.11
Given a single state transition constraint ∀t.φ(t), the analysis procedure above pro-

duces a valid set of pruning constraints 〈✐♥✐t, ✐♥❝r, ✜♥❛❧〉. �

Proof: We should prove that for any goal narrative N and plan candidate p =

〈[τ1, τ′1] oi1
1 (c1), . . . , [τn, τ′n] oin

n (cn)〉 for N , the original formula ∀t.φ(t) is equivalent

to ✐♥✐t ∧
∧n

k=1 ✐♥❝rik [s 7→ τk, xik 7→ ck] ∧ ✜♥❛❧[tmax 7→ τ′n], where ✐♥✐t, ✐♥❝r and ✜♥❛❧ are

the constraints generated by the procedure above.

Assume ∀t.φ(t) holds. Any formula having the form φ[t 7→ τ] for some τ is an

instantiation of φ at some specific point in time, and must also hold, since φ holds

at all timepoints. By the construction of ✐♥✐t, ✐♥❝r and ✜♥❛❧, all conjuncts in ✐♥✐t ∧
∧n

k=1 ✐♥❝rik [s 7→ τk, xik 7→ ck] ∧ ✜♥❛❧[tmax 7→ τ′n] have this form, so the conjunction

also holds.

Assume ✐♥✐t ∧
∧n

k=1 ✐♥❝rik [s 7→ τk, xik 7→ ck] ∧ ✜♥❛❧[tmax 7→ τ′n] and prove that

∀t.φ(t) holds. By the definition of state transition constraints, the formula φ(t) is

only affected by the states at times t and t + 1 and by atemporal constants. There-

fore, assuming that all fluent values at times τ and τ′ are identical, and that all

fluent values at times τ + 1 and τ′ + 1 are identical, it must necessarily be the case

that φ(τ) ≡ φ(τ′). Thus, the fact that φ(t) holds at all t can be verified by testing

φ(t) in all distinct successive state pairs [τ, τ + 1] along the timeline. The state pair

at time [0, 1] is tested by the single constraint in ✐♥✐t. Given that no fluents ever

change, this is the only distinct successive state pair. A change in fluent values at

Chapter 6. TALplanner 179

time τ gives rise to two potential new distinct successive state pairs at [τ − 1, τ]
and [τ, τ + 1]. Due to the inertia assumption, primary fluents can only change at

timepoints where effects occur. Defined fluents at time t are defined by a single

timepoint formula for t and can therefore also only change at timepoints where ef-

fects occur. Therefore, it is sufficient to test φ(t) at t = τ − 1 and t = τ for each

effect taking place at time τ. The construction of ✐♥❝r guarantees that this happens.

Additional Control Formula Classes

The class of state transition constraints can trivially be extended to formulas of

the form ∀t.φ(t), where φ only refers to states in [t, t + k] for some constant k, by

increasing the number of instantiations of the formula φ.

It is also possible to treat control formulas of the form ∀t.φ(t) where φ only

refers to states in [t, t + d] and d is a non-constant temporal term independent of t.

The formula d = 0 → φ[t 7→ 0] is added to ✐♥✐t. For each operator type oi with

duration δ, the formula ∀k.1 ≤ k ≤ δ → φ[t 7→ ✐♥✈(oi) + k − d] should be added

to ✐♥❝ri, but since ✐♥✈(oi) + k − d could be negative and TAL currently uses non-

negative time, the formula has to be rewritten as ∀k.1 ≤ k ≤ δ → (∀t.t + d =
✐♥✈(oi) + k → φ(t)). Finally, ∀k.1 ≤ k ≤ d → (∀t.t + d = tmax + k → φ(t)) is added

to ✜♥❛❧.

6.5 Tense Control Rules and Progression

In addition to supporting standard TAL control formulas as defined in the previous

section, the domain modeling language L(ND)∗ has also been extended with a set

of new tense macros emulating the modal tense operators used in TLPlan. Formu-

las written using the new tense macros can be used together with a modified pro-

gression algorithm. This was intended to improve the analysis of TALplanner per-

formance relative to TLPlan performance: If both TLPlan and TALplanner use tense

control formulas, most differences in performance should be due to differences in

lower level algorithms, while the performance difference between TALplanner us-

ing tense control formulas and TALplanner using TAL-based control formulas must

be due to the difference between using a progression algorithm or a formula evalu-

ation method as described in the previous section. Furthermore, while the formula

evaluation method seemed promising, there were some less common types of con-

trol formula that did not fit easily into the separation into initial, incremental and

final control, most notably those formulas using the “until” operator. Supporting

both types of control formula enables the user to choose the most suitable type for

the task at hand.

The tense operators that were added to L(ND)∗ were not adapted from LTL,

but from MITL (Metric Interval Temporal Logic, Alur, Feder, & Henzinger, 1991,

Alur & Henzinger, 1992), which was also used by Bacchus and Kabanza (1998) in

the context of planning for temporally extended goals. Like LTL, MITL supports

180 6.5. Tense Control Rules and Progression

the three temporal operators ❯ (until), ✸ (eventually), and ✷ (always), the main

difference being that the operators can be indexed with closed, open, or semi-open

temporal intervals. For example, it is possible to state that a formula must eventu-

ally become true within a certain interval. MITL was a better match for TALplanner

than LTL, given TALplanner’s support for operators with extended duration.

Though MITL does not support the © (next) operator, due to its use of dense

time, this operator can still be used in TALplanner which uses discrete time.

In previous publications, the operators added to L(ND)∗ were called “modal

operators”, and TALplanner control formulas using these operators have been de-

scribed as “modal control formulas”. This is directly misleading, since TAL is not a

modal logic. Since the operators are tense-based rather than based on explicit time,

we now call the operators “tense operators”, and control formulas written using

tense operators are called “tense formulas”, even though this is admittedly still not

a perfect name given that these terms are often used in modal tense logics.

Definition 6.5.1 (Tense Formula)
A tense formula in L(ND)∗ is one of the following:

• A temporal formula, value formula, or fluent formula (Section 2.3.3 on page 20).

• A goal expression (Section 6.2.6 on page 150).

• φ❯[τ,τ′] ψ, where φ and ψ are tense formulas and τ and τ′ are temporal terms.

• ✸[τ,τ′] φ, where φ is a tense formula and τ and τ′ are temporal terms.

• ✷[τ,τ′] φ, where φ is a tense formula and τ and τ′ are temporal terms.

• © φ, where φ is a tense formula.

• A combination of tense formulas using the standard logical connectives and

quantification over values. �

We will also use the shorthand notation φ❯ψ ≡ φ❯[0,∞] ψ, ✸ φ ≡ ✸[0,∞] φ, and

✷ φ ≡ ✷[0,∞] φ.

Definition 6.5.2 (Tense Control Statement)
A tense control statement in L(ND)∗, labeled t❝♦♥tr♦❧, consists of a tense formula.�

Note that while ordinary TAL formulas use absolute time, MITL formulas (and

therefore tense formulas) use relative time, where a formula only has a value rela-

tive to a “current state”. The meaning of a formula containing a temporal operator

is therefore dependent on the timepoint at which it is evaluated, as illustrated by

the following example.

Chapter 6. TALplanner 181

Example 6.5.1 (Relative and Absolute Time)
The formulas ∀t.[t]φ→ [t, t + 5] ψ and ✷(φ→ ✷[0,5] ψ) have the same meaning: At

any timepoint where φ holds, ψ must hold until five timepoints later. Notice the

difference in the specification of the temporal interval: Ordinary TAL uses absolute

time, where the starting timepoint t in the interval [t, t + 5] must be explicitly spec-

ified, while the interval [0, 5] specified in the tense macro is interpreted relative to

the time when φ was true.

The formula ∀t.[t]φ → [0, 5] ψ, on the other hand, means that for each time-

point t where φ holds, ψ must hold at the absolute interval [0, 5], even though this

may be before t. This formula could also be written (∃t.[t] φ)→ [0, 5] ψ. �

For this reason, reducing tense operators to L(FL) requires a temporal context. The

following translation function can be used to translate tense formulas into L(ND)∗

without tense operators and further into L(FL).

Definition 6.5.3 (Translation of Tense Formulas)
Let τ be a temporal term and γ be a tense control formula intended to be evalu-

ated at τ. Then, the following procedure returns an equivalent formula in L(ND)∗

without tense operators. In the following, Q denotes a quantifier and ⊗ denotes a

binary logical connective.

1 procedure ❚r❛♥s❚❡♥s❡(τ, γ)
2 if γ = Qx.φ then return Qx.❚r❛♥s❚❡♥s❡(τ, φ)
3 if γ = φ⊗ ψ then return ❚r❛♥s❚❡♥s❡(τ, φ)⊗ ❚r❛♥s❚❡♥s❡(τ, ψ)
4 if γ = ¬φ then return ¬❚r❛♥s❚❡♥s❡(τ, φ)
5 if γ = f (x) =̂ v then return [τ] γ

6 if γ contains no tense operator then return γ

7 if γ = φ❯[τ,τ′] ψ then return
∃t[τ + τ ≤ t∧ t ≤ τ + τ′ ∧

❚r❛♥s❚❡♥s❡(t, ψ) ∧ ∀t′[τ ≤ t′ ∧ t′ < t→ ❚r❛♥s❚❡♥s❡(t′, φ)]]
8 if γ = © φ then return ❚r❛♥s❚❡♥s❡(τ + 1, φ)
9 if γ = ✷[τ,τ′] ψ then return ∀t[τ + τ ≤ t∧ t ≤ τ + τ′ → ❚r❛♥s❚❡♥s❡(t, φ)]

10 if γ = ✸[τ,τ′] ψ then return ∃t[τ + τ ≤ t∧ t ≤ τ + τ′ ∧ ❚r❛♥s❚❡♥s❡(t, φ)]

The Trans translation function is extended for tense control formulas by defining

Trans(γ) = Trans(❚r❛♥s❚❡♥s❡(0, γ)). �

During the planning process, tense control formulas are not translated into L(FL).

Instead, they are progressed through states using the Pr♦❣r❡ss algorithm. This al-

gorithm is similar to the one used by Bacchus and Kabanza (1998) for progressing

formulas in a first-order version of MITL (metric interval temporal logic). How-

ever, there are some differences in the progression of the tense operators, since TAL

actions with duration can have internal state, with a sequence of state changes be-

tween the initiation state and the effect state.

182 6.5. Tense Control Rules and Progression

The progression algorithm below satisfies the following property. Let φ be a

tense formula, τ and τ′ two numeric timepoints such that τ < τ′, and N an

L(ND)∗ narrative. Then, φ will hold at τ in N iff Pr♦❣r❡ss(φ, τ, τ′,N) holds at

τ′ in N . More formally, Trans+(N) |= Trans(❚r❛♥s❚❡♥s❡(τ, φ)) iff Trans+(N) |=
Trans(❚r❛♥s❚❡♥s❡(τ′,Pr♦❣r❡ss(φ, τ, τ′,N))).

Definition 6.5.4 (Progression of Tense Formulas)
The following algorithm is used for progression of tense control formulas in TAL-

planner.

1 procedure Pr♦❣r❡ss(φ, τ, τ′,N)
2 if τ = τ′ return φ

3 if φ = f (x) =̂ v

4 if Trans+(N) |= Trans([τ] φ) return true else return false
5 if φ = ¬φ1 return ¬Pr♦❣r❡ss(φ1, τ, τ′,N)
6 if φ = φ1 ⊗ φ2 return Pr♦❣r❡ss(φ1, τ, τ′,N)⊗ Pr♦❣r❡ss(φ2, τ, τ′,N)
7 if φ = ∀x.φ ✴✴ ✇❤❡r❡ x ❜❡❧♦♥❣s t♦ t❤❡ ✜♥✐t❡ ❚❆▲ ✈❛❧✉❡ ❞♦♠❛✐♥ X

8 return
∧

c∈X Pr♦❣r❡ss(φ[x 7→ c], τ, τ′,N)
9 if φ = ∃x.φ ✴✴ ✇❤❡r❡ x ❜❡❧♦♥❣s t♦ t❤❡ ✜♥✐t❡ ❚❆▲ ✈❛❧✉❡ ❞♦♠❛✐♥ X

10 return
∨

c∈X Pr♦❣r❡ss(φ[x 7→ c], τ, τ′,N)
11 if φ contains no tense operator

12 if Trans+(N) |= Trans(φ) return true else return false
13 if φ = φ1 ❯[τ1,τ2]

φ2

14 if [τ1, τ2] < 0 return false
15 elsif 0 ∈ [τ1, τ2] return Pr♦❣r❡ss(φ2, τ, τ′,N) ∨
16 (Pr♦❣r❡ss(φ1, τ, τ′,N) ∧ Pr♦❣r❡ss(φ1 ❯[τ1−1,τ2−1] φ2, τ + 1, τ′,N))
17 else return Pr♦❣r❡ss(φ1, τ, τ′,N) ∧
18 Pr♦❣r❡ss(φ1 ❯[τ1−1,τ2−1] φ2, τ + 1, τ′,N)
19 if φ = ✸[τ1,τ2]

φ1

20 if [τ1, τ2] < 0 return false
21 elsif 0 ∈ [τ1, τ2] return Pr♦❣r❡ss(φ1, τ, τ′,N) ∨
22 Pr♦❣r❡ss(✸[τ1−1,τ2−1] φ1, τ + 1, τ′,N)
23 else return Pr♦❣r❡ss(✸[τ1−1,τ2−1] φ1, τ + 1, τ′,N)
24 if φ = ✷[τ1,τ2]

φ1

25 if [τ1, τ2] < 0 return true
26 elsif 0 ∈ [τ1, τ2] return Pr♦❣r❡ss(φ1, τ, τ′,N) ∧
27 Pr♦❣r❡ss(✷[τ1−1,τ2−1] φ1, τ + 1, τ′,N)
28 else return Pr♦❣r❡ss(✷[τ1−1,τ2−1] φ1, τ + 1, τ′,N)
29 if φ = © φ1

30 if τ + 1 = τ′ return φ1

31 else return Pr♦❣r❡ss(φ1, τ + 1, τ′,N)

The result of Pr♦❣r❡ss is simplified using the rules ¬false = true, (false ∧ α) =
(α∧ false) = false, (false∨ α) = (α∨ false) = α, ¬true = false, (true∧ α) =
(α ∧ true) = α, and (true∨ α) = (α ∨ true) = true. �

Chapter 6. TALplanner 183

Implementation note. For planning domains where actions have long durations,

there may be extended periods of time where no changes occur. Because TAL as-

sociates a state with each integer timepoint, this leads to extended sequences of

identical states. The TALplanner implementation uses a slightly modified progres-

sion algorithm which can progress some formulas through such sequences of iden-

tical states in a single step, while retaining the same results as the algorithm above

where the progression of ✷, ✸ and ❯ always proceeds one discrete timepoint at a

time.

6.5.1 The TALplanner Algorithm with Tense Control Rules

Adding support for tense control rules to TALplanner yields the following algo-

rithm, described below.

Definition 6.5.5 (TALplanner with Incremental and Tense Control)
Input: A goal narrative N .

Output: A plan narrative entailing the goalN❣♦❛❧ and the control formulasN❝♦♥tr♦❧.

1 procedure ❚❆▲♣❧❛♥♥❡r✲t❡♥s❡✲❝♦♥tr♦❧(N)
2 γ←

∧
N❣♦❛❧ Conjunction of all goal statements

◮3 µ←
∧
Nt❝♦♥tr♦❧ Conjunction of all tense control rules

4 〈✐♥✐t, ✐♥❝r, ✜♥❛❧〉 ← ❣❡♥❡r❛t❡✲♣r✉♥✐♥❣✲❝♦♥str❛✐♥ts(N❝♦♥tr♦❧)
✄5 ♥♦❞❡← 〈µ, ✐♥✐t,−1, 0, 〈〉〉 〈control, cond. queue, last inv. time, next inv. time, plan〉

6 ❖♣❡♥← 〈node〉 Stack (depth first search)

7 while ❖♣❡♥ 6= 〈〉 do
✄8 〈µ, C, τ0, τ, p〉 ← pop(❖♣❡♥) Current plan candidate

9 N ′ ← N ∪ p ∪ ♦❝❝❧✉❞❡✲❛❧❧✲❛❢t❡r(N , τ) No knowledge about future

10 for all constraints α in C do Check queued constraints

11 if Trans+(N ′) |= Trans(α) then C ← C \ {α} Remove satisfied constraint

12 elsif Trans+(N ′) |= Trans(¬α) then backtrack Constraint violated

◮13 µ+ ← Pr♦❣r❡ss(µ, τ0 + 1, τ + 1,N ′) Progress tense control

◮14 if µ+ = false then backtrack
15 N ′′ ← N ∪ p ∪ {tmax = τ} Narrative with complete knowledge

16 if Trans+(N ′′) |= false then backtrack Consistency check (def. 6.2.12)

17 if s❡q✉❡♥t✐❛❧✲❝②❝❧❡✲❝❤❡❝❦(N ′′, τ) then backtrack
18 if Trans+(N ′′) |= Trans(γ ∧ C ∧ ✜♥❛❧) then Goal + queued + final ctrl satisfied

19 return N ′′

20 else Not a solution, but check children

21 for all actions A = [τ, τ′] oi(c) applicable over [τ, τ′] in N ′ do
22 C′ ← C ∪ ✐♥❝ri[τ, c] Old conditions + incr control

✄23 push 〈µ+, C′, τ, τ′, 〈p; A〉〉 onto ❖♣❡♥

24 fail �

184 6.6. Completeness, Control and the Definition of Plans

Each search node is associated with a tense control formula µ, which may be the

constant true in the absence of tense control. In order to determine the temporal

interval over which the tense control formula should be progressed in each search

node, it is also necessary to include the last action invocation timepoint in the search

node. This timepoint is denoted by τ0 in the algorithm, while the next action invo-

cation timepoint (or equivalently, the end timepoint of the last action) is still de-

noted by τ.

Notice that the call to the progression algorithm specifies the temporal parame-

ters τ0 + 1 and τ + 1. This is interpreted as a request for a new formula µ+ that

should hold at τ + 1 iff the original formula µ holds at τ0 + 1, thereby causing a

progression through the semi-open temporal interval [τ0 + 1, τ + 1). Because dis-

crete integer time is used, this is equivalent to progression through all states in the

closed interval [τ0 + 1, τ], corresponding to the new fixed state or states generated

by the most recently added action in the current plan. If µ+ = false, the search

node should be pruned.

Notice that in the initial node, τ0 = −1 and τ = 0. This provides the correct

boundary condition for progression through the initial state: [τ0 + 1, τ] = [0, 0].

6.6 Completeness, Control and the Definition of Plans

A planner is complete iff it is guaranteed to return a solution for every problem in-

stance except those for which no solution exists. At the surface this concept appears

quite simple, but a deeper investigation of completeness reveals some subtleties

that are not necessarily apparent at first glance.

It is quite easy to fall into the trap of relying on a subconscious intuitive picture

of what it means that “no solution exists”, a picture that most likely involves what

is actually possible to do in a real world scenario. After all, if it is logically or physi-

cally impossible to achieve a certain set of goals, even a complete planner could not

be expected to come up with a solution! But this is not what was stated in the defi-

nition of completeness. In this definition, a “solution” is a formally defined concept

meaning approximately “plan that ensures the specified goals are satisfied”. This

leads us to “plan”, which is also a formally defined concept – a concept over which

we have a significant degree of control. In some cases, a planning algorithm can be

made complete or incomplete by the simple expedient of altering the definition of

“plan”, without stepping outside the bounds of what would on the surface appear

to be a reasonable definition.

Similarly, completeness is only defined relative to the set of domains that can

be modeled in the input language for a planner and relative to the aspects of those

domains that can be modeled. Altering the input language can restrict or expand

the set of planning domains and problem instances to which the planner can be

applied, again affecting the completeness of the planning algorithm.

TALplanner illustrates both of these points.

Chapter 6. TALplanner 185

Though TALplanner could in theory use any forward-chaining search algo-

rithm, all versions of the planner presented in this thesis use plain depth first

search, which is only complete if all branches are finite.

If plans were defined as arbitrary executable sequences of action occurrences,

the search tree would contain branches with infinitely many nodes, for two rea-

sons. First, in any given state there may be an applicable action whose effects are

reversible, leading back to the same state, where it must be possible to apply the

same action once again, ad infinitum. For example, picking up an item and im-

mediately putting it down must lead to a state where the item can once more be

picked up, put down, picked up, and so on, generating an infinitely long branch in

the search tree. Second, action occurrences in TALplanner are timed. Even though

there is a finite number of ground action instances, these action instances could

theoretically be applied at arbitrary delays from the previous action, generating

infinitely many children for every search node.

One potential solution to this problem can be found in changing the definition

of “plan”, stating that a plan is an executable sequence of action occurrences that

does not contain cycles or temporal gaps. These added constraints on valid plans

are sufficient to make TALplanner complete, even when depth first search is used.

But is this altered definition reasonable?

The first version of TALplanner presented in this chapter had no support for

control rules, searching aimlessly through the forward-chaining search tree for a

plan achieving the intended goals (Definition 6.3.1 on page 164). For this algo-

rithm, the new definition of “plan” should be completely non-controversial. After

all, there is definitely no good reason to generate plans with cycles when for any

cyclic solution there must necessarily be a corresponding shorter (and in most con-

ceivable circumstances better) acyclic solution. Temporal gaps in the execution of

a plan can also be forbidden, because for any solution containing a temporal gap

there must necessarily be a shorter solution without gaps generated by moving all

action occurrences as early as possible while still retaining the original action order.

Thus, changing the definition of “plan” and making a few minor adjustments to

the search tree is sufficient to make the planner complete.

The addition of control rules in Definition 6.4.4 on page 170 is a fundamental

change affecting the planner at more levels than is immediately apparent. In this

discussion, the most salient aspect of this change is the fact that unlike ordinary

state goals, which only constrain the final state achieved by a solution plan, control

rules can place arbitrary constraints on the entire state sequence generated by the

solution. This enables the construction of problem instances whose solutions must

contain temporal gaps and must contain state cycles – but our new definition of

“plan” would prevent such solutions from being explored. There are two different

ways of viewing this conflict.

First, we can view acyclicity and the lack of temporal gaps as simple optimiza-

tions that were merely introduced in order to avoid visiting parts of the search

space only containing redundant solutions. In this case, these optimizations are

186 6.7. Evaluation vs Progression: Initial Benchmark Tests

obviously invalidated by the introduction of control rules, and despite being in-

troduced to achieve completeness, they could in themselves be the cause of in-

completeness. In other words, because new aspects of a planning domain can be

modeled, the planner is now incomplete.

Second, acyclicity and the lack of temporal gaps can be viewed as essential fea-

tures of our concept of a plan. In this case, the ability to construct a control rule that

is only satisfied by plans with temporal gaps is seen as a trivial consequence of the

expressive power of control rules. After all, control rules also let us express logi-

cally impossible conditions such as “at some point in time, false should be true” or

conditions such as “all goals should be achieved at time 1” which may be physically

impossible to achieve for any given problem instance, and a planner should not be

seen as incomplete for not being able to construct plans satisfying these rules.

Thus, whether or not TALplanner is complete may be said to depend on the

reader’s concept of a plan.

6.7 Evaluation vs Progression: Initial Benchmark Tests

It is not immediately obvious whether evaluation-based or progression-based con-

trol rules would provide the best performance in TALplanner. Whereas control

based on progression has certain advantages in terms of guaranteeing that no part

of a control formula is evaluated twice in the same state, it also has the disadvan-

tage of requiring the construction of new tense control formulas for each search

node, which increases memory usage as well as the amount of time spent on mem-

ory management and object construction. Nevertheless, the time requirements for

the two methods ought to remain within a constant factor of each other, with no

difference in time complexity. This hypothesis was tested for an early version of

TALplanner using the standard logistics domain and blocks world.

We also compared TALplanner with tense control rules to TLPlan using the

same planning domains. Because the planners at this early stage used identical

search procedures and because identical control rules were used, the same plans

were generated by the two planners and any differences in performance must be

due to different lower-level algorithms and data structures. These results will not

be analyzed further in this chapter, but will serve to separate timing differences

caused by implementation issues from the performance impact of formula analysis

and optimization as described in Chapter 8.

Logistics. For the logistics domain, we tested 30 problem instances from the First

International Planning Competition (IPC-1998, McDermott, 1998). The results are

shown in Table 6.1. The Ops column shows the length of each solution. The Nodes

column contains the number of search nodes that were examined by TALplanner,

which in this early version was identical to the number of states that were created

by TLPlan. The remaining columns show times (in seconds) for TLPlan, TALplan-

Chapter 6. TALplanner 187

◆✉♠❜❡r ❖♣s ◆♦❞❡s ❚▲P❧❛♥ ❚❆▲♣❧❛♥♥❡r ❚❆▲♣❧❛♥♥❡r

t❡♥s❡ ❚❆▲

✶ ✷✻ ✺✽✻ ✵✳✹✷✶ ✵✳✶✾✵ ✵✳✶✻✵

✷ ✸✸ ✶✻✻✺ ✶✳✼✶✷ ✵✳✺✹✶ ✵✳✺✵✶

✸ ✺✺ ✹✽✵✾ ✶✾✳✸✾✽ ✷✳✾✸✹ ✸✳✺✵✺

✹ ✺✾ ✽✵✶✾ ✺✹✳✸✸✽ ✺✳✺✷✽ ✼✳✺✽✶

✺ ✷✷ ✹✾✹ ✵✳✸✶✵ ✵✳✷✽✶ ✵✳✷✺✵

✻ ✼✷ ✽✽✹✵ ✽✹✳✶✾✶ ✶✹✳✸✷✵ ✶✾✳✾✶✾

✼ ✸✹ ✷✻✺✷ ✺✳✺✻✽ ✶✳✶✵✶ ✶✳✵✸✷

✽ ✹✶ ✻✹✵✼ ✾✼✳✸✶✵ ✶✶✳✼✷✻ ✶✹✳✷✹✶

✾ ✽✺ ✶✻✸✵✽ ✷✶✽✳✻✹✹ ✶✺✳✶✵✷ ✷✹✳✹✵✺

✶✵ ✶✵✺ ✶✸✵✷✺ ✶✻✼✳✺✽✶ ✶✹✳✸✷✶ ✶✽✳✹✸✻

✶✶ ✸✶ ✷✷✺✵ ✺✳✶✻✼ ✵✳✾✻✶ ✵✳✽✼✷

✶✷ ✹✶ ✶✻✻✶✹ ✷✽✻✳✵✷✶ ✷✸✳✹✻✹ ✹✶✳✽✹✵

✶✸ ✻✼ ✷✸✺✹✽ ✶✵✼✸✳✷✻✸ ✸✺✳✵✼✶ ✺✵✳✼✺✸

✶✹ ✾✹ ✶✼✻✵✻ ✽✵✷✳✽✷✹ ✷✹✳✽✷✻ ✸✻✳✷✽✷

✶✺ ✾✹ ✺✵✹✽ ✷✹✳✻✼✺ ✸✳✶✺✹ ✸✳✶✸✺

✶✻ ✺✽ ✶✹✷✹✸ ✶✻✽✳✵✵✷ ✼✳✾✻✶ ✶✵✳✾✻✻

✶✼ ✹✺ ✼✶✾✻ ✾✵✳✹✻✵ ✺✳✷✼✽ ✻✳✽✺✵

✶✽ ✶✼✵ ✻✷✹✹✺ ✹✸✺✽✳✸✻✼ ✻✾✳✷✾✾ ✶✵✹✳✵✵✾

✶✾ ✶✺✸ ✹✻✽✽✹ ✷✻✽✺✳✵✷✶ ✸✺✳✽✼✷ ✺✼✳✶✶✷

✷✵ ✶✺✵ ✻✹✾✽✹ ✸✹✶✹✳✵✽✾ ✼✸✳✶✼✻ ✶✹✶✳✾✽✹

✷✶ ✶✵✹ ✺✶✽✺✼ ✷✶✵✷✳✻✹✸ ✺✵✳✾✼✹ ✾✺✳✺✾✼

✷✷ ✷✾✻ ✶✸✵✾✸✼ ✻✸✷✳✼✸✵ ✶✵✷✼✳✵✾✼

✷✸ ✶✶✺ ✾✼✹✹ ✶✶✻✳✼✾✽ ✽✳✷✸✷ ✾✳✾✺✹

✷✹ ✹✶ ✷✼✷✶✺ ✻✾✺✳✼✽✵ ✷✷✳✺✶✸ ✹✼✳✶✺✽

✷✺ ✶✾✵ ✶✸✸✶✸✼ ✶✶✼✷✹✳✾✶✵ ✸✶✽✳✹✷✼ ✻✽✵✳✹✷✽

✷✻ ✶✾✹ ✹✻✷✽✹ ✾✾✼✻✳✾✹✻ ✹✷✼✳✾✺✺ ✻✾✾✳✺✼✻

✷✼ ✶✹✾ ✼✺✾✵✼ ✶✹✾✾✹✳✺✺✶ ✷✻✺✳✹✶✶ ✹✻✸✳✼✸✼

✷✽ ✷✼✹ ✸✾✾✷✶✸ ✷✵✾✸✳✶✼✵ ✹✻✶✸✳✸✸✸

✷✾ ✸✸✵ ✶✸✷✸✸✶ ✻✵✽✼✹✳✽✸✹ ✸✺✸✳✼✸✾ ✺✹✺✳✽✹✺

✸✵ ✶✸✻ ✶✸✵✶✾✶ ✶✹✵✼✵✳✾✷✸ ✹✹✵✳✸✼✸ ✶✵✸✻✳✶✻✵

Table 6.1: Initial Logistics Test Results

ner using tense control and progression, and TALplanner using TAL control and

formula evaluation.

Blocks World. For the standard blocks world, we found no “standard” problem in-

stances large enough to truly challenge TLPlan or TALplanner, and therefore man-

ually created a number of different instances using between 25 and 1000 blocks. In

retrospect, it would have been better to use a larger number of problem instances

with a more random distribution of blocks. However, at the moment these tests

were performed, many efficiency improvements were planned and doing an ex-

haustive test of the current version of TALplanner would perhaps not have been

188 6.7. Evaluation vs Progression: Initial Benchmark Tests

❇❧♦❝❦s ❖♣s ◆♦❞❡s ❚▲P❧❛♥ ❚❆▲♣❧❛♥✴t❡♥s❡ ❚❆▲♣❧❛♥✴❚❆▲

t✐♠❡ ♠❡♠ t✐♠❡ ♠❡♠ t✐♠❡ ♠❡♠

✷✺ ✶✻ ✸✹✹ ✵✳✶✶✵ ✸✶✵✹ ✵✳✶✶✵ ✻✻✹✵ ✵✳✵✻✵ ✻✻✶✷

✺✵ ✼✵ ✷✷✾✺ ✶✳✾✻✸ ✺✻✼✷ ✶✳✻✵✸ ✻✼✾✷ ✶✳✸✵✷ ✻✻✹✹

✼✵ ✽✽ ✹✶✵✾ ✺✳✽✻✽ ✸✳✾✶✻ ✸✳✼✶✺

✼✵ ✶✵✻ ✹✸✻✶ ✼✳✺✵✶ ✽✼✺✷ ✹✳✻✼✼ ✼✺✶✻ ✹✳✹✵✻ ✻✻✹✹

✶✵✵ ✶✻✵ ✽✾✹✺ ✸✼✳✷✺✹ ✶✹✾✶✷ ✶✹✳✹✹✶ ✼✼✼✷ ✶✹✳✵✻✵ ✻✻✹✹

✶✹✵ ✷✸✷ ✶✼✽✷✾ ✶✽✺✳✹✾✼ ✷✼✺✸✷ ✸✾✳✷✹✻ ✾✸✼✷ ✹✶✳✾✹✵ ✼✷✵✽

✷✵✵ ✹✵✺ ✸✺✼✵✹ ✾✶✾✳✷✻✷ ✶✶✽✳✹✶✵ ✶✹✷✳✾✾✻

✷✽✵ ✹✵✺ ✻✽✶✵✹ ✸✼✺✻✳✵✻✶ ✷✼✼✳✼✾✾ ✸✶✺✳✻✺✹

✷✽✵ ✺✽✵ ✼✹✷✾✼ ✹✷✾✼✳✼✺✵ ✶✵✹✹✻✹ ✸✾✹✳✶✾✻ ✷✶✸✵✽ ✹✼✹✳✵✶✷ ✽✺✸✻

✹✻✵ ✺✽✵ ✶✼✽✻✾✼ ✸✷✸✵✸✳✶✵✵ ✶✼✽✽✽✹ ✸✷✵✽✳✶✺✾ ✸✾✺✷✽ ✶✽✾✾✳✾✾✷ ✾✽✹✵

✹✻✵ ✾✵✹ ✶✽✼✻✵✼ ✶✾✹✶✳✺✷✶ ✷✺✸✺✳✾✹✻

✻✹✵ ✶✷✷✽ ✸✻✺✵✻✾ ✺✽✻✷✳✶✾✼ ✻✽✹✻✹ ✼✻✼✾✳✼✸✸ ✶✹✷✽✹

✽✷✵ ✶✾✵✽ ✹✻✸✼✼✾ ✶✵✹✽✼✳✶✺✾ ✾✺✻✷✵ ✶✷✽✸✼✳✻✷✾ ✶✽✼✸✷

✶✵✵✵ ✷✷✸✷ ✼✶✽✷✽✶ ✷✺✵✷✽✳✺✵✾ ✷✹✷✻✹

Table 6.2: Initial Blocks World Test Results

the best use of our time.

The results for the blocks world were first presented in Doherty and Kvarnström

(1999). Lack of space in this preliminary report forced us to report only a represen-

tative subset of our test results. Table 6.2 now contains the previously published re-

sults as well as the results that were omitted. The Blocks column shows the number

of blocks for each problem instance. As before, the Ops column shows the length

of each solution and the Nodes column contains the number of search nodes that

were examined by TALplanner. The remaining columns show times (in seconds)

and memory usage (in kilobytes) for TLPlan, TALplanner using tense control and

progression, and TALplanner using TAL control and formula evaluation. Unfortu-

nately, memory usage measurements are not available for the test results that were

omitted from Doherty and Kvarnström (1999).

Result Analysis. We can immediately see that TALplanner requires considerably

less memory than TLPlan and that evaluation requires considerably less memory

than progression, allowing significantly larger problem instances to be handled be-

fore the available resources are exhausted. It is also quite obvious that TALplanner

was considerably faster than TLPlan for these two domains, regardless of whether

progression or evaluation is used.

For the problem instances we tested, progression outperforms formula evalua-

tion in most cases, but generally only by a factor of 2 to 2.5 for the logistics domain

and by a factor of 1.2 to 1.3 for the blocks world. Apparently, the overhead for

memory management and object construction in the progression algorithm does

Chapter 6. TALplanner 189

not completely negate the advantage of never evaluating a formula twice in the

same state.

Though this is by no means a complete statistical analysis and additional do-

mains could certainly have been used to strengthen these claims, it would never-

theless appear reasonably safe to say that there is only a constant factor difference

in performance between the two approaches, especially because both progression

and formula evaluation do have to evaluate approximately the same number of

fluents in the state sequence generated by a plan.

The current performance advantage for the progression algorithm does not im-

ply that formula evaluation should be avoided. In addition to the more modest

memory requirements for formula evaluation as demonstrated by these benchmark

tests, formula evaluation also lends itself more easily to certain optimization tech-

niques which can improve the performance of the planner by orders of magnitude

in some cases (Chapter 8).

6.7.1 Program Versions and Test Procedures

The computer used for the tests was quite powerful for its time: A 333 MHz Pen-

tium II computer running Windows NT 4.0 SP3, using 256 MB of memory. We made

sure that the computer was very lightly loaded and that it was never swapping. All

tests were run multiple times and the minimum time is reported.

For TLPlan, we used the most recent precompiled version that could be down-

loaded from ❤tt♣✿✴✴✇✇✇✳❧♣❛✐❣✳✉✇❛t❡r❧♦♦✳❝❛✴⑦❢❜❛❝❝❤✉s. We used TALplanner ver-

sion test-68, integrated into VITAL version 2.297. TALplanner is written in Java,

and as a runtime system we used the Java Development Kit version 1.2 (❤tt♣✿

✴✴❥❛✈❛✳s✉♥✳❝♦♠), the latest version available at the time, together with the Symantec

Just In Time Compiler included in the Java Development Kit.

In all cases, TLPlan used the domain definitions and control rules from ❞♦♠❛✐♥s✴

❇❧♦❝❦s✴✹❖♣s❇❧♦❝❦s❲♦r❧❞✳t❧♣ and ❞♦♠❛✐♥s✴▲♦❣✐st✐❝✴▲♦❣✐st✐❝s❲♦r❧❞✳t❧♣ in the TLPlan

distribution, respectively, and TALplanner used the corresponding TAL world de-

finition and control rules.

190 6.7. Evaluation vs Progression: Initial Benchmark Tests

Chapter 7
Concurrency and Resources

Though many planners have been restricted to generating sequential plans, most

potential real world applications for planning involve multiple agents or an agent

with multiple actuators. For such cases, only generating sequential plans can be a

rather severe limitation on plan quality. TALplanner has therefore been extended

to generate true concurrent plans. This entails modifying the definition of a plan

in order to allow multiple actions to be executed not only in parallel (during iden-

tical intervals of time) but also with partially overlapping execution intervals (Sec-

tion 7.1).

Extending the set of possible plans invalidates certain assumptions that could

be made for sequential plans: The planner can no longer assume that the only ef-

fects that take place during the execution of an action are those explicitly specified

in the definition of that action. This change has wide-ranging consequences for the

modeling of planning operators, and the modeling language has to be extended ac-

cordingly. For example, there must be a suitable means for restricting concurrency

for actions that cannot or should not be executed in parallel, such as driving a truck

and loading packages in the same truck in the logistics domain. Several different

approaches will be discussed, including an extension to the domain modeling lan-

guage to allow the use of prevail conditions, an extended form of preconditions not

limited to constraining the invocation state of an action (Section 7.2). In addition,

concurrent plans are often associated with limited resources such as fuel or cargo

space, and though such resources can easily be modeled using plain action effects

when plans are sequential, concurrency makes this representation quite inconve-

nient. An explicit representation of resources is therefore added to the language

(Section 7.3). The combination of concurrency, resources and cycle checking is dis-

cussed in Section 7.4.

Changing the definition of a plan and introducing new elements into the do-

main description language also necessitates a number of modifications to the plan-

191

192 7.1. Concurrent TALplanner

ning algorithm (Section 7.5).

Benchmark tests for the concurrent planner are deferred to Chapter 9, where the

results for the Third International Planning Competition (IPC-2002) were generated

using the concurrent version of TALplanner.

7.1 Concurrent TALplanner

As with sequential plans, concurrent plans consist of TAL action occurrences of

the form [τ, τ′] o. Because each action occurrence contains complete timing infor-

mation, no additional structure is required to capture temporal relations between

actions, and a concurrent plan could therefore be represented as an unordered set of

action occurrences. In this thesis, though, concurrent plans will usually be viewed

as sequences of action occurrences, where plans are always extended one action oc-

currence at a time by the concurrent TALplanner search procedure.

Compared to the definition of sequential plans (Definition 6.2.13 on page 159),

the constraint on the time where the action is executed is relaxed: A new action

occurrence added to a plan must not start before the start of any existing action

occurrence in the current plan, and in order to avoid “gaps” where no action is

being executed, it must not start after the end of all existing action occurrence.

Definition 7.1.1 (Concurrent Plan)
A concurrent plan for a goal narrative N is a tuple of ground fluent-free action oc-

currences with the following constraints. First, the empty tuple is a concurrent

plan for N . Second, given a concurrent plan p = 〈[τ1, τ′1] o1(c1), . . . , [τn, τ′n] on(cn)〉
forN , its successors are exactly those sequences adding one new action occurrence

[τn+1, τ′n+1] on+1(cn+1) satisfying the following constraints:

1. Let N ′ = N ∪ {[τ1, τ′1] o1(c1), . . . , [τn, τ′n] on(cn)} be the original goal narra-

tive N combined with the existing plan. Then, the new action on+1(cn+1)
must be applicable over the interval [τn+1, τ′n+1] in N ′. This implies that its

preconditions are satisfied, that its effects are not internally inconsistent and

do not contradict the effects of the operator instances already present in the

sequence, and that the duration τ′n+1 − τn+1 is consistent with the duration

given in the operator specification.

2. The first action starts at time 0: τ1 = 0.

3. The new action should not be invoked before any of the actions already exist-

ing in the sequence. Therefore, it is required that τn ≤ τn+1. This guarantees

that all states up to and including τn are fixed and will never be modified in

any successor of p, which ensures that preconditions of existing actions will

never be falsified by new actions being added to the plan.

Chapter 7. Concurrency and Resources 193

4. An upper bound will be placed on the invocation timepoint τn+1. As in Defi-

nition 6.4.6, let tmax be the maximum of all ending timepoints τ′i of all actions

in p. The states from τn up to tmax may all be different, but since nothing can

change after tmax, successors with τn+1 > tmax are not considered. Thus, it

must be the case that τn+1 ≤ tmax (note that it is possible that tmax > τ′n, as in

the operator sequence 〈[0, 7] ♦1; [0, 3] ♦2〉).

5. For successors where τn+1 = τn (that is, where the new action has the same

invocation timepoint as an existing action), the search tree could contain re-

dundant pairs of plans such as 〈[0, 3] ♦1; [0, 3] ♦2〉 and 〈[0, 3] ♦2; [0, 3] ♦1〉. To

avoid searching redundant plans, the existence of a total order ≻ on operator

instances will be assumed, and if τn+1 = τn, it must be the case that ♦n+1 ≻ ♦n.

�

As in the definition of sequential plans, this definition induces a possibly infinite

search tree which can be traversed using standard search strategies such as breadth

first or depth first search. When searching the tree, preference is given to actions

invoked at earlier timepoints. In other words, children to any given search node

are ordered in such a way that TALplanner will attempt to add as many applicable

actions as possible at any given timepoint before stepping to the next timepoint. A

partial example search tree for a concurrent version of the gripper domain can be

seen in Figure 7.1, where the asterisks indicate undesirable nodes where additional

constraints are required to ensure the planner does not pick up two objects in the

same gripper or the same object in two grippers (Section 7.2). The corresponding

modifications to the search procedures in the TALplanner algorithm are obvious

and will not be shown explicitly.

Definition 7.1.2 (Concurrent Solution)
A concurrent solution for a goal narrative N is a concurrent plan p for N such that

Trans+(N ∪ p) |= Trans(N❣♦❛❧ ∧N❝♦♥tr♦❧). �

7.1.1 A Concurrent Logistics Domain

In the remainder of this chapter, concepts related to concurrency in TALplanner

will be discussed using a concurrent version of the logistics domain.

In a domain such as logistics, it is unreasonable to expect all actions to have the

same duration. Therefore, to create efficient plans it is not sufficient to plan actions

concurrently, but the planner must also be able to plan a sequence of several “short”

actions, like loading, driving and unloading a truck, in parallel with a “long” action,

like flying an airplane between distant cities. Therefore, the logistics domain is also

extended to make use of actions with variable duration.

The set of value domains and features used in Example 6.2.1 on page 143 is

extended as follows. The new integer-valued fluent ❞✐st(loc, loc) corresponds to

the distance between two locations, and the ❞r✐✈❡ and ✢② actions are modified to

194 7.1. Concurrent TALplanner

*

*

[0,1] pick(A,L)

[0
,1]
 p
ick

(B
,L
)

[0
,1
] p
ic
k(
B
,L
)

[0
,1]
 p
ick

(A
,R
)

[0,1] pick(B,R)
[1,2] drop(B,right)

[0,
3]

mov
e-t

o(r
oo

m2)

[1,4] move-to(room2)

[0,1
] pi

ck(A
,R)

[0,1] pick(B,R)
[0,1] move-to(room

2)

[0,1
] m

ove
-to(

roo
m2)

[1,2] m
ove-to(room

2)

[1,2] pick(B,R)

C

[1,2] drop(A,L)

[1,2] d
rop(A

,R)

Figure 7.1: Partial Search Space for Concurrent Gripper Domain

take distances into account. The ♠❛❦❡t✐♠❡() conversion function converts integers

to timepoints as explained in Section 6.2.7 on page 151. The integer domain is

declared using a special syntax that automatically generates values between the

given lower and upper bounds, avoiding the need to explicitly specify each integer

value while still remaining within the bounds of TAL which currently requires fi-

nite value domains. The modified version of the logistics domain will be used as a

basis for presenting concepts related to the concurrent version of TALplanner.

❞♦♠❛✐♥ integer ✿✐♥t❡❣❡r ✿❧❜ 0 ✿✉❜ 10000

❞♦♠❛✐♥ loc, thing

❞♦♠❛✐♥ airport, city ✿♣❛r❡♥t loc

❞♦♠❛✐♥ obj, vehicle ✿♣❛r❡♥t thing

❞♦♠❛✐♥ truck, plane ✿♣❛r❡♥t vehicle

❢❡❛t✉r❡ ❛t(thing,loc) ✿❞♦♠❛✐♥ boolean

❢❡❛t✉r❡ ✐♥(object,vehicle) ✿❞♦♠❛✐♥ boolean

❢❡❛t✉r❡ ❝✐t②✲♦❢(loc) ✿❞♦♠❛✐♥ city

❢❡❛t✉r❡ ❞✐st(loc, loc) ✿❞♦♠❛✐♥ integer

The ❧♦❛❞ and ✉♥❧♦❛❞ operators from Example 6.2.10 remain unchanged. The time

taken to ❞r✐✈❡ between two locations is chosen to be one half of the distance (in

our arbitrary units of distance and time), while the time taken to ✢② between two

airports is chosen to be one fifth of the distance.

Chapter 7. Concurrency and Resources 195

♦♣❡r❛t♦r ❞r✐✈❡(truck, loc1, loc2) ✿❛t s

✿❞✉r❛t✐♦♥ ♠❛❦❡t✐♠❡(value(s, ❞✐st(loc1, loc2))/2)

✿♣r❡❝♦♥❞ [s] ❛t(truck, loc1) ∧ ❝✐t②✲♦❢(loc1) =̂ ❝✐t②✲♦❢(loc2) ∧ loc1 6= loc2

✿❡✛❡❝ts [s+1] ❛t(truck, loc1) := false,

[s+♠❛❦❡t✐♠❡(value(s, ❞✐st(loc1, loc2))/2)] ❛t(truck, loc2) := true

♦♣❡r❛t♦r ✢②(plane, airport1, airport2) ✿❛t s

✿❞✉r❛t✐♦♥ ♠❛❦❡t✐♠❡(value(s, ❞✐st(airport1, airport2))/5)

✿♣r❡❝♦♥❞ [s] ❛t(plane, airport1) ∧ airport1 6= airport2

✿❡✛❡❝ts [s+1] ❛t(plane, airport1) := false,

[s+♠❛❦❡t✐♠❡(value(s, ❞✐st(airport1, airport2))/5)] ❛t(plane, airport2) := true

Recall that the minimum allowed duration of an action is one unit of time. There-

fore, the minimum valid distance between two locations will in this case be 2 and

the minimum valid distance between two airports will be 5, because smaller values

will result in a truncated integer duration of 0 for the ❞r✐✈❡ or ✢② actions. Violations

of this rule will be caught by TALplanner during planning.

7.2 Preventing Interference in Concurrent Plans

Any planner supporting concurrent actions must also take into account the fact

that certain actions may interfere with each other when executed in parallel, and

the domain modeling language used by such a planner must be expressive enough

to model the conditions under which concurrency is or is not allowed.

The current formalization of the logistics domain is insufficient in this regard.

Given this formalization, the planner could generate a plan which loads packages

into a truck while concurrently driving that truck to another location. As long as

the ❧♦❛❞ and ❞r✐✈❡ actions begin at exactly the same time, there is no apparent con-

flict, since ❧♦❛❞ only requires the truck to be at a certain location in the invocation

state, not throughout the execution of the action. The planner could also generate

a plan where a truck drives to more than one destination concurrently, as long as

all concurrent ❞r✐✈❡ actions begin at exactly the same time. Immediately after the

actions are invoked, the truck disappears from its original location, exactly as in-

tended ([s + 1] ❛t(truck, loc1) := false). The first time one of the ❞r✐✈❡ actions finishes

executing, the truck ends up at the corresponding destination, again exactly as in-

tended. For each remaining action, the truck will be “cloned”, appearing at one ad-

ditional location ([s + ♠❛❦❡t✐♠❡(value(s, ❞✐st(loc1, loc2))/2)] ❛t(truck, loc2) := true).

Though it may seem somewhat surprising, this is in fact not a flaw in the plan-

ning algorithm itself. The plans being generated are correct according to the seman-

tics of concurrent TAL narratives – we have simply failed to provide sufficiently

strong executability conditions, so our models of the ❧♦❛❞ and ❞r✐✈❡ operators are

incorrect for concurrent plans. But is this only a failure in our domain descrip-

tion, or is the current domain description language in fact not expressive enough

196 7.2. Preventing Interference in Concurrent Plans

to model these operators correctly? As we will see below, both points could be ar-

gued. Many constraints on concurrency can be modeled in the current language,

but not necessarily in a convenient manner: It may be necessary to “misuse” some

language constructions to achieve the intended semantics in a roundabout way. We

will now explore how existing constructions can be used and misused, and intro-

duce a new extension to the current language in order to model certain kinds of

interference in a more elegant manner. In Section 7.3.5, we will also show how

interference can be prevented using resource constraints.

7.2.1 Preventing Interference Using Preconditions

Some planners and modeling languages have chosen to implicitly interpret precon-

ditions as conditions that must hold throughout the execution of an action rather

than only in the state where the action is invoked. This would prevent concurrent

invocations of ❧♦❛❞ and ❞r✐✈❡ for the same truck, since executing a ❧♦❛❞ action would

automatically require the truck to remain at its initial location until the end of the

action.

In our opinion this interpretation of preconditions is too inflexible, making it

impossible to model actions for which a condition only needs to hold during part

of the execution interval. The fact that fluents explicitly modified by an action must

be exempt from the implicit requirement to remain constant throughout its execu-

tion also detracts from the elegance of the solution. Additional complications in

determining exactly which fluents should be allowed to be modified arise when

quantified and non-conjunctive preconditions are allowed and when temporally

extended actions are used. For example, given the precondition α ∨ β, must all flu-

ents involved in these formulas remain unmodified or should it be sufficient that

α ∨ β holds throughout the interval even though individual fluents may change?

This complexity would make the precise meaning of a precondition unnecessarily

difficult to foresee, whereas the current semantics of TALplanner preconditions is

comparatively simple.

But if preconditions only constrain the invocation state of an action, and action

effects cannot affect this state, then no straight-forward scheme to model mutual

exclusion between two actions using preconditions will work. Clearly, whether or

not a precondition of an action invoked at time t is satisfied can only depend on

actions invoked at times strictly before t (so that their effects may affect the new

invocation state at t), not on actions invoked exactly at t. In the logistics example,

the precondition of a ❞r✐✈❡ action can never depend on whether a ❧♦❛❞ action has

already been added at the same timepoint, and vice versa.

In this particular example, this restriction could be worked around by introduc-

ing a new feature whose value determines whether the planner is allowed to drive

or load any given truck at a given timepoint, together with a “pseudo-operator”

that can be inserted to change the value of this feature. The ❧♦❛❞ and ❞r✐✈❡ actions

would be conditioned on the value of the new feature, approximately as follows:

Chapter 7. Concurrency and Resources 197

❞♦♠❛✐♥ task ✿❡❧❡♠❡♥ts { shouldload,shoulddrive }

❢❡❛t✉r❡ t❛s❦✲♦❢(vehicle) ✿❞♦♠❛✐♥ task

♦♣❡r❛t♦r ❝❤♦♦s❡✲t❛s❦(vehicle, task) ✿❛t s

✿♣r❡❝♦♥❞ true

✿❡✛❡❝ts [s+1] t❛s❦✲♦❢(vehicle) := task

♦♣❡r❛t♦r ❧♦❛❞(obj, vehicle, loc) ✿❛t s

✿♣r❡❝♦♥❞ [s] t❛s❦✲♦❢(vehicle) =̂ shouldload ∧ . . .

Since the task of a vehicle could never be both shouldload and shoulddrive at

the same time, we could never try to load and drive the vehicle concurrently, and

therefore the problem is in a sense solved.

Though this scheme would work, it is far from straight-forward. Because it in-

volves introducing “false” actions that have no correspondence in reality and will

have to be filtered out from the solution plan, we view it as a misuse of the con-

structs provided by the current language. Given a choice, we would instead prefer

to use constructs explicitly defined for supporting the modeling of concurrent ac-

tions. We therefore immediately proceed to the next potential approach: Using

prevail conditions.

7.2.2 Preventing Interference Using Prevail Conditions

If using preconditions to induce a set of implicit constraints on the development of

the world during the entire execution of an action would lead to an overly com-

plex semantics, the natural solution would be to introduce a new construction per-

mitting such constraints to be modeled explicitly in the description of a planning

domain. Constraints that should hold throughout the execution of an action are

sometimes called prevail conditions (Sandewall & Rönnquist, 1986; Bäckström &

Klein, 1991). We will generalize this terminology somewhat, though, permitting

prevail conditions to refer to arbitrary timepoints or intervals during the execution

of an action. The semantics of a prevail condition is simple: The prevail condition

of each action in a plan must be entailed by the plan, with no exceptions for fluents

modified by the action to which the condition belongs.

The syntax of an operator specification, previously defined in Definition 6.2.9 on

page 152, is extended to support prevail conditions. The definition of a context

specification remains unchanged.

Definition 7.2.1 (Operator Specification)
An operator specification inL(ND)∗ is a labeled statement having the following form,

where ♦ is an operator name, v1 through vn are distinct value variables serving as

formal parameters, the invocation timepoint s is a temporal variable, the duration

specification τ is a temporal term, the precondition φ is a single timepoint formula

for s, the prevail condition ψ is a static formula, and c1 through cm are context

specifications for the invocation timepoint s.

198 7.2. Preventing Interference in Concurrent Plans

• ♦♣❡r❛t♦r ♦(v1, . . . , vn) ✿❛t s ✿❞✉r❛t✐♦♥ τ ✿♣r❡❝♦♥❞ φ ✿♣r❡✈❛✐❧ ψ

✿❝♦♥t❡①t c1 . . . ✿❝♦♥t❡①t cm

Omitting the precondition specification (✿♣r❡❝♦♥❞ φ) is equivalent to specifying ✿♣r❡✲

❝♦♥❞ true. Omitting the prevail condition specification (✿♣r❡✈❛✐❧ ψ) is equivalent to

specifying ✿♣r❡✈❛✐❧ true. Omitting the duration specification is equivalent to speci-

fying ✿❞✉r❛t✐♦♥ ✶. For actions with only one context specification, the ✿❝♦♥t❡①t key-

word can be omitted. �

The translation function Trans is modified as follows to account for the addition of

prevail conditions.

• Trans♦♣(♦♣❡r❛t♦r ♦(v1, . . . , vn) ✿❛t s ✿❞✉r❛t✐♦♥ τ ✿♣r❡❝♦♥❞ φ ✿♣r❡✈❛✐❧ ψ

✿❝♦♥t❡①t c1 . . . ✿❝♦♥t❡①t cm) =
∀s, s′, v1, . . . , vn.

Occurs(s, s′, ♦(v1, . . . , vn))→ s′ = s + τ∧Trans(φ∧ψ→
∧m

i=1 Trans❝♦♥(s, ci)).

In the context of sequential planning, prevail conditions would only have been able

to constrain the effects of the operator for which the condition was declared. For

concurrent planning, on the other hand, prevail conditions also constrain the effects

of all other actions executing within the same interval of time. We can immediately

see that this can be used to model the intended executability conditions for the ❧♦❛❞

operator in the logistics example: The vehicle into which a package is being loaded

must remain at its location throughout the execution of the action.

Example 7.2.1 (Preventing Interference using Prevail Conditions)
♦♣❡r❛t♦r ❧♦❛❞(obj, vehicle, loc) ✿❛t s

✿♣r❡❝♦♥❞ [s] ❛t(obj, loc) ∧ ❛t(vehicle, loc)

✿♣r❡✈❛✐❧ [s,s+1] ❛t(vehicle, loc)

✿❡✛❡❝ts [s+1] ❛t(obj, loc) := false, [s+1] ✐♥(obj, vehicle) := true �

Testing Prevail Conditions

Preconditions are tested immediately before a new action is added to a plan. At

this time, the planner already has complete knowledge about the single state in

which the precondition is tested. Due to the structure of the search space used

by TALplanner and the requirement that no action can have effects in or before its

own invocation state, we know this state will remain unaltered by the action whose

precondition is being tested as well as by any other action that might be added to

the plan during the search for a solution.

Prevail conditions are fundamentally different in this respect. They refer to

states that are conceptually in the future, and the planner’s knowledge about these

states is generally incomplete. But this does not necessarily mean these states are

completely unknown. The concurrent planner may already have added one or

Chapter 7. Concurrency and Resources 199

more actions that have effects in what is currently the future, and the fluent val-

ues assigned by these effects are definite: They cannot be altered by any means

other than backtracking.

Since TALplanner correctly models this incomplete knowledge (by occluding

fluents in the “future” and thereby releasing them from the inertia assumption),

there is no need to wait until a state is in the “past” before testing a prevail condition

in that state. On the contrary, prevail conditions can be tested at any time, with

three possible outcomes:

• The prevail condition is true (entailed by the current plan). In this case, it

will necessarily remain true no matter which actions are added to the plan

in the future, as long as the TALplanner search procedure is followed. The

condition does not have to be tested again.

• The prevail condition is false (its negation is entailed by the current plan). In

this case, it will necessarily remain false no matter which actions are added to

the plan in the future, as long as the TALplanner search procedure is followed.

The planner must backtrack.

• The status of the prevail condition cannot be determined (neither the condi-

tion nor its negation is entailed by the current plan). In this case, the condition

must be queued, to be tested again when additional information is available.

The fact that prevail conditions can be tested in incompletely specified states is

crucial to the performance of the planner for many domains. If the planner had to

wait until a state was completely known before testing a prevail condition, there

would potentially be an exponential explosion in the number of plans to explore.

Example 7.2.2 (Avoiding Exponential Backtracking)
Consider the concurrent version of the logistics domain. Assume that the planner

has already added the action [0, 1] ❧♦❛❞(package-1, truck-1, city1-1) to the plan and

is currently considering instances of the ❞r✐✈❡ operator.

The first applicable instance of ❞r✐✈❡ might be [0, 4] ❞r✐✈❡(truck-1, city1-1, city1-2).

Because there may be additional actions applicable at time 0 that could have effects

at time 1, the information available about the state at time 1 is still incomplete. Nev-

ertheless, once the ❞r✐✈❡ action is added, sufficient information is already available

to determine that the prevail condition of the preceding ❧♦❛❞ action is violated, and

the planner will immediately backtrack.

Had complete information about a state been required, no violation would have

been discovered immediately. Instead, the planner would have continued adding

actions invoked at time 0, until no more such actions could be found. At this time,

the planner would step to time 1 and finally detect the violation. Backtracking

would remove one action, after which the planner would once more step to time 1

and detect the same violation. This process would continue until all possible sub-

sets of actions applied after [0, 4] ❞r✐✈❡(truck-1, city1-1, city1-2) had been tested, at

which time this action would finally be removed. �

200 7.2. Preventing Interference in Concurrent Plans

The use of prevail conditions neatly solved the problem of ensuring that trucks

do not leave while packages are being loaded. On the other hand, ensuring that

trucks do not drive to two different destinations concurrently may be done simply

by making the domain model slightly less abstract.

7.2.3 Preventing Interference Using Action Effects

If the effects of a new action added to a plan contradict the effects of an existing ac-

tion, the resulting narrative is inconsistent and TALplanner is guaranteed to back-

track. In some domains, a sufficient degree of mutual exclusion can therefore fol-

low automatically from action effects, as long as the domain model is sufficiently

detailed.

For example, the planner can be prevented from allowing a truck to drive to

multiple locations at the same time if two new fluents are added: ♠♦✈✐♥❣(vehicle),

a boolean fluent which holds when a vehicle is moving, and ❞❡st✐♥❛t✐♦♥(vehicle) :

loc, which represents the latest assigned destination of the vehicle. An interval ef-

fect is used to ensure that the destination of a vehicle remains the same throughout

the execution of a ❞r✐✈❡ action. Two concurrent ❞r✐✈❡ actions for the same truck will

attempt to assign different values to the ❞❡st✐♥❛t✐♦♥, forcing the planner to back-

track.

❢❡❛t✉r❡ ♠♦✈✐♥❣(vehicle, loc) ✿❞♦♠❛✐♥ boolean

❢❡❛t✉r❡ ❞❡st✐♥❛t✐♦♥(vehicle) ✿❞♦♠❛✐♥ loc

♦♣❡r❛t♦r ❞r✐✈❡(truck, loc1, loc2) ✿❛t s

✿❞✉r❛t✐♦♥ ♠❛❦❡t✐♠❡(value(s, ❞✐st(loc1, loc2))/2)

✿♣r❡❝♦♥❞ [s] ❛t(truck, loc1) ∧ ❝✐t②✲♦❢(loc1) =̂ ❝✐t②✲♦❢(loc2) ∧ loc1 6= loc2

✿❡✛❡❝ts [s+1] ❛t(truck, loc1) := false,

[s+♠❛❦❡t✐♠❡(value(s, ❞✐st(loc1, loc2))/2)] ❛t(truck, loc2) := true,

[s+1,s+♠❛❦❡t✐♠❡(value(s, ❞✐st(loc1, loc2))/2-1)] ♠♦✈✐♥❣(truck) := true,

[s+♠❛❦❡t✐♠❡(value(s, ❞✐st(loc1, loc2))/2)] ♠♦✈✐♥❣(truck) := false,

[s+1,s+♠❛❦❡t✐♠❡(value(s, ❞✐st(loc1, loc2))/2)] ❞❡st✐♥❛t✐♦♥(truck) := loc2

One point deserves further clarification. Given that the distance between two lo-

cations is sufficiently small, the duration of the operator will be 1 and the interval

effect for ♠♦✈✐♥❣✭truck✮ will take place at [s + 1, s + 0]. This is a valid specification

of a null effect – the fluent is affected at all timepoints within the interval, that is, at

no timepoints at all. Though this may appear somewhat strange, it achieves the in-

tended purpose of ensuring that ♠♦✈✐♥❣✭truck✮ is forced to be true in the inner part

of the execution interval (though the inner part in this case happens to be empty),

while the second effect for ♠♦✈✐♥❣✭truck✮ forces the fluent to be false at the end point

of the execution interval.

Chapter 7. Concurrency and Resources 201

7.2.4 Preventing Interference Misusing Action Effects

Having successfully modeled mutual exclusion between multiple ❞r✐✈❡ operators

using action effects, let us now go on to see whether we could also have used the

same technique to ensure that trucks do not leave while packages are being loaded.

As it turns out doing this is not too difficult: The ❧♦❛❞ operator can be modified

by adding an effect causing the vehicle to be at its original location throughout the

execution of the operator. Attempting to drive the same vehicle to another location

will then cause the vehicle not to be at its original location, contradicting the effects

of the ❧♦❛❞ operator. This will be true regardless of the order in which the two

operators are added to a plan, ensuring mutual exclusion.

♦♣❡r❛t♦r ❧♦❛❞(obj, vehicle, loc) ✿❛t s

✿♣r❡❝♦♥❞ [s] ❛t(obj, loc) ∧ ❛t(vehicle, loc)

✿❡✛❡❝ts [s+1] ❛t(obj, loc) := false, [s+1] in(obj, vehicle) := true
[s+1] ❛t(vehicle, loc) := true

Although this in some sense achieves our intentions, it should more properly be

regarded as a misuse of action effects. Loading a package into a vehicle does not

physically cause the vehicle to remain where it is; a truck could easily start driving

while a package is being loaded. Though the plans generated by this variation of

the logistics domain may be correct, our model of the operators in this domain no

longer reflects reality.

This is naturally not a proof of non-existence: It may still be possible to find

other aspects of the domain that can be modeled in order to prevent interference

between ❞r✐✈❡ and ❧♦❛❞ using action effects. The example is merely intended as a

concrete demonstration of a case where this modeling technique is misused.

7.3 Modeling Limited Resources

Many planning domains involve the use of limited resources which can be con-

sumed, produced, borrowed and returned, or used in various other ways. For

example, vehicles such as trucks and airplanes can have limited carrying capacities

and a limited amount of fuel available.

For sequential planning, such properties can usually be modeled quite easily

in TALplanner by using plain action effects updating the values of non-boolean

fluents. For example, if loading a package into a vehicle requires one unit of space,

the amount of available space could be decreased as follows:

♦♣❡r❛t♦r ❧♦❛❞(obj, vehicle, loc) ✿❛t s

✿♣r❡❝♦♥❞ [s] ❛t(obj, loc) ∧ ❛t(vehicle, loc)

✿❡✛❡❝ts [s+1] s♣❛❝❡(vehicle) := value(s, s♣❛❝❡(vehicle)) – 1, . . .

With concurrent planning this is clearly not sufficient, since multiple parallel invo-

cations of ❧♦❛❞ would not take cumulative concurrent effects into account: Given

202 7.3. Modeling Limited Resources

n units of space available, each parallel invocation of ❧♦❛❞ would assign the same

new value n− 1, for a total consumption of one unit of space regardless of the total

number of packages loaded. Even for sequential planning, adding explicit built-in

support for resources often facilitates the task of writing domain definitions. There-

fore, we introduce explicit support for resources in TALplanner.

7.3.1 Declaring and Using Resources

Like all entities present in a planning domain, resources must be declared before

being used. Resource declaration statements are similar to fluent declaration state-

ments and have the following form:

r❡s♦✉r❝❡ r❡s(x) ✿❞♦♠❛✐♥ domain

For example, in a problem domain where vehicles have limited space, a space re-

source can be declared as follows:

r❡s♦✉r❝❡ s♣❛❝❡(vehicle) ✿❞♦♠❛✐♥ integer

A resource sort is added to L(ND)∗. Resource terms are formed from resource

symbols in the same manner as fluent terms are formed from feature symbols.

Definition 7.3.1 (Resource Sorts)
There are a number of sorts for features Ri, each one associated with a value do-

main dom(Ri) = Vj for some j. The sort R is assumed to be a supersort of all

resource sorts. �

Definition 7.3.2 (Resource Term)
A resource term, often denoted by r, is a resource expression r❡s(ω1, . . . , ωn) where

r : Vk1
× . . .×Vkn

→ Ri is a resource symbol and each ωj is a value term of sort Vkj
.

�

Definition 7.3.3 (Single Timepoint Resource Term)
A single timepoint resource term for the timepoint τ is a resource term where all oc-

currences of the value function are of the form value(τ, f) (where f is a fluent term).

�

The definition of context specifications from Section 6.2.7 on page 151 is extended

in order to provide a structured way of declaring the resource usage of an operator.

Definition 7.3.4 (Context Specification)
A context specification for the invocation timepoint s has the following form, where

v1 through vn are distinct value variables, φ is a single timepoint formula for s, r1

through rp are resource effect expressions for s, and e1 through em are effect expres-

sions for s:

• ✿❢♦r❛❧❧ v1, . . . , vn ✿❝♦♥❞✐t✐♦♥ φ ✿r❡s♦✉r❝❡s r1, . . . , rp ✿❡✛❡❝ts e1, . . . , em

Chapter 7. Concurrency and Resources 203

If quantification is not required, the quantifier section (✿❢♦r❛❧❧ v1, . . . , vn) can be omit-

ted. If no context condition is required, the condition section (✿❝♦♥❞✐t✐♦♥ φ) can be

omitted; this is equivalent to specifying ✿❝♦♥❞✐t✐♦♥ true. If no resource effects are

required, the resource effect section can be omitted. �

While an ordinary effect expression provides a definite new value for a fluent, re-

source effects must be cumulative, with the planner taking all concurrent effects on

each resource into account in order to calculate the amount available at any point in

time. We therefore introduce a new form of resource effect expression, which speci-

fies the resource which is affected by the action, the time at which it is affected, and

how it is affected.

Unlike some planners, TALplanner only provides one type of resource, but al-

lows several different types of resource effects. Resources can be produced and con-

sumed, which adds or removes a given amount from what is currently available. It is

also possible to assign an absolute value to a resource, stating the exact amount that

will be available. A resource can be borrowed, which means that the action reserves

the resource at a timepoint or throughout an interval of time, thereafter automati-

cally returning it to a common pool of available resources. Finally, resources can be

borrowed non-exclusively, allowing a set of cooperating concurrent actions to reserve

the same set of resources. The exact semantics of these different types of resource

effects will be defined later in this section.

Definition 7.3.5 (Resource Effect Expression)
A resource effect expression for the invocation timepoint s has one of the following

forms, where τ and τ′ are temporal terms, r is a single timepoint resource term

for s and ω is a single timepoint value term for s of a sort corresponding to the sort

of f :

• ❬s + τ❪ ✿♣r♦❞✉❝❡ r ✿❛♠♦✉♥t ω

• ❬s + τ❪ ✿❝♦♥s✉♠❡ r ✿❛♠♦✉♥t ω

• ❬s + τ❪ ✿❜♦rr♦✇ r ✿❛♠♦✉♥t ω

• ❬s + τ❪ ✿❜♦rr♦✇✲♥♦♥❡① r ✿❛♠♦✉♥t ω

• ❬s + τ, s + τ′❪ ✿❜♦rr♦✇ r ✿❛♠♦✉♥t ω

• ❬s + τ, s + τ′❪ ✿❜♦rr♦✇✲♥♦♥❡① r ✿❛♠♦✉♥t ω

• ❬s + τ❪ ✿❛ss✐❣♥ r ✿❛♠♦✉♥t ω �

Example 7.3.1 (Space in the Logistics Domain)
In the following example, loading a package into truck always consumes one unit

of space.

♦♣❡r❛t♦r ❧♦❛❞(obj, vehicle, loc) ✿❛t s

✿♣r❡❝♦♥❞ [s] ❛t(obj, loc) ∧ ❛t(vehicle, loc)

✿❡✛❡❝ts [s+1] ❛t(obj, loc) := false, [s+1] ✐♥(obj, vehicle) := true
✿r❡s♦✉r❝❡s[s+1] ✿❝♦♥s✉♠❡ s♣❛❝❡(vehicle) ✿❛♠♦✉♥t 1 �

204 7.3. Modeling Limited Resources

7.3.2 Querying Resources

Each resource has a number of different aspects modeled as fluent macros.

First, in any state, there is an initial amount of resources – the amount that would

be available if no resource effects took place in that state. Given a resource r❡s, this

is modeled as a fluent macro ✐♥✐t(r❡s). The initial amount can be queried in any

state, and must be provided through observation statements for the initial state:

✐♥✐t ∀truck [[0] ✐♥✐t(❢✉❡❧(truck)) =̂ 30]

Second, in any given state, certain amounts of each resource r❡s may have been

produced, consumed, borrowed non-exclusively, and borrowed exclusively. These

amounts may arise from cumulative effects of a number of concurrent operators,

and can be referred to using the fluent macros ♣r♦❞✉❝❡❞(r❡s), ❝♦♥s✉♠❡❞(r❡s), ❜♦rr♦✇❡❞✲

♥♦♥❡①(r❡s), and ❜♦rr♦✇❡❞(r❡s), respectively.

Third, it is often useful to be able to refer to the amount of resources actually

available for consumption in any given state. This amount can be referred to as

❛✈❛✐❧❛❜❧❡(r❡s). If r❡s has been assigned a new value at the current timepoint, then

❛✈❛✐❧❛❜❧❡(r❡s) is equal to this new value. Otherwise, it is equivalent to ✐♥✐t(r❡s) −
❝♦♥s✉♠❡❞(r❡s)−❜♦rr♦✇❡❞✲♥♦♥❡①(r❡s)−❜♦rr♦✇❡❞(r❡s) (recall that resources produced

in a state are not available for consumption in the same state).

Similarly, one can refer to the amount of resources transferred to the next state as

tr❛♥s❢❡rr❡❞(r❡s). If r❡s has been assigned a new value at the current timepoint, then

tr❛♥s❢❡rr❡❞(r❡s) is equal to this new value. Otherwise, it is equivalent to ✐♥✐t(r❡s) +
♣r♦❞✉❝❡❞(r❡s)− ❝♦♥s✉♠❡❞(r❡s).

Providing a completely TAL-based semantics for these macros is not possible,

since it requires summing over an unbounded number of actions in the current

plan and over all those instances of quantified conditional effects that actually take

place and affect the particular resource in which we are interested. Support for such

sums is expected to be available in a future version of the planner, based on a new,

modified L(FL) logic. For the moment, each fluent macro is provided with a value

through semantic attachment. Resource effects are also handled through semantic

attachment, and are ignored in the L(FL) translation of an operator definition.

7.3.3 Built-In and Complex Resource Constraints

For each resource r❡s, the minimum and maximum amounts allowed can be speci-

fied using the macros ♠✐♥✐♠✉♠(r❡s) and ♠❛①✐♠✉♠(r❡s). These values must be spec-

ified in the initial state. For example, the fact that it is possible to have between 0

and 60 units of ❢✉❡❧ can be specified as follows:

✐♥✐t ∀truck [[0] ♠✐♥✐♠✉♠(❢✉❡❧(truck)) =̂ 0 ∧ ♠❛①✐♠✉♠(❢✉❡❧(truck)) =̂ 60]

In states where a resource has been explicitly assigned a new value, it is suffi-

cient to ensure that the new value is within the allowed range. When no assign-

ment has taken place, however, there may be a number of concurrent resource

Chapter 7. Concurrency and Resources 205

effects affecting the same resource. Here, TALplanner uses a semantics where re-

sources produced in one state are available for consumption in the next state. For

the ♠✐♥✐♠✉♠ constraint, this entails the assumption that all consumption in any

given state might take place before any production, leading to the constraint that

✐♥✐t(r❡s)− ❝♦♥s✉♠❡❞(r❡s)− ❜♦rr♦✇❡❞✲♥♦♥❡①(r❡s)− ❜♦rr♦✇❡❞(r❡s) ≥ ♠✐♥✐♠✉♠(r❡s) in

all states, or, equivalently, that ❛✈❛✐❧❛❜❧❡(r❡s) ≥ ♠✐♥✐♠✉♠(r❡s) in all states. Similarly,

to ensure that the amount of resources never exceeds the specified maximum, the

planner requires that ✐♥✐t(r❡s) + ♣r♦❞✉❝❡❞(r❡s) ≤ ♠❛①✐♠✉♠(r❡s) at all timepoints.

Note that since resource macros can be used in control rules, one is not limited

to these simple minimum/maximum constraints on resources. For example, it is

easy to state that no more than 5.5 units of fuel can be consumed at any given

timepoint, that it is impossible to produce and consume units of the same resource

at the same time, that equal amounts of two resources must always be available,

or even a complex constraint such that whenever some condition φ holds, a certain

resource may not be consumed during the following 6 timepoints:

❝♦♥tr♦❧ ∀t. [t] ❝♦♥s✉♠❡❞(❢✉❡❧) ≤ 5.5

❝♦♥tr♦❧ ∀t. [t] ❝♦♥s✉♠❡❞(r❡s) =̂ 0 ∨ ♣r♦❞✉❝❡❞(r❡s) =̂ 0

❝♦♥tr♦❧ ∀t. [t] ❛✈❛✐❧❛❜❧❡(r❡s) =̂ ❛✈❛✐❧❛❜❧❡(r❡s’)

❝♦♥tr♦❧ ∀t. [t] φ→ [t+1,t+6] ❝♦♥s✉♠❡❞(r❡s) =̂ 0

7.3.4 Modeling Symmetric Objects using Resources

In addition to modeling limited availability, resources can also be used to model

symmetric objects.

Consider once more the gripper domain. In the case where the robot has more

than one gripper, one difficulty for a planner is recognizing that the grippers are

functionally identical; if a plan can not be completed using the left gripper to pick

up a certain object, using the right gripper instead will not fix the problem either

(this was also pointed out in Fox & Long, 1999). This difficulty can be avoided by

modeling the grippers as a resource of bounded capacity. Picking up and dropping

objects “consumes” and “produces” grippers, respectively. This also facilitates the

definition of problem instances: Rather than having to name each gripper, it suffices

to specify the number of grippers that are available.

The value domains obj for things (including the robot), ball for balls (a subtype

of obj), and room for rooms are unchanged from the previous formalization of this

domain. The integer value domain is added and the gripper value domain is no

longer used. The fluent ❧♦❝ is unchanged, while the fluent ❢r❡❡ is replaced with the

resource ❢r❡❡✲❣r✐♣♣❡r and the fluent ✐s✲❝❛rr✐❡❞✲✐♥ is replaced with ✐s✲❝❛rr✐❡❞ which does

not have a gripper argument.

206 7.3. Modeling Limited Resources

❞♦♠❛✐♥ obj ✿❡❧❡♠❡♥ts { ball1, ball2, ball3, robby }

❞♦♠❛✐♥ ball ✿♣❛r❡♥t obj ✿❡❧❡♠❡♥ts { ball1, ball2, ball3 }

❞♦♠❛✐♥ room ✿❡❧❡♠❡♥ts { roomA, roomB }

r❡s♦✉r❝❡ ❢r❡❡✲❣r✐♣♣❡r ✿❞♦♠❛✐♥ integer

❢❡❛t✉r❡ ❧♦❝(obj) ✿❞♦♠❛✐♥ room

❢❡❛t✉r❡ ✐s✲❝❛rr✐❡❞(obj) ✿❞♦♠❛✐♥ boolean

✐♥✐t [0] ✐♥✐t(❢r❡❡✲❣r✐♣♣❡r) =̂ 2 ∧ ♠✐♥✐♠✉♠(❢r❡❡✲❣r✐♣♣❡r) =̂ 0 ∧ ♠❛①✐♠✉♠(❢r❡❡✲❣r✐♣♣❡r) =̂ 2

Given these definitions, the gripper domain operators shown in Example 6.2.11 on

page 158 can be redefined as follows:

♦♣❡r❛t♦r ♣✐❝❦(ball) ✿❛t s

✿♣r❡❝♦♥❞ [s] ❧♦❝(ball) =̂ ❧♦❝(robby) ∧ ¬✐s✲❝❛rr✐❡❞(ball)

✿r❡s♦✉r❝❡s [s+1] ✿❝♦♥s✉♠❡ ❢r❡❡✲❣r✐♣♣❡r ✿❛♠♦✉♥t 1

✿❡✛❡❝ts [s+1] ✐s✲❝❛rr✐❡❞(ball) := true

♦♣❡r❛t♦r ❞r♦♣(ball) ✿❛t s

✿♣r❡❝♦♥❞ [s] ✐s✲❝❛rr✐❡❞(ball)

✿r❡s♦✉r❝❡s [s+1] ✿♣r♦❞✉❝❡ ❢r❡❡✲❣r✐♣♣❡r ✿❛♠♦✉♥t 1

✿❡✛❡❝ts [s+1] ✐s✲❝❛rr✐❡❞(ball) := false

♦♣❡r❛t♦r ♠♦✈❡✲t♦(room) ✿❛t s

✿♣r❡❝♦♥❞ [s] ❧♦❝(robby) 6=̂ room

✿❝♦♥t❡①t

✿❡✛❡❝ts [s+1] ❧♦❝(robby) := room

✿❝♦♥t❡①t ✿❢♦r❛❧❧ ball ✿❝♦♥❞✐t✐♦♥ [s] ✐s✲❝❛rr✐❡❞(ball)

✿❡✛❡❝ts [s+1] ❧♦❝(ball) := room

7.3.5 Preventing Interference using Resources

Resources can also be used to model semaphores, which can be used as a com-

plement to prevail conditions and ordinary action effects in order to prevent in-

terference between actions. The following statements introduce a new resource

✉s❡✲♦❢(thing) to be used for this purpose in the logistics domain.

r❡s♦✉r❝❡ ✉s❡✲♦❢(thing) ✿❞♦♠❛✐♥ integer

✐♥✐t [0] ∀thing [✐♥✐t(✉s❡✲♦❢(thing)) =̂ 0 ∧ ♠✐♥✐♠✉♠(✉s❡✲♦❢(thing)) =̂ 0 ∧
♠❛①✐♠✉♠(✉s❡✲♦❢(thing)) =̂ 1]

The ✉s❡✲♦❢ resource ensures that an object or vehicle is never used in conflicting

concurrent actions. When packages are loaded into or unloaded from a vehicle,

the corresponding ✉s❡✲♦❢ resources are borrowed non-exclusively, allowing several

loading or unloading actions involving the vehicle to take place concurrently. Ac-

tions that move the vehicle borrow the resource exclusively, so that it can never be

moved to two different destinations at the same time or moved during loading or

unloading.

Chapter 7. Concurrency and Resources 207

♦♣❡r❛t♦r ❧♦❛❞(obj, vehicle, loc) ✿❛t s

✿♣r❡❝♦♥❞ [s] ❛t(obj, loc) ∧ ❛t(vehicle, loc)

✿r❡s♦✉r❝❡s [s+1] ✿❜♦rr♦✇✲♥♦♥❡① ✉s❡✲♦❢(vehicle) ✿❛♠♦✉♥t 1,

[s+1] ✿❜♦rr♦✇ ✉s❡✲♦❢(obj) ✿❛♠♦✉♥t 1

✿❡✛❡❝ts [s+1] ❛t(obj, loc) := false, [s+1] ✐♥(obj, vehicle) := true

♦♣❡r❛t♦r ❞r✐✈❡(truck, loc1, loc2) ✿❛t s

✿❞✉r❛t✐♦♥ ♠❛❦❡t✐♠❡(value(s, ❞✐st(loc1, loc2))/2)

✿♣r❡❝♦♥❞ [s] ❛t(truck, loc1) ∧ ❝✐t②✲♦❢(loc1) =̂ ❝✐t②✲♦❢(loc2) ∧ loc1 6= loc2

✿r❡s♦✉r❝❡s [s+1,s+♠❛❦❡t✐♠❡(value(s, ❞✐st(loc1, loc2))/2)] ✿❜♦rr♦✇ ✉s❡✲♦❢(truck) ✿❛♠♦✉♥t 1,

✿❡✛❡❝ts [s+1] ❛t(truck, loc1) := false,

[s+♠❛❦❡t✐♠❡(value(s, ❞✐st(loc1, loc2))/2)] ❛t(truck, loc2) := true

7.4 Concurrency, Resources and Cycle Checking

Cycle checking prunes a plan candidate p if the final state generated by p is identical

to the final state generated by a proper prefix of p. Thus, in order to perform cycle

checking, all final states of proper prefixes of the current plan candidate must be

available for comparison.

For sequential plans, all such states are already available in the state sequence

generated by the current plan candidate. For example, the logistics plan candi-

date 〈〉 (the empty plan) generates a final state at time 0. Adding the action occur-

rence [0, 4] ❞r✐✈❡(truck-1, city1-1, city1-2) generates a new final state at time 4, but

the final state of the parent plan remains unaltered and can still be retrieved from

the state sequence for the extended plan. Adding yet another action occurrence

[4, 5] ❧♦❛❞(package-1, truck-1, city1-2) generates a new final state at time 5 but pre-

serves the states at times 0 and 4, and so on.

For concurrent plans, though, adding a new action may change the contents

of what was previously a final state. Consider again the logistics plan candidate

〈[0, 4] ❞r✐✈❡(truck-1, city1-1, city1-2)〉, which generates a final state at time 4. If a

new concurrent action 〈[0, 4] ❞r✐✈❡(truck-2, city2-1, city2-2)〉 is added to this plan,

the state at time 4 will change due to new effects being applied to this state. For

this reason, the concurrent planning algorithm must be altered to keep an explicit

list of the final states of all proper prefixes of the current plan. Memory usage for

this list is generally rather low, given the extensive structure sharing used by the

TALplanner implementation. Efficiency is improved by defining an arbitrary total

order on states, storing the list in sorted order, and using binary search to determine

whether a state is already present in the list.

The concept of cycle checking can be generalized by pruning a plan candidate if

the final state generated by the this plan is, by some definition, worse than the final

state generated by a proper prefix of the same plan. In most cases it may be con-

ceptually or computationally difficult to determine whether one state is worse than

another, and therefore this concept is not implemented in most forward-chaining

208 7.5. Concurrent TALplanner

planners. This is not necessarily the case in the presence of explicitly modeled re-

sources, however. Resources are often associated with a preference for greater, or

occasionally lesser, amounts of the resource. For example, in most domains where

driving consumes fuel, a state where more fuel is available is always better, all else

being equal. A plan where one drives from some location A to B and immediately

back to A should therefore be pruned, despite the fact that it does not generate a

true state cycle: Less fuel is available after driving, so the new state is not identical

to, but worse than, the original state.

TALplanner allows each resource to be associated with a preference: ♠♦r❡, ❧❡ss,

or ♥♦♥❡. The syntax for resource declarations is extended accordingly:

r❡s♦✉r❝❡ r❡s(x) ✿❞♦♠❛✐♥ domain [✿♣r❡❢❡r❡♥❝❡ (✿♠♦r❡ | ✿❧❡ss | ✿♥♦♥❡)]

This induces a partial order on states, ❜❡tt❡r✲♦r✲❡q✉❛❧, used in the concurrent version

of TALplanner: ❜❡tt❡r✲♦r✲❡q✉❛❧(s, s′) holds iff (1) s and s′ are equal wrt. ordinary

fluents and resources with preference ♥♦♥❡, (2) for every resource with preference

♠♦r❡, there is at least as much available in s as in s′, and (3) for every resource with

preference ❧❡ss, there is at least as much available in s′ as in s.

Binary search can still be applied to the fluent portion of a state when searching

for a visited state which is better than or equal to the final state of the current plan,

preserving most of the efficiency of the standard cycle checking procedure.

7.5 Concurrent TALplanner

Though the concurrent TALplanner algorithm could theoretically allow the use of

tense control rules, our efforts have been focused on the use of TAL-based control

rules. The concurrent algorithm below is therefore based on the TAL-based TAL-

planner algorithm from Definition 6.4.8 on page 174, and all indicated differences

are relative to that algorithm.

The main differences in this variation of the algorithm relate to the fact that af-

ter adding a new action, the planner will only have complete knowledge of the

states up to and including the invocation timepoint of that action, rather than the

end timepoint. Fluents in the narrative are therefore occluded up to and including

time τ0 rather than time τ. Additional changes to the original algorithm are caused

by the addition of prevail conditions, which may also have to be queued in the con-

dition queue for future testing. Because the end timepoints of action occurrences

in a concurrent plan are not necessarily monotonically increasing, the maximum

of all end timepoints is explicitly stored in each search node (τmax). Finally, some

changes are necessitated by the differences between the sequential search tree and

the concurrent search tree, as seen in the iteration over possible successor actions.

Chapter 7. Concurrency and Resources 209

Definition 7.5.1 (Concurrent TALplanner)
Input: A goal narrative N .

Output: A plan narrative entailing the goalN❣♦❛❧ and the control formulasN❝♦♥tr♦❧.

1 procedure ❚❆▲♣❧❛♥♥❡r✲❝♦♥❝✉rr❡♥t(N)
2 γ←

∧
N❣♦❛❧ Conjunction of all goal statements

3 〈✐♥✐t, ✐♥❝r, ✜♥❛❧〉 ← ❣❡♥❡r❛t❡✲♣r✉♥✐♥❣✲❝♦♥str❛✐♥ts(N❝♦♥tr♦❧)
✄4 ♥♦❞❡← 〈✐♥✐t, ∅, 0, 0, 〈〉〉 〈cond. queue, visited states, latest invocation time, tmax, plan〉

5 ❖♣❡♥← 〈node〉 Stack (depth first search)

6 while ❖♣❡♥ 6= 〈〉 do
✄7 〈C, S, τ0, τmax, p〉 ← pop(❖♣❡♥) Current plan candidate

8 N ′ ← N ∪ p ∪ ♦❝❝❧✉❞❡✲❛❧❧✲❛❢t❡r(N , τ0) No knowledge about future

9 for all constraints α in C do Check queued constraints

10 if Trans+(N ′) |= Trans(α) then C ← C \ {α} Remove satisfied constraint

11 elsif Trans+(N ′) |= Trans(¬α) then backtrack Constraint violated

✄12 N ′′ ← N ∪ p ∪ {tmax = τmax} Narrative with complete knowledge

13 if Trans+(N ′′) |= false then backtrack Consistency check (def. 6.2.12)

✄14 if ∃s ∈ S.❜❡tt❡r✲♦r✲❡q✉❛❧(s, final state of current plan) then backtrack
15 if Trans+(N ′′) |= Trans(γ ∧ C ∧ ✜♥❛❧) then Goal + queued + final ctrl satisfied

16 return N ′′

17 else Not a solution, but check children

◮18 S′ ← S ∪ {final state of current plan}
✄19 for all successor actions A = [ρ, ρ′] ♦i(c) for p according to Def 7.1.1 do
✄20 C′ ← C ∪ ✐♥❝ri[ρ, c] Old conditions + incr control

◮21 C′ ← C′ ∪ {prevail condition of A} Add prevail condition

✄22 push 〈C′, S′, ρ, max(τmax, ρ′), 〈p; A〉〉 onto ❖♣❡♥

23 fail �

210 7.5. Concurrent TALplanner

Chapter 8
Domain Analysis Techniques for

Domain-Dependent Control

Preliminary benchmark tests for TALplanner were quite satisfying, both compared

to fully automated planners and compared to TLPlan. Despite this, it might be

possible to make even better use of the knowledge we have about planning do-

mains, taking the performance of a hand-tailored planner to a new level. There are

many different avenues to be explored in this area. Perhaps the control formulas

used by TLPlan and TALplanner are not the optimal form in which our current

domain knowledge can be described. Perhaps the language should be extended

to allow new types of domain knowledge to be expressed, knowledge that cannot

be described in terms of constraints on a single narrative. Some efforts have been

made to explore those paths, but our main focus has been on the use of automated

domain analysis.

Numerous domain analysis techniques for planning domains already exist in

the literature (Nebel, Dimopoulos, & Koehler, 1997; Haslum & Jonsson, 2000; Fox &

Long, 1998; Cresswell, Fox, & Long, 2002; Fox & Long, 2000b, 2000a, 2002; Gerevini

& Schubert, 1998, 2000; Scholz, 2000; Rintanen, 2000b), and the first task to be per-

formed was therefore an investigation of these techniques to determine whether

or not they would be applicable to TALplanner. As it turned out, most existing

techniques would require major extensions and modifications, for several reasons.

First, the control rules used by TALplanner are essentially specifications of tem-

porally extended goals. These rules constrain the paths by which the planner is

allowed to reach a goal state, but several analysis methods depend on the fact that

only the final state is constrained and that the path by which this state is reached

is irrelevant. Applying such techniques within the TALplanner framework may

render the planner incomplete.

Second, one of the design goals for TALplanner is the ability to plan for do-

211

212

mains with large numbers of objects and operator instances. Even if an operator

could have billions of instances, this should not be a major problem as long as suf-

ficiently strong control rules can be written to guide the planner towards choosing

“good” instances to be applied. For this reason, techniques that rely on generating

all ground instances of operators or predicates are less likely to be useful in conjunc-

tion with TALplanner. This includes techniques such as RIFO (Nebel et al., 1997)

and the methods for planning with reduced operator sets developed by Haslum

and Jonsson (2000).

Finally, another important design goal is that of permitting the use of more com-

plex types of operators, including operators with extended duration and (eventu-

ally) non-deterministic effects, as well as the use of resources and concurrency. Any

techniques depending on the use of single-step operators would require extensions

in order to be used in TALplanner.

Given these restrictions, it may be better to start not by examining analysis tech-

niques for those aspects of a planning domain that are common between TALplan-

ner and other planners but by considering techniques that would be applicable to

the main difference: Control formulas. The use of control formulas and incremental

pruning constraints can significantly reduce the number of search nodes the plan-

ner must expand and investigate, which in turn decreases the time spent applying

the effects of an action to generate a single new node or testing whether the goal

is satisfied by the current plan candidate, but also increases the amount of time

spent determining whether or not a node actually satisfies all incremental pruning

constraints. In fact, benchmarks show that evaluating incremental pruning con-

straints often accounts for more than 99% of the time used by TALplanner. This

makes formula evaluation performance paramount for the overall performance of

the planner, and any techniques that can reduce the amount of time required to

verify whether a node should indeed be accepted could become valuable weapons

in the hunt for efficiency.

There are several potential approaches that might decrease the amount of time

used for evaluating incremental pruning constraints. One of these approaches

would involve retaining the same pruning constraints but optimizing the formula

evaluator. This has been done in several stages, but the optimizations are mainly

related to implementation details and are not interesting in themselves. Another

approach would be to use some form of domain analysis to alter the incremental

pruning constraints, perhaps finding simpler constraints that would yield the same

results in terms of pruning. That is the approach taken in this chapter, based on an

ICAPS-2002 article (Kvarnström, 2002).

Borrowing a term from compiler technology, we say that TALplanner contains

an optimizer for formulas and terms. Figure 8.1 serves as an overview of the op-

timization process, the details of which will be presented in the remainder of this

chapter.

The input to the optimizer is an entity (formula or term) to be optimized, to-

gether with an optimization context providing additional information about the

Chapter 8. Domain Analysis Techniques for Domain-Dependent Control 213

Expanded
context 3

Expanded
context 2Part 2

Part 3

Combine
optimized entities

[9.1]

Combined
entity

Optimize
combined entity

[9.2, 9.3.1]

Optimized
entity

Generate/add
local var constr

[9.5.2, 9.5.3]

Expanded
constraints

Quantifier
elimination [9.5]

Optimized
entity

Necessary
bindings

Remove out-of-
scope var

constraints [9.5.4]

Initial opt
context

Entity to be
optimized

Separate
subentities

Subentity 1

Generate/add facts
for subentities
[9.3.3, 9.3.4]

Expanded
context 1

Combine variable
constraints [9.5.4]

Combined
constraints

Infer new facts
using state

invariants [9.4]

Expanded
context 3

Expanded
context 2

Expanded
context 1

Optimizer
(recursive call for part 1)

Optimizer
(recursive call for part 1)

Optimizer
(recursive call for subentity 1)

Figure 8.1: Control Analysis and Optimization

context in which the entity will eventually be evaluated. The optimizer begins by

recursively optimizing all subentities – for example, the conjuncts in a conjunction,

or the temporal term and fluent term forming a value() expression. Part of this

processing is identical for each subentity, indicated as layers of depth in the figure,

including the generation of new context information for each subentity.

Each recursive call to the optimizer returns an optimized subentity and, in case

the entity is a formula, a set of necessary constraints on variable values. Further op-

timizations may be applied once the subentities have been combined, and new vari-

able constraints may be generated from the combined entity. If sufficiently strong

variable constraints are generated, it may be possible to eliminate quantifiers, re-

ducing the time complexity of formula evaluation (Section 8.5).

214

Initial opt
context, op 1

State
invariants

Operators
Control
rules

Generate pruning
constraints [7.4.4]

Extract operator
contexts [9.3.2]

Resolution and
other inferences

[9.3.5, 9.4]

Operator
context op 1

Generate
precondition
control [9.6]

Precondition
control for op 1

from p.c. 1

Reduced
incremental
p.c. 1 for op 1

Generate state
invariants

Optimizer

Incremental
pruning

constraint 1

Optimized
incremental
p.c. 1 for op 1

Variable
constraints for
p.c. 1 for op 1

Figure 8.2: Control Analysis and Optimization

The optimizer makes use of a number of general techniques applicable to most

types of formulas and expressions, but special emphasis has been placed on the

optimization of incremental pruning constraints (Figure 8.2). As specified in the

previous chapter, each control formula in a narrative generates separate incremen-

tal pruning constraints for each operator type in a narrative. Information extracted

from an operator definition can then be used to generate an optimization context

enhancing the optimization of the associated pruning constraints. Several forms of

operator analysis have been developed for this purpose, including the extraction

of precondition and effect facts to provide information about the context in which

an incremental pruning constraint will be evaluated as well as an analysis of the

potential state transitions that may take place during the execution of an operator

instance which may aid in the optimization of triggered state transition constraints.

Existing domain analysis techniques have also been considered for inclusion in

Chapter 8. Domain Analysis Techniques for Domain-Dependent Control 215

the formula and term optimization framework. At the moment, the most suitable

candidate appears to be the automatic extraction of state invariants. In order to

verify the hypothesis that such invariants can indeed be a useful addition to the

optimizer, the first step has involved accepting and using manually declared state

invariants (Section 8.4).

Applying the optimizer to an incremental pruning constraint can often result

in a conjunction where some conjuncts only refer to the invocation timepoint of an

operator. Such conjuncts can be moved to the precondition of the operator, which

leads to fewer actions being applied and fewer states being expanded (Section 8.6).

These techniques have proven very effective in many domains. As demon-

strated by the benchmark tests at the end of the chapter, performance is improved

by a factor of 40 for the largest logistics problems from the Second International

Planning Competition (IPC-2000, held at the AIPS-2000 conference: Bacchus, 2001)

and by a factor of 400 for the largest blocks world problems.

8.1 General Optimization Framework

The general optimization framework developed in this chapter will be applied to

L(ND)∗ formulas as well as value terms, temporal terms and fluent terms. Formu-

las and terms will sometimes simply be referred to as “entities” to be optimized.

An explicit enumeration of all details of all optimizations, as they are applied to

each of the numerous types of entities supported by the optimizer, would be quite

tedious. Instead, we will generally discuss and explain the underlying principles

behind the optimizations. The optimizer function resulting from applying these

principles will be denoted by ♦♣t✐♠✐③❡().

Basic recursive optimization. If nothing else is stated, an atomic entity can be

optimized to itself, while a composite entity may be optimized by first recursively

optimizing its constituent parts and then constructing a new entity of the same type

from the optimized parts in the obvious manner. All other optimizations specified

below are added on top of this basic framework.

Initial processing. Certain optimizations discussed below may determine that a

complex value term in an incremental pruning constraint must always take on the

same value as a formal argument variable belonging to the corresponding operator,

and will then replace the value term with the variable. Such variables are later sub-

stituted with the actual arguments of an action occurrence when the pruning con-

straint is tested, as specified in Definition 6.4.8 on page 174, removing the need to

evaluate the original complex value term. For this procedure to work as intended,

the formal argument variable must occur free rather than bound in the optimized

formula. To ensure that this will always be the case, all variables bound in an en-

tity are replaced with fresh unused variables of the same sort before optimization

begins.

216 8.2. Equivalence Optimizations

Connectives. Only negations, disjunctions, conjunctions and equivalences are con-

sidered by the formula optimizer. Disjunctions and conjunctions are generalized to

support arbitrary arities.

Example 8.1.1 (Logistics Domain, continued)
Renaming bound variables in the three incremental pruning constraints for the lo-

gistics domain, as shown in Example 6.4.2 on page 177, may result in the following

constraints.

For ♦♥❧②✲❧♦❛❞✲✐♥t♦✲♣❧❛♥❡✲✇❤❡♥✲♥❡❝❡ss❛r②:

∀obj10, plane10, loc10.

[s] ¬✐♥(obj10, plane10) ∧ ❛t(obj10, loc10) ∧ [s+1] ✐♥(obj10, plane10)→
∃loc’10 [❣♦❛❧(❛t(obj10, loc’10)) ∧ [s] ❝✐t②✲♦❢(loc10) 6=̂ ❝✐t②✲♦❢(loc’10)]

For ♦♥❧②✲✉♥❧♦❛❞✲❢r♦♠✲♣❧❛♥❡✲✇❤❡♥✲♥❡❝❡ss❛r②:

∀obj20, plane20, loc20.

[s] ✐♥(obj20, plane20) ∧ ❛t(plane20, loc20) ∧ [s+1] ¬✐♥(obj20, plane20)→
∃loc’20 [❣♦❛❧(❛t(obj20, loc’20)) ∧ [s] ❝✐t②✲♦❢(loc20) =̂ ❝✐t②✲♦❢(loc’20)]

For ♦❜❥❡❝ts✲r❡♠❛✐♥✲❛t✲❞❡st✐♥❛t✐♦♥s:

∀obj30, loc30.

[s] ❛t(obj30, loc30) ∧ ❣♦❛❧(❛t(obj30, loc30))→ [s+1] ❛t(obj30, loc30) �

8.2 Equivalence Optimizations

The first type of optimization performed by TALplanner involves rewriting a for-

mula α to a simpler form β such that α ≡ β. TALplanner implements a num-

ber of such optimizations, making use of well-known logical equivalences such as

φ ∧ (φ ∨ ψ) ≡ φ, φ ∧ true ≡ φ, and ∀x.(α ∧ β(x)) ≡ α ∧ ∀x.β(x) where x does not

occur in α.

At first glance it would appear that the only use for this type of optimiza-

tion would be to correct trivial mistakes made by the domain designer. After

all, who would deliberately write a formula such as [t] ♦♥(x, y) ∧ ([t] ♦♥(x, y) ∨
[t] ♦♥t❛❜❧❡(x))? The answer lies in the fact that TALplanner conjoins incremental

pruning constraints originating from different control rules, the optimizer performs

various types of simplifications, and the optimizer may generate new precondi-

tions to be conjoined to existing preconditions. At various points in this process,

the formulas that are generated may be susceptible to equivalence optimizations

that were not applicable to the original formulas. Performing these optimizations

can therefore have a noticeable impact on the performance of the planner.

Additionally, formulas in a planning domain may quantify over variables that

in certain planning problems turn out to have empty value domains, in which case

∀v.φ(v) is optimized to true and ∃v.φ(v) is optimized to false. For singleton value

domains, the formula ∀v.φ(v), where the domain of v contains the single value w,

Chapter 8. Domain Analysis Techniques for Domain-Dependent Control 217

is optimized to φ(w), and similarly for existential quantification. Also, any value

term whose associated value domain contains a single value w must necessarily

take on that value.

8.3 Context-Dependent Optimizations

The potential for optimizations can be vastly extended by considering the context

in which an entity will be evaluated.

Consider again a formula α that should be optimized, and suppose that it can

somehow be determined in advance that α will only be evaluated in a context where

another formula γ is satisfied. For example, maybe α is intended to be used as an

incremental pruning constraint for a specific operator, in which case it will be evalu-

ated immediately after applying an instance of that operator, which may guarantee

that certain conditions hold. In this case, the optimizer is not limited to finding a

simpler but equivalent formula β such that α ≡ β. Instead, it can search for a sim-

pler and potentially weaker formula β such that (α∧ γ) ≡ (β∧ γ). For any narrative

where γ holds, α will always be true iff β is true, even though this is not necessarily

the case in narratives where γ does not hold. Given that γ is sufficiently strong,

this clearly provides far better optimization opportunities than pure equivalence

optimization.

As a second step towards improving the efficiency of formula evaluation, the

TALplanner formula optimizer therefore makes use of the context in which a for-

mula will eventually be evaluated. The formula optimizer is extended to take two

arguments: A formula α to be optimized and an optimization context.

Definition 8.3.1 (Optimization Context)
An optimization context1 is a tuple containing the following elements:

• A set of formulas Φ known to hold when an entity will be evaluated.

• If an incremental pruning constraint in ✐♥❝ri should be optimized, the operator

type oi associated with the constraint. �

If an operator type is specified, its formal arguments may occur free in α as well as

in the formula returned by the optimizer. Before evaluation, these variables will be

instantiated with the actual arguments of the particular operator instance of that

had just been applied, as specified in Definition 6.4.8 on page 174.

Below, we will explain how context information is generated automatically by

the optimizer and how this context information can be used to simplify formulas

and terms. The presentation assumes the optimization context 〈Φ, o〉 does contain

an operator type. If it does not, those parts of the optimizer that depend on the

operator type are deactivated.

1Redefined in Definition 8.4.1 on page 221 to add support for state invariants.

218 8.3. Context-Dependent Optimizations

8.3.1 Using Context Information

Context information is used in the optimization of atomic formulas, where an en-

tailment checker attempts to determine whether an atomic formula is entailed by

the context Φ (in which case it can be optimized to true) or whether its negation

is entailed (false). It should be noted that although this entailment checker must

be sound it need not be complete. Incompleteness weakens the optimizer but does

not affect correctness.

Context information is also used when optimizing terms. For example, suppose

that the optimizer is currently optimizing the complex value term ω, and suppose

that a formula in the optimization context has the form v = ω or ω = v for some

value variable v. Value variables are evaluated more quickly than complex value

terms, which implies that ω should be replaced with v – as long as this does not

violate sort constraints. For example, depending on the context in which a car-

valued term occurs, it cannot necessarily be replaced with a vehicle-valued vari-

able, where vehicle is a strict supersort of car.

Similarly, context information can be used in the optimization of Holds formulas:

Given the knowledge that [τ] f =̂ v, the formula [τ] f =̂ ω holds iff v = ω.

8.3.2 Generating Initial Context using Operator Analysis

If a formula to be optimized is an incremental pruning constraint, it is possible to

provide a certain amount of context even for the initial call to the optimizer.

Incremental pruning constraints should mainly depend on the state or states

generated by the latest operator invocation, and although the preprocessor cannot

know in advance which operator instance was invoked, it can know which operator

type was invoked (such as ❞r✐✈❡ or ✢② in the logistics domain) – this is part of the

reason why there is a separate set of constraints ✐♥❝ri for each operator type oi (Sec-

tion 6.4.3). This leads to the idea of extracting some context information from the

operator definitions regarding the states in which the constraints will be evaluated.

If the precondition of an operator is not satisfied, the operator instance is never

applied. If it is satisfied, the effects are applied, and if they are inconsistent, the

planner backtracks before testing incremental pruning constraints. In other words,

the incremental pruning constraints in ✐♥❝ri are only tested if both the precondition

and the effects of the corresponding operator oi are known to hold. Consequently,

a set of known facts can be extracted from the operator quite easily. Let φ be the

precondition of oi and let φ′ be a conjunction of fixed fluent formulas extracted

from the unconditional effects of the action (for example, the effect [s + 1] ❛t(o, l) :=
false generates the formula [s + 1] ❛t(o, l) =̂ false). Then, the initial set of known

formulas is φ ∧ φ′.

Example 8.3.1 (Operator Analysis for the Logistics Domain)
Analyzing the ❞r✐✈❡ operator from the logistics domain (Example 6.2.10 on page 157)

Chapter 8. Domain Analysis Techniques for Domain-Dependent Control 219

yields the formulas φ = [s] ❛t(truck, loc1) ∧ ❝✐t②✲♦❢(loc1) =̂ ❝✐t②✲♦❢(loc2) ∧ loc1 6= loc2

and φ′ = [s + 1] ❛t(truck, loc1) =̂ false∧ [s + 1] ❛t(truck, loc2) =̂ true. �

Note that both the formal invocation timepoint of the operator oi and its formal

arguments can occur as free variables in φ or φ′. When the constraints in ✐♥❝ri are

tested, the formal arguments will be instantiated with the values used during the

latest operator invocation, as stated in the definition of ✐♥❝ri (Section 6.4.3). In this

way, an incremental pruning constraint can refer directly to the arguments of the

corresponding operator invocation. (Since all variables in control rules have been

replaced with fresh variables, there is no risk of mistaking one instance of a variable

for another.)

8.3.3 Passing On Context

The optimization context 〈Φ, o〉 given to ♦♣t✐♠✐③❡() is generally passed on unmod-

ified when the optimizer makes a recursive call to optimize a subformula or sub-

term. Some exceptions where new context information can be generated will be

discussed below.

8.3.4 Generating Context from Composite Formulas

For certain types of composite formulas, the optimizer is not limited to passing on

the initial context but can generate new context information for use in the optimiza-

tion of subformulas.

For a conjunction
∧n

i=0 φi, the value of any single conjunct φk is irrelevant if any

other conjunct is false, because in this case the conjunction will definitely be false.

Conversely, the value of the conjunct φk is only relevant in the case where all other

conjuncts are true. Therefore, the optimizer recursively optimizes each φk in a con-

text where all other conjuncts hold, that is, where
∧

0≤i≤n,i 6=k φi has been added to Φ.

Conjoining the resulting optimized subformulas results in a new formula which is

guaranteed to be equivalent to the original conjunction in the given context, even if

each optimized subformula taken in separation may not necessarily be equivalent

to the corresponding original conjunct. An example will be given in Section 8.3.6

below.

A dual optimization is applied to disjunctions.

8.3.5 Inferring Additional Context

The context information generated above can be augmented by an automatic infer-

ence procedure ✐♥❢❡r(Φ) which generates new facts from an existing set of facts Φ.

The return value is a set of formulas containing the original facts Φ and possibly

additional formulas that are entailed by Trans+(Φ).

220 8.4. Using State Invariants

The first version of the inference procedure uses standard equivalences to gen-

erate new facts from Φ. This reduces the amount of work done by the entailment

checker when testing whether an atomic formula is entailed by a given context.

Definition 8.3.2 (Inference Procedure)
The TALplanner inference procedure2 ✐♥❢❡r(Φ) is defined by repeatedly applying the

following inference rules to the formulas in Φ and adding any newly inferred for-

mulas to Φ until a fixpoint is reached.

• Given [τ] f =̂ ω, infer value(τ, f) = ω, and vice versa.

• Given ω1 = ω2 and ω2 = ω3, infer ω1 = ω3.

• Given ¬(α ∨ β), infer ¬α and ¬β.

• Given ∀v.α ∧ β, infer ∀v.α and ∀v.β.

• Given ¬∀v.α, infer ∃v.¬α.

• Given ¬∃v.α, infer ∀v.¬α. �

8.3.6 Optimization Example

The following example illustrates some of the optimizations described above.

Example 8.3.2 (Optimizing Pruning Constraints)
Suppose that while processing pruning constraints for the logistics domain, the

formula city = value(t, ❝✐t②✲♦❢(loc1)) ∧ [t] ❝✐t②✲♦❢(loc1) =̂ value(t, ❝✐t②✲♦❢(loc2)) is gen-

erated, possibly due to conjoining multiple control formulas with different ori-

gins. As specified in Section 8.3.4, each conjunct in this conjunction will be op-

timized under the assumption that the other conjunct holds. This entails opti-

mizing the formula [t] ❝✐t②✲♦❢(loc1) =̂ value(t, ❝✐t②✲♦❢(loc2)) under the assumption

that city = value(t, ❝✐t②✲♦❢(loc1)) holds. Applying the TALplanner inference pro-

cedure from Section 8.3.5 to this assumption allows the optimizer to infer that

[t] ❝✐t②✲♦❢(loc1) = city must hold. As stated in Section 8.3.1, the optimizer can now

optimize the first conjunct [t] ❝✐t②✲♦❢(loc1) =̂ value(t, ❝✐t②✲♦❢(loc2)) to the simpler for-

mula city = value(t, ❝✐t②✲♦❢(loc2)). Though this new conjunct is not equivalent to the

original first conjunct, the resulting complete formula city = value(t, ❝✐t②✲♦❢(loc1))∧
city = value(t, ❝✐t②✲♦❢(loc2)) is equivalent to the original complete formula. �

8.4 Using State Invariants

State invariants are conditions that hold in all states generated by any executable

plan. In the blocks world, a block that is being held is never ❝❧❡❛r, and a block that

2Redefined in Definition 8.4.2 on page 222 to add support for state invariants.

Chapter 8. Domain Analysis Techniques for Domain-Dependent Control 221

is ♦♥t❛❜❧❡ is never ♦♥ another block, though this is never stated explicitly in the do-

main model but is implicit in the operator definitions and in implicit constraints

on the initial state. In the standard logistics domain, a package which is ✐♥ a vehi-

cle is never ❛t a location: ∀t, obj1, vehicle1, loc1.[t] ✐♥(obj1, vehicle1) → ¬❛t(obj1, loc1).

(While this may appear counter-intuitive, it does follow from the way the logistics

domain is usually modeled.) Similar state invariants can be found for most plan-

ning domains, but up to now there was no natural place for these constraints to be

used in TALplanner.

The optimization techniques presented in the preceding section are based on

the use of information about the context in which a formula or term is evaluated. It

is clear that the more context information the optimizer has as its disposal, the bet-

ter the optimization opportunities – and state invariants can be used to infer new

information from existing facts. Better yet, there are already automated domain

analysis techniques in the literature that extract such constraints from domain defi-

nitions (Fox & Long, 1998; Gerevini & Schubert, 1998, 2000; Scholz, 2000; Rintanen,

2000b). Thus we return to the original idea of using existing domain analysis tech-

niques to improve the performance of TALplanner, though with a novel use of the

information extracted by these techniques.

There are two steps involved in integrating an automated state invariant ex-

traction algorithm into the planner: The algorithm must be adapted to work with

TALplanner’s operator definitions (and possibly extended to handle operators with

extended duration), and the planner must be altered to actually use the state invari-

ants once they have been generated. We have chosen to begin with the second step,

extending TALplanner to make use of manually specified state invariants. This will

provide the opportunity to test carefully whether the use of the invariants has a

sufficient impact on the planner’s performance to warrant following through with

the implementation of the automatic domain analysis. As in all formulas specified

as input to the optimizer, all variables bound in state invariants are replaced with

fresh unused variables of the same sort before optimization begins.

The optimization context used by the formula optimizer, previously specified

in Definition 8.3.1 on page 217, is extended as follows.

Definition 8.4.1 (Optimization Context)
An optimization context is a tuple containing the following elements:

• A set of formulas Φ known to hold when an entity will be evaluated.

• A set of state invariants Ψ that must always hold in all problem instances for

the current planning domain

• For incremental pruning constraints, the operator type o associated with the

constraint. �

The inference procedure from Definition 8.3.2 on the facing page is extended to take

two arguments: ✐♥❢❡r(Φ, Ψ) generates new facts from an existing set of facts Φ and

222 8.5. Eliminating Quantifiers

a set of state invariants Ψ known to hold in all problem instances for the current

planning domain. The return value is a set of formulas containing the original

facts Φ and possibly additional formulas that are entailed by Trans+(Φ ∧Ψ).

In addition to using the standard equivalences shown in the previous defini-

tion, facts are also combined with state invariants with limited use of a resolution

algorithm. This may yield further facts to be added to Φ, strengthening the infor-

mation available to the optimizer. For example, the ✉♥❧♦❛❞ operator in the logis-

tics domain provides the context fact [s] ✐♥(obj, vehicle). Combining this with the

invariant ∀t, obj1, vehicle1, loc1.[t] ✐♥(obj1, vehicle1) → ¬❛t(obj1, loc1) would generate

the formula ∀loc1.[s] ¬❛t(obj, loc1).

Definition 8.4.2 (Inference Procedure)
The extended TALplanner inference procedure ✐♥❢❡r(Φ, Ψ) is defined by repeatedly

(1) applying the inference rules from Definition 8.4.2 to the formulas in Φ and

(2) applying a resolution inference procedure to combine facts in Φ with invari-

ants in Ψ, adding any newly inferred formulas to Φ, until a fixpoint is reached. �

The performance impact of state invariants can be expected to vary depending on

the degree of correlation between state variables. In the standard four-operator for-

mulation of the blocks world, for example, state variables are highly correlated: A

block which is on another block is never on the table, a block which has another

block on top of it is never clear, the hand is empty if and only if no block is be-

ing held, and a block which is being held is never clear, on top of another block,

or on the table. Because of this high degree of redundancy, the same facts can be

expressed in many different syntactic forms. State invariants make the correlations

between state variables explicit, which makes the remaining domain analysis algo-

rithms considerably more robust against these syntactic variations. As can be seen

in the benchmark tests later in this chapter, the use of state invariants decreases

the time required to solve some blocks world problem instances by a factor of 3.

In other domains, state variables may be less correlated, which naturally decreases

the impact of using state invariants.

A future version of TALplanner may be integrated with an automatic analysis

method to avoid the need to specify state invariants as part of the planning domain

description.

8.5 Eliminating Quantifiers

Since TAL uses finite value domains, any universally quantified formula ∀x.φ(x)
can be evaluated simply by iterating over each possible value of the variable x.

However, iterating over a large set of values is quite inefficient. If it can be deter-

mined in advance that φ(x) can only be false if x belongs to some smaller set of

value terms X (and must be true for all other values of x), then it is sufficient to

verify the formula ∀x ∈ X.φ(x). A dual optimization can be applied to existentially

Chapter 8. Domain Analysis Techniques for Domain-Dependent Control 223

quantified formulas ∃y.φ(y), if it can be determined that φ(y) can only be true if y

belongs to some set of value terms Y. If X (or Y) is a singleton, this leads to the

complete elimination of a quantifier.

The formula optimizer used by TALplanner is extended to return not only an

optimized formula ψ but a tuple 〈ψ, ♥❡❝◆❡❣, ♥❡❝P♦s〉, where ♥❡❝◆❡❣ is a set of vari-

able constraints necessary for ¬ψ to hold (corresponding to X above), and ♥❡❝P♦s

is a set of variable constraints necessary for ψ to hold (corresponding to Y above).

Each variable constraint in ♥❡❝◆❡❣ (♥❡❝P♦s) has the form x 7→ {ω1, . . . , ωn} indicat-

ing that ψ can only be false (true) if
∨n

i=1 x = ωi.

Variable constraints (Section 8.5.1) are generated by certain atomic expressions

(Section 8.5.2), and are propagated and combined upwards through the call chain as

required by connectives and quantifiers. Variable constraints can also be generated

using a form of state transition analysis (Section 8.5.3).

8.5.1 Variable Constraints

Before discussing how variable constraints are generated and used, we must pro-

vide formal definitions of constraints and constraint sets, and a number of opera-

tions on these structures.

Definition 8.5.1 (Variable Constraint)
A variable constraint for the value variable x is an expression x 7→ {ω1, . . . , ωn}
where each ωi is a value term, denoting that x must take on the same value as one

of the value terms in {ω1, . . . , ωn}. An inconsistent variable constraint for the value

variable x is represented as the expression x 7→ ∅. �

The disjunction of two variable constraints consists of the union of all possible val-

ues according to either constraint.

Definition 8.5.2 (Variable Constraint Disjunction)
Let x 7→ {ω1, . . . , ωm} and x 7→ {ω′1, . . . , ω′n} be two variable constraints for the

same value variable x. Then, the disjunction of these variable constraints, denoted

by (x 7→ {ω1, . . . , ωm}) ∨ (x 7→ {ω′1, . . . , ω′n}), is x 7→ {ω1, . . . , ωm, ω′1, . . . , ω′n}. �

Conjunction of variable constraints is slightly more complicated. Each variable con-

straint maps a variable to a set of value terms. This set does not necessarily consist

of value constants – for example, it can contain value variables whose eventual

bindings are not known during optimization. A straight intersection between two

constraints x 7→ {y} and x 7→ {z} would then result in the inconsistent constraint

x 7→ ∅, which is unsound because even though y and z are distinct variables they

may eventually be bound to the same value.

Instead of retaining full information for conjoined variable constraints, we use a

weaker representation where some information is lost but where the representation

remains small in size.

224 8.5. Eliminating Quantifiers

Definition 8.5.3 (Variable Constraint Conjunction)
Let x 7→ {ω1, . . . , ωm} and x 7→ {ω′1, . . . , ω′n} be two variable constraints for the

same value variable x. Then, the conjunction of these variable constraints, denoted

by (x 7→ {ω1, . . . , ωm}) ∧ (x 7→ {ω′1, . . . , ω′n}), is constructed as follows.

Let V be the set of value name constants3 in {ω1, . . . , ωm}, and let W be the

remaining value terms in that set. Let V′ be the set of value name constants in

{ω′1, . . . , ω′n}, and let W ′ be the remaining value terms in that set. The conjunction

of the two variable constraints is x 7→ (V ∩V′) ∪W ∪W ′. �

An example may be in order.

Example 8.5.1 (Variable Constraint Disjunction and Conjunction)
Let loc 7→ {loc1, loc3, loc2, value(t, ❧♦❝❛t✐♦♥(truck7))} and loc 7→ {loc1, loc2, loc2}
be two variable constraints. The disjunction of these variable constraints is loc 7→
{loc1, loc2, loc3, loc2, value(t, ❧♦❝❛t✐♦♥(truck7))}: Each of the value terms represented

by the original variable constraints is a possible binding for loc.

Now consider the conjunction of the same two constraints. This should gen-

erate an overestimate of the set of values that loc could take on given that both

variable constraints are satisfied. The value terms loc1 and loc2 are present in both

constraints, and should definitely be part of the overestimate. The value term loc3
is only explicitly present in the first constraint, but could potentially denote the

same value as loc2 in the second constraint, so at least one of these terms has to be

present. Similarly, loc2 is only explicitly present in the second constraint, but could

denote the same value as loc2 or value(t, ❧♦❝❛t✐♦♥(truck7)) in the first constraint,

so either loc2 or both loc2 and value(t, ❧♦❝❛t✐♦♥(truck7)) must be present. Finally,

value(t, ❧♦❝❛t✐♦♥(truck7)) is only explicitly present in the first constraint, but could

take on the same value as any value term in the second constraint, so either this

term or all value terms in the second constraint must be present.

The definition above generates the sets of value terms V = {loc1, loc3}, W =
{loc2, value(t, ❧♦❝❛t✐♦♥(truck7))}, V′ = {loc1, loc2}, and W ′ = {loc2}. This yields

the final result loc 7→ {loc1, loc2, value(t, ❧♦❝❛t✐♦♥(truck7))}, which satisfies all con-

ditions given in the previous paragraph. �

Variable constraints can be combined into sets.

Definition 8.5.4 (Variable Constraint Set)
A variable constraint set is a possibly empty set of variable constraints for distinct

value variables. A variable constraint set binds a value variable x iff the variable

constraint set contains a variable constraint for x.

Let c be a variable constraint set and x a value variable. If c binds x, then c[x]
denotes the unique variable constraint for x in c. Otherwise, c does not bind x, and

3Value name constants are those value constants that are declared to belong to a value domain. Due

to the use of unique name axioms, two distinct value name constants are guaranteed to denote distinct

values.

Chapter 8. Domain Analysis Techniques for Domain-Dependent Control 225

c[x] denotes the (unconstraining) variable constraint x 7→ X where X contains all

values from the domain of x.

An inconsistent variable constraint set is a variable constraint set containing at

least one inconsistent variable constraint.

The conjunction of two variable constraint sets c and c′ is

{c[x] ∧ c′[x] | x is bound in c or c′}.
The disjunction of two variable constraint sets c and c′ is

{c[x] ∨ c′[x] | x is bound in c or c′}. �

8.5.2 Generating Constraints from Atomic Formulas

Variable constraints can be generated by equality expressions: Optimizing the for-

mula x = ω generates the constraint x 7→ {ω} in ♥❡❝P♦s while leaving ♥❡❝◆❡❣

empty, and x 6= ω generates the variable constraint x 7→ {ω} in ♥❡❝◆❡❣ while

leaving ♥❡❝P♦s empty.

Similarly, a fixed fluent formula [τ] f =̂ x generates a positive variable con-

straint x 7→ {value(τ, f)}, and a fixed fluent formula [τ] f 6=̂ x generates a negative

variable constraint x 7→ {value(τ, f)}.
Optimizing [τ] f =̂ ω with a known formula [τ] f =̂ x in the optimization

context generates a positive variable constraint x 7→ {ω}. If exactly one of these

formulas is negated, a negative variable constraint x 7→ {ω} is generated instead,

while if both formulas are negated, a positive constraint is generated.

8.5.3 Generating Constraints using State Transition Analysis

Many control rules can only be violated if certain state transitions take place. This

is a natural consequence of the fact that many control rules follow a certain pattern,

where a property true in one state should either be preserved to the next state or

violated in a very specific way.

For example, ♦♥❧②✲❧♦❛❞✲✐♥t♦✲♣❧❛♥❡✲✇❤❡♥✲♥❡❝❡ss❛r② (initially shown in Example 6.4.1

on page 168) generates incremental pruning constraints (shown in Example 8.1.1)

that state that a package should only be loaded into a plane if a plane is needed to

move it. This can also be stated in another way: If a package is not in a plane in a

certain state, then it should remain not in that plane in the next state, unless a plane is

needed in order to move it. As long as the property ¬✐♥(obj10, plane10) is preserved

from s to s + 1 for all obj10 and all plane10, the constraint cannot be violated.

As another example, the incremental pruning constraints generated by ♦❜❥❡❝ts✲

r❡♠❛✐♥✲❛t✲❞❡st✐♥❛t✐♦♥s state that if a package is at a certain location at time s, it must

remain at that location at s + 1, unless there is no goal that it should remain there. If

the property ❛t(obj30, loc30) is preserved from s to s + 1 for all obj30 and all loc30, the

constraint cannot be violated.

Clearly, it would be a major advantage if the preprocessor could determine in

advance that these state transitions cannot take place – then, the entire incremental

226 8.5. Eliminating Quantifiers

constraints would necessarily be true, and would not need to be tested. Failing this,

it would be of almost equal benefit to the planner if it could be determined that the

state transitions can only take place for certain specific instances of a fluent, thereby

generating additional variable constraints and reducing the number of instances of

an incremental constraint that need to be tested. In fact, this can be detected in

advance, as will be demonstrated in the following example.

Example 8.5.2 (State Transition Analysis)
Returning to ♦❜❥❡❝ts✲r❡♠❛✐♥✲❛t✲❞❡st✐♥❛t✐♦♥s, the incremental pruning constraints gen-

erated by this rule can only be violated if an instance of ❛t(obj30, loc30) is made false

between s and s + 1. But s is the invocation timepoint of the latest operator, and

s + 1 is time of the effect state.

The ✉♥❧♦❛❞ operator never makes an instance of ❛t false at s + 1, and therefore

this incremental pruning constraint is never violated for ✉♥❧♦❛❞.

Although ❞r✐✈❡ makes ❛t(vehicle, loc1) false, this instance refers to the location

of a vehicle rather than that of an object and cannot be unified with ❛t(obj10, loc10).

Therefore, the incremental constraint can never be violated by ❞r✐✈❡.

The ❧♦❛❞ action makes ❛t(obj, loc) false, and unifying this with ❛t(obj10, loc10)
yields the variable constraints obj10 7→ {obj} and loc10 7→ {loc}. These variable

constraints must necessarily hold if the disjunction should be false, and can there-

fore be added to ♥❡❝◆❡❣ when the disjunction is analyzed. �

These insights can be used to improve the formula optimizer.

Extending the Optimizer

The following algorithm is called from the optimizer when analyzing a disjunction,

given the disjunction and an optimization context as arguments. The return value

is a variable constraint set ♥❡❝◆❡❣ that is required for the disjunction to be false:

If any of the variable constraints in ♥❡❝◆❡❣ does not hold, the disjunction will be

satisfied. Explanations will be provided below.

1 procedure ✜♥❞✲♥❡❝❡ss❛r②✲❝♦♥str❛✐♥ts(
∨n

i=1 φi, 〈Φ, Ψ, o〉)
2 let ❝♦♥❥✉♥❝ts = ✐♥❢❡r(Φ ∧

∧n
i=1 ¬φi, Ψ) Add negation of disjunction to Φ

3 let ♥❡❝◆❡❣ = ∅

4 for all [τ] f =̂ ω in ❝♦♥❥✉♥❝ts do
5 for all [τ′] f =̂ ω′ in ❝♦♥❥✉♥❝ts do Identical f !

6 if can prove τ < τ′ then
7 if can prove that ω and ω′ cannot take on the same value then
8 if can prove that τ ≥ tmax then
9 return an impossible binding

10 if sequential operator type o given then
11 let ♥❡❝◆❡❣ = ♥❡❝◆❡❣∧ ❛♥❛❧②③❡❙❚([τ] f =̂ ω, [τ′] f =̂ ω′, 〈Φ, Ψ, o〉)
12 return ♥❡❝◆❡❣

Chapter 8. Domain Analysis Techniques for Domain-Dependent Control 227

The incremental pruning constraint for ♦❜❥❡❝ts✲r❡♠❛✐♥✲❛t✲❞❡st✐♥❛t✐♦♥s relative to ❧♦❛❞✲

♣❧❛♥❡ is

∀obj30, loc30. [s] ❛t(obj30, loc30) ∧ ❣♦❛❧(❛t(obj30, loc30))→ [s+1] ❛t(obj30, loc30)

where the implication inside the universal quantifier prefix can also be written as a

disjunction
∨n

i=1 αi. This disjunction can be analyzed using the algorithm above.

For the disjunction to be false, it must clearly be the case that
∧n

i=1 ¬αi. There

is also a set of formulas Φ that are known to hold regardless of whether the dis-

junction holds or not, so for the disjunction to be false, we must have Φ ∧
∧n

i=1 ¬αi.

The resolution inference algorithm can be used together with the state invariants

to infer additional facts: For the disjunction to be false, ✐♥❢❡r(Φ ∧
∧n

i=1 ¬αi, Ψ) must

hold. For example, since it must be the case that [s + 1] ❛t(obj30, loc30), it is possible

to infer ∀vehicle.[s + 1] ¬✐♥(obj30, vehicle). The conjunction of the formulas returned

by ✐♥❢❡r will be denoted by
∧m

i=1 βi.

Now, suppose that βi is [τ] f =̂ ω and that β j is the formula [τ′] f =̂ ω′.

Suppose further that it can be proven4 that τ < τ′, so the second formula refers to

a later timepoint, and that ω 6= ω′. Due to βi, the fluent could not have taken on

the value ω′ at τ, but due to β j, it must take on that value at τ′. The value of f must

have changed in the interval (τ, τ′].5

What remains is trying to find a set of variable constraints that are necessary

for f to be able to change in (τ, τ′], or in the best case, to determine that f in fact

must remain constant. If any such constraints are found, they can be conjoined

to ♥❡❝◆❡❣, since the constraints are necessary for the disjunction to be false. TAL-

planner uses two different types of state transition analysis for finding variable

constraints.

First, if τ ≥ tmax, then the entire interval (τ, τ′] is strictly after tmax. But no

effects can take place after tmax, so no fluents can change there. Therefore, it is im-

possible that the disjunction does not hold, and an inconsistent variable constraint

set is returned. This is useful for analyzing ✜♥❛❧ constraints, the only constraints

that can contain the internal tmax constant.

Second, if an operator type o is specified, the disjunction will be evaluated im-

mediately after an operator of that type is invoked, and the transitions possible

during the execution interval can be analyzed. This analysis is useful for incremen-

tal pruning constraints in ✐♥❝ri, and is described in detail below.

State Transition Analysis for Sequential Operators

The state transition analysis algorithm for sequential operators is as follows.

4Whenever we say “if we can prove φ” rather than “if φ is the case”, failing to prove this fact may

lead to a decrease in performance but is always safe. For example, the attempt to prove that τ < τ′

could be a test whether τ′ is of the syntactic form τ + n for some positive n, or could be a stronger test

involving more complex temporal reasoning.
5TALplanner also handles negated formulas ¬[τ] f =̂ ω and ¬[τ] f ′ =̂ ω′. The extension is trivial

and is omitted to improve the clarity of the presentation.

228 8.5. Eliminating Quantifiers

1 procedure ❛♥❛❧②③❡❙❚([τ] f =̂ ω, [τ′] f =̂ ω′, 〈Φ, Ψ, o〉)
2 if can prove τ′ > ✐♥✈(o) then
3 let ❡✛ = all conditional and unconditional effects of o

4 for all [τ] g := ω′′ in ❡✛ do
5 if can prove f 6= g then remove this from ❡✛

6 elsif can prove τ 6∈ (τ, τ′] then remove this from ❡✛

7 elsif can prove ω′ and ω′′ cannot be equal then remove this from ❡✛

8 if {free variables in ❡✛} ⊆ {arguments of o} then
9 let ♥❡❝◆❡❣ = {x 7→ ∅ | x is free in ❡✛} Cannot violate the formula. . .

10 for all [τ] g := w in ❡✛ do
11 let ♥❡❝◆❡❣ = ♥❡❝◆❡❣∨ unify(g, f) . . . unless unified with some remaining effect

12 return ♥❡❝◆❡❣

13 return ∅

This algorithm returns a set of variable constraints that are required for f to change

values from ω to ω′ between τ and τ′, given that an instance of o is the last operator

to be invoked in the current search node. Note that f might be a fluent expression

with arguments, such as ❛t(obj1, loc1).

Given the assumption that the last action in the current plan is an instance of

o, the only changes that can take place in (✐♥✈(o), ∞) are those explicitly caused by

this instance of o. No information is provided about what might have happened in

[0, ✐♥✈(o)], though, so if it cannot be proven that τ′ > ✐♥✈(o), the analysis is aborted.

Otherwise, consider every effect of the operator, conditional as well as uncon-

ditional. For ❧♦❛❞, this would be the two effects [s + 1] ❛t(obj, loc) := false and

[s + 1] ✐♥(obj, vehicle) := true, where the analyzer has no information about what

the formal operator arguments obj, loc and vehicle will be bound to when the for-

mula will be evaluated.

If an effect cannot affect f , it is irrelevant and can be discarded. If it might

affect f but not at an interesting timepoint (in the interval (τ, τ′], when the change

must take place), it can be discarded. Finally, if the new value assigned to f by this

effect is a value term ω′′ that cannot take on the same value as ω′, then the effect

definitely cannot cause a transition from ω to ω′, and can be discarded.

The remaining effects of o might cause f to change values from ω to ω′ between

τ and τ′. Because the change we are interested in happened strictly after the invo-

cation of o, and because o is assumed to be the last operator in a sequential plan,

these effects must also be the only possible causes for f to change values in this

specific way.

If the remaining effects contain free variables that are not formal argument vari-

ables for o, then those variables must have been bound in quantified effects, and

the analysis is aborted. Otherwise, it is safe to claim that f must be equal to one of

the fluents that were affected by the action. This means it must be unified with one

of them for the desired state transition to occur, so the disjunction of all unify(gi, f)
can be returned.

Chapter 8. Domain Analysis Techniques for Domain-Dependent Control 229

State Transition Analysis for Concurrent Operators

In order to generate a set of variable bindings necessary for a certain state transi-

tion to take place, the state transition analysis algorithm above must be able to de-

termine the complete set of possible effects within the temporal interval when the

state transition should occur. This is the only place where the algorithm is depen-

dent upon the fact that the specified operator o is the last operator in a sequential

plan.

It would be quite useful if a similar algorithm could be found for concurrent

operators. At first glance, this would appear difficult, because when analyzing an

incremental pruning constraint relative to one specific operator there is no way

of determining what other operators may be invoked concurrently by the plan-

ner, which means that it is not possible to determine in advance a complete set of

possible state transitions. The key to the solution is proper blame assignment: In

concurrent TALplanner, each incremental pruning constraint is tested not once per

timepoint but once for each action in the plan. If an incremental pruning constraint

can only be violated by a given state transition, it only needs to be tested by the

action responsible for causing that state transition. Consequently, the planner can

analyze each constraint relative to each operator type under the assumption that

this operator is in fact the only cause of state transitions, knowing that control rule

violations caused by state transitions that result from other concurrent actions will

be handled by the incremental pruning constraints associated with those actions.

8.5.4 Combining Constraints from Composite Formulas

When optimizing a formula of the form ¬φ, the inner formula φ is recursively op-

timized and the generated constraint sets ♥❡❝P♦s and ♥❡❝◆❡❣ are swapped.

When optimizing a conjunction
∧n

i=0 φi, each conjunct is recursively optimized.

Denote the return values by 〈ψi, ♥❡❝◆❡❣i, ♥❡❝P♦si〉 for 0 ≤ i ≤ n. For the conjunction

to hold, the conjunction of all ♥❡❝P♦si must hold; for the conjunction to be false, the

disjunction of all ♥❡❝◆❡❣i must hold. When conjoining all ♥❡❝P♦si, it may be the

case that there is no potential common binding for a certain variable (for exam-

ple, because two conjuncts require bindings that cannot belong to the same value

domain). In this case, the resulting variable constraint set is inconsistent, and the

formula may be immediately optimized to true or false.

A dual optimization is applied to disjunctions.

For a quantified formula ∀x.φ or ∃x.φ, the variable constraint sets generated for

the inner formula are returned after removing any constraints for the quantified

variable x, which is not in scope outside the quantified formula. This does not

require iteration over possible values of x.

230 8.6. Generating Precondition Control

Generated,
tested, pruned

Generated,
tested, pruned

generated
Never

generated
Never

generated
Never

Generated,
tested, OK

Generated,
tested, OK

Generated,
tested, OK

Generated,
tested, OK

Generated,
tested, pruned

Figure 8.3: Fewer States Generated using Precondition Control

8.6 Generating Precondition Control

In order to test whether an instance of the operator oi violates one of its associated

incremental control formulas in ✐♥❝ri, TALplanner generally has to begin by adding

this operator instance to the current plan candidate and calculating the new states

generated by the new operator instance. Only then can the formulas in ✐♥❝ri be

evaluated in the new states (the left hand side of Figure 8.3).

However, after applying domain analysis and the associated optimizations to

✐♥❝ri, the resulting formulas often turn out to have conjuncts that only refer to the

invocation timepoint of oi. Because these conjuncts do not depend on the states

generated by applying an operator instance, they can be moved from ✐♥❝ri into the

precondition of the operator.

In the logistics domain, for example, the precondition ∃loc′[❣♦❛❧(❛t(obj, loc′)) ∧
[s] ❝✐t②✲♦❢(loc) 6=̂ ❝✐t②✲♦❢(loc′)] is generated for the ❧♦❛❞✲♣❧❛♥❡ operator by the ♦♥❧②✲

❧♦❛❞✲✐♥t♦✲♣❧❛♥❡✲✇❤❡♥✲♥❡❝❡ss❛r② control rule: There must be a goal that the object obj

to be loaded into the plane should be in another city. This formula only needs to

evaluate fluents at time s, which is the invocation timepoint of ❧♦❛❞✲♣❧❛♥❡.

Given this transformation, TALplanner has a chance of detecting that an action

would cause a control rule violation even before the action is applied. This, in turn,

reduces the number of actions applied by TALplanner and thereby also the number

of states that must be generated (the right hand side of Figure 8.3).

Whether or not the generation of precondition control has a significant impact

on the total performance of TALplanner depends on the characteristics of the plan-

ning domain and the control formulas. A greater performance improvement can

naturally be found in domains where precondition control formulas are often not

satisfied, since this is a prerequisite for being able to reduce the number of actions

to be applied. The total performance improvements also depend on the relation

between the time required to evaluate a control formula and the time required to

Chapter 8. Domain Analysis Techniques for Domain-Dependent Control 231

apply an action. If states are simple and can be constructed quickly, actions are

simple and do not have complex quantified or conditional effects, and the precon-

dition control formulas that can be generated are complex, then applying actions

may take only an insignificant part of the total time required by the planner. In this

case, reducing the number of actions to be applied may have a negligible impact on

the performance of the planner. Conversely, if states and actions are complex and

precondition control formulas are simple, the performance impact of precondition

control can be very significant.

But if a control rule can be expressed as a precondition, why not simply write

it that way? In fact, the use of manually specified precondition control in TLPlan

has been discussed independently by Bacchus and Ady (1999), and yielded simi-

lar improvements compared to the progression algorithm usually used by TLPlan.

However, there are several reasons why the use of control rules is often better, per-

haps the most important of which is that it allows a more modular specification of

the control knowledge: Each constraint is specified as a single control rule, rather

than as a number of (possibly different) preconditions in each operator. Allowing

an automatic analyzer to generate preconditions wherever possible should also be

less error-prone, especially for more complex rules where interdependencies be-

tween multiple actions must be taken into account. This is done by TALplanner.

8.7 Empirical Benchmark Tests

An earlier, considerably less general version of the domain analysis techniques pre-

sented in this chapter was implemented in the version of TALplanner that com-

peted in the Second International Planning Competition (IPC-2000; see Chapter 9).

This version was also tested using the same benchmark domains and problem in-

stances already used in Section 6.7 on page 186. The results, initially presented in

Kvarnström and Doherty (2000b), are mostly superceded by more current tests but

are still interesting in two respects: They provide a snapshot of the performance

that could be expected from state-of-the-art hand-tailored planners in early 2000,

and they can be directly compared to the benchmarks from early 1999 that were

presented in Chapter 6. The results are therefore reproduced in Section 8.7.1 below.

When the full repertoire of optimization techniques in this chapter had been

developed and implemented, we performed a more thorough examination of the

benefits of each type of optimization technique. The results are presented in Sec-

tion 8.7.2 on page 233.

8.7.1 Initial Testing

Updated Results for the Logistics Domain. In our initial testing of domain analy-

sis and formula optimization techniques, benchmark results were once more gen-

erated for TALplanner with TAL-based control rules using the 30 logistics problem

232 8.7. Empirical Benchmark Tests

from the First International Planning Competition (IPC-1998, McDermott, 1998).

The results shown in Table 8.1 clearly demonstrate a great speedup for TALplanner

when compared to the previous version of the planner.

As before, TLPlan could not solve two of the problems using 256 MB of mem-

ory; the remaining problems required between 0.4 seconds and 17 hours to com-

plete. TALplanner proved to be considerably more efficient: The longest plan (for

problem 29) contained 330 actions and was created in approximately 0.3 seconds,

while the most complex problem (problem 28) resulted in 274 actions and required

0.63 seconds.

We also compared TALplanner to the most recent version of the HTN planner

SHOP, using the standard SHOP formalization of the logistics domain. In Nau,

Cau, Lotem, and Muños-Avila (1999), SHOP was found to be considerably faster

than TLPlan. Nau et al. believed the most important reason to be the fact that

SHOP in effect allows the user to design a planning algorithm, rather than prune a

search space, and that SHOP’s use of problem reduction can be more efficient than

the state space search used by TLPlan. However, even though the SHOP results in

Table 8.1 were generated using a newer, considerably faster version of SHOP than

the one used in Nau et al. (1999), TALplanner is still faster by almost two orders of

magnitude for some of the larger problem instances, despite running on a slower

computer.

Updated Results for the Blocks World. For the blocks world, we used a set of

test problems with between 25 and 5000 blocks, including the 14 problems previ-

ously used in Section 6.7. For TLPlan, the world definition and control rules from

❞♦♠❛✐♥s✴❇❧♦❝❦s✴✹❖♣s❇❧♦❝❦s❲♦r❧❞✳t❧♣ in the TLPlan distribution were used together

with an additional control rule ensuring that blocks are not placed on the table if

their final destinations are ready. This additional rule resulted in shorter plans as

well as improved performance. For TALplanner, the same control rules were trans-

lated into TAL.

Table 8.2 contains the results (times are in seconds). TLPlan was tested on the

first ten problems; for the larger problems, 256 MB of memory was not sufficient.

TALplanner solved the entire set of problem instances in less than one minute and

required approximately 70 MB of memory for the largest problem instance.

Program Versions and Test Procedures. Test results for TLPlan and TALplanner

were generated on a 333 MHz Pentium II computer running Windows NT 4.0 SP3,

with 256 MB of memory. In the logistics domain, TALplanner was also compared

with SHOP (Nau et al., 1999), a hierarchical task network (HTN) planner, which

ran on a 440 MHz Sun Ultra 10 with 256 MB of memory.

The TLPlan tests were performed using the precompiled C version that can be

downloaded from ❤tt♣✿✴✴✇✇✇✳❝s✳t♦r♦♥t♦✳❡❞✉✴⑦❢❜❛❝❝❤✉s✴. TALplanner is written in

Java, and TALplanner 2.741 was used together with the Java Development Kit 1.2.2-

001 and the HotSpot virtual machine (2.0rc2), both of which can be downloaded

Chapter 8. Domain Analysis Techniques for Domain-Dependent Control 233

❚❆▲♣❧❛♥♥❡r

❖♣s ❚▲P❧❛♥ ❙❍❖P ❜❡❢♦r❡ ♥♦✇

✶ ✷✻ ✵✳✹✷✶ ✵✳✵✻✵ ✵✳✶✻✵ ✵✳✵✹✵

✷ ✸✸ ✶✳✼✶✷ ✵✳✵✾✵ ✵✳✺✵✶ ✵✳✵✹✵

✸ ✺✺ ✶✾✳✸✾✽ ✵✳✷✶✵ ✸✳✺✵✺ ✵✳✵✻✵

✹ ✺✾ ✺✹✳✸✸✽ ✵✳✷✺✵ ✼✳✺✽✶ ✵✳✵✻✵

✺ ✷✷ ✵✳✸✶✵ ✵✳✵✻✵ ✵✳✷✺✵ ✵✳✵✸✵

✻ ✼✷ ✽✹✳✶✾✶ ✵✳✹✽✵ ✶✾✳✾✶✾ ✵✳✵✼✵

✼ ✸✹ ✺✳✺✻✽ ✵✳✶✷✵ ✶✳✵✸✷ ✵✳✵✹✶

✽ ✹✶ ✾✼✳✸✶✵ ✵✳✸✻✵ ✶✹✳✷✹✶ ✵✳✵✻✶

✾ ✽✺ ✷✶✽✳✻✹✹ ✵✳✹✷✵ ✷✹✳✹✵✺ ✵✳✵✽✵

✶✵ ✶✵✺ ✶✻✼✳✺✽✶ ✶✳✷✻✵ ✶✽✳✹✸✻ ✵✳✵✽✵

✶✶ ✸✶ ✺✳✶✻✼ ✵✳✶✵✵ ✵✳✽✼✷ ✵✳✵✹✵

✶✷ ✹✶ ✷✽✻✳✵✷✶ ✵✳✼✻✵ ✹✶✳✽✹✵ ✵✳✵✺✵

✶✸ ✻✼ ✶✵✼✸✳✷✻✸ ✶✳✶✻✵ ✺✵✳✼✺✸ ✵✳✵✼✵

✶✹ ✾✹ ✽✵✷✳✽✷✹ ✶✳✵✵✵ ✸✻✳✷✽✷ ✵✳✶✵✵

✶✺ ✾✹ ✷✹✳✻✼✺ ✵✳✷✻✵ ✸✳✶✸✺ ✵✳✵✽✵

✶✻ ✺✽ ✶✻✽✳✵✵✷ ✵✳✸✾✵ ✶✵✳✾✻✻ ✵✳✵✻✵

✶✼ ✹✺ ✾✵✳✹✻✵ ✵✳✷✶✵ ✻✳✽✺✵ ✵✳✶✵✵

✶✽ ✶✼✵ ✹✸✺✽✳✸✻✼ ✷✳✻✾✵ ✶✵✹✳✵✵✾ ✵✳✶✷✵

✶✾ ✶✺✸ ✷✻✽✺✳✵✷✶ ✵✳✾✻✵ ✺✼✳✶✶✷ ✵✳✶✶✵

✷✵ ✶✺✵ ✸✹✶✹✳✵✽✾ ✶✳✹✷✵ ✶✹✶✳✾✽✹ ✵✳✶✷✶

✷✶ ✶✵✹ ✷✶✵✷✳✻✹✸ ✵✳✽✻✵ ✾✺✳✺✾✼ ✵✳✶✵✵

✷✷ ✷✾✻ ✶✶✳✺✼✵ ✶✵✷✼✳✵✾✼ ✵✳✸✸✵

✷✸ ✶✶✺ ✶✶✻✳✼✾✽ ✵✳✽✶✵ ✾✳✾✺✹ ✵✳✵✽✵

✷✹ ✹✶ ✻✾✺✳✼✽✵ ✵✳✸✷✵ ✹✼✳✶✺✽ ✵✳✵✼✵

✷✺ ✶✾✵ ✶✶✼✷✹✳✾✶✵ ✷✳✺✸✵ ✻✽✵✳✹✷✽ ✵✳✷✷✵

✷✻ ✶✾✹ ✾✾✼✻✳✾✹✻ ✶✾✳✷✵✵ ✻✾✾✳✺✼✻ ✵✳✷✸✵

✷✼ ✶✹✾ ✶✹✾✾✹✳✺✺✶ ✶✳✷✾✵ ✹✻✸✳✼✸✼ ✵✳✷✷✵

✷✽ ✷✼✹ ✻✳✼✷✵ ✹✻✶✸✳✸✸✸ ✵✳✻✸✶

✷✾ ✸✸✵ ✻✵✽✼✹✳✽✸✹ ✶✺✳✺✶✵ ✺✹✺✳✽✹✺ ✵✳✷✾✶

✸✵ ✶✸✻ ✶✹✵✼✵✳✾✷✸ ✸✳✽✻✵ ✶✵✸✻✳✶✻✵ ✵✳✷✶✶

P❡♥t✐✉♠ ■■✲✸✸✸ ❯❧tr❛❙♣❛r❝✲✹✹✵ P❡♥t✐✉♠ ■■✲✸✸✸

Table 8.1: Test Results for the Logistics Domain

from ❤tt♣✿✴✴❥❛✈❛✳s✉♥✳❝♦♠. SHOP is written in Lisp, and SHOP 1.6.1 was used to-

gether with Allegro Common Lisp Enterprise Edition 5.0.

8.7.2 Benchmark Analysis

The complete optimizer is based on the optimizations specified above – but it is

not possible to determine the total performance improvements given an analy-

234 8.7. Empirical Benchmark Tests

P❧❛♥ ❧❡♥❣t❤ ❚▲P❧❛♥ ❚❆▲♣❧❛♥♥❡r ❚❆▲♣❧❛♥♥❡r

❜❡❢♦r❡ ♥♦✇

✶✻ ✷✺ ✶✻ ✵✳✶✵✵ ✵✳✵✻✵ ✵✳✵✾✵

✷✹ ✺✵ ✻✽ ✶✳✽✹✸ ✶✳✸✵✷ ✵✳✵✾✵

✷✺ ✼✵ ✽✻ ✺✳✺✷✽ ✸✳✼✶✺ ✵✳✵✾✵

✷✻ ✼✵ ✶✵✹ ✼✳✵✻✵ ✹✳✹✵✻ ✵✳✶✶✵

✷✼ ✶✵✵ ✶✺✽ ✸✺✳✸✷✶ ✶✹✳✵✻✵ ✵✳✶✶✵

✷✽ ✶✹✵ ✷✸✵ ✶✼✺✳✽✾✸ ✹✶✳✾✹✵ ✵✳✶✸✵

✷✾ ✷✵✵ ✸✺✵ ✼✸✹✳✺✹✻ ✶✹✷✳✾✾✻ ✵✳✶✺✶

✸✵ ✷✽✵ ✸✺✵ ✷✾✶✽✳✽✹✼ ✸✶✺✳✻✺✹ ✵✳✶✻✵

✸✶ ✷✽✵ ✹✼✵ ✸✵✻✼✳✷✻✶ ✹✼✹✳✵✶✷ ✵✳✶✾✵

✸✷ ✹✻✵ ✹✼✵ ✷✵✼✹✺✳✷✽✵ ✶✽✾✾✳✾✾✷ ✵✳✷✶✵

✸✸ ✹✻✵ ✼✾✹ ✷✺✸✺✳✾✹✻ ✵✳✸✸✶

✸✹ ✻✹✵ ✶✶✶✽ ✼✻✼✾✳✼✸✸ ✵✳✹✻✶

✸✺ ✽✷✵ ✶✹✼✽ ✶✷✽✸✼✳✻✷✾ ✵✳✻✵✶

✸✻ ✶✵✵✵ ✶✽✵✷ ✷✺✵✷✽✳✺✵✾ ✵✳✼✼✶

✸✼ ✶✹✵✵ ✷✹✺✵ ✶✳✶✶✶

✸✽ ✶✹✵✵ ✷✻✸✵ ✶✳✶✾✷

✸✾ ✷✵✵✵ ✸✷✼✽ ✶✳✼✸✸

✹✵ ✷✵✵✵ ✸✼✶✵ ✶✳✾✷✷

✹✶ ✺✵✵✵ ✸✼✶✵ ✻✳✾✷✵

✹✷ ✺✵✵✵ ✾✸✷✻ ✽✳✼✵✷

✹✸ ✺✵✵✵ ✶✺✸✶✹ ✶✽✳✸✷✼

Table 8.2: Test Results for the Blocks World

sis of each individual optimization. Instead, it is often the case that optimization

techniques have no discernable performance impact at all when taken in isolation,

but that combinations of such apparently irrelevant techniques can cooperate to

provide a greater synergistic effect. Nevertheless, further benchmark testing and

analysis of the current domain analysis algorithms shows that a certain pattern ap-

pears in most domains.

Operator-specific control rule analysis is absolutely essential to the performance

of the planner, to the extent that removing it generally makes the generation of

precondition control impossible (since this requires the reduction and removal of

control rule disjuncts referring to the “future”, which can only be done with an

operator-specific analysis) and makes the use of state invariants ineffective.

When the operator-specific analysis is added, the generation of precondition

control has a significant effect. Finally, when precondition control has been intro-

duced, far fewer states are expanded and the speed of testing preconditions be-

comes more important to the performance of the planner. This makes the use of

state invariants more significant, since they can be used to further simplify the aug-

mented preconditions.

Chapter 8. Domain Analysis Techniques for Domain-Dependent Control 235

 0.1

 1

 10

 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

S
ec

o
n
d
s

Number of packages to be moved

No domain analysis
Add operator-specific analysis
Add precondition control
Add state invariants

Figure 8.4: Control Analysis Results for IPC-2000 Logistics Problems

This is demonstrated in a set of benchmark tests using planning domains from

the IPC-2000 and IPC-2002 planning competitions. The tests from IPC-2000 were

run on an 800 MHz Pentium III machine with 512 MB of RAM, running Red Hat

Linux 7.1 and Java 1.3. The tests from IPC-2002 were run on a 3000 MHz Pentium 4

machine with 2 GB of RAM, running Windows XP and Java 1.5.

Logistics. Competitors in the hand-tailored track of IPC-2000 were provided with

a set of logistics problem instances containing between 16 and 100 packages to be

moved. With two distinct problem variations for each problem size, there were a

total of 170 problem instances to be solved. Figure 8.4 shows the average time re-

quired for TALplanner to generate plans for each problem size given four different

levels of domain analysis. The topmost line indicates the time required to gener-

ate plans without the new domain analysis techniques. Adding operator-specific

analysis improves performance by a factor of up to 4 for the largest problem in-

stances. Adding precondition control yields another factor of 8, and finally, adding

state invariants reduces the amount of time used by a factor of 1.3. The accumu-

lated performance improvement for all domain analysis techniques ranges from

approximately a factor of 3 for the smallest logistics instances to a factor of over 40

for the largest problem instances.

Blocks World. The blocks world was also used in IPC-2000 (Figure 8.5). Here,

operator-specific analysis results in an 8-fold speedup for the largest problem in-

stances with 500 blocks, after which adding precondition control results reduces

236 8.7. Empirical Benchmark Tests

 0.1

 1

 10

 100

 0 50 100 150 200 250 300 350 400 450 500

S
ec

o
n
d
s

Number of blocks

No domain analysis
Add operator-specific analysis
Add precondition control
Add state invariants

Figure 8.5: Control Analysis Results for IPC-2000 Blocks World Problems

the time by a factor of 16 and the use of state invariants yields another factor of 3.

In total, these domain analysis techniques make TALplanner up to 400 times faster

for the largest problem instances. It should be noted that the improvements caused

by domain analysis are partly due to the elimination of quantifiers and therefore

do not result in a constant factor speedup but a reduction in time complexity for

certain operations. Thus, larger problem instances are affected to a greater degree.

Depots. The Depots domain, which will be described in further detail in Sec-

tion 9.2.3 on page 262, was part of the IPC-2002 planning competition. The test

results presented in Figure 8.6 were generated using the 22 larger problem instances

intended for the “handcoded” track of the competition, and plans contain approxi-

mately 100 to 800 operator instances. In this domain, operator-specific analysis ap-

pears to improve performance by a factor of 3 to 5 for the larger problem instances.

Precondition control improves performance by another factor of 5 to 10. The per-

formance impact of adding state invariants appears to be negligible for problem

instances of this size. In total, applying these domain analysis techniques to the

Depots domain generally allows TALplanner to generate plans between 10 and 100

times faster than without domain analysis.

Rovers. Finally we consider the Rovers domain, which will be described in further

detail in Section 9.2.5 on page 268. Like the Depots domain, the Rovers domain

was part of the IPC-2002 planning competition, and the test results presented in

Figure 8.7 were generated using the 20 larger problem instances intended for the

Chapter 8. Domain Analysis Techniques for Domain-Dependent Control 237

 0.01

 0.1

 1

 5 10 15 20

S
ec

o
n
d
s

Problem number

No domain analysis
Add operator-specific analysis
Add precondition control
Add state invariants

Figure 8.6: Control Analysis Results for IPC-2002 Depots STRIPS Problems

“handcoded” track of the competition. For this domain, plans consist of approxi-

mately 35 to 200 actions.

The Rovers domain provides a counterpoint to the three preceding domains.

Problem instances are rather small, and the branching factor is not large: The largest

problem instances do not cause TALplanner to investigate more than 2000 states,

even with all optimizations turned off. In this situation, no significant improve-

ments can be made. Adding operator-specific analysis does improve planning time

by a factor of up to 10 for many largest problem instances, but precondition control

yields no further measurable improvements. The TALplanner domain definition

for the Rovers domain does not use state invariants.

8.8 Related Work

The algorithms developed in this chapter are intended to be used in a general for-

mula optimizer, which should be applied to any formula, whether control-related

or not, without necessitating an artificial increase in the number of operators or flu-

ents in the domain and most importantly without affecting the set of possible plans

and without restricting the expressivity of operators or control formulas. If these

restrictions are lifted, a number of new possibilities open up, especially in the area

of generating precondition-based control from standard temporal control formulas.

238 8.8. Related Work

 0.1

 5 10 15 20

S
ec

o
n
d
s

Problem number

No domain analysis
Add operator-specific analysis
Add precondition control

Figure 8.7: Control Analysis Results for IPC-2002 Rovers STRIPS Problems

Rintanen (2000a) presents a method for compiling an LTL control formula and

a set of operators into a new set of operators with explicitly embedded control

knowledge. Unlike TALplanner’s generation of precondition control, this method

can be applied to various forms of the “until” (❯) operator. However, the method

is still limited to control rules having certain simple syntactic forms. It also alters

the planning domain by adding new facts keeping track of the current control state,

and operators are altered by adding new effects updating those facts.

Cresswell and Coddington (2004) describe a method for compiling LTL formu-

las into PDDL, based on the generation of a finite state machine corresponding to

an arbitrary LTL formula. The current state of the finite state machine is modeled

using a new ❢s♠❴st❛t❡ fluent, which is updated using automatically generated con-

ditional effects. As described by the authors, these updates may force a total order

between actions that could otherwise have been placed in parallel.

Chapter 9
Planning Competitions

The first International Planning Competition was held in 1998, at the Fourth Inter-

national Conference of Artificial Intelligence Planning and Scheduling (AIPS-98).

Intended to provide empirical comparisons of existing planning systems as well as

an incitement for improving planners and extending their applicability, the compe-

tition attracted five different planning systems: Blackbox (Kautz & Selman, 1998,

1999), HSP (Bonet & Geffner, 1998), Sensory Graphplan (Anderson, Smith, & Weld,

1998; Weld, Anderson, & Smith, 1998), STAN (Long & Fox, 1999) and IPP (Koehler

et al., 1997). Though the results were somewhat inconclusive in the sense that no

planner consistently outperformed the others, the competition was still a success,

and new competitions have been held every other year.

Unlike the first competition, the second International Planning Competition

(IPC-2 or IPC-2000) had a track for hand-tailored or knowledge-based planners.

TALplanner participated in this competition as well as in IPC-3 (IPC-2002). This

chapter presents the results from these competitions together with an extensive

discussion of the planning domains from IPC-2002 and how control rules were de-

veloped for these domains.

While reading this chapter, please keep in mind that knowledge-based plan-

ners cannot easily be tested in isolation. Whereas all fully automated planners used

identical domain definitions – the operators and facts specified by the competition

organizers – each team working with a knowledge-based planner had to generate

their own additional domain knowledge to be used with their particular planner.

What is truly tested is the combination of planner and domain knowledge. The

effort spent on investigating the properties of each domain and encoding the ap-

propriate domain knowledge may vary between teams, which can easily explain

small constant factor differences in performance as well as plan quality. Some dif-

ferences may even be explained by one team having some luck when randomly

choosing one control approach over another.

239

240 9.1. International Planning Competition 2000

9.1 International Planning Competition 2000

TALplanner participated in the hand-tailored planning track of the second Inter-

national Planning Competition in 2000 (IPC-2000). The version that was used in

the competition already contained an early version of the domain analysis im-

provements specified in Chapter 8, which helped TALplanner win the “distin-

guished planner” award, outperforming other hand-tailored planners by orders

of magnitude in several planning domains.1 TALplanner also won first place in the

ADL-plus-resources track of the Miconic 10 elevator control domain competition

(Koehler, 2000) sponsored by Schindler Lifts Ltd. and taking place as part of IPC-

2000. The planning competition and the participating planners were later described

in the fall 2001 issue of Artificial Intelligence Magazine (Bacchus, 2001; Doherty &

Kvarnström, 2001).

In this section, we will briefly present the results from the hand-tailored plan-

ning track. These benchmark results were generated on a 500 MHz Pentium III

machine with 1 GB of memory provided by the competition organizers. Results

will be presented for all five domains used in the hand-tailored track of the com-

petition: The blocks world, the logistics domain, the schedule domain, the Freecell

domain, and the Miconic 10 elevator domain. The complete PDDL domain defini-

tions and problem instances are available from the IPC-2000 home page2, together

with the raw result data files from which the graphs in this section were created.

The results for TALplanner are compared with those from several other plan-

ners. SHOP (Nau et al., 1999, 2001) is a hierarchical task network (HTN) planner,

which does not attempt to achieve a goal but to perform a task. Tasks can be decom-

posed into subtasks according to domain-specific rules, until all remaining tasks

are primitive tasks, corresponding to planning operators. System R (Lin, 2001) is

a regression-based STRIPS-like planner where domain-dependent control informa-

tion is used to order subgoals, prune subgoals, and determine the way a subgoal

is solved by regressing it to a new conjunctive goal. PbR (Ambite, 1998; Ambite

et al., 2000; Ambite & Knoblock, 2001), Planning by Rewriting, begins by quickly

generating a potentially inefficient plan and then applies domain-specific rewriting

rules to gradually improve the result. BDDPlan (Störr, 2001) uses Binary Decision

Diagrams to support reasoning in the Fluent Calculus, where a model checking al-

gorithm is used to do an implicit breadth first search. PropPlan (Fourman, 2000)

also uses Binary Decision Diagrams. Some of these planners did not participate in

all domains.

1It should be noted that TLPlan did not participate in this track, since one of its authors arranged the

competition.
2❤tt♣✿✴✴✇✇✇✳❝s✳t♦r♦♥t♦✳❡❞✉✴❛✐♣s✷✵✵✵✴

Chapter 9. Planning Competitions 241

 0.1

 1

 10

 100

 10 20 30 40 50 60 70 80 90 100

TALplanner
SHOP
System R

(a) Average time (seconds) depending on number of packages

 100

 1000

 10 20 30 40 50 60 70 80 90 100

TALplanner
SHOP
System R

(b) Average plan length depending on number of packages

Figure 9.1: Results for IPC-2000 Logistics Problems

9.1.1 The Logistics Domain

The first domain used in the second International Planning Competition was the

standard logistics domain with the standard six ADL-style operators. The logistics

domain has already been used as an example earlier in this thesis. The control

knowledge used in the competition was based on an adapted version of the control

formulas used by Bacchus and Kabanza (Bacchus & Kabanza, 2000) with several

additions and improvements to decrease plan length and time requirements.

Figure 9.1 contains the logistics results from the hand-tailored track of IPC-2000.

The x axis indicates the number of packages in each problem instance, ranging

from 17 to 100. There were two problem instances for each problem size; results

have been averaged for all instances having the same number of packages. Note

the small spikes in the curve for TALplanner, resulting from Java garbage collection.

As can be seen in the figure, SHOP outperformed System R by slightly more

242 9.1. International Planning Competition 2000

than a factor of two. The relative difference between the two systems remained ap-

proximately constant over a large set of problem instances, indicating that the time

complexity of the two planners was essentially the same for the logistics domain.

TALplanner, on the other hand, increases its lead over the other two planners as

problem sizes grow, ending up faster than SHOP by a factor of over 400 for the

largest problem instances. In terms of plan quality, TALplanner and SHOP gen-

erate plans containing approximately the same number of actions, while the plans

generated by System R are up to six times as long.

9.1.2 The Blocks World

The second domain used in IPC-2000 was the standard blocks world with four

ADL-style operators. Again, this domain has already been used as an example

in this thesis, and control knowledge was based on the control knowledge from

Bacchus and Kabanza with some improvements that generate shorter plans under

certain circumstances.

Figure 9.2 shows the blocks world results from the hand-tailored track of IPC-

2000, where the x axis indicates the number of blocks for each problem instance. As

in the logistics domain, there were two distincs problem instances for each problem

size, and all results have been averaged for all instances of the same size.

Once more, TALplanner outperformed the competing planners by a significant

margin, taking around two seconds to generate plans for 500 blocks. System R

required up to 65 seconds, and this time generated plans only 10% longer than those

of the competing planners. SHOP used up to 4000 seconds and did not generate

plans for the largest problem instances, while the behavior of PbR was somewhat

uneven.

9.1.3 The Freecell Domain

Freecell is a solitaire card game where 52 cards are dealt into 8 columns, each card

visible to the player but only the last card of each column fully exposed. There are

also four foundations, empty locations where each suit should eventually be placed

in order of rank, and four freecells, each of which can temporarily hold a single card

in order to allow the player some more freedom when moving cards around. An

exposed card can be moved from a column or freecell to a column if it is placed on

top of a card of the next higher rank and a different color (black 8 on red 9), from

a column or freecell to a foundation in order of rank (one foundation per suit), or

from a column to any empty freecell.

There were 60 problem instances of increasing complexity for the FreeCell do-

main in IPC-2000. Results for TALplanner, SHOP and System R are shown in Fig-

ure 9.3.

As can be seen in the figure, TALplanner solved all problems, which no other

hand-tailored planner did. In terms of plan quality, TALplanner often produces

Chapter 9. Planning Competitions 243

 1

 10

 100

 1000

 50 100 150 200 250 300 350 400 450 500

TALplanner
SHOP
System R
PbR

(a) Average time (seconds) depending on number of blocks

 1000

 50 100 150 200 250 300 350 400 450 500

TALplanner
SHOP
System R
PbR

(b) Average plan length depending on number of blocks

Figure 9.2: Results for IPC-2000 Blocks Problems

plans that are better than those generated by SHOP and equally good to those

generatedy by System R – but sometimes, it generates plans that are several times

longer. The most extreme example is number 44, “freecell-10-4”, where TALplanner

requires 1110 operators as opposed to 74 operators for System R and 105 operators

for SHOP.

Why should TALplanner generate longer plans? As always, the performance

of a hand-tailored planner depends to a great degree on the domain knowledge of

the person writing the domain specification. Because we had never before played

Freecell, it was unusually difficult to find reasonable rules that allowed us to purge

moves that were “definitely stupid”. After all, winning strategies in card games

and board games often involve taking “counter-intuitive” losses that later allow

you to regain what was lost, and finding these strategies requires some experience

and learning on the part of the player. Better domain knowledge would definitely

have improved the plans generated by TALplanner.

244 9.1. International Planning Competition 2000

 0.1

 1

 10

 100

 0 5 10 15 20 25 30 35 40 45 50 55 60

TALplanner
System R
SHOP

(a) Timing (Seconds)

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50 55 60

TALplanner
System R
SHOP

(b) Plan Length

Figure 9.3: Results for IPC-2000 Freecell Problems

This domain also serves to highlight the potential conflict between generating

good plans and generating plans quickly, and the difficulty in choosing a good

balance between these two performance criteria when generating a domain spec-

ification for an abstract competition rather than having a concrete use in mind.

Interestingly, removing certain control rules from the TALplanner domain specifi-

cation allowed TALplanner to generate plans considerably more quickly – but the

plans were considerably longer. Similarly, we could allow the planner to spend

more time on plan search instead of being satisfied with the very first plan found in

the pruned search tree. Whether the improvements in plan quality would be worth

the additional time can only be determined in relation to a specific use, and for

the planning competition we guessed that time requirements would be considered

more important than plan lengths.

Chapter 9. Planning Competitions 245

 0.01

 0.1

 1

 10

 100

 10 20 30 40 50

TALplanner
SHOP
BDDPlan
PbR

(a) Timing (Seconds)

 10

 10 20 30 40 50

TALplanner
SHOP
BDDPlan
PbR

(b) Plan Length

Figure 9.4: Results for IPC-2000 Schedule Problems

9.1.4 The Schedule Domain

In the schedule domain, there is a collection of parts and a number of operators

that operate on these parts: ♣♦❧✐s❤, r♦❧❧, ❧❛t❤❡, ❣r✐♥❞, ♣✉♥❝❤, ❞r✐❧❧✲♣r❡ss, s♣r❛②✲♣❛✐♥t, and

✐♠♠❡rs✐♦♥✲♣❛✐♥t. Each operator has a number of effects, some of which may undo

the effects of other operators; for example, if a part has been painted, lathing it will

have the side effect of removing the paint. The goal is for each part to have a certain

shape, surface condition, and/or color.

A variety of problem sizes were made available, with between 2 and 51 parts to

be scheduled. There were three problem instances for each problem size. The test

results, which have been averaged for all instances of the same size, are shown in

Figure 9.4. The number of parts to be scheduled increases along the x axis.

Here, TALplanner is slower than SHOP for the smallest problem instances. The

reason for this is mainly that the startup time for the Java Virtual Machine and the

246 9.2. International Planning Competition 2002

Just-In-Time compilation of TALplanner (4–6 seconds) has been distributed evenly

over all problem instances. Due to the relatively small number of instances, this

contributes almost a tenth of a second to each instance, which is significant due to

the small size of each instance. For larger problems, TALplanner generally stays

below 0.2 seconds, while SHOP requires up to one second. BDDPlan and PbR both

require considerably more time and do not solve all problem instances.

In terms of quality, TALplanner, SHOP and BDDPlan consistently return plans

of almost identical length, never differing by more than one or possibly two actions,

while PbR generates somewhat longer plans.

9.1.5 The Miconic-10 Elevator Domain

Miconic 10 is an elevator system built by the Schindler Group.3 The system is in-

tended to be used in large buildings with multiple elevators, and is built on the

idea of allowing passengers to key in their destination before an elevator actually

arrives at their floor. This permits the system to place passengers headed for the

same floor into the same elevator, minimizing the number of stops.

The problem faced by the central elevator controller can be expressed as a plan-

ning problem – and in fact, the commercial Miconic 10 product is based on AI

planning techniques (Koehler & Schuster, 2000; Koehler, 2001; Koehler & Ottiger,

2002). Jana Koehler provided a set of Miconic 10 planning problems adapted to

the PDDL planning domain definition language used in the competition (Koehler,

2000). The TALplanner results in this domain were somewhat erratic (Figure 9.5),

often solving problems in well below a second but sometimes requiring up to 100

seconds, though the planner still outperformed the other hand-tailored planners.

Better search control could probably ameliorate this problem. Another potential

solution would be a modified search algorithm: Once depth first search chooses a

“bad” action, it must explore all potential extensions to that plan (a complete sub-

tree in the search tree) before being able to choose an alternative. Being able to

temporarily skip back and try another choice of actions would probably improve

search time in several difficult domains. This is a topic for future research.

9.2 International Planning Competition 2002

In the spring of 2002, TALplanner participated in the third International Planning

Competition4 (IPC-2002).

Compared to earlier years, this competition and its domain definition language

PDDL2.1 (Fox & Long, 2003) had a very strong emphasis on increasing the complex-

ity of the problem domains used as benchmark tests and the expressivity required

3❤tt♣✿✴✴✇✇✇✳✉s✳s❝❤✐♥❞❧❡r✳❝♦♠✴❙❊❈✴✇❡❜s❡❝❡♥✳♥s❢✴♣❛❣❡s✴❡❧❡✈✲▼❍❘✲▼✐❝✶✵✲✵✶
4❤tt♣✿✴✴✇✇✇✳❞✉r✳❛❝✳✉❦✴❞✳♣✳❧♦♥❣✴❝♦♠♣❡t✐t✐♦♥✳❤t♠❧

Chapter 9. Planning Competitions 247

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

TALplanner
SHOP
PropPlan
BDDPlan

Figure 9.5: Timing Results for IPC-2000 Miconic-10 Elevator Domain Problems

to represent these domains in a planning system. Even in IPC-2000, two years be-

fore, all planning domains had mainly made use of STRIPS-level expressivity. Sup-

port for typed objects had not been required, and though some domains had used

ADL-style quantified and conditional effects, restricted STRIPS versions of these

domains had also been provided. In 2002, though, this was not sufficient. Multiple

versions of each domain were provided to the competitors, many of which required

support for conditional and quantified effects as well as operators with extended

and context-dependent duration, non-integer time, and the use of numeric state

variables. In order to generate plans of reasonable quality, support for concurrency

was also an essential requirement in IPC-2002, whereas plan quality in IPC-2000

had been measured only in terms of the number of actions in a plan without regard

to concurrency.

Although concurrent TALplanner had already been applied to a large number

of domains, the competition provided us with a more varied set of domains that

sometimes exploited concurrency in slightly different ways. This provided new

ideas for improvements to TALplanner, and several minor enhancements to TAL-

planner’s formula analysis algorithms were implemented during the first phase of

the competition, allowing it to handle certain types of control formulas more effi-

ciently when doing concurrent planning. These changes have been incorporated in

the previous chapters of this thesis.

Of the eight planning domains in the third International Planning Competi-

tion, six were intended for hand-tailored planners. Except for the final domain,

UMTranslog-2, all domains exist in at least four different variations: STRIPS, Nu-

meric (where numeric quantities are involved), SimpleTime (where operators take

constant non-unit time), and Timed (where operator durations may depend on the

actual parameters in a specific operator invocation). TALplanner participated in

all six domains, but due to lack of time for creating control rules, we limited our

248 9.2. International Planning Competition 2002

participation to the STRIPS, SimpleTime, and Timed versions of the domains.

In this section, which is mostly based on Kvarnström and Magnusson (2003),

we will describe how the domains were translated from PDDL2.1 to TALplanner,

and discuss some of the control rules that were created to handle the domains more

efficiently. The main focus will be on two domains: ZenoTravel and Satellite. For

these domains we will describe most of the control rules that were used in the com-

petition as well as the incremental process of creating the rules, omitting only a few

technical details and a couple of complex rules that turned out to have minimal

impact on planner performance and plan quality. For the remaining domains (De-

pots, DriverLog, Rovers, and UMTranslog-2) we will describe the general intuitions

behind our control rules, omitting the actual formulas.

We will also compare the performance of TALplanner with that of the other par-

ticipants in the hand-tailored track: SHOP2 (Nau et al., 2003), TLPlan (Bacchus &

Kabanza, 2000), and in some cases also FF (Hoffmann & Nebel, 2001), which is a

fully automated planner but still participated in the hand-tailored track for two of

the competition domains. All graphs are generated from the official collection of

test results5 that can be downloaded from the competition web page6. The time re-

quired to generate a plan is measured in seconds. Plan quality for STRIPS problem

instances is measured using the number of actions in each generated plan. Plan

quality for SimpleTime and Timed problem instances is measured in terms of the

plan quality metric specified in each problem instance. In all domain variations

except one, this metric was defined as the makespan of the generated plan, that is,

the total time that would be required to execute this plan. As will be seen in Sec-

tion 9.2.2, Timed ZenoTravel problem instances used another plan quality metric.

Further details regarding the basic setup of the competition, the planning do-

mains being used, and timing and plan quality results, are available in Long and

Fox (2003).

Before presenting control rules and benchmark results, we will begin with a few

comments on the process of formalizing planning domains.

9.2.1 Pre-Defined Domains: Half the Work in Twice the Time?

In order to create a formal description of a real-world planning domain, it is of

course always necessary to have a thorough understanding both of the domain

itself and of how plans for the domain are eventually going to be used. There are

several reasons why this is required, and most of these reasons are equally valid

regardless of whether the formalization will eventually be used as the input to a

fully automated planner or to a hand-tailored planner like TALplanner.

First, understanding the domain is required in order to determine what aspects

of the domain truly need to be modeled (as types, predicates and functions) and

what aspects can be abstracted away. For example, the standard formalization of

5❤tt♣✿✴✴♣❧❛♥♥✐♥❣✳❝✐s✳str❛t❤✳❛❝✳✉❦✴❝♦♠♣❡t✐t✐♦♥✴■P❈❘❡s✉❧ts✳t❣③
6❤tt♣✿✴✴♣❧❛♥♥✐♥❣✳❝✐s✳str❛t❤✳❛❝✳✉❦✴❝♦♠♣❡t✐t✐♦♥✴

Chapter 9. Planning Competitions 249

the logistics domain does not model distances between locations, but allows trucks

to move between any two locations in one time step. This is sufficient for some pur-

poses, but a plan that is optimal given this abstraction may be extremely subopti-

mal if actually carried out by real trucks, which usually lack teleportation abilities.

Similarly, it does not model package sizes or weights, or cargo capacities for trucks

or airplanes. Neither does it model truck drivers, acceptable working hours for

drivers, the additional costs incurred by overtime pay, or time required for mainte-

nance activities such as changing to winter tires once a year. Which of these aspects

need to be modeled depends very much on the particular application one has in

mind.

Second, a detailed understanding of the domain is required in order to deter-

mine what operators are available to the planner and exactly how their precon-

ditions and effects should be represented within the abstract logical model of the

domain.

And finally, for hand-tailored planners, the domain must be understood in or-

der to be able to guide a search algorithm using domain-dependent heuristics or

control rules.

Usually all of these aspects of a domain are modeled at the same time, and

much of the information and knowledge about the domain that was gathered in

order to find a suitable set of predicates and operators – which is needed even for

a fully automated planner – can be reused in the development of control rules or

heuristics for a hand-tailored planner.

In the planning competition, however, the task is divided into two parts: The

organizers define a set of domains using PDDL2.1, and then it is up to the competi-

tors in the hand-tailored track to find suitable ways of guiding their planners. In

one way, one could say that the competitors only need to do half the work, since

the formalization is already done and only the task of finding control rules remains.

Unfortunately it is still necessary to understand the domain just as thoroughly in

order to write control rules. For the more complex domains, doing this half of the

work in isolation might easily take twice the time, since all the constraints involved

in the domain have to be understood from a PDDL2.1 formalization rather than by

talking to domain experts. This is especially true for the complex UMTranslog-2

logistics domain, where a significant amount of time was spent trying to determine

exactly how packages were allowed to move and how they can be loaded into and

unloaded from various kinds of vehicle.

Another common problem occurring in most domains is that of striking a bal-

ance between quick search and high quality plans. Control rules can be written for

either of these purposes, but they are no panacea – finding very high quality plans

very quickly may be impossible, or the effort required to find the right rules may

be prohibitive. Usually the only realistic option is to be satisfied with finding rea-

sonable plans quickly or letting the planner spend some more time searching for

plans of very high quality. Which option should be chosen depends on the appli-

cation. In the planning competition, however, the results would not be applied in

250 9.2. International Planning Competition 2002

the usual sense of the word. Instead, we had to choose an approach based on how

we expected the results to be judged in the competition. Consequently we aimed

at the first option: Quickly producing plans of reasonable quality, often by forcing

the planner to make a choice that is usually better even though it may occasionally

be worse. Except in the satellite domain, where slew times unexpectedly did not

satisfy the triangle inequality, we believe we succeeded fairly well.

Yet another problem caused by having to use a predefined formalization of a

planning domain is that the degree of detail used in the model is determined in

advance. In the real world there would more likely be a minimum level of detail

required, and anything above this level would be acceptable. It may not seem like

this should be a problem – intuitively, adding new details to a planning problem

ought to make it harder, and so it would be best to remain at the minimum level of

detail. But this is not always true, especially not when control rules are involved.

This will be seen in the timed ZenoTravel domain, for example, where some control

rules would be both simpler and more effective if it was possible to refuel to a

specific level, just like in the real world, rather than just having a simple abstract

refuel operator that unconditionally fills the tank completely.

This should not be taken as a complaint against the organization of the compe-

tition – allowing different planners to use different formalizations would of course

be infeasible. Nevertheless, it does present some additional problems that are not

encountered to the same degree in real-world domains and that deserve to be men-

tioned here.

9.2.2 The ZenoTravel Domain

In the ZenoTravel domain, there are a number of aircraft that can fly people be-

tween cities. There are five operators available: Persons may ❜♦❛r❞ and ❞❡❜❛r❦ from

aircraft, and aircraft may ✢②, ③♦♦♠ (fly quickly, using more fuel), and r❡❢✉❡❧. There

are no restrictions on how many people an aircraft can carry. Flying and zooming

are equivalent except that zooming is generally faster and uses more fuel. Figure 9.6

shows an example problem, with arrows pointing out goal locations.

ZenoTravel: STRIPS

Below we show the operator definitions for the STRIPS version of the ZenoTravel

domain. These operators have been more or less directly translated from the PDDL

representation. The main difference is that the PDDL representation uses PDDL2.1

level 1, with single-step actions, which has a stricter concept of mutual exclusion

than TALplanner does and automatically enforces certain invariants, such as the

fact that an aircraft should not leave if a person is boarding, because the location

of the aircraft is modified by ✢② and used in the precondition of ❜♦❛r❞. The TAL-C

semantics used by TALplanner is more similar to PDDL2.1 level 3 (with durative ac-

tions), where such invariant conditions must be stated explicitly. This is done using

Chapter 9. Planning Competitions 251

Figure 9.6: A ZenoTravel problem instance (STRIPS problem 6)

prevail conditions, which are considered to be separate from true pre-conditions.

Note that in the STRIPS formalization ✢② and ③♦♦♠ take the same amount of time,

since only single-step actions are possible.

♦♣❡r❛t♦r ❜♦❛r❞(person, aircraft, city) ✿❛t s

✿♣r❡❝♦♥❞ [s] ❛t(person, city) ∧ ❛t(aircraft, city)

✿♣r❡✈❛✐❧ [s+1] ❛t(aircraft, city)

✿❡✛❡❝ts [s+1] ❛t(person, city) := false, [s+1] ✐♥(person, aircraft) := true

♦♣❡r❛t♦r ❞❡❜❛r❦(person, aircraft, city) ✿❛t s

✿♣r❡❝♦♥❞ [s] ✐♥(person, aircraft) ∧ ❛t(aircraft, city)

✿♣r❡✈❛✐❧ [s+1] ❛t(aircraft, city)

✿❡✛❡❝ts [s+1] ✐♥(person, aircraft) := false, [s+1] ❛t(person, city) := true

♦♣❡r❛t♦r ✢②(aircraft, city1, city2, flevel1, flevel2) ✿❛t s

✿♣r❡❝♦♥❞ [s] ❛t(aircraft, city1) ∧ ❢✉❡❧✲❧❡✈❡❧(aircraft, flevel1) ∧ ♥❡①t(flevel2, flevel1)

✿❡✛❡❝ts [s+1] ❛t(aircraft, city1) := false, [s+1] ❢✉❡❧✲❧❡✈❡❧(aircraft, flevel1) := false,

[s+1] ❛t(aircraft, city2) := true, [s+1] ❢✉❡❧✲❧❡✈❡❧(aircraft, flevel2) := true

♦♣❡r❛t♦r ③♦♦♠(aircraft, city1, city2, flevel1, flevel2, flevel3) ✿❛t s

✿♣r❡❝♦♥❞ [s] ❛t(aircraft, city1) ∧ ❢✉❡❧✲❧❡✈❡❧(aircraft, flevel1) ∧
✿♥♦t❤✐♥❣ ♥❡①t(flevel2, flevel1) ∧ ♥❡①t(flevel3, flevel2)

✿❡✛❡❝ts [s+1] ❛t(aircraft, city1) := false, [s+1] ❢✉❡❧✲❧❡✈❡❧(aircraft, flevel1) := false,

[s+1] ❛t(aircraft, city2) := true, [s+1] ❢✉❡❧✲❧❡✈❡❧(aircraft, flevel3) := true

♦♣❡r❛t♦r r❡❢✉❡❧(aircraft, city, flevel, flevel1) ✿❛t s

✿♣r❡❝♦♥❞ [s] ❢✉❡❧✲❧❡✈❡❧(aircraft, flevel) ∧ ♥❡①t(flevel, flevel1) ∧ ❛t(aircraft, city)

✿♣r❡✈❛✐❧ [s+1] ❛t(aircraft, city)

✿❡✛❡❝ts [s+1] ❢✉❡❧✲❧❡✈❡❧(aircraft, flevel) := false, [s+1] ❢✉❡❧✲❧❡✈❡❧(aircraft, flevel1) := true

252 9.2. International Planning Competition 2002

After translating the operator definitions, it is time to create a set of control rules.

There are basically two ways of doing this: First, one can sit down and think about

suitable properties for a plan, and then write control rules that ensure that these

properties will hold. Second, one can instruct the planner to show each branch

that is explored in the search tree, and by observing the output one can identify

“obviously stupid” choices made by the planner, such as choosing an action that

inevitably leads to backtracking or performing actions that are useless given the

goals. Control rules can then be written to prevent these branches of the tree from

being explored. Both of these approaches will be covered here.

We begin with the first method, attempting to find a number of reasonable con-

trol rules simply by thinking about the properties of the ZenoTravel domain. Given

some experience from other planning domains, this is in fact quite easy. For exam-

ple, in many domains there are certain goals such that once they are satisfied, one

should never allow them to be destroyed. In the ZenoTravel domain, people who

are at their destinations never need to board an aircraft, which gives rise to the

following control rule:

❝♦♥tr♦❧ ✿♥❛♠❡ "♦♥❧②✲❜♦❛r❞✲✇❤❡♥✲♥❡❝❡ss❛r②"

[t] ¬✐♥(person, aircraft) ∧ [t+1] ✐♥(person, aircraft)→
∃city, city2 [[t] ❛t(person, city) ∧ ❣♦❛❧(❛t(person, city2)) ∧ city 6= city2]

This TAL formula states that if we have a state transition from the person not being

in the aircraft at time t to the person being in the aircraft at time t + 1, (that is, if the

person just boarded the aircraft), then there must be a reason why this is allowed:

It must be the case that the person is in a certain city and that there is a goal that

the person should be in another city.

As noted previously control formulas can usually be written in many different

forms. For example, it would have been equally valid to state that if a person is at

a city (and therefore not in an aircraft), and is not required to be somewhere else,

then at the next timepoint that person should still not be on board an aircraft:

❝♦♥tr♦❧ ✿♥❛♠❡ "♦♥❧②✲❜♦❛r❞✲✇❤❡♥✲♥❡❝❡ss❛r②"

[t] ❛t(person, city) ∧ ¬∃city2 [❣♦❛❧(❛t(person, city2)) ∧ city 6= city2]→
[t+1] ¬✐♥(person, aircraft)

Note that although it may at first glance appear that a planner would have to be

extraordinarily stupid to destroy goals that have already been satisfied, there are

also many cases where temporarily destroying a goal is necessary in order to satisfy

other goals. For example, if there is a goal that a certain aircraft should be at a

certain location and it has already reached that destination, it might still have to fly

a number of people to their destinations before it can return to its own destination.

Another natural idea (since aircraft do not follow predetermined routes in Zeno-

Travel, as they usually do in real life) would be to say that people should only

debark when they have reached their final destination:

Chapter 9. Planning Competitions 253

❝♦♥tr♦❧ ✿♥❛♠❡ "♦♥❧②✲❞❡❜❛r❦✲✇❤❡♥✲✐♥✲❣♦❛❧✲❝✐t②"

[t] ✐♥(person, aircraft) ∧ [t+1] ¬✐♥(person, aircraft)→
∃city [[t] ❛t(aircraft, city) ∧ ❣♦❛❧(❛t(person, city))]

There is a potential problem with this rule: In some cases an optimal plan might

require a number of people to debark from one plane and then board a number

of other planes, which could fly them to their destination concurrently, and this is

strictly forbidden by ♦♥❧②✲❞❡❜❛r❦✲✇❤❡♥✲✐♥✲❣♦❛❧✲❝✐t②. This is a common problem that

occurs for many planning domains, and it is up to the user to determine what to

do depending on the requirements of the application for which the planner is being

used.

There are a number of possible choices: We could ignore this problem and ac-

cept suboptimal plans, skip the rule completely and let the planner search through

a vastly greater search space in order to find a plan which is guaranteed to be op-

timal, or as a compromise, attempt to create a weaker rule that does cut down the

search space to some degree but gives optimal or closer-to-optimal plans. Dur-

ing the planning competition the conditions were somewhat artificial and were not

clearly stated – would it be beneficial for a planner to spend ten times as much ef-

fort finding a plan if this plan was only five percent better, on average? We guessed

that this would not be the case, and consequently we chose to include the control

rule as stated above. In the future, a better solution would most likely be to prefer

those plans where a person does not debark before reaching his destination but still

allow other plans.

Given these two rules, we might now continue with the second approach to

finding control rules. We run TALplanner on a simple problem instance and con-

sider the operator sequences the planner examines during the depth first search

process. This is the beginning of such a sequence for the problem instance in Fig-

ure 9.6. The complete plan generated by the planner contains 123 actions and re-

quires 60 time steps. It is shown here in the IPC-2002 STRIPS result format where

the timepoint at which an action is invoked is followed by the action itself.

✵✿ ✭❜♦❛r❞ person4 plane2 city1✮
✵✿ ✭❜♦❛r❞ person5 plane1 city2✮
✶✿ ✭✢② plane1 city2 city0 fl5 fl4✮
✶✿ ✭✢② plane2 city1 city0 fl3 fl2✮
✷✿ ✭❜♦❛r❞ person1 plane1 city0✮
✷✿ ✭❜♦❛r❞ person2 plane2 city0✮
✸✿ ✭✢② plane1 city0 city1 fl4 fl3✮
✸✿ ✭✢② plane2 city0 city1 fl2 fl1✮
✹✿ ✭❞❡❜❛r❦ person2 plane2 city1✮
✹✿ ✭❞❡❜❛r❦ person5 plane1 city1✮
✺✿ ✭✢② plane1 city1 city0 fl3 fl2✮
✺✿ ✭✢② plane2 city1 city0 fl1 fl0✮

✻✿ ✭✢② plane1 city0 city1 fl2 fl1✮
✻✿ ✭r❡❢✉❡❧ plane2 city0 fl0 fl1✮
✼✿ ✭✢② plane1 city1 city0 fl1 fl0✮
✼✿ ✭✢② plane2 city0 city1 fl1 fl0✮
✽✿ ✭r❡❢✉❡❧ plane1 city0 fl0 fl1✮
✽✿ ✭r❡❢✉❡❧ plane2 city1 fl0 fl1✮
✾✿ ✭✢② plane1 city0 city1 fl1 fl0✮
✾✿ ✭✢② plane2 city1 city0 fl1 fl0✮
✶✵✿ ✭r❡❢✉❡❧ plane1 city1 fl0 fl1✮
✶✶✿ ✭✢② plane1 city1 city0 fl1 fl0✮
✶✶✿ ✭r❡❢✉❡❧ plane2 city0 fl0 fl1✮
✳ ✳ ✳

254 9.2. International Planning Competition 2002

The beginning of the operator sequence appears to be reasonable, but after time 4,

airplanes seem to be flying around randomly. There are no control rules guiding

them, so apparently it was mainly luck that caused the planes to find reasonable

cities to fly to at time 1 and 3. To make airplanes more goal-directed, we identify

three important reasons why an airplane should move from city to city2: that the

goal asserts that the aircraft must end up in city2when the plan is complete, that one

of its passengers wants to go to city2, or that there is a person waiting to be picked

up by an airplane in city2. The following rule formalizes these three intuitions:

❝♦♥tr♦❧ ✿♥❛♠❡ "♣❧❛♥❡s✲❛❧✇❛②s✲✢②✲t♦✲❣♦❛❧"

[t] ❛t(aircraft, city) ∧ [t+1] ¬❛t(aircraft, city)→
∃city2 [[t+1] ❛t(aircraft, city2) ∧

(❣♦❛❧(❛t(aircraft, city2)) ∨
∃person [[t] ✐♥(person, aircraft) ∧ ❣♦❛❧(❛t(person, city2))] ∨
∃person [[t] ❛t(person, city2) ∧ ❣♦❛❧(¬❛t(person, city2))])]

With these control rules, TALplanner can quickly produce a set of plans for the

20 “handcoded” problems from the IPC-2002 competition, and although the plans

will not be optimal, they will not be nearly as bad as the example given above.

Together, the plans require a total of 7164 actions and 618 time steps. The plan for

the example in Figure 9.6 requires 20 actions and 7 time steps.

Nevertheless, there are still some improvements that can be made. The first

criterion is too admissible: It allows a plane to visit its destination even if it still

needs to pick up or drop off passengers. One way of preventing this would be to

add the condition that all passengers must have reached their destinations:

❞❡✜♥❡ [t] ❛❧❧✲♣❡rs♦♥s✲❛rr✐✈❡❞:

∀person, city [❣♦❛❧(❛t(person, city))→ [t] ❛t(person, city)]

❝♦♥tr♦❧ ✿♥❛♠❡ "♣❧❛♥❡s✲❛❧✇❛②s✲✢②✲t♦✲❣♦❛❧"

[t] ❛t(aircraft, city) ∧ [t+1] ¬❛t(aircraft, city)→
∃city2 [[t+1] ❛t(aircraft, city2) ∧

([t] ❛❧❧✲♣❡rs♦♥s✲❛rr✐✈❡❞ ∧ ❣♦❛❧(❛t(aircraft, city2)) ∨
∃person [[t] ✐♥(person, aircraft) ∧ ❣♦❛❧(❛t(person, city2))] ∨
∃person [[t] ❛t(person, city2) ∧ ❣♦❛❧(¬❛t(person, city2))])]

This improves plan quality slightly, and TALplanner now requires 7006 actions and

575 time steps. But the new control rule is in fact too strict, which can be seen in the

following plan tail for handcoded STRIPS problem number 3:

✶✹✿ ✭✢② plane2 city4 city7 fl2 fl1✮
✶✹✿ ✭✢② plane4 city8 city9 fl3 fl2✮
✶✹✿ ✭r❡❢✉❡❧ plane1 city6 fl2 fl3✮
✶✹✿ ✭r❡❢✉❡❧ plane3 city9 fl4 fl5✮
✶✺✿ ✭❞❡❜❛r❦ person24 plane4 city9✮
✶✺✿ ✭❞❡❜❛r❦ person28 plane4 city9✮
✶✺✿ ✭❞❡❜❛r❦ person34 plane2 city7✮

✶✺✿ ✭r❡❢✉❡❧ plane1 city6 fl3 fl4✮
✶✺✿ ✭r❡❢✉❡❧ plane2 city7 fl1 fl2✮
✶✺✿ ✭r❡❢✉❡❧ plane3 city9 fl5 fl6✮
✶✺✿ ✭r❡❢✉❡❧ plane4 city9 fl2 fl3✮
✶✻✿ ✭✢② plane1 city6 city8 fl4 fl3✮
✶✻✿ ✭✢② plane3 city9 city4 fl6 fl5✮

Chapter 9. Planning Competitions 255

In this example, plane1 and plane3 had to wait until all passengers had debarked

from several other planes until they could go to their final destinations, even though

we can clearly see that there was no real reason for them to wait, because all po-

tential passengers had already been picked up and plane1 and plane3 already had

enough fuel. We once again alter the control rule according to this new insight: A

plane can go to its final destination if all passengers on board the plane are headed

towards the same destination and there is no person left to be picked up (that is, all

persons have already arrived or are currently on board planes).

❞❡✜♥❡ [t] ❛❧❧✲♣❡rs♦♥s✲❛rr✐✈❡❞✲♦r✲✐♥✲♣❧❛♥❡s:

∀person, city [❣♦❛❧(❛t(person, city))→ [t] ❛t(person, city) ∨ ∃aircraft [✐♥(person, aircraft)]]

❝♦♥tr♦❧ ✿♥❛♠❡ "♣❧❛♥❡s✲❛❧✇❛②s✲✢②✲t♦✲❣♦❛❧"

[t] ❛t(aircraft, city) ∧ [t+1] ¬❛t(aircraft, city)→
∃city2 [[t+1] ❛t(aircraft, city2) ∧

((❣♦❛❧(❛t(aircraft, city2)) ∧ [t] ❛❧❧✲♣❡rs♦♥s✲❛rr✐✈❡❞✲♦r✲✐♥✲♣❧❛♥❡s ∧
∀person [[t] ✐♥(person, aircraft)→ ❣♦❛❧(❛t(person, city2))]) ∨
∃person [[t] ✐♥(person, aircraft) ∧ ❣♦❛❧(❛t(person, city2))] ∨
∃person [[t] ❛t(person, city2) ∧ ❣♦❛❧(¬❛t(person, city2))])]

This yields another minor improvement, and TALplanner now requires 6918 ac-

tions and 564 time steps. For the example used above, the end of the plan now

looks as follows:

✶✹✿ ✭✢② plane1 city6 city8 fl2 fl1✮
✶✹✿ ✭✢② plane2 city4 city7 fl2 fl1✮
✶✹✿ ✭✢② plane4 city8 city9 fl3 fl2✮
✶✹✿ ✭r❡❢✉❡❧ plane3 city9 fl4 fl5✮

✶✺✿ ✭❞❡❜❛r❦ person24 plane4 city9✮
✶✺✿ ✭❞❡❜❛r❦ person28 plane4 city9✮
✶✺✿ ✭❞❡❜❛r❦ person34 plane2 city7✮
✶✺✿ ✭✢② plane3 city9 city4 fl5 fl4✮

We once more study the plans generated by the current set of rules and quickly

identify another obvious problem: Any number of airplanes may fly to the same

location to pick up the same person. Once again, it is necessary to find a reasonable

balance between finding optimal plans and finding plans quickly. In the contest,

we attempted to find a high quality (but probably non-optimal) plan as quickly as

possible. This was done by ensuring that no more than one airplane may go to

any given place ❛t the same time, if the sole purpose for going there is to pick up a

person who is waiting:

❝♦♥tr♦❧ ✿♥❛♠❡ "♣❧❛♥❡s✲❛❧✇❛②s✲✢②✲t♦✲❣♦❛❧"

[t] ❛t(aircraft, city) ∧ [t+1] ¬❛t(aircraft, city)→
∃city2 [[t+1] ❛t(aircraft, city2) ∧

((❣♦❛❧(❛t(aircraft, city2)) ∧ [t] ❛❧❧✲♣❡rs♦♥s✲❛rr✐✈❡❞✲♦r✲✐♥✲♣❧❛♥❡s ∧
∀person [[t] ✐♥(person, aircraft)→ ❣♦❛❧(❛t(person, city2))]) ∨
∃person [[t] ✐♥(person, aircraft) ∧ ❣♦❛❧(❛t(person, city2))] ∨
∃person [[t] ❛t(person, city2) ∧ ❣♦❛❧(¬❛t(person, city2))] ∧
¬∃aircraft2 [[t+1] ❛t(aircraft2, city2) ∧ aircraft2 6= aircraft])]

256 9.2. International Planning Competition 2002

This rule provides a major improvement, and the complete set of plans now re-

quires 5075 actions and 434 time steps.

So far, we have controlled where airplanes fly, when people board an airplane,

and when they debark. There are no rules governing refueling, and a quick look

at a plan for one of the larger problem instances reveals that whenever an aircraft

has nothing else to do, it will refuel. This seems a little bit wasteful, but we are

satisfied with adding a rule stating that airplanes must only refuel when their tanks

are empty. This rule is not perfect, since an airplane may miss an opportunity to

“pre-emptively” refuel and it can still refuel one fuel level even if it is not going to

fly, but it does provide a significant improvement, bringing the number of actions

down to 4234. The number of time steps is still 434.

A few minor adjustments were made to these rules before they were used in the

competition. These adjustments include a modification to ♦♥❧②✲❜♦❛r❞✲✇❤❡♥✲♥❡❝❡ss❛r②

to ensure that a person who must travel from city to city2will choose a plane that

already needs to visit both city and city2, if this is possible, since this is less likely to

increase the total number of flights.

One final change is prompted by the fact that the intended differences in timing

between ✢② and ③♦♦♠ cannot be modeled correctly in the STRIPS version of the

domain. Since all operators must take the same amount of time, the only difference

between these two operators is that ③♦♦♠ uses twice as much fuel. Although it

would have been possible to add a control rule ensuring that ③♦♦♠ was not used, it

was easier to simply remove the zoom operator from the domain definition.

ZenoTravel: SimpleTime

The SimpleTime version of ZenoTravel is quite similar to the STRIPS version, the

only difference being that actions may have non-unit duration and that certain pre-

conditions must hold throughout the execution of an action. The TALplanner oper-

ator definitions are changed accordingly. For example, the ❜♦❛r❞ and ✢② operators

can be changed as follows:

♦♣❡r❛t♦r ❜♦❛r❞(person, aircraft, city) ✿❛t s

✿♣r❡❝♦♥❞ [s] ❛t(person, city) ∧ ❛t(aircraft, city)

✿♣r❡✈❛✐❧ [s+1, s+20] ❛t(aircraft, city)

✿❞✉r❛t✐♦♥ 20
✿❡✛❡❝ts [s+1] ❛t(person, city) := false, [s+20] ✐♥(person, aircraft) := true

♦♣❡r❛t♦r ✢②(aircraft, city1, city2, flevel1, flevel2) ✿❛t s

✿♣r❡❝♦♥❞ [s] ❛t(aircraft, city1) ∧ ❢✉❡❧✲❧❡✈❡❧(aircraft, flevel1) ∧ ♥❡①t(flevel2, flevel1)

✿❞✉r❛t✐♦♥ 180
✿❡✛❡❝ts [s+1] ❛t(aircraft, city1) := false, [s+1] ❢✉❡❧✲❧❡✈❡❧(aircraft, flevel1) := false,

[s+180] ❛t(aircraft, city2) := true, [s+180] ❢✉❡❧✲❧❡✈❡❧(aircraft, flevel2) := true

If we run the planner on a set of SimpleTime problem instances, we get almost

immediate results: The planner claims that there is no plan for any of the instances.

Chapter 9. Planning Competitions 257

Figure 9.7: A ZenoTravel problem instance (SimpleTime problem 3)

The reason for this is, of course, that the control rules must be satisfied in any valid

plan, and those rules were designed with the underlying assumption that actions

had unit duration. For example, consider ♣❧❛♥❡s✲❛❧✇❛②s✲✢②✲t♦✲❣♦❛❧, which states that

if a plane leaves a city at time t, it should be at a meaningful destination at t+1.

When the ✢② action is invoked the plane must be at some city city1, but beginning

at the next time step there will be an interval where the aircraft is not present in any

city at all, until it finally arrives in city2 180 time steps later. In other words, ♣❧❛♥❡s✲

❛❧✇❛②s✲✢②✲t♦✲❣♦❛❧ now ensures that the fly operator cannot be used at all, which is

not quite what was originally intended.

One way of solving this problem would be to alter ♣❧❛♥❡s✲❛❧✇❛②s✲✢②✲t♦✲❣♦❛❧ to

say that if a plane leaves a city at time t, it should be at a meaningful destination

at t+180. Unfortunately, the duration of the flight would then be encoded directly

in the control rule instead of only in the operator, and so it would not work in the

Timed version, where operators have variable durations – in fact, it would not even

work in SimpleTime, because the ③♦♦♠ operator must also be taken into account.

Instead, the domain model is augmented with a new fluent ✢②✐♥❣✲t♦✭❛✐r❝r❛❢t✱

❝✐t②✮ which keeps track of whether a plane is flying, and if so, what its destination

is. To ensure that this fluent is kept up-to-date, the following is added to the effects

of the ✢② and ③♦♦♠ operators:

[s+1] ✢②✐♥❣✲t♦(aircraft, city2) := true, [s+180] ✢②✐♥❣✲t♦(aircraft, city2) := false // for fly
[s+1] ✢②✐♥❣✲t♦(aircraft, city2) := true, [s+100] ✢②✐♥❣✲t♦(aircraft, city2) := false // for zoom

The ♣❧❛♥❡s✲❛❧✇❛②s✲✢②✲t♦✲❣♦❛❧ rule above can now be changed as follows, stating that

if an aircraft ceases to be at city, then it must be flying to a reasonable destination:

❝♦♥tr♦❧ ✿♥❛♠❡ "♣❧❛♥❡s✲❛❧✇❛②s✲✢②✲t♦✲❣♦❛❧"

[t] ❛t(aircraft, city) ∧ [t+1] ¬❛t(aircraft, city)→
∃city2 [[t+1] ✢②✐♥❣✲t♦(aircraft, city2) ∧ . . .]

The same problem arises for boarding, and a new fluent ❜♦❛r❞✐♥❣(person, aircraft)
is added and used whenever necessary. Given these changes, the following are the

first steps of the plan generated by TALplanner for the problem instance in Fig-

ure 9.7, shown in the IPC-2002 timed result format where the timepoint at which

an action is invoked is followed by the action and the duration of the action:

258 9.2. International Planning Competition 2002

✵✿ ✭❜♦❛r❞ person1 plane1 city0✮ ❬✷✵❪

✷✵✿ ✭✢② plane1 city0 city1 fl4 fl3✮ ❬✶✽✵❪

✷✵✿ ✭③♦♦♠ plane1 city0 city1 fl4 fl3 fl2✮ ❬✶✵✵❪

Intuitively, flying and zooming plane1 at the same time should be impossible, but

we have forgotten to specify this to the planner. Both actions have their precondi-

tions satisfied at time 20, there are no prevail conditions, the initial effects at time

21 assign the ✢②✐♥❣✲t♦ fluent the same destination, and the final effects of the actions

do not contradict each other since they take place at different timepoints: ✢② ends

at time 200, while ③♦♦♠ ends at time 120.

There are several ways of specifying that ✢② and ③♦♦♠ are mutually exclusive.

For example, it would be possible to introduce an interval effect stating that ✢②✐♥❣✲t♦

(aircraft, city2) must hold throughout the inner execution intervals of these actions,

and become false at the end of each action:

[t+1,t+179] ✢②✐♥❣✲t♦(aircraft, city2) := true, [t+180] ✢②✐♥❣✲t♦(aircraft, city2) := false // for fly
[t+1,t+ 99] ✢②✐♥❣✲t♦(aircraft, city2) := true, [t+100] ✢②✐♥❣✲t♦(aircraft, city2) := false // zoom

It would also be possible to use a semaphore resource: An aircraft-specific resource

with an initial value of 1, which can be borrowed exclusively by the ✢② and ③♦♦♠

actions. When one of these solutions is used, TALplanner finally rewards us with a

short and correct plan:

✵✿ ✭❜♦❛r❞ person1 plane1 city0✮ ❬✷✵❪

✷✵✿ ✭✢② plane1 city0 city1 fl4 fl3✮ ❬✶✽✵❪

✷✵✵✿ ✭❜♦❛r❞ person3 plane1 city1✮ ❬✷✵❪

✷✵✵✿ ✭❞❡❜❛r❦ person1 plane1 city1✮ ❬✸✵❪

✷✸✵✿ ✭✢② plane1 city1 city0 fl3 fl2✮ ❬✶✽✵❪

✹✶✵✿ ✭❞❡❜❛r❦ person3 plane1 city0✮ ❬✸✵❪

❀❀ P❧❛♥ ❧❡♥❣t❤ ✻✱ ♠❛①t✐♠❡ ✹✹✵

Can it be improved? Remember that the STRIPS version never made use of the

zoom operator. But in the SimpleTime version, flying takes 180 time steps and uses

one unit of fuel, zooming takes 100 time steps and uses two units of fuel, and refu-

eling one unit takes 73 time steps. 180 + 73 is more than 100 + 2 · 73 and therefore

we have the opposite situation: zoom is always better than fly. Commenting out

the unwanted fly operator yields the following plan:

✵✿ ✭❜♦❛r❞ person1 plane1 city0✮ ❬✷✵❪

✷✵✿ ✭③♦♦♠ plane1 city0 city1 fl4 fl3 fl2✮ ❬✶✵✵❪

✶✷✵✿ ✭❜♦❛r❞ person3 plane1 city1✮ ❬✷✵❪

✶✷✵✿ ✭❞❡❜❛r❦ person1 plane1 city1✮ ❬✸✵❪

✶✺✵✿ ✭③♦♦♠ plane1 city1 city0 fl2 fl1 fl0✮ ❬✶✵✵❪

✷✺✵✿ ✭❞❡❜❛r❦ person3 plane1 city0✮ ❬✸✵❪

❀❀ P❧❛♥ ❧❡♥❣t❤ ✻✱ ♠❛①t✐♠❡ ✷✽✵

Chapter 9. Planning Competitions 259

ZenoTravel: Timed

The Timed version further complicates the timing of the actions. Boarding and dis-

embarking times are constant but problem-specific and are defined in the respective

problem definition as two new functions, ❜♦❛r❞✐♥❣✲t✐♠❡ and ❞❡❜❛r❦✐♥❣✲t✐♠❡. Refuel-

ing always fills the plane to its maximum capacity, but consumes time relative to

the amount of fuel received and the r❡❢✉❡❧✲r❛t❡ of the aircraft. Each aircraft also has

a ❢❛st✲s♣❡❡❞ and a s❧♦✇✲s♣❡❡❞ with corresponding ❢❛st✲❜✉r♥ and s❧♦✇✲❜✉r♥ fuel con-

sumption. The distances between cities are specified using the ❞✐st❛♥❝❡✭city1✱ city2✮

function.

In the Timed version, operator durations have to be correctly calculated with a

precision of three decimals, prompting a few minor changes to TALplanner. Once

these changes had been implemented, few changes were needed to transform the

SimpleTime domain to the Timed version.

The most important difference was perhaps the fact that depending on the speed

and fuel consumption values defined in each problem and the situation where the

operator is used, it is sometimes better to use the ✢② operator and sometimes better

to use the ③♦♦♠ operator, unlike the STRIPS version where ✢② was always better

and the SimpleTime domain where ③♦♦♠ was always better.

So when is zooming better than flying? It may seem like it would be easy to

answer this question, given that we are only interested in minimizing time: Just

check whether refueling the aircraft sufficiently to be able to zoom, followed by

zooming to the destination, would be faster than only refueling enough to be able to

fly and then flying more slowly to the destination. This is handled by the first clause

in ✉s❡✲✢②✲✐♥st❡❛❞✲♦❢✲③♦♦♠ below. The precondition of ✢② is then altered to require

that ✉s❡✲✢②✲✐♥st❡❛❞✲♦❢✲③♦♦♠ be true, and the precondition of ③♦♦♠ requires that ✉s❡✲

✢②✲✐♥st❡❛❞✲♦❢✲③♦♦♠ be false. If we had been interested in minimizing a combination

of time and fuel usage, then this could also have been taken into account.

This is not quite sufficient to handle all problems, though. An airplane has a

maximum fuel capacity, so if its destination is too distant, it may not be able to

zoom. This is handled by the second clause in ✉s❡✲✢②✲✐♥st❡❛❞✲♦❢✲③♦♦♠.

Yet another problem is that it is not possible to tie one refueling action to each

flight, as one would expect in the real world. There are two reasons for this prob-

lem.

First, airplanes may already have some fuel in the initial state, so in some situ-

ations a plane might zoom to its destination without incurring any additional cost,

again assuming that the time required for executing the plan is the only metric be-

ing used – the plane already had enough fuel anyway and never had to refuel.

Second, unlike the SimpleTime version, an airplane cannot refuel “just enough”

– the r❡❢✉❡❧ operator always fills the tank completely. This change was most likely

introduced in order to make the planning task easier by reducing the number of

possible actions to choose from (for example, a planner that needs to create all

ground instances of each operator might have some trouble if the refuel opera-

260 9.2. International Planning Competition 2002

tor would take the amount of fuel as a floating point argument). But despite the

probable intention behind this change, it introduces new problems for our control

formulas. If a plane’s tank is half full and this is enough fuel to zoom from A to B,

it might then have to fill the entire tank before continuing to C, while if it used the

✢② operator, it might be able to continue to C without refueling at all. This means

that one would have to take all possible future flights into account when determin-

ing whether to fly or zoom. If the domain had been modeled in more detail, this

problem would not have existed.

Given these two complications, guaranteeing an optimal or near-optimal plan

using a control rule is not easy, which is indeed only to be expected. For the com-

petition we decided to be satisfied with a heuristic compromise, adding a third

clause to ✉s❡✲✢②✲✐♥st❡❛❞✲♦❢✲③♦♦♠ ensuring that if zooming would require refueling

immediately but flying would not, the ✢② operator would be used.

// Fly is (probably) better than zoom if:

❞❡✜♥❡ [t] ✉s❡✲✢②✲✐♥st❡❛❞✲♦❢✲③♦♦♠(aircraft, city1, city2):

// If fly is faster wrt speed and refueling.

([t] (10000 / s❧♦✇✲s♣❡❡❞(aircraft) + 10000 * s❧♦✇✲❜✉r♥(aircraft) / r❡❢✉❡❧✲r❛t❡(aircraft)) <

(10000 / ❢❛st✲s♣❡❡❞(aircraft) +10000 * ❢❛st✲❜✉r♥(aircraft) / r❡❢✉❡❧✲r❛t❡(aircraft))) ∨
// If zoom is impossible across the given distance.

([t] ❞✐st❛♥❝❡(city1, city2) * ❢❛st✲❜✉r♥(aircraft) > ❝❛♣❛❝✐t②(aircraft)) ∨
// If zoom has to refuel immediately but fly does not.

([t] ❢✉❡❧(aircraft) >= ❞✐st❛♥❝❡(city1, city2) * s❧♦✇✲❜✉r♥(aircraft) ∧
❢✉❡❧(aircraft) < ❞✐st❛♥❝❡(city1, city2) * ❢❛st✲❜✉r♥(aircraft))

ZenoTravel: Discussion

Finding control rules that yield good (but usually suboptimal) plans is not too diffi-

cult in the ZenoTravel domain. There are no risks involved in flying a plane to pick

up passengers, since there are no limits on the number of passengers that can bord

a single plane and since refueling is possible in any city. Also, since the graph of

cities is fully connected, reasonable plans can generally be generated even without

more advanced forms of route planning.

The benchmark results for this domain can be seen in Figure 9.8. In terms of per-

formance, TALplanner is close to TLPlan: Somewhat better for STRIPS problems

and the larger SimpleTime problems, and somewhat slower for the Timed prob-

lems. SHOP is generally considerably slower than either TALplanner or TLPlan. FF

(Hoffmann & Nebel, 2001), which only participated in the STRIPS domain, is con-

siderably slower than SHOP, though its performance is certainly very respectable

considering its lack of domain-specific control knowledge.

For the STRIPS version of ZenoTravel, plan quality is measured in terms of the

number of actions in the solution plan. Here, TALplanner is more or less con-

sistently somewhat better than TLPlan and SHOP2. FF often provides better or

equally good plans, though given that it is a knowledge-sparse planner it also re-

quires orders of magnitude more time to generate these plans. On the other hand,

Chapter 9. Planning Competitions 261

 0.1

 1

 10

 100

 1000

 5 10 15 20

TALplanner
SHOP2
TLPlan
FF

(a) Time (seconds, STRIPS)

 100

 5 10 15 20

TALplanner
SHOP2
TLPlan
FF

(b) Plan steps (STRIPS)

 0.1

 1

 10

 5 10 15 20

TALplanner
SHOP2
TLPlan

(c) Time (seconds, SimpleTime)

 10000

 5 10 15 20

TALplanner
SHOP2
TLPlan

(d) Makespan (SimpleTime)

 0.1

 1

 10

 5 10 15 20

TALplanner
SHOP2
TLPlan

(e) Time (seconds, Timed)

 1000

 5 10 15 20

TALplanner
SHOP2
TLPlan

(f) Problem-Specific Cost Metric (Timed)

Figure 9.8: Results for IPC-2002 ZenoTravel Problems

262 9.2. International Planning Competition 2002

it appears that only TALplanner and SHOP2 generate concurrent plans for the

STRIPS variation of ZenoTravel. In terms of makespan (not shown here), TAL-

planner generates significantly better plans than SHOP2, which in turns generates

plans significantly better than the sequential plans created by TLPlan and FF.

For the SimpleTime version, TALplanner is more or less consistently better than

TLPlan, which now does generate concurrent plans, as well as SHOP2. Again, the

results are considerably closer if quality is measured in terms of the number of plan

steps (not shown here). Consequently, the TALplanner advantage over TLPlan in

terms of plan quality is mainly related to scheduling and better use of concurrency.

For the Timed version, each problem instance was associated with a specific

metric: Planners should attempt to minimize x · t♦t❛❧✲t✐♠❡+ y · t♦t❛❧✲❢✉❡❧✲✉s❡❞, where

t♦t❛❧✲t✐♠❡ is the makespan of the plan, t♦t❛❧✲❢✉❡❧✲✉s❡❞ is the amount of fuel used by

the plan, and the weights x ∈ {1, 2, 3, 4, 5} and y ∈ {0.001, 0.002, 0.003, 0.004, 0.005}
varied between problem instances. TALplanner does not support optimization,

and there was no attempt to adapt plan generation to each problem metric. Plan

quality was similar across the set of planners, though SHOP2 often generated some-

what worse plans and required significantly more time than TALplanner, which in

turn required slightly more time than TLPlan.

A fourth version of ZenoTravel, the Numeric version, was available in the con-

test but due to lack of time we decided not to compete in this domain.

9.2.3 The Depots Domain

The Depots domain (illustrated in Figure 9.9) contains locations, trucks, hoists,

crates that can be moved, and pallets whose locations are fixed. Trucks move crates

between any two locations and can carry any number of crates at the same time.

Hoists are distributed among the locations and load crates into trucks or stack

crates on surfaces (pallets or other crates). The goal is always to bring the crates

into a certain configuration of stacks, where each stack is placed on a specific pal-

let.

STRIPS. The Depots domain is a combination of two other well-known planning

domains, the logistics domain and the blocks world. Therefore it seems natural to

start by taking a look at existing control rules for those two domains, and to see

whether those rules can be combined easily or whether more complex rules are

required due to interactions between moving and stacking blocks.

We begin with the blocks world part of the problem. The unbounded blocks

world was used as a benchmark domain in IPC-2000, and there TALplanner used

a modified version of the rules in Bacchus and Kabanza (2000) which ensure that

the planner only adds blocks to “good towers”, stacks that are already in their final

position and will not have to be dismantled later in order to remove a block at a

lower level. Can these rules be reused in the Depots domain? One prerequisite

is the availability of temporary storage for all crates, since in the worst case every

single stack of crates must be torn down completely before it is possible to start

Chapter 9. Planning Competitions 263

Figure 9.9: A Depots problem instance (STRIPS problem 7)

stacking crates on top of each other. Surprisingly, although there are only a limited

number of pallets, trucks can (somewhat counter-intuitively) contain any number

of crates, and the planner can use them as storage. Had this been a real-world do-

main, we would have asked the domain experts whether this could truly be the

intention behind the domain, but since it was a competition domain, we could not

expect the organizers to change the domain in the middle of the competition. Nei-

ther could we ignore this opportunity, since other competitors would surely make

use of it. Consequently, we did use trucks as infinite storage facilities, and only mi-

nor changes to the logistics control rules were required in order to handle the two

separate types of surfaces: Pallets and crates.

Continuing with the logistics part, one simple rule can be reused from the stan-

dard logistics domain: “Only unload a crate at its goal location”. Its dual rule,

“only load a crate if it needs to be moved”, is not required. The blocks world rules

ensure that a hoist does not lift a block unless it needs to be moved, and therefore

it is already impossible to load such blocks into a truck.

It remains to ensure that vehicles only drive to those locations where they can

be of use. In the standard logistics domain, a truck can drive to another location

if there is a package that needs to be picked up or delivered there, but due to the

use of stacks of crates in the depots domain, the rule must be modified: A vehicle

may drive to a location if (1) there is a crate there that must be moved to another

location, (2) there is a crate there that must be stacked differently, or (3) there is a

crate in the truck that needs to be at the location, its destination is ready, and there

is no other crate that should also be at the same location that the truck has not yet

picked up.

SimpleTime. In the SimpleTime version, lifting and dropping crates still takes one

unit of time, loading takes three units, unloading four, and driving ten. A few

changes were made to ensure mutual exclusion. For example, hoists can only lift

264 9.2. International Planning Competition 2002

one crate at a time. Also, a ❞r✐✈✐♥❣✲t♦ fluent was introduced to keep track of where

trucks are headed, similar to ✢②✐♥❣✲t♦ in ZenoTravel.

Timed. In the Timed domain, the time required for loading and unloading a crate

depends on how powerful the hoist is and on the weight of the crate. The time re-

quired for driving between two locations depends on the speed of the truck and the

distance between the locations. Again, only minor changes were required to handle

the domains, although higher quality plans could certainly have been produced by

taking timing into account when determining which hoists and trucks to use.

Results. Figure 9.10a shows the time required to solve the STRIPS versions of the

22 larger depots problem instances intended for the three planners in the hand-

tailored track of the competition. As can be seen in this figure, TALplanner out-

performs SHOP2 and TLPlan by approximately a factor of ten for many problem

instances. TALplanner retains much of this performance advantage for the Sim-

pleTime problem instances, as seen in Figure 9.10c, though in the timed problem

instances (Figure 9.10e), TALplanner falls back to being slower than TLPlan for the

smaller problem instances and approximately as fast for the larger instances.

For the STRIPS version, TALplanner often generates shorter plans than TLPlan

and SHOP2, though for some problem instances it generates slightly longer plans.

Neither TLPlan nor SHOP2 appear to generate concurrent plans for this domain,

giving TALplanner a considerable advantage in terms of makespan (not shown

here). In the SimpleTime version, TLPlan has a small makespan advantage over

TALplanner, while both planners create considerably better plans than SHOP2. Un-

like the ZenoTravel domain, this domain and the remaining domains in the com-

petition did not use problem-specific metrics for the Timed version of the domain,

falling back on plain makespan to compare plan quality. Here, TALplanner is again

generally better than both TLPlan and SHOP2, though TLPlan does generate better

plans for a few problem instances.

9.2.4 The DriverLog Domain

DriverLog (illustrated in Figure 9.11) is yet another logistics domain, this time in-

troducing the concept of truck drivers and road maps. A number of packages are

transported between locations by trucks. There are two sets of routes connecting

the locations: Links, where trucks travel, and paths, which drivers can walk along

when not driving a truck. A truck can only have one driver at a time but can load

as many packages as is needed.

Finding Shortest Paths. In the DriverLog domain, vehicles and people must travel

along road networks, where different roads may have different costs (lengths) and

where taking the shortest path between any two points is essential. Although a

shortest path algorithm can be defined using the TALplanner input language, the

resulting formulas can be somewhat complicated. Two new functions related to

shortest paths were therefore implemented in TALplanner: One for finding the cost

Chapter 9. Planning Competitions 265

 0.1

 1

 10

 5 10 15 20

TALplanner
SHOP2
TLPlan

(a) Time (seconds, STRIPS)

 100

 1000

 5 10 15 20

TALplanner
SHOP2
TLPlan

(b) Plan steps (STRIPS)

 0.1

 1

 10

 5 10 15 20

TALplanner
SHOP2
TLPlan

(c) Time (seconds, SimpleTime)

 100

 1000

 5 10 15 20

TALplanner
SHOP2
TLPlan

(d) Makespan (SimpleTime)

 0.1

 1

 10

 5 10 15 20

TALplanner
SHOP2
TLPlan

(e) Time (seconds, Timed)

 100

 5 10 15 20

TALplanner
SHOP2
TLPlan

(f) Makespan (Timed)

Figure 9.10: Results for IPC-2002 Depots Problems

266 9.2. International Planning Competition 2002

Figure 9.11: A DriverLog problem instance (STRIPS problem 5)

of the shortest path between two given locations, and one for finding the distance

to the closest location satisfying a given formula (for example the closest location

which is a reasonable destination for a certain truck in the DriverLog domain).

These functions also provide a significant improvement in performance, and are

useful in many domains where distances are involved, including the Rovers do-

main seen later (Section 9.2.5 on page 268).

STRIPS. Several control rules used in previous logistics domains were useful for

DriverLog with minor modifications. For example, packages should only be loaded

into trucks if they need to be moved, and should not be unloaded until they have

reached their final destination.

On the other hand, a number of changes were necessary due to the use of road

maps. Most importantly, vehicles were previously only allowed to drive to loca-

tions that were immediately useful because there were packages to be picked up or

delivered. In the DriverLog domain there may only be direct roads between some

locations (specified by a predicate ❧✐♥❦(from, to)), and a truck may have to move

through several intermediate locations in order to reach its destination. Conse-

quently the control rules must be relaxed to allow trucks to visit locations that are

not useful in themselves. Nevertheless, some degree of goal-directedness is still

required. One possible method is to identify for each vehicle the set of locations

where the vehicle might be useful, and to require that it chooses one such location

and then takes the shortest path to its chosen destination. This method was used

in the competition with the help of the built-in shortest path algorithm discussed

above and a control rule stating that each step (each invocation of ❞r✐✈❡ or ✇❛❧❦)

must decrease the distance to the current destination. The following definitions

will be explained below:

Chapter 9. Planning Competitions 267

❞❡✜♥❡ [t] r❡❛s♦♥❛❜❧❡✲tr✉❝❦✲❧♦❝❛t✐♦♥(truck, location):

// The truck has objects to deliver there.

∃obj [[t] ✐♥(obj, truck) ∧ ❣♦❛❧(❛t(obj, location))] ∨

// All objects have been delivered, and

// either there’s a goal that the truck should be there

// or there’s a goal that the driver should be there

// and no goal preventing him from using the truck to drive there.

(([t] ❛❧❧✲♦❜❥❡❝ts✲❛t✲t❤❡✐r✲❞❡st✐♥❛t✐♦♥s) ∧
(❣♦❛❧(❛t(truck, location)) ∨
(¬❣♦❛❧(¬❛t(truck, location)) ∧
∃driver [[t] ❞r✐✈✐♥❣(driver, truck) ∧ ❣♦❛❧(❛t(driver, location))]))) ∨

// There are objects to pick up (modeled as a resource)

// and either we are already there

// or no other trucks are already there or on their way.

(([t] ❛✈❛✐❧❛❜❧❡(♦❜❥❡❝ts✲t♦✲♠♦✈❡✲❛t(location)) 6=̂ 0) ∧
(([t] ❛t(truck, location)) ∨
¬∃truck2 [truck2 6= truck ∧ [t] ¬❡♠♣t②(truck2) ∧ [t] ❛t(truck2, location)] ∧
¬∃truck2 [truck2 6= truck ∧ ([t] ¬❡♠♣t②(truck2)) ∧ [t+1] ❛t(truck2, location)]))

❞✐st❢❡❛t✉r❡ ❞r✐✈✐♥❣✲❞✐st❛♥❝❡✲❜❡t✇❡❡♥(from, to) ✿❞♦♠❛✐♥ integer ✿❧✐♥❦ ❧✐♥❦

♠✐♥❞✐st❢❡❛t✉r❡ ❞r✐✈✐♥❣✲❞✐st❛♥❝❡✲t♦✲❧♦❝❛t✐♦♥✲s❛t✐s❢②✐♥❣✲❢♦r♠✉❧❛

✿❞✐st❢❡❛t✉r❡ ❞r✐✈✐♥❣✲❞✐st❛♥❝❡✲❜❡t✇❡❡♥ ✿❞♦♠❛✐♥ integer

❞❡✜♥❡ [t] ❞r✐✈✐♥❣✲❞✐st❛♥❝❡✲t♦✲r❡❛s♦♥❛❜❧❡✲❞❡st✐♥❛t✐♦♥(truck, location):

❞r✐✈✐♥❣✲❞✐st❛♥❝❡✲t♦✲❧♦❝❛t✐♦♥✲s❛t✐s❢②✐♥❣✲❢♦r♠✉❧❛

(location, to, [t] r❡❛s♦♥❛❜❧❡✲tr✉❝❦✲❧♦❝❛t✐♦♥(truck, to))

A boolean fluent r❡❛s♦♥❛❜❧❡✲tr✉❝❦✲❧♦❝❛t✐♦♥(truck, loc) is defined in terms of a logic

formula, which specifies whether the given location is a reasonable destination for

a given truck at the timepoint when it is evaluated. The ❞r✐✈✐♥❣✲❞✐st❛♥❝❡✲❜❡t✇❡❡♥

function accesses the shortest path algorithm to find the length of the shortest path

between from and to, given that the road links are specified by the ❧✐♥❦ predicate.

The ❞r✐✈✐♥❣✲❞✐st❛♥❝❡✲t♦✲❧♦❝❛t✐♦♥✲s❛t✐s❢②✐♥❣✲❢♦r♠✉❧❛ function accesses another version

of the shortest path algorithm and is used in ❞r✐✈✐♥❣✲❞✐st❛♥❝❡✲t♦✲r❡❛s♦♥❛❜❧❡✲❞❡st✐♥❛t✐♦♥

in order to find the shortest distance from location to any location to that satisfies

r❡❛s♦♥❛❜❧❡✲tr✉❝❦✲❧♦❝❛t✐♦♥. Since all links have the same cost, it is then sufficient to

require that whenever a truck moves, its ❞r✐✈✐♥❣✲❞✐st❛♥❝❡✲t♦✲r❡❛s♦♥❛❜❧❡✲❞❡st✐♥❛t✐♦♥

decreases.

Further changes were required due to the use of drivers. There may not be

drivers for all trucks, so packages should not be loaded into a truck until the plan-

ner knows the truck will have a driver. Drivers should not disembark if there are

still packages in the truck, or if there is a goal that the truck must be somewhere

else. Drivers may have to walk along paths in order to reach a truck, so just like

268 9.2. International Planning Competition 2002

trucks, drivers must select one useful destination and then take the shortest path to

their chosen destinations.

Additional control rules ensure that multiple trucks do not choose the same

destination unnecessarily, and that multiple drivers do not choose to walk to the

same location.

SimpleTime. In the SimpleTime version, loading and unloading objects takes two

units of time, driving takes ten units, and walking takes twenty units. The oper-

ators are changed accordingly, and a ❣♦✐♥❣✲t♦ fluent is introduced to keep track of

drivers and trucks that are moving towards a new location but have not yet arrived.

A few minor adjustments must be made to the control rules.

Timed. In the Timed version, the time required to walk or drive between two lo-

cations is determined by a pair of functions specified in each problem instance.

Since individual road segments can have different lengths, the method we used to

ensure drivers and trucks used the shortest path to their current destination is no

longer sufficient, and must be modified slightly. Other than this, there are no major

changes for the Timed version.

Results. TALplanner generates plans quite quickly for STRIPS instances but has

somewhat worse performance for SimpleTime and Timed problems, with TLPlan

generally taking the lead (Figure 9.12). For the STRIPS version, TALplanner and

TLPlan generate plans of approximately equal quality in terms of plan steps, though

once again TLPlan does not generate concurrent plan and is therefore at a disad-

vantage in terms of makespan (not shown here). SHOP generates somewhat longer

plans than TLPlan, but does generate concurrent plans. For the SimpleTime ver-

sion, no planner appears to consistently produce better plans than any other. In

the Timed version, the plans generated by TALplanner generally have a longer

makespan than those created by TLPlan, though they do tend to contain fewer ac-

tions (not shown here).

9.2.5 The Rovers Domain

The Rovers domain simulates a simplified planetary exploration expedition. A lan-

der vessel carries a number of rovers to the planet surface and provides a com-

munication link back to Earth. Each rover has a subset of the general capabilities:

retrieving soil samples, retrieving rock samples and capturing images using cam-

eras that support different imaging modes. The cameras are mounted on the rovers,

as are storage compartments, one for each rover, which can hold one soil sample

or one rock sample. Data from a sample must be sent to the lander by a commu-

nication link. All missions revolve around navigating waypoints on the surface of

the planet to collect samples and take images of specified objectives that are only

visible from certain waypoints. The terrain may prevent rovers from going directly

between two waypoints and different rovers handle different terrain so a list of

routes each rover can use is provided.

Chapter 9. Planning Competitions 269

 0.1

 1

 10

 100

 1000

 5 10 15 20

TALplanner
SHOP2
TLPlan

(a) Time (seconds, STRIPS)

 1000

 5 10 15 20

TALplanner
SHOP2
TLPlan

(b) Plan steps (STRIPS)

 0.1

 1

 10

 100

 1000

 5 10 15 20

TALplanner
SHOP2
TLPlan

(c) Time (seconds, SimpleTime)

 1000

 5 10 15 20

TALplanner
SHOP2
TLPlan

(d) Makespan (SimpleTime)

 1

 10

 100

 5 10 15 20

TALplanner
SHOP2
TLPlan

(e) Time (seconds, Timed)

 1000

 5 10 15 20

TALplanner
SHOP2
TLPlan

(f) Makespan (Timed)

Figure 9.12: Results for IPC-2002 DriverLog Problems

270 9.2. International Planning Competition 2002

STRIPS. Following a control scheme similar to the one used in DriverLog, we limit

the movements of rovers to locations where they can perform some useful action

like collecting a rock sample or capturing an image. The problem of finding a path

from one waypoint to another is also solved in the same way as in DriverLog, ex-

cept that each rover has its own set of routes between waypoints.

SimpleTime. The changes in the SimpleTime version are trivial: Operator dura-

tions are changed, a few mutual exclusion relations need to be enforced, and a

new fluent ❝❛❧✐❜r❛t✐♥❣(camera) keeps track of whether a certain camera is being cal-

ibrated.

Timed. The Timed version introduces the concept of energy, where each rover has

a limited amount of energy and each action it does consumes some of the energy.

This is similar to the use of fuel in the ZenoTravel domain, but there is also a ma-

jor difference: The rovers have been equipped with solar panels that recharge the

rover, but only some of the waypoints that a rover can go to are directly exposed to

the sun, which is a requirement for the solar panels to work. The airplanes in the

ZenoTravel domain can refuel anywhere, and so fuel usage is only relevant in terms

of minimization of resource usage, whereas a rover that uses its energy unwisely

can get stuck in the shade, unable to do anything or go anywhere. To prevent this

we can either let the planner backtrack and search for a better plan, or we can in-

troduce stricter rules that keep energy levels in mind when deciding what a rover

is allowed to do. The latter approach is taken below.

The critical point is when a rover does not have enough energy to reach a way-

point in the sun and recharge. Using the shortest path algorithm it is possible for a

control rule to determine the distance to the closest waypoint that is exposed to the

sun. In addition to all waypoints that were previously allowed, it is also reasonable

for a rover to go to a waypoint that is exposed to the sun if the rover does not have

enough energy to perform an action and then go recharge, or if there do not exist

any other waypoints that are both affordable and reasonable to visit.

Results. Timing results for the Rovers domain varied significantly between dif-

ferent planners (Figure 9.13). In the STRIPS domain, TALplanner took the lead

over TLPlan by a factor of 10 for the larger problem instances, while SHOP2 was

slower by another factor of 20. FF generally beat SHOP2 despite being a fully auto-

mated planner, but rarely came close to the performance of TLPlan and TALplan-

ner. For the SimpleTime version, the margin between TALplanner and TLPlan was

narrowed to a factor of 3 for the larger problem instances, and for Timed instances,

TALplanner was only slightly faster than TLPlan while SHOP2 remained consider-

ably slower.

Plan quality results for this domain are quite interesting. For the STRIPS ver-

sion, TALplanner generated plans of consistently somewhat worse quality com-

pared to its competitors, both in terms of plan steps and in terms of makespan.

For SimpleTime instances, plans were of similar length and almost identical execu-

tion time. For Timed instances, though, TALplanner generated plans with almost

Chapter 9. Planning Competitions 271

 0.1

 1

 10

 5 10 15 20

TALplanner
SHOP2
TLPlan
FF

(a) Time (seconds, STRIPS)

 100

 5 10 15 20

TALplanner
SHOP2
TLPlan
FF

(b) Plan steps (STRIPS)

 0.1

 1

 10

 5 10 15 20

TALplanner
SHOP2
TLPlan

(c) Time (seconds, SimpleTime)

 100

 5 10 15 20

TALplanner
SHOP2
TLPlan

(d) Makespan (SimpleTime)

 1

 10

 100

 5 10 15 20

TALplanner
SHOP2
TLPlan

(e) Time (seconds, Timed)

 100

 5 10 15 20

TALplanner
SHOP2
TLPlan

(f) Makespan (Timed)

Figure 9.13: Results for IPC-2002 Rovers Problems

272 9.2. International Planning Competition 2002

Figure 9.14: A Satellite problem instance (STRIPS problem 4)

twice as many actions (not shown here) but still generally managed to stay within

a shorter makespan than the other planners. Further analysis reveals this to be due

to a simple systematic mistake in the Rovers domain which should have been eas-

ily discovered: When there were fewer tasks left to be performed than there were

rovers, the superfluous rovers would move around aimlessly, occasionally recharg-

ing to be able to keep moving. This does not affect the execution span of the plan,

since the remaining rovers were still able to perform their tasks without interfer-

ence.

9.2.6 The Satellite Domain

In the Satellite domain a number of satellites orbit the Earth, each equipped with

a set of scientific imaging instruments. The satellites turn in space, targeting stars,

planets and interesting phenomena to capture images of them using different in-

strument operation modes. These modes can include regular or infrared imaging

and spectrographic or thermographic readings but are different for each problem.

The planner’s task is to schedule a series of observations so that the satellites are

used efficiently. Figure 9.14 shows a small example problem instance, with arrows

showing the directions in which the satellites are pointing.

Directions are not represented as explicit coordinates. Instead, satellites can turn

to a new direction by giving the t✉r♥✲t♦ operator an argument specifying the star,

planet or phenomenon that the satellite should point to. Instruments first need to

be activated using s✇✐t❝❤✲♦♥, then calibrated at a calibration target with the ❝❛❧✐❜r❛t❡

operator before they can capture images using t❛❦❡✲✐♠❛❣❡. Each satellite has only

enough power to operate one instrument at a time, so switching active instruments

is always initiated by the s✇✐t❝❤✲♦✛ operator to deactivate the first instrument.

Chapter 9. Planning Competitions 273

Satellite: STRIPS

Since the task consists of collecting a number of images, we begin by restricting the

use of t❛❦❡✲✐♠❛❣❡ to images that are mentioned in the goal.

❝♦♥tr♦❧ ✿♥❛♠❡ "♦♥❧②✲t❛❦❡✲♣✐❝t✉r❡s✲♦❢✲❣♦❛❧s"

[t] ¬❤❛✈❡✲✐♠❛❣❡(direction, mode) ∧ [t+1] ❤❛✈❡✲✐♠❛❣❡(direction, mode)→
❣♦❛❧(❤❛✈❡✲✐♠❛❣❡(direction, mode))

The next step is to restrict the directions in which satellites turn to those that may

actually help in collecting the images. The task is split into a control rule, ♦♥❧②✲♣♦✐♥t✲

✐♥✲❣♦❛❧✲❞✐r❡❝t✐♦♥s, and a definition of goal directions. A satellite is allowed to turn

towards a direction to take a picture, to calibrate an instrument or if a goal specifies

that the satellite should point in the direction and there is no more work left to do.

❞❡✜♥❡ [t] ❣♦❛❧✲❞✐r❡❝t✐♦♥(satellite, direction):

[t] t❛❦❡✲✐♠❛❣❡✲♣♦ss✐❜❧❡(satellite, direction) ∨
∃instrument [

[t] ♣♦✇❡r✲♦♥(instrument) ∧ ¬❝❛❧✐❜r❛t❡❞(instrument) ∧
[t] ❝❛❧✐❜r❛t✐♦♥✲t❛r❣❡t(instrument, direction) ∧ ♦♥✲❜♦❛r❞(instrument, satellite)] ∨

❣♦❛❧(♣♦✐♥t✐♥❣(satellite, direction)) ∧ [t] ❛❧❧✲✐♠❛❣❡s✲❝♦❧❧❡❝t❡❞

The t❛❦❡✲✐♠❛❣❡✲♣♦ss✐❜❧❡ function checks not only if an image is to be collected but

also that it has not already been taken and that the satellite has the necessary in-

strumentation ready. If the active instrument is not calibrated, the satellite may

first have to turn towards another direction and calibrate it.

❞❡✜♥❡ [t] t❛❦❡✲✐♠❛❣❡✲♣♦ss✐❜❧❡(satellite, direction):

∃mode [❣♦❛❧(❤❛✈❡✲✐♠❛❣❡(direction, mode)) ∧
[t] ¬❤❛✈❡✲✐♠❛❣❡(direction, mode) ∧
∃instrument [

[t] ♣♦✇❡r✲♦♥(instrument) ∧ ❝❛❧✐❜r❛t❡❞(instrument) ∧
[t] ♦♥✲❜♦❛r❞(instrument, satellite) ∧ s✉♣♣♦rts(instrument, mode)]]

The s✇✐t❝❤✲♦♥ and s✇✐t❝❤✲♦✛ operators are still not regulated by control rules and

the planner quickly takes up the habit of repeatedly flipping the power to different

instruments on and off. Once an instrument has been powered on and calibrated,

using it as much as possible before switching to another instrument seems rea-

sonable. A usefulness function, putting a value on the usefulness of a particular

instrument, helps decide which instrument to power on first.

❞❡✜♥❡ [t] ✉s❡❢✉❧♥❡ss(instrument):

value (t, $sum(<mode>, [t] s✉♣♣♦rts(instrument, mode) ∧ ♠♦❞❡✲♥❡❡❞❡❞✲❢♦r✲❣♦❛❧(mode), 1))

❞❡✜♥❡ [t] ♠♦❞❡✲♥❡❡❞❡❞✲❢♦r✲❣♦❛❧(mode):

∃direction [❣♦❛❧(❤❛✈❡✲✐♠❛❣❡(direction, mode)) ∧ [t] ¬❤❛✈❡✲✐♠❛❣❡(direction, mode)]

274 9.2. International Planning Competition 2002

Add one to the usefulness score of an instrument for each imaging mode that it

supports and that is needed in some goal. This score is then used in a control rule

that chooses a satellite’s most useful instrument, if it has any.

❝♦♥tr♦❧ ✿♥❛♠❡ "✉s❡✲t❤❡✲♠♦st✲✉s❡❢✉❧✲✐♥str✉♠❡♥t"

[t] ¬♣♦✇❡r✲♦♥(instrument) ∧ [t+1] ♣♦✇❡r✲♦♥(instrument)→
[t] ✉s❡❢✉❧♥❡ss(instrument) > 0 ∧
¬∃satellite, instrument2 [

[t] ✉s❡❢✉❧♥❡ss(instrument2) > ✉s❡❢✉❧♥❡ss(instrument) ∧
[t] ♦♥✲❜♦❛r❞(instrument, satellite) ∧ ♦♥✲❜♦❛r❞(instrument2, satellite)]

Switching off an instrument is only allowed if the instrument is no longer required.

❝♦♥tr♦❧ ✿♥❛♠❡ "❞♦✲♥♦t✲s✇✐t❝❤✲✐♥str✉♠❡♥t✲♦✛✲✐❢✲②♦✉✲❞♦✲♥♦t✲❤❛✈❡✲t♦"

[t] ♣♦✇❡r✲♦♥(instrument) ∧ [t+1] ¬♣♦✇❡r✲♦♥(instrument)→
[t] ¬∃mode [s✉♣♣♦rts(instrument, mode) ∧ ♠♦❞❡✲♥❡❡❞❡❞✲❢♦r✲❣♦❛❧(mode)]

We have run out of more or less obvious improvements, but analyzing the plan-

ner output reveals one remaining inefficiency: The satellites often simultaneously

decide to turn to the same direction because a picture needs to be taken in that

direction, despite the fact that only one satellite needs to take the picture. This is

similar to the situation in the ZenoTravel domain where a number of aircraft may

concurrently choose to pick up the same passenger, but there are some differences

due to the fact that the only reason for a satellite to point in a certain direction is in

order to calibrate itself or take an image, which makes the task somewhat easier.

Therefore this problem can be solved in a different way, using a resource for

mutual exclusion. This resource, called ♣♦✐♥t✲t♦✇❛r❞s(direction) and having a capac-

ity of 1, can be borrowed temporarily by t✉r♥✲t♦ for the duration of the turn. If one

satellite turns towards a specific direction d, no other satellite can turn towards d

without causing a resource conflict.

This still leaves one problem: When the first satellite has finished turning, it no

longer owns the ♣♦✐♥t✲t♦✇❛r❞s(d) resource and therefore another satellite can imme-

diately start turning towards d. It is no longer possible for more than one satellite

to turn towards the same direction at once, but while the first satellite is taking

pictures, other satellites can turn to that direction one by one, until finally all the

desired pictures have been taken in that direction and ❣♦❛❧✲❞✐r❡❝t✐♦♥ sees that there

is no longer any valid reason to point towards d. This can be solved either by

changing the definition of ❣♦❛❧✲❞✐r❡❝t✐♦♥ or by letting t❛❦❡✲✐♠❛❣❡ borrow the same

resource.

Clearly, this type of “swarming” problem occurs quite often in concurrent do-

mains and a more principled solution should be investigated in the future.

Satellite: SimpleTime

The SimpleTime version changes the duration of some operators. Turning takes

five time units, switching an instrument on takes two units, calibrating it takes five

Chapter 9. Planning Competitions 275

 0.1

 1

 10

 100

 1000

 5 10 15

TALplanner
SHOP2
TLPlan
FF

(a) Time (seconds, STRIPS)

 100

 5 10 15

TALplanner
SHOP2
TLPlan
FF

(b) Plan steps (STRIPS)

Figure 9.15: Results for IPC-2002 Satellite Problems: STRIPS

units and taking a picture takes seven units. A couple of helper fluents, t✉r♥✐♥❣✲

t♦✇❛r❞s, ❝❛❧✐❜r❛t✐♥❣, ❤❛✈❡✲✐♠❛❣❡✲❣❡♥❡r❛❧✐③❡❞ (an image exists or is being taken) and

♣♦✇❡r✲♦♥✲❣❡♥❡r❛❧✐③❡❞ (power is on or a s✇✐t❝❤✲♦♥ action is being executed) keep track

of actions that have begun but not completed. The affected control rules are up-

dated accordingly.

Satellite: Timed

The Timed version of the Satellite benchmark domain includes two new functions.

The ❝❛❧✐❜r❛t✐♦♥✲t✐♠❡ specifies the time required to calibrate, while the s❧❡✇✲t✐♠❡ func-

tion represents the time required for a satellite to turn between two directions. Nei-

ther of these changes prompts any significant changes to the SimpleTime control.

Satellite: Results and Discussion

The Satellite domain does not provide a real challenge as long as the planner is only

trying to find a correct solution to each problem instance. Finding a short solution

is harder, especially in the Timed version, and would require additional analysis to

determine in which order images should be collected and which satellites should

be used for each image. Doing this using control rules seemed a bit like overkill,

especially since we had not yet created control rules for the complex UMTranslog-2

domain. For this reason, we decided to be satisfied with what we had done so far.

For the STRIPS version, TALplanner turned out to generate plans approximately

as quickly as the other planners (Figure 9.15). The plans were slightly longer than

those of TLPlan, SHOP2 and FF in terms of plan steps, but generally shorter in

terms of makespan (not shown here).

276 9.2. International Planning Competition 2002

In the SimpleTime domain, TLPlan was considerably faster, but for the Timed

version, TALplanner was once again approximately as fast as TLPlan and faster

than SHOP2 (Figure 9.16). However, we were quite surprised to find out that the

plans we generated were considerably worse than those from the other planners in

terms of makespan – worse by up to a factor of 10!

After the contest, we were informed of the reason, or at least the main reason:

The automatic problem generator that created the problem instances randomized

the slew times between every pair of directions and did not check for geometrical

consistency that would be present in a real world situation. We had subconsciously

assumed that the problem instances satisfied the triangle inequality, but this was

not the case, and the other planning teams had discovered this. For example, in

handcoded problem 14, turning a satellite directly between phenomenon86 and

groundstation4 takes 82.860 units of time, while turning it through two carefully

selected intermediate directions requires 1.183 units of time. But going through

intermediate directions also requires a greater number of actions, which can clearly

be seen in the Figure 9.16 where TALplanner consistently uses considerably fewer

actions than its competitors for the Timed domain.

Taking this into consideration and once again using the built-in shortest path

algorithm yields significantly shorter plans when plan length is measured by the

time point at which the goals have been satisfied. Another potential improvement

would be to change the last clause in ❣♦❛❧✲❞✐r❡❝t✐♦♥ to allow satellites to turn towards

a direction specified in the goals as soon as one has started taking the last picture,

rather than waiting until one has finished taking the last picture.

9.2.7 The UMTranslog-2 Domain

The UMTranslog-2 domain is another logistics domain, but with 14 distinct object

types, 38 predicates, 24 functions and 38 operators, its size and complexity is in-

comparable to the previously encountered logistics domains in the contest.

Since the formal domain definition was the only information provided about

the domain and there was no high-level description, we had to work out all the

information about the domain from the PDDL definition. This was not a major

problem for the previous domains, since they were generally quite simple and easy

to understand, but it did give us some problems in UMTranslog-2. A significant

amount of time was spent trying to determine exactly how packages were allowed

to move and how they can be loaded into and unloaded from various kinds of

vehicles. In retrospect, it would probably have been better to do as some other

teams did: Skip the UMTranslog-2 domain completely and spend that time on the

Numeric and Complex versions of the other domains.

The domain. Trucks, trains or aircraft transport packages between locations but

they must follow strict movement patterns. A few locations are transportation

hubs, some are transportation centers while the rest are ordinary locations. A pack-

age is only allowed to move up and down through this hierarchy once and only

Chapter 9. Planning Competitions 277

 0.1

 1

 5 10 15

TALplanner
SHOP2
TLPlan

(a) Time (seconds, SimpleTime)

 1

 10

 100

 5 10 15

TALplanner
SHOP2
TLPlan

(b) Time (seconds, Timed)

 100

 5 10 15

TALplanner
SHOP2
TLPlan

(c) Plan steps (SimpleTime)

 100

 5 10 15

TALplanner
SHOP2
TLPlan

(d) Plan steps (Timed)

 100

 5 10 15

TALplanner
SHOP2
TLPlan

(e) Makespan (SimpleTime)

 1000

 5 10 15

TALplanner
SHOP2
TLPlan

(f) Makespan (Timed)

Figure 9.16: IPC-2002 Satellite Problems: SimpleTime and Timed

278 9.2. International Planning Competition 2002

move between two locations in the same layer once. The longest possible route for

a package is thus from an ordinary location to a transportation center to a hub to

another hub to a transportation center and finally to another ordinary location.

The domain groups locations into cities, which are then grouped in regions.

Trucks travel between any two locations in the same city or by an existing road

route between two cities. Trains and planes always use predefined routes between

transportation centers and hubs. A great number of restrictions further complicate

movements. Packages must be compatible with the vehicle they are loaded into,

the vehicle must have enough free space, not be loaded too heavily and not be

wider, longer or higher than the route and destination location accepts. Finally, the

locations, vehicles and routes must all be available for use.

Control rules. As in previous domains, we specify what a reasonable location is

and limit vehicle movements to destinations that are reasonable. A truck might

want to pick up or deliver a package at the location or, if the truck cannot reach

the goal location of the package, unload the package at a transportation center to

be picked up by another vehicle. Our control rules do not allow trucks to pick up

several packages. This makes finding optimal solutions impossible in the general

case but simplifies the search for acceptable solutions a great deal. There is an im-

minent risk that any other packages the truck is carrying will end up at the wrong

location if it is allowed to travel about, picking up more packages along the way.

Since all packages must move according to the specified pattern of transportation

centers and hubs, moving a package that has once arrived at a location that is not a

transportation center is not allowed and the package will be stuck there. Restricting

trucks to picking up one package at a time avoids this problem.

There is also a large group of loading and unloading rules controlling, among

other things, the opening or closing of valves and doors and loading or unloading

of packages. This part of the problem would perhaps be more succinctly solved

by a HTN-style planner or by some form of macro operator, since it involves spe-

cific sequences of actions that must always be performed in the same order. For

example, loading a package into an aircraft always involves attaching a conveyor

ramp, opening the airplane door, loading the package, closing the airplane door,

and detaching the conveyor ramp, in exactly that order. Nevertheless, writing con-

trol rules ensuring the proper order is not difficult – merely somewhat tedious.

Finally, packages are only loaded into vehicles that are actually able to take them

to a useful location.

Of the 15 contest problems provided, all created automatically by a problem

generator, only ten were actually solvable. The remaining five were unsolvable for

different reasons. This may have been intentional, and the ability of a planner to

terminate in reasonable time given an unsolvable problem is certainly a valuable

quality, as many real world problem instances might be unsolvable. Though de-

termining solvability may be impossible in the general case, it is certainly possible

for sequential classical planning due to the use of a finite state space and a finite

Chapter 9. Planning Competitions 279

 1

 10

 5 10 15

TALplanner
SHOP2

(a) Time to solve solvable problem instances

 100

 5 10 15

TALplanner
SHOP2

(b) Plan steps for solvable problem instances

Figure 9.17: Results for IPC-2002 UMTranslog-2 Problems

number of possible action instances together with the fact that the applicability of

an action only depends on the invocation state as opposed to the entire history of

preceding states.

Creating control rules and meeting the contest deadline left no time to get the

domain working with concurrent planning. Instead, we had to make do with se-

quential planning.

Given more time, the set of control rules could definitely be improved. If plan-

ning speed is less of an issue, more search can be allowed and higher quality plans

generated. More and better problem instances would be needed as guidelines when

developing better control rules since the contest problems did not make full use of

the intended transportation scheme with transportation centers and hubs.

Nevertheless, the plans generated by TALplanner were of comparable quality

to those generated by SHOP2, the only other hand-tailored planner where the team

took the time to generate control knowledge for this complex domain (Figure 9.17).

TALplanner was also considerably faster than SHOP2 when generating these plans.

280 9.2. International Planning Competition 2002

Chapter 10
Discussion

In the final chapter of the planning section, it is time to take a step back for a critical

view of the work that has been done, the decisions that were made, and the lessons

that have been learned along the way. We start by inspecting the initial reason for

developing a new planner.

10.1 TALplanner and the WITAS Project

The original decision to take the step from the field of reasoning about action and

change (RAC) to the field of planning was grounded in the necessity for a fast and

expressive action planner in the WITAS unmanned aerial vehicle (UAV) project

(Doherty et al., 2004; Doherty, 2004; Merz, 2004; Doherty et al., 2000).

Developing an autonomous UAV is clearly a long-term project, where a great

number of different functionalities must be integrated into a single coherent archi-

tecture with support from higher level deliberative systems as well as lower level

control systems responsible for ensuring that the UAV remains stable under vary-

ing conditions. Though it would perhaps be possible in theory to first design a

complete architecture and then commence working on all subsystems in parallel,

integrating the entire system when the subsystems are ready, an incremental ap-

proach is far more likely to yield a satisfactory result. Such an approach involves

beginning with an architecture comprising the most essential subsystems, work-

ing on these subsystems and their integration until the system is sufficiently stable,

and then incrementally adding new subsystems and improving existing ones as re-

quired in order to extend the set of tasks that the autonomous system can perform.

Some of the first systems to be integrated into the WITAS UAV include the basic

control systems that allow the UAV to fly autonomously (and later also take off and

land autonomously, which is a considerably more difficult task), multiple naviga-

tion systems including GPS and inertial navigation allowing the UAV to determine

281

282 10.2. Hand-Tailored versus Fully Automated Planning

where it is relative to a given coordinate system, and image processing systems

that identify ground vehicles and allow the UAV to track such vehicles along road

networks. The current UAV architecture has also evolved to include a framework

for storing and accessing qualitative knowledge representing various aspects of the

environment that the UAV inhabits (Heintz & Doherty, 2005, 2004a, 2004b), a path

planner allowing the system to generate (and then fly) a path between its current

location and its destination given a map containing buildings and other objects to

be avoided (Pettersson, 2003; Pettersson & Doherty, 2004), and a chronicle recogni-

tion system that can be used to identify and classify the behaviour of other agents

in the environment (Heintz, 2001).

The system now provides a useful set of high-level operators that could be used

by an action planner, and consequently the time has come to integrate TALplan-

ner into the UAV architecture. In the first phase, this will merely require some

additional work in terms of interfacing the planner with the CORBA-based system

architecture, ensuring that the higher interface levels of the system can and do ac-

cess the planning functionality when this is relevant to the current mission, and of

course also creating a TAL-based model of the UAV domain at an appropriate level

of abstraction. Thereafter, another research phase will begin, aimed partly at deter-

mining which parts of UAV missions are best solved by traditional action planning

as opposed to more “hard-coded” solutions and partly at determining which as-

pects of the planner will need to be developed further in order to provide better

functionality to the UAV system. We expect the most challenging issues to arise

in the area of uncertainty: The UAV domain involves a great deal of uncertainty

regarding observed values as well as regarding the true effects of an action, and

exogenous events must be taken into account. Plans may have to support sens-

ing actions and may have to repeat actions until a desired result is achieved. Also,

the plan execution framework may have to be taken into account in the planning

phase, with explicit support for safety conditions. All of these are interesting future

research issues, and will also be discussed under “Future Work” below.

It remains to be seen whether all extensions that will be required in the future

can be cleanly integrated into the current TALplanner framework or whether more

extensive modifications will be required. Regardless of the eventual outcome, TAL-

planner has turned into an intensely interesting research topic in its own right.

10.2 Hand-Tailored versus Fully Automated Planning

As discussed previously, there is no binary distinction between hand-tailored and

fully automated planning. Many “fully automated” planners can be tuned for par-

ticular problems using configuration settings that affect various parameters con-

trolling the planning algorithm, and some may even be dependent upon such set-

tings for reasonable performance, while some “hand-tailored” planners can assist

in the generation of the secondary domain-specific information they require as in-

Chapter 10. Discussion 283

put. Nevertheless, it must be admitted that there is in general an additional effort

involved in using a hand-tailored planner.

Some may use this as a reason for questioning the existence of hand-tailored

planners, preferring to unconditionally follow a “pure” approach where a planning

algorithm only requires an absolute minimum of information in order to solve a

planning problem. Though we agree that fully automated planning is certainly an

interesting and worthy field of research, we believe there are several reasons why

hand-tailored planners may in some cases be a better short-term approach for an

applied research project and may in fact always be a step ahead of fully automated

planners in certain respects.

Our first argument relates to the fact that it may not be immediately obvious to

what extent a certain kind of information would be useful for a given planning al-

gorithm. Perhaps introducing this information would improve performance by or-

ders of magnitude for many common domain types, or perhaps the impact would

be negligible. In such cases, a hand-tailored planner can be seen as a temporary

step on the way towards full automation, where only that aspect of the planner

that makes use of the new information is implemented. If the information did

indeed turn out to be of use, the project can then proceed by implementing the

information-gathering aspect of the planner. This approach, which was used to test

whether introducing state invariants would improve the performance of the TAL-

planner formula optimizer, saves time and helps reduce the amount of time spent

researching what may turn out to be a dead end.

Even if it is in fact apparent that a certain kind of information would be useful,

it may be the case that the proper knowledge for a domain is immediately obvious

to a human but difficult to extract for a machine – or, more realistically, that finding

this information involves a not completely negligible amount of work for a human,

and that it requires a comprehensive understanding of the problem domain that we

cannot realistically expect to achieve algorithmically in the near or medium term.

If the gain from using this information is sufficiently large for a particular plan-

ning application, either in terms of speed or in terms of plan quality, the decision

between having or not having the information available may not be difficult. In our

experience with the temporal control formulas used by TALplanner, this has often

been the case.

Permitting the use of additional information to guide a planner may also allevi-

ate the need to restrict the expressivity of its domain definition language. There are

a multitude of interesting domain analysis techniques that assist fully automated

planners in reducing the complexity of the planning task or in finding heuristics or

other forms of guidance relevant to a particular fully automated search algorithm,

but in many cases such techniques appear to be founded on the assumption of

single-step operators, sequential planning, conjunctive preconditions, and/or the

ability to generate all ground instances of all facts and operators (Nebel et al., 1997;

Haslum & Jonsson, 2000; Fox & Long, 1998; Cresswell et al., 2002; Fox & Long,

2000b, 2000a, 2002; Gerevini & Schubert, 1998, 2000; Scholz, 2000; Rintanen, 2000b).

284 10.3. Using Control Rules

Allowing the domain designer to provide a certain amount of guidance will fa-

cilitate the task of stepping outside of the classical framework and preparing the

ground for richer and more expressive models of real-world planning domains.

10.3 Using Control Rules

If we accept the use of hand-tailored information as input to a planner, there is still a

question of what shape this information should take. TALplanner uses a set of con-

trol formulas that must be entailed by the final solution generated by the planner.

Our article on TALplanner in the third International Planning Competition (Kvarn-

ström & Magnusson, 2003), most of which is included as part of Chapter 9, includes

a number of domain-dependent control rules for the competition domains. Rather

than presenting an exhaustive list of pre-packaged control rules, we attempted to

place more emphasis on explaining the incremental analysis process that eventually

leads to the final formulas, going into particular detail for the ZenoTravel domain.

As could be seen in these examples, control rules are often simple, natural

common-sense rules, and not very difficult to generate given some basic knowl-

edge about the planning domain. Some rules are more complex, but still not dif-

ficult to understand or verify once someone has spent the effort to generate them.

And then, unfortunately, there are a few rules that are quite unintuitive, rules that

are too complex to be easily understood, and rules that occasionally forbid optimal

plans.

To some extent, such rules might be avoided by gaining more experience in

good practices for writing control rules, by extending the expressivity of the lan-

guage in which control rules are written so that complex conditions can be ex-

pressed more succinctly or in a more natural manner, or simply by spending a little

bit more time on the control rules than was available during the planning competi-

tion. However, another important cause for the complexity of certain rules is most

likely that we are attempting to express all search control knowledge in the same

way: As control rules that prune the search tree to such a great extent that even a

simple depth first search algorithm is sufficient for efficiently finding good plans in

the remainder of the tree.

Not all search control knowledge can easily be expressed in this manner, but

this certainly does not mean that control rules should be abandoned altogether.

Instead, what we learn from this experience is that control rules might not be the

one and only multi-purpose planning tool that will efficiently and easily solve all

our planning problems. Just like one would expect, they are one very useful tool

that deserves a place in our toolbox but should be combined with other approaches

to planning.

To mention one rather obvious example, it would be possible to devise a heuris-

tic forward-chaining planner whose search tree would be pre-pruned using control

rule techniques from TALplanner. Control rules could be written to exclude plans

Chapter 10. Discussion 285

where the heuristic gives a suboptimal result, potentially providing plans that are

closer to optimal, and even for domains where the heuristic search function pro-

vides good plans it may often be more efficient to state a number of constraints

as explicit control rules. This would also reduce the need to use extremely strong

control rules that provide strong guidance but may prevent the generation of op-

timal plans. For example, one of the standard logistics control rules states that no

packages should be unloaded from a plane until the final destination city has been

reached. If this rule is removed, packages will be unloaded from airplanes ran-

domly. If the rule is included in its current shape, it unfortunately also prevents

packages from being moved between airplanes at any time, even if this would lead

to better overall performance. A well-chosen heuristic function would most likely

yield better plans in such cases.

Also, we have noticed a tendency to generate unnecessary plan steps in certain

concurrent domains, where attempting to exclude these plan steps instead leads

to a decrease in flexibility and a potentially longer makespan. The Rovers domain

is a case in point. When a rover was not needed for a specific task, our control

rules allowed it to drive around aimlessly, which increased the number of actions

in each plan but may have shortened makespans slightly: When the planner saw

the need for a rover at a certain point, one of the free rovers might already be there.

Integrating a technique such as PbR, Planning by Rewriting (Ambite, 1998; Ambite

et al., 2000; Ambite & Knoblock, 2001), would allow such plans to be rewritten in

a post-processing step where unnecessary actions would be removed. Though this

particular case might be viewed as a patch for bad control rules, it would neverthe-

less be interesting to investigate the applicability of this combination for a larger

variety of domains.

Various combined planning techniques have been considered at least since some

time before the second planning competition in 2000, and it has long been clear

to us that such approaches should eventually be examined and explored. Before

we could start working on this, though, the strengths and weaknesses of control

rules had to be explored in more depth. Our work has therefore focused mostly on

investigating how far it is possible to take TALplanner in its current shape, with

explicit control rules being the only means for controlling the search process. This

work has proved rather fruitful in itself, and TALplanner did well in IPC-2000 as

well as in IPC-2002.

10.4 Using TAL in TALplanner

One primary requirement for being able to trust the solutions generated by a plan-

ner is the use of a well-defined domain modeling language with a formal semantics

for planning domains and problem instances.

TALplanner makes use of a modified version of the TAL-C logic for this pur-

pose, a choice that has served us well in most respects. In the first version of

286 10.4. Using TAL in TALplanner

TALplanner, TAL-C provided a suitable semantics for control rules, initial states,

goals, and sequential single-step operators. When it was time to extend the plan-

ner to support operators with extended duration, and concurrent plans, the formal

semantics was already available – and perhaps even more importantly, the intu-

itions and reasoning behind that semantics, which was developed within the field

of reasoning about action and change.

We must admit, though, that the use of an unmodified version of the common

TAL base logic L(FL) has occasionally been somewhat problematic. Providing a

proper semantics for recursively defined fluents would require an extension from

first-order to fixpoint logic, an extension that has been planned for some time but

does not belong within the TALplanner project itself. Modeling arbitrary goals

within the logic is trivial as long as only the planning algorithm has to refer to

those goals and test whether they are satisfied in a given plan candidate, but control

rules need the ability to test whether a formula is entailed by the goal, which cannot

easily be given a semantics within L(FL) when disjunctive and existential goals

are allowed. Resource effects are given a semantics partly outside the logic using

semantic attachment. An extended version of the base logic could remedy most or

all of these problems.

The use of TAL in TALplanner is closely related to the use of evaluation rather than

progression for control formulas. Both of these approaches have advantages and

disadvantages in terms of computational and conceptual complexity.

The process of extracting pruning constraints is conceptually somewhat more

complex than the use of progression in TLPlan. This complexity is especially ap-

parent when considering the analysis and optimization algorithms discussed in

Chapter 8. Also, certain types of control formulas using the ❯ operator currently

cannot be integrated into the incremental pruning constraint framework, making

progression a better choice for such formulas.

On the other hand, control formulas that truly require the use of the❯ (until) op-

erator tend to be rare in our experience, and evaluating the optimized incremental

pruning constraints produced by TALplanner is often considerably more efficient

than progressing a control formula through all new states generated by an operator,

which is a strong point in favor of the use of formula evaluation. These optimiza-

tions are more difficult to apply to a progression algorithm, and would lead to a

hybrid technique that could no longer truly be called progression.

There is also no need to store a progressed control formula in each search node

when evaluation-based control is used, which saves considerable amounts of mem-

ory.

In recent work, these two approaches have been unified into a single planner

using both progressed tense control rules and evaluated TAL control rules. This

enables the user to take advantage of the relative strengths of each approach within

any planning domain.

Chapter 10. Discussion 287

10.5 Future Work

Before considering potential future work within the planning area, let us step back

and briefly recapitulate the work has already been presented.

The very first version of TALplanner, implemented during the first two months

of the project, was based on ideas from TLPlan. A new underlying formal seman-

tics was developed, based on the use of a modified version of TAL-C providing a

declarative semantics for all aspects of the planning process. The action model was

significantly extended to allow actions with extended temporal duration and ef-

fects at arbitrary timepoints during the execution of the action. TAL-based control

formulas were introduced, together with a method for testing such formulas incre-

mentally as a plan was being built. We developed a concurrent version of TAL-

planner and investigated several techniques for modeling non-interference con-

ditions for concurrent actions. Explicit resource constraints were introduced into

the modeling language. A general formula and term optimization framework was

developed and applied to incremental pruning constraints as well as other formu-

las. New operator analysis techniques were added to the optimization framework,

and the applicability of existing state transition analysis techniques was investi-

gated. Taken together, these techniques often allow the generation of new pre-

conditions from control formulas and improve the performance of the planner by

orders of magnitude for some domains. TALplanner has been empirically tested

at various points during its development and has participated in two international

planning competitions, winning the highest “distinguished planner” award in the

hand-tailored track of IPC-2000.

The main problem during the development of the planner has not been finding

interesting and fruitful research issues but prioritizing between all the different

directions our research could take.

For example, it has long been clear that there can be much to be gained by

combining the use of control rules with other planning techniques into a hybrid

planner, as discussed in Section 10.3.

TALplanner currently provides no optimality guarantees, neither in terms of

domain-independent measures such as plan length or makespan nor in terms of

problem-specific measures specified for each problem instance. In some sense, plan

quality can be improved by writing sufficiently good control rules that forbid plans

of low quality, but this approach is indirect and provides no optimality guarantees.

The very simplest approaches to generating optimal plans might involve applying

standard optimal search algorithms to the pruned search tree generated by TAL-

planner. Some preliminary work has already been done in this area, but further

research needs to be done to determine whether this simple approach is sufficient

or whether more complex optimization procedures need to be developed. There

are also ideas for new types of domain knowledge to be introduced into the plan-

ner which should improve the performance of optimal planning by providing con-

288 10.6. Acknowledgments

straints applied across multiple plans in addition to the current control rules which

only constrain the state sequence generated by a single plan.

In order to apply TALplanner to real-world dynamic domains such as the UAV

domain, support for incompletely defined initial states and incompletely specified

effects of actions will be very important. Though the planner has not yet been

extended in this direction, some of the underlying research related to querying

incomplete state structures has already been done by other researchers (Doherty,

Łukaszewicz, & Szałas, 2003b, 2003c, 2004a, 2004b, 2000, 2003a; Doherty & Sza-

łas, 2004; Doherty, Grabowski, Łukaszewicz, & Szałas, 2003; Doherty, Kachniarz, &

Szałas, 2003).

Many of these topics will be pursued in the future.

10.6 Acknowledgments

TALplanner research has been supported in part by the Wallenberg Foundation,

the Swedish Research Council for Engineering Sciences (TFR) and the ECSEL / EN-

SYM graduate studies program. Special thanks to Patrick Doherty, Patrik Haslum,

and Martin Magnusson, who have coauthored a number of papers on which this

part of the thesis is based.

Some of the figures in this part of the thesis were generated using TPVis, a do-

main visualization framework that can animate the movements of objects between

different locations and containers in order to give a better instinctive feeling for the

quality of the plans generated by a given set of control rules. TPVis was developed

by Martin Magnusson after IPC-2002.

Bibliography

Abadi, M., & Cardelli, L. (1996). A Theory of Objects. Monographs in Computer

Science. Springer-Verlag New York, Inc. See ❤tt♣✿✴✴✇✇✇✳❧✉❝❛✳❞❡♠♦♥✳❝♦✳✉❦✴

❚❤❡♦r②❖❢❖❜❥❡❝ts✳❤t♠❧.

Alur, R., Feder, T., & Henzinger, T. A. (1991). The benefits of relaxing punctuality. In

Proceedings of the Tenth ACM Symposium on Principles of Distributed Computing

(PODC-1991), pp. 139–152, Montréal, Canada. ACM Press. Available at ❤tt♣✿

✴✴✇✇✇✳❝✐s✳✉♣❡♥♥✳❡❞✉✴⑦❛❧✉r✴P♦❞❝✾✶✳♣s✳❣③.

Alur, R., & Henzinger, T. A. (1992). Back to the future: Towards a theory of timed

regular languages. In Proceedings of the 33rd IEEE Symposium on Founda-

tions of Computer Science (FOCS-1992), pp. 177–186, Pittsburgh, Pennsylva-

nia, USA. IEEE Computer Society Press, Los Alamitos-Washington-Brussels-

Tokyo. Updated version available at ❤tt♣✿✴✴✇✇✇✲❝❛❞✳❡❡❝s✳❜❡r❦❡❧❡②✳❡❞✉✴⑦t❛❤✴

P✉❜❧✐❝❛t✐♦♥s✴❜❛❝❦❴t♦❴t❤❡❴❢✉t✉r❡✳♣s.

Ambite, J. L. (1998). Planning by Rewriting. Ph.D. thesis, University of Southern

California. Available at ❤tt♣✿✴✴✇✇✇✳✐s✐✳❡❞✉✴⑦❛♠❜✐t❡✴t❤❡s✐s✳♣s✳❣③.

Ambite, J. L., & Knoblock, C. A. (2001). Planning by rewriting. Journal of Artificial

Intelligence Research, 15, 207–261. Available at ❤tt♣✿✴✴✇✇✇✳❥❛✐r✳♦r❣✴❝♦♥t❡♥ts✴

✈✶✺✳❤t♠❧.

Ambite, J. L., Knoblock, C. A., & Minton, S. (2000). Learning plan rewriting rules.

In Chien, S., Kambhampati, S., & Knoblock, C. A. (Eds.), Proceedings of the Fifth

International Conference on Artificial Intelligence Planning and Scheduling (AIPS-

2000), pp. 3–12, Breckenridge, Colorado, USA. AAAI Press, Menlo Park, Cal-

ifornia, USA. Available at ❤tt♣✿✴✴✇✇✇✳✐s✐✳❡❞✉✴⑦❛♠❜✐t❡✴✷✵✵✵✲❛✐♣s✳♣s.

Amir, E. (1999). Object-oriented first-order logic. Electronic Transactions on Artificial

Intelligence, 3, 63–84. Available at ❤tt♣✿✴✴✇✇✇✳❡♣✳❧✐✉✳s❡✴❡❥✴❡t❛✐✴✶✾✾✾✴✵✵✽✴.

Amir, E. (2000). (De)Composition of situation calculus theories. In Proceedings of the

Seventeenth National Conference on Artificial Intelligence and Twelfth Conference

289

290 Bibliography

on Innovative Applications of Artificial Intelligence (AAAI-2000 / IAAI-2000), pp.

456–463, Austin, Texas, USA. AAAI Press, Menlo Park, California, USA / The

MIT Press, Cambridge, Massachusetts, USA. Available at ❤tt♣✿✴✴✇✇✇✳❝s✳✉✐✉❝✳

❡❞✉✴⑦❡②❛❧✴♣❛♣❡rs✴♦♦✲s✐t❝❛❧❝✲❛❛❛✐✵✵✳♣s.

Anderson, C. R., Smith, D. E., & Weld, D. S. (1998). Conditional effects in Graph-

plan. In Reid G. Simmons, Manuela M. Veloso, S. S. (Ed.), Proceedings of the

Fourth International Conference on Artificial Intelligence Planning Systems (AIPS-

1998), pp. 44–53, Pittsburgh, Pennsylvania, USA. AAAI Press, Menlo Park,

California, USA.

Artale, A., & Franconi, E. (1998). A temporal description logic for reasoning about

actions and plans. Journal of Artificial Intelligence Research, 9, 463–506. Avail-

able at ❤tt♣✿✴✴✇✇✇✳❥❛✐r✳♦r❣✴❝♦♥t❡♥ts✴✈✾✳❤t♠❧.

Bacchus, F. (2001). The AIPS’00 planning competition. AI Magazine, 22(3), 47–56. See

also ❤tt♣✿✴✴✇✇✇✳❛❛❛✐✳♦r❣✴▲✐❜r❛r②✴▼❛❣❛③✐♥❡✴❱♦❧✷✷✴✷✷✲✵✸✴✈♦❧✷✷✲✵✸✳❤t♠❧ and the

competition web page at ❤tt♣✿✴✴✇✇✇✳❝s✳t♦r♦♥t♦✳❡❞✉✴❛✐♣s✷✵✵✵✴.

Bacchus, F., & Ady, M. (1999). Precondition control. Available at ❤tt♣✿✴✴✇✇✇✳❝s✳

t♦r♦♥t♦✳❡❞✉✴⑦❢❜❛❝❝❤✉s✴P❛♣❡rs✴❇❆♣r❡✳♣❞❢.

Bacchus, F., & Kabanza, F. (1996a). Planning for temporally extended goals. In Pro-

ceedings of the Thirteenth National Conference on Artificial Intelligence and Eighth

Conference on Innovative Applications of Artificial Intelligence (AAAI-1996 / IAAI-

1996), pp. 1215–1222, Portland, Oregon, USA. AAAI Press, Menlo Park, Cali-

fornia, USA / The MIT Press, Cambridge, Massachusetts, USA. Available at

❢t♣✿✴✴♥❡✇❧♦❣♦s✳✉✇❛t❡r❧♦♦✳❝❛✴♣✉❜✴❜❛❝❝❤✉s✴❇❑❆❆❆■✾✻✳♣s✳❣③.

Bacchus, F., & Kabanza, F. (1996b). Using temporal logic to control search in a for-

ward chaining planner. In Ghallab, M., & Milani, A. (Eds.), New Directions in

AI Planning, pp. 141–153. IOS Press, Amsterdam, The Netherlands. Available

at ❢t♣✿✴✴♥❡✇❧♦❣♦s✳✉✇❛t❡r❧♦♦✳❝❛✴❜❛❝❝❤✉s✴❇❑❊❲❙P✾✻✳♣s✳❣③.

Bacchus, F., & Kabanza, F. (1998). Planning for temporally extended goals. Annals

of Mathematics and Artificial Intelligence, 22, 5–27. Available at ❢t♣✿✴✴♥❡✇❧♦❣♦s✳

✉✇❛t❡r❧♦♦✳❝❛✴♣✉❜✴❜❛❝❝❤✉s✴❇❑❆▼❆■✾✽✳♣s✳❣③.

Bacchus, F., & Kabanza, F. (2000). Using temporal logics to express search control

knowledge for planning. Artificial Intelligence, 116(1–2), 123–191. Available at

❢t♣✿✴✴♥❡✇❧♦❣♦s✳✉✇❛t❡r❧♦♦✳❝❛✴♣✉❜✴❜❛❝❝❤✉s✴❇❑❚❧♣❧❛♥✳♣s.

Bäckström, C., & Klein, I. (1991). Planning in polynomial time: The SAS-PUBS class.

Computational Intelligence, 7(3), 181–197.

Blum, A. M., & Furst, M. L. (1997). Fast planning through planning graph analysis.

Artificial Intelligence, 90(1–2), 281–300. Available at ❤tt♣✿✴✴✇✇✇✲✷✳❝s✳❝♠✉✳❡❞✉✴

⑦❛✈r✐♠✴P❛♣❡rs✴❣r❛♣❤♣❧❛♥✳♣s.

Bonet, B., & Geffner, H. (1998). HSP: Heuristic search planner.. Available at ❤tt♣✿

✴✴✇✇✇✳❧❞❝✳✉s❜✳✈❡✴⑦❤❡❝t♦r✴.

Bibliography 291

Booch, G. (1991). Object-Oriented Design with Applications. The Benjamin / Cum-

mings Publishing Company, Inc.

Borgida, A., Brachman, R., McGuinness, D., & Resnick, L. (1989). CLASSIC: A struc-

tural data model for objects. In Proceedings of the 1989 ACM SIGMOD Interna-

tional Conference on Management of Data, pp. 58–67, Portland, Oregon, USA.

Brachman, R., Fikes, R., & Levesque, H. (1983). KRYPTON: A functional approach

to knowledge representation. Computer, 16, 67–73.

Carbonell, J. G., Blythe, J., Etzioni, O., Gil, Y., Joseph, R., Kahn, D., Knoblock, C.,

Minton, S., Pérez, A., Reilly, S., Veloso, M., & Wang, X. (1992). Prodigy 4.0:

The manual and tutorial. Tech. rep. CMU-CS-92-150, School of Computer

Science, Carnegie Mellon University.

Cresswell, S., & Coddington, A. M. (2004). Adapting LPGP to plan with deadlines.

In de Mántaras, R. L., & Saitta, L. (Eds.), Proceedings of the Sixteenth Eureopean

Conference on Artificial Intelligence (ECAI-2004), pp. 983–984, Valencia, Spain.

IOS Press, Amsterdam, The Netherlands.

Cresswell, S., Fox, M., & Long, D. (2002). Extending TIM domain analysis to

handle ADL constructs. In McCluskey, T. L. (Ed.), Proceedings of the AIPS-

2002 Workshop on Knowledge Engineering Tools and Techniques for A.I. Plan-

ning. Available at ❤tt♣✿✴✴✇✇✇✳❝✐s✳str❛t❤✳❛❝✳✉❦✴r❡s❡❛r❝❤✴♣✉❜❧✐❝❛t✐♦♥s✴♣❛♣❡rs✴

str❛t❤❴❝✐s❴♣✉❜❧✐❝❛t✐♦♥❴✽✵✳♣❞❢.

Currie, K., & Tate, A. (1991). O-Plan: The open planning architecture. Artificial

Intelligence, 52(1), 49–86.

de Kleer, J., & Brown, J. S. (1984). A qualitative physics based on confluences. Arti-

ficial Intelligence, 24(1–3), 7–83.

Doherty, P. (1994). Reasoning about action and change using occlusion. In Cohn,

A. G. (Ed.), Proceedings of the Eleventh European Conference on Artificial In-

telligence (ECAI-1994), pp. 401–405, Amsterdam, The Netherlands. John Wi-

ley and Sons, Chichester, England. Available at ❢t♣✿✴✴❢t♣✳✐❞❛✳❧✐✉✳s❡✴♣✉❜✴❧❛❜s✴

❦♣❧❛❜✴♣❡♦♣❧❡✴♣❛t❞♦✴❡❝❛✐✾✹✳♣s✳❣③.

Doherty, P. (1996). PMON+: A fluent logic for action and change, formal specifica-

tion, version 1.0. Tech. rep. LITH-IDA-96-33, Department of Computer and

Information Science, Linköping University, Linköping, Sweden. Available at

❤tt♣✿✴✴✇✇✇✳✐❞❛✳❧✐✉✳s❡✴♣✉❜❧✐❝❛t✐♦♥s✴t❡❝❤r❡♣✴✾✻✴tr✾✻✳❤t♠❧.

Doherty, P. (2004). Advanced research with autonomous unmanned aerial vehi-

cles. In Dubois, D., Welty, C., & Williams, M.-A. (Eds.), Proceedings of the Ninth

International Conference on Principles of Knowledge Representation and Reason-

ing (KR-2004), pp. 731–732, Whistler, British Columbia, Canada. AAAI Press,

Menlo Park, California, USA. Extended abstract for plenary talk.

Doherty, P., Grabowski, M., Łukaszewicz, W., & Szałas, A. (2003). Towards a frame-

work for approximate ontologies. Fundamenta Informaticae, 57(2-4), 147–165.

292 Bibliography

Doherty, P., Granlund, G., Kuchcinski, K., Sandewall, E., Nordberg, K., Skarman,

E., & Wiklund, J. (2000). The WITAS unmanned aerial vehicle project. In

Horn, W. (Ed.), Proceedings of the Fourteenth European Conference on Artificial

Intelligence (ECAI-2000), pp. 747–755, Berlin, Germany. IOS Press, Amsterdam,

The Netherlands.

Doherty, P., & Gustafsson, J. (1998). Delayed effects of actions = direct effects +

causal rules. Linköping Electronic Articles in Computer and Information Science,

3. Available at ❤tt♣✿✴✴✇✇✇✳❡♣✳❧✐✉✳s❡✴❡❛✴❝✐s✴✶✾✾✽✴✵✵✶.

Doherty, P., Gustafsson, J., Karlsson, L., & Kvarnström, J. (1998). TAL: Temporal

Action Logics – language specification and tutorial. Electronic Transactions on

Artificial Intelligence, 2(3–4), 273–306. Available at ❤tt♣✿✴✴✇✇✇✳❡♣✳❧✐✉✳s❡✴❡❥✴❡t❛✐✴

✶✾✾✽✴✵✵✾✴.

Doherty, P., Haslum, P., Heintz, F., Merz, T., Persson, T., & Wingman, B. (2004). A

distributed architecture for intelligent unmanned aerial vehicle experimen-

tation. In Alami, R. (Ed.), Proceedings of the Seventh International Symposium

on Distributed Autonomous Robotic Systems (DARS-2004), Toulouse, France.

Springer-Verlag.

Doherty, P., Kachniarz, J., & Szałas, A. (2003). Using contextually closed queries

for local closed-world reasoning in rough knowledge databases. In Pal, S.,

Polkowski, L., & Skowron, A. (Eds.), Rough-Neuro Computing: Techniques for

Computing with Words, Cognitive Technologies, chap. 9, pp. 219–250. Springer-

Verlag New York.

Doherty, P., & Kvarnström, J. (1998). Tackling the qualification problem using flu-

ent dependency constraints: Preliminary report. In Khatib, L., & Morris, R.

(Eds.), Proceedings of the Fifth International Workshop on Temporal Representation

and Reasoning (TIME-1998), pp. 97–104, Los Alamitos, California, USA. IEEE

Computer Society Press.

Doherty, P., & Kvarnström, J. (1999). TALplanner: An empirical investigation of a

temporal logic-based forward chaining planner. In Dixon, C., & Fisher, M.

(Eds.), Proceedings of the Sixth International Workshop on Temporal Representation

and Reasoning (TIME-1999), pp. 47–54, Orlando, Florida, USA. IEEE Computer

Society Press. Available at ❢t♣✿✴✴❢t♣✳✐❞❛✳❧✐✉✳s❡✴♣✉❜✴❧❛❜s✴❦♣❧❛❜✴♣❡♦♣❧❡✴♣❛t❞♦✴

t✐♠❡✾✾✲✜♥❛❧✳♣s✳❣③.

Doherty, P., & Kvarnström, J. (2001). TALplanner: A temporal logic-based planner.

AI Magazine, 22(3), 95–102. See also ❤tt♣✿✴✴✇✇✇✳❛❛❛✐✳♦r❣✴▲✐❜r❛r②✴▼❛❣❛③✐♥❡✴

❱♦❧✷✷✴✷✷✲✵✸✴✈♦❧✷✷✲✵✸✳❤t♠❧.

Doherty, P., & Łukaszewicz, W. (1994). Circumscribing Features and Fluents: A

fluent logic for reasoning about action and change. In Gabbay, D. M., &

Ohlbach, H. J. (Eds.), Proceedings of the First International Conference on Tem-

poral Logic (ICTL-1994), Vol. 827 of Lecture Notes in Artificial Intelligence, pp.

82–100. Springer Verlag London.

Bibliography 293

Doherty, P., Łukaszewicz, W., & Szałas, A. (2000). Efficient reasoning using the local

closed-world assumption. In Cerri, S. A., & Dochev, D. (Eds.), Proceedings of

the Ninth International Conference on Artificial Intelligence: Methodology, Systems

and Applications (AIMSA-2000), Vol. 1904 of Lecture Notes in Artificial Intelli-

gence, pp. 49–58, Varna, Bulgaria. Springer-Verlag.

Doherty, P., Łukaszewicz, W., & Szałas, A. (2003a). Approximation transducers

and trees: A technique for combining rough and crisp knowledge. In Pal, S.,

Polkowski, L., & Skowron, A. (Eds.), Rough-Neuro Computing: Techniques for

Computing with Words, Cognitive Technologies, chap. 8, pp. 189–218. Springer-

Verlag New York.

Doherty, P., Łukaszewicz, W., & Szałas, A. (2003b). Information granules for intelli-

gent knowledge structures. In Wang, G., Liu, Q., Yao, Y., & Skowron, A. (Eds.),

Proceedings of the Ninth Internationall Conference on Rough Sets, Fuzzy Sets, Data

Mining, and Granular Computing (RSFDGrC-2003), Vol. 2639 of Lecture Notes in

Artificial Intelligence, pp. 405–412, Chongqing, China. Springer-Verlag.

Doherty, P., Łukaszewicz, W., & Szałas, A. (2003c). Tolerance spaces and approx-

imative representational structures. In Günter, A., Kruse, R., & Neumann,

B. (Eds.), Proceedings of the 26th Annual German Conference on Artificial Intelli-

gence (KI-2003), Vol. 2821 of Lecture Notes in Artificial Intelligence, Hamburg,

Germany. Springer.

Doherty, P., Łukaszewicz, W., & Szałas, A. (2004a). Approximative query tech-

niques for agents using heterogeneous ontologies. In Dubois, D., Welty, C.,

& Williams, M.-A. (Eds.), Proceedings of the Ninth International Conference on

Principles of Knowledge Representation and Reasoning (KR-2004), pp. 459–468,

Whistler, British Columbia, Canada. AAAI Press, Menlo Park, California,

USA.

Doherty, P., Łukaszewicz, W., & Szałas, A. (2004b). Approximative query tech-

niques for agents with heterogeneous perceptual capabilities. In Svensson,

P., & Schubert, J. (Eds.), Proceedings of the Seventh International Conference on In-

formation Fusion (Fusion-2004), pp. 175–182, Stockholm, Sweden. International

Society of Information Fusion, Mountain View, California, USA.

Doherty, P., & Szałas, A. (2004). On the correspondence between approximations

and similarity. In Tsumoto, S., Slowinski, R., Komorowski, J., & Grzymala-

Busse, J. W. (Eds.), Proceedings of the Fourth International Conference on Rough

Sets and Current Trends in Computing (RSCTC-2004), Vol. 3066 of Lecture Notes

in Artificial Intelligence, Uppsala, Sweden. Springer-Verlag.

Edelkamp, S., & Hoffmann, J. (2004). PDDL2.2: The language for the classical part of

the fourth international planning competition. Tech. rep. 195, Albert Ludwigs

Universität, Institut für Informatik, Freiburg, Germany. Available at ❤tt♣✿✴✴

✇✇✇✳♠♣✐✲s❜✳♠♣❣✳❞❡✴⑦❤♦✛♠❛♥♥✴♣✉❜❧✐❝❛t✐♦♥s✳❤t♠❧.

294 Bibliography

Emerson, E. A. (1990). Handbook of Theoretical Computer Science, volume B: Formal

Models and Semantics, chap. Temporal and Modal Logic, pp. 997–1072. Elsevier

and MIT Press.

Erol, K., Hendler, J. A., & Nau, D. S. (1994). UMCP: A sound and complete proce-

dure for hierarchical task-network planning. In Hammond, K. J. (Ed.), Pro-

ceedings of the Second International Conference on Artificial Intelligence Planning

Systems (AIPS-1994), pp. 249–254, Chicago, Illinois. AAAI Press, Menlo Park,

California, USA.

Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A new approach to the application of

theorem proving to problem solving. Artificial Intelligence, 2(3–4), 189–208.

Finger, J. J. (1987). Exploiting Constraints in Design Synthesis. Ph.D. thesis, Stanford

University, Stanford, California, USA.

Fourman, M. P. (2000). Propositional planning. In Proceedings of the AIPS-2000 Work-

shop on Model-Theoretic Approaches to Planning. Available at ❤tt♣✿✴✴❤♦♠❡♣❛❣❡s✳

✐♥❢✳❡❞✳❛❝✳✉❦✴♠❢♦✉r♠❛♥✴t♦♦❧s✴♣r♦♣♣❧❛♥✴P❧❛♥♥✐♥❣P❛♣❡r✴P❧❛♥♥✐♥❣✳♣❞❢.

Fox, M., & Long, D. (1998). The automatic inference of state invariants in TIM.

Journal of Artificial Intelligence Research, 9, 367–421. Available at ❤tt♣✿✴✴✇✇✇✳

❥❛✐r✳♦r❣✴❝♦♥t❡♥ts✴✈✾✳❤t♠❧.

Fox, M., & Long, D. (1999). The detection and exploitation of symmetry in planning

problems. In Dean, T. (Ed.), Proceedings of the Sixteenth International Joint Con-

ference on Artificial Intelligence (IJCAI-1999), pp. 956–961, Stockholm, Sweden.

Morgan Kaufmann Publishers, San Francisco, California, USA.

Fox, M., & Long, D. (2000a). Automatic synthesis and use of generic types in plan-

ning. In Chien, S., Kambhampati, S., & Knoblock, C. A. (Eds.), Proceedings of

the Fifth International Conference on Artificial Intelligence Planning and Scheduling

(AIPS-2000), pp. 196–205, Breckenridge, Colorado, USA. AAAI Press, Menlo

Park, USA.

Fox, M., & Long, D. (2000b). Utilizing automatically inferred invariants in graph

construction and search. In Chien, S., Kambhampati, S., & Knoblock, C. A.

(Eds.), Proceedings of the Fifth International Conference on Artificial Intelligence

Planning and Scheduling (AIPS-2000), pp. 102–111, Breckenridge, Colorado,

USA. AAAI Press, Menlo Park, California, USA.

Fox, M., & Long, D. (2001a). PDDL+ level 5: An extension to PDDL2.1 for modelling

planning domains with continuous time-dependent effects. Available at ❤tt♣✿

✴✴✇✇✇✳❞✉r✳❛❝✳✉❦✴❞✳♣✳❧♦♥❣✴♣❞❞❧❧❡✈❡❧✺✳♣s✳❣③.

Fox, M., & Long, D. (2001b). PDDL2.1: An extension to PDDL for expressing tempo-

ral planning domains. Available at ❤tt♣✿✴✴✇✇✇✳❞✉r✳❛❝✳✉❦✴❞✳♣✳❧♦♥❣✴♣❞❞❧✷✳♣s✳❣③.

Fox, M., & Long, D. (2002). Extending the exploitation of symmetries in planning. In

Ghallab, M., Hertzberg, J., & Traverso, P. (Eds.), Proceedings of the Sixth Interna-

Bibliography 295

tional Conference on Artificial Intelligence Planning and Scheduling (AIPS-2002),

pp. 83–91, Toulouse, France. AAAI Press, Menlo Park, California, USA.

Fox, M., & Long, D. (2003). PDDL2.1: An extension to PDDL for expressing tem-

poral planning domains. Journal of Artificial Intelligence Research, 20, 61–124.

Available at ❤tt♣✿✴✴✇✇✇✳❥❛✐r✳♦r❣✴❝♦♥t❡♥ts✴✈✷✵✳❤t♠❧.

Gerevini, A., & Schubert, L. K. (1998). Inferring state constraints for domain-

independent planning. In Proceedings of the Fifteenth National Conference on

Artificial Intelligence and Tenth Innovative Applications of Artificial Intelligence

Conference (AAAI-1998 / IAAI-1998), pp. 905–912, Madison, Wisconsin, USA.

AAAI Press, Menlo Park, California, USA / The MIT Press, Cambridge,

Massachusetts, USA.

Gerevini, A., & Schubert, L. K. (2000). Discovering state constraints in DIS-

COPLAN: Some new results. In Proceedings of the Seventeenth National Con-

ference on Artificial Intelligence and Twelfth Conference on Innovative Applications

of Artificial Intelligence (AAAI-2000 / IAAI-2000), pp. 761–767, Austin, Texas,

USA. AAAI Press, Menlo Park, California, USA / The MIT Press, Cambridge,

Massachusetts, USA.

Ghallab, M., Howe, A. E., Knoblock, C., McDermott, D., Ram, A., Veloso, M. M.,

Weld, D. S., & Wilkins, D. (1998). PDDL—the planning domain definition

language. Technical report CVC TR-98-003/DCS TR-1165, Yale Center for

Computational Vision and Control, New Haven, Connecticut, USA.

Ghallab, M., Nau, D., & Traverso, P. (2004). Automated Planning: Theory and Practice.

Morgan Kaufmann Publishers, San Francisco, California, USA.

Ginsberg, M. L., & Smith, D. E. (1988). Reasoning about action II: The qualification

problem. Artificial Intelligence, 35(3), 311–342.

Giunchiglia, E., & Lifschitz, V. (1995). Dependent fluents. In Proceedings of the Four-

teenth International Joint Conference on Artificial Intelligence (IJCAI-1995), pp.

1964–1969, Montréal, Québec, Canada. Morgan Kaufmann Publishers, San

Mateo, California, USA.

Green, C. (1969). Applications of theorem proving to problem solving. In Pro-

ceedings of the First International Joint Conference on Artificial Intelligence (IJCAI-

1969). Morgan Kaufmann.

Gupta, N., & Nau, D. S. (1992). On the complexity of blocks-world planning. Arti-

ficial Intelligence, 56(2-3), 223–254.

Gustafsson, J. (2001). Extending Temporal Action Logic. Ph.D. thesis, Linköping Stud-

ies in Science and Technology, Dissertation No. 689.

Gustafsson, J., & Doherty, P. (1996). Embracing occlusion in specifying the indirect

effects of actions. In Aiello, L. C., Doyle, J., & Shapiro, S. C. (Eds.), Proceedings

of the Fifth International Conference on Principles of Knowledge Representation and

Reasoning (KR-1996), pp. 87–98. Morgan Kaufmann Publishers, San Francisco,

296 Bibliography

California, USA. Available at ❢t♣✿✴✴❢t♣✳✐❞❛✳❧✐✉✳s❡✴♣✉❜✴❧❛❜s✴❦♣❧❛❜✴♣❡♦♣❧❡✴♣❛t❞♦✴

✜♥❛❧✲❦r✾✻✳♣s✳❣③.

Gustafsson, J., & Kvarnström, J. (2001). Elaboration tolerance through object-

orientation. In Proceedings of the Fifth Symposium on Logical Formalizations of

Commonsense Reasoning (Common Sense-2001). Available at ❤tt♣✿✴✴✇✇✇✳❝s✳♥②✉✳

❡❞✉✴❢❛❝✉❧t②✴❞❛✈✐s❡✴❝♦♠♠♦♥s❡♥s❡✵✶✴✜♥❛❧✴❦✈❛r♥str♦♠✳♣s.

Gustafsson, J., & Kvarnström, J. (2004). Elaboration tolerance through object-

orientation. Artificial Intelligence, 153, 239–285.

Hanks, S., & McDermott, D. V. (1986). Default reasoning, nonmonotonic logics,

and the frame problem. In Proceedings of the Fifth National Conference on Arti-

ficial Intelligence (AAAI-1986), pp. 328–333, Philadelphia, Pennsylvania, USA.

Morgan Kaufmann Publishers, Los Altos, California, USA.

Haslum, P., & Jonsson, P. (2000). Planning with reduced operator sets. In Chien,

S., Kambhampati, S., & Knoblock, C. A. (Eds.), Proceedings of the Fifth Interna-

tional Conference on Artificial Intelligence Planning and Scheduling (AIPS-2000),

pp. 150–158, Breckenridge, Colorado, USA. AAAI Press, Menlo Park, Califor-

nia, USA.

Heintz, F. (2001). Chronicle recognition in the WITAS UAV project – a preliminary

report.. Presented at the Swedish AI Society Workshop (SAIS), Skövde, Swe-

den.

Heintz, F., & Doherty, P. (2004a). DyKnow: A framework for processing dynamic

knowledge and object structures in autonomous systems. In International

Workshop on Monitoring, Security, and Rescue Techniques in Multiagent Systems

(MSRAS-2004), Plock, Poland. Springer-Verlag.

Heintz, F., & Doherty, P. (2004b). Dyknow: An approach to middleware for knowl-

edge processing. Journal of Intelligent and Fuzzy Systems, 15(1), 3–13.

Heintz, F., & Doherty, P. (2005). DyKnow: A framework for processing dynamic

knowledge and object structures in autonomous systems. In Dunin-Keplicz,

B., Jankowski, A., Skowron, A., & Szczuka, M. (Eds.), Monitoring, Security,

and Rescue Techniques in Multiagent Systems, Advances in Soft Computing, pp.

479–492. Springer-Verlag Heidelberg.

Henschel, A., & Thielscher, M. (1999). The LMW traffic world in the fluent calculus..

Available at ❤tt♣✿✴✴✇✇✇✳✐❞❛✳❧✐✉✳s❡✴❡①t✴❡t❛✐✴❧♠✇✴.

Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation

through heuristic search. Journal of Artificial Intelligence Research, 14, 253–302.

Available at ❤tt♣✿✴✴✇✇✇✳❥❛✐r✳♦r❣✴❝♦♥t❡♥ts✴✈✶✹✳❤t♠❧; planner available at ❤tt♣✿

✴✴✇✇✇✳♠♣✐✲s❜✳♠♣❣✳❞❡✴⑦❤♦✛♠❛♥♥✴✛✳❤t♠❧.

Immerman, N. (1998). Descriptive Complexity. Texts in Computer Science. Springer-

Verlag New York.

Bibliography 297

Karlsson, L., & Gustafsson, J. (1999). Reasoning about concurrent interaction. Jour-

nal of Logic and Computation, 9(5), 623–650.

Karlsson, L., Gustafsson, J., & Doherty, P. (1998). Delayed effects of actions. In

Prade, H. (Ed.), Proceedings of the Thirteenth European Conference on Artificial

Intelligence (ECAI-1998), pp. 542–546, Brighton, UK. John Wiley and Sons,

Chichester, England. Available at ❢t♣✿✴✴❢t♣✳✐❞❛✳❧✐✉✳s❡✴♣✉❜✴❧❛❜s✴❦♣❧❛❜✴♣❡♦♣❧❡✴

♣❛t❞♦✴❡❝❛✐✾✽✳♣s✳❣③.

Kautz, H., & Selman, B. (1998). BLACKBOX: A new approach to the application

of theorem proving to problem solving. In Working notes of the Workshop on

Planning as Combinatorial Search (in conjunction with AIPS-1998), Pittsburgh,

Pennsylvania, USA. AAAI Press, Menlo Park, California, USA. See ❤tt♣✿✴✴

✇✇✇✳❝s✳✇❛s❤✐♥❣t♦♥✳❡❞✉✴❤♦♠❡s✴❦❛✉t③✴s❛t♣❧❛♥✴❜❧❛❝❦❜♦①✴.

Kautz, H., & Selman, B. (1999). Unifying SAT-based and graph-based planning.

In Dean, T. (Ed.), Proceedings of the Sixteenth International Joint Conference on

Artificial Intelligence (IJCAI-1999), pp. 318–325, Stockholm, Sweden. Morgan

Kaufmann Publishers, San Francisco, California, USA. See ❤tt♣✿✴✴✇✇✇✳❝s✳

✇❛s❤✐♥❣t♦♥✳❡❞✉✴❤♦♠❡s✴❦❛✉t③✴s❛t♣❧❛♥✴❜❧❛❝❦❜♦①✴.

Kibler, D., & Morris, P. (1981). Don’t be stupid. In Drinan, A. (Ed.), Proceedings of the

Seventh International Joint Conference on Artificial Intelligence (IJCAI-1981), pp.

345–347, Vancouver, British Columbia, Canada.

Koehler, J. (2000). Miconic 10 elevator domain web page.. ❤tt♣✿✴✴✇✇✇✳✐♥❢♦r♠❛t✐❦✳

✉♥✐✲❢r❡✐❜✉r❣✳❞❡✴⑦❦♦❡❤❧❡r✴❡❧❡✈✴❡❧❡✈✳❤t♠❧.

Koehler, J., Nebel, B., Hoffmann, J., & Dimopoulos, Y. (1997). Extending planning

graphs to an ADL subset. In Steel, S. (Ed.), Proceedings of the Fourth Euro-

pean Conference on Planning (ECP-1997), Vol. 1348 of Lecture Notes in Com-

puter Science, pp. 273–285, Toulouse, France. Springer-Verlag. Available at

❤tt♣✿✴✴✇✇✇✳♠♣✐✲s❜✳♠♣❣✳❞❡✴⑦❤♦✛♠❛♥♥✴♣❛♣❡rs✴❡❝♣✾✼✳♣s✳❣③.

Koehler, J. (2001). From theory to practice: AI planning for high performance el-

evator control. In F. Baader, G. Brewka, T. E. (Ed.), Proceedings of the Joint

German/Austrian Conference on AI: Advances in Artificial Intelligence (KI-2001),

Vol. 2174 of Lecture Notes in Computer Science, pp. 459–462, Vienna, Austria.

Springer-Verlag.

Koehler, J., & Ottiger, D. (2002). An AI-based approach to destination control in

elevators. AI Magazine, 23(3), 59–78. See also ❤tt♣✿✴✴✇✇✇✳❛❛❛✐✳♦r❣✴▲✐❜r❛r②✴

▼❛❣❛③✐♥❡✴❱♦❧✷✸✴✷✸✲✵✸✴✈♦❧✷✸✲✵✸✳❤t♠❧.

Koehler, J., & Schuster, K. (2000). Elevator control as a planning problem. In Chien,

S., Kambhampati, S., & Knoblock, C. A. (Eds.), Proceedings of the Fifth Interna-

tional Conference on Artificial Intelligence Planning and Scheduling (AIPS-2000),

pp. 331–338, Breckenridge, Colorado, USA. AAAI Press, Menlo Park, Califor-

nia, USA.

298 Bibliography

Koubarakis, M. (1994). Complexity results for first-order theories of temporal con-

straints. In Doyle, J., Sandewall, E., & Torasso, P. (Eds.), Proceedings of the

Fourth International Conference on Principles of Knowledge Representation and Rea-

soning (KR-1994), pp. 379–390. Morgan Kaufmann Publishers, San Francisco,

California, USA.

Kvarnström, J. (1997–2005). VITAL. An on-line system for reasoning about action

and change using TAL. Software available at ❤tt♣✿✴✴✇✇✇✳✐❞❛✳❧✐✉✳s❡✴⑦❥♦♥❦✈✴

✈✐t❛❧✴.

Kvarnström, J. (2002). Applying domain analysis techniques for domain-

dependent control in TALplanner. In Ghallab, M., Hertzberg, J., & Traverso,

P. (Eds.), Proceedings of the Sixth International Conference on Artificial Intelligence

Planning and Scheduling (AIPS-2002), pp. 101–110, Toulouse, France. AAAI

Press, Menlo Park, California, USA.

Kvarnström, J., & Doherty, P. (2000a). Tackling the qualification problem using

fluent dependency constraints. Computational Intelligence, 16(2), 169–209.

Kvarnström, J., & Doherty, P. (2000b). TALplanner: A temporal logic based forward

chaining planner. Annals of Mathematics and Artificial Intelligence, 30, 119–169.

Kvarnström, J., Doherty, P., & Haslum, P. (2000). Extending TALplanner with con-

currency and resources. In Horn, W. (Ed.), Proceedings of the Fourteenth Euro-

pean Conference on Artificial Intelligence (ECAI-2000), Frontiers in Artificial In-

telligence and Applications, pp. 501–505, Berlin, Germany. IOS Press, Amster-

dam, The Netherlands. Available at ❢t♣✿✴✴❢t♣✳✐❞❛✳❧✐✉✳s❡✴♣✉❜✴❧❛❜s✴❦♣❧❛❜✴♣❡♦♣❧❡✴

♣❛t❞♦✴✇✇✇✲❡❝❛✐✳♣s✳❣③.

Kvarnström, J., & Magnusson, M. (2003). TALplanner in the Third International

Planning Competition: Extensions and control rules. Journal of Artificial Intelli-

gence Research, 20, 343–377. Available at ❤tt♣✿✴✴✇✇✇✳❥❛✐r✳♦r❣✴❝♦♥t❡♥ts✴✈✷✵✳❤t♠❧.

Lifschitz, V. (1987). Formal theories of action. In Brown, F. M. (Ed.), The Frame

Problem in Artificial Intelligence: Proceedings of the 1987 Workshop, pp. 35–58,

Lawrence, Kansas, USA. Morgan Kaufmann Publishers, Los Altos, California,

USA.

Lifschitz, V. (2000). Missionaries and cannibals in the causal calculator. In Proceed-

ings of the Seventh International Conference on Principles of Knowledge Represen-

tation and Reasoning (KR-2000), pp. 85–96. Morgan Kaufmann Publishers, San

Francisco, California, USA.

Lin, F. (2001). A planner called R. AI Magazine, 22(3), 73–76. See also ❤tt♣✿✴✴✇✇✇✳

❛❛❛✐✳♦r❣✴▲✐❜r❛r②✴▼❛❣❛③✐♥❡✴❱♦❧✷✷✴✷✷✲✵✸✴✈♦❧✷✷✲✵✸✳❤t♠❧.

Lin, F., & Reiter, R. (1994). State constraints revisited. Journal of Logic and Computa-

tion, 4(5), 655–678.

Bibliography 299

Long, D., & Fox, M. (1999). Efficient implementation of the plan graph in STAN.

Journal of Artificial Intelligence Research, 10, 87–115. Available at ❤tt♣✿✴✴✇✇✇✳

❥❛✐r✳♦r❣✴❝♦♥t❡♥ts✴✈✶✵✳❤t♠❧.

Long, D., & Fox, M. (2003). The third international planning competition: Results

and analysis. Journal of Artificial Intelligence Research, 20, 1–59. Available at

❤tt♣✿✴✴✇✇✇✳❥❛✐r✳♦r❣✴❝♦♥t❡♥ts✴✈✷✵✳❤t♠❧.

McCain, N., & the Texas Action Group (1997). The causal calculator.. Available at

❤tt♣✿✴✴✇✇✇✳❝s✳✉t❡①❛s✳❡❞✉✴✉s❡rs✴t❛❣✴❝❝✴.

McCain, N., & Turner, H. (1995). A causal theory of ramifications and qualifica-

tions. In Proceedings of the Fourteenth International Joint Conference on Artificial

Intelligence (IJCAI-1995), Montréal, Québec, Canada. Morgan Kaufmann Pub-

lishers, San Francisco, California, USA.

McCarthy, J. (1959). Programs with common sense. In Proceedings of the Teddington

Conference on the Mechanization of Thought Processes, pp. 75–91, London. Her

Majesty’s Stationary Office. Available at ❤tt♣✿✴✴✇✇✇✲❢♦r♠❛❧✳st❛♥❢♦r❞✳❡❞✉✴❥♠❝✴

♠❝❝✺✾✳❤t♠❧.

McCarthy, J. (1980). Circumscription – a form of non-monotonic reasoning. Artificial

Intelligence, 13(1–2), 27–39. Reprinted in McCarthy (1990).

McCarthy, J. (1986). Applications of circumscription to formalizing common sense

knowledge. Artificial Intelligence, 28(1), 89–116. Reprinted in (McCarthy, 1990).

McCarthy, J. (1990). Formalization of common sense, papers by John McCarthy edited by

V. Lifschitz. Ablex.

McCarthy, J. (1998). Elaboration tolerance. In The 1998 Symposium on Logical Formal-

izations of Commonsense Reasoning (Common Sense-1998), London. Available at

❤tt♣✿✴✴✇✇✇✲❢♦r♠❛❧✳st❛♥❢♦r❞✳❡❞✉✴❥♠❝✴❡❧❛❜♦r❛t✐♦♥✳❤t♠❧.

McCarthy, J., & Hayes, P. (1969). Some philosophical problems from the standpoint

of artificial intelligence. Machine Intelligence, 4, 463–502.

McDermott, D. (1998). AIPS98 planning competition results. ❤tt♣✿✴✴❢t♣✳❝s✳②❛❧❡✳❡❞✉✴

♣✉❜✴♠❝❞❡r♠♦tt✴❛✐♣s❝♦♠♣✲r❡s✉❧ts✳❤t♠❧.

Merz, T. (2004). Building a system for autonomous aerial robotics research. In IFAC

Symposium on Intelligent Autonomous Vehicles (IAV-2004), Lisbon, Portugal. El-

sevier.

Morgenstern, L. (1998). Inheritance comes of age: Applying nonmonotonic tech-

niques to problems in industry. Artificial Intelligence, 103(1–2), 237–271.

Moss, C. (1994). Prolog++, The power of object-oriented and logic programming.

Addison-Wesley.

Nau, D. S., Au, T. C., Ilghami, O., Kuter, U., Murdock, J. W., Wo, D., & Yaman,

F. (2003). SHOP2: An HTN planning system. Journal of Artificial Intelligence

Research, 20, 379–404. Available at ❤tt♣✿✴✴✇✇✇✳❥❛✐r✳♦r❣✴❝♦♥t❡♥ts✴✈✷✵✳❤t♠❧.

300 Bibliography

Nau, D. S., Cao, Y., Lotem, A., & Muños-Avila, H. (2001). The SHOP planning

system. AI Magazine, 22(3), 91–94. See also ❤tt♣✿✴✴✇✇✇✳❛❛❛✐✳♦r❣✴▲✐❜r❛r②✴

▼❛❣❛③✐♥❡✴❱♦❧✷✷✴✷✷✲✵✸✴✈♦❧✷✷✲✵✸✳❤t♠❧.

Nau, D. S., Cau, Y., Lotem, A., & Muños-Avila, H. (1999). SHOP: Simple hierarchical

ordered planner. In Dean, T. (Ed.), Proceedings of the Sixteenth International Joint

Conference on Artificial Intelligence (IJCAI-1999), pp. 968–973, Stockholm, Swe-

den. Morgan Kaufmann Publishers, San Francisco, California, USA. Available

at ❤tt♣✿✴✴✇✇✇✳❝s✳✉♠❞✳❡❞✉✴⑦♥❛✉✴♣❛♣❡rs✴s❤♦♣✲✐❥❝❛✐✾✾✳♣❞❢.

Nebel, B., Dimopoulos, Y., & Koehler, J. (1997). Ignoring irrelevant facts and op-

erators in plan generation. In Proceedings of the Fourth European Conference on

Planning (ECP-1997), pp. 338–350, Toulouse, France.

Pednault, E. P. D. (1989). ADL: Exploring the middle ground between STRIPS and

the Situation Calculus. In Brachman, R. J., Levesque, H. J., & Reiter, R. (Eds.),

Proceedings of the First International Conference on Principles of Knowledge Rep-

resentation and Reasoning (KR-1989), pp. 324–332, Toronto, Ontario, Canada.

Morgan Kaufmann Publishers, San Mateo, California, USA.

Pettersson, P. O. (2003). Helicopter path planning using probabilistic roadmaps.

Master’s thesis, Linköping University. Available at ❤tt♣✿✴✴✇✇✇✳✐❞❛✳❧✐✉✳s❡✴

⑦♣❡♦♣❡✴.

Pettersson, P. O., & Doherty, P. (2004). Probabilistic roadmap based path planning

for an autonomous unmanned aerial vehicle. In Proceedings of the ICAPS-2004

Workshop on Connecting Planning Theory with Practice. Fourteenth International

Conference on Automated Planning and Scheduling, ICAPS’2004. Available

at ❤tt♣✿✴✴✇✇✇✳✐❞❛✳❧✐✉✳s❡✴⑦♣❡♦♣❡✴.

Rintanen, J. (2000a). Incorporation of temporal logic control into plan operators. In

Proceedings of the Fourteenth European Conference on Artificial Intelligence (ECAI-

2000), pp. 526–530, Berlin, Germany. IOS Press, Amsterdam, The Netherlands.

Rintanen, J. (2000b). An iterative algorithm for synthesizing invariants. In Proceed-

ings of the Seventeenth National Conference on Artificial Intelligence and Twelfth

Conference on Innovative Applications of Artificial Intelligence (AAAI-2000 / IAAI-

2000), pp. 806–811, Austin, Texas, USA. AAAI Press, Menlo Park, Califor-

nia, USA / The MIT Press, Cambridge, Massachusetts, USA. Available at

❤tt♣✿✴✴✇✇✇✳✐♥❢♦r♠❛t✐❦✳✉♥✐✲❢r❡✐❜✉r❣✳❞❡✴⑦r✐♥t❛♥❡♥✴❈❱✳❤t♠❧.

Sacerdoti, E. D. (1975). The nonlinear nature of plans. In Proceedings of the Fourth

International Joint Conference on Artificial Intelligence (IJCAI-1975), pp. 206–214,

Tiblisi, Georgia, USSR.

Sandewall, E. (1994). Features and Fluents: A Systematic Approach to the Representation

of Knowledge about Dynamical Systems, Vol. 1. Oxford University Press.

Sandewall, E. (1999). Logic modelling workshop: Communicating axiomatizations

of actions and change. Available at ❤tt♣✿✴✴✇✇✇✳✐❞❛✳❧✐✉✳s❡✴❡①t✴❡t❛✐✴❧♠✇.

Bibliography 301

Sandewall, E., & Rönnquist, R. (1986). A representation of action structures. In

Proceedings of the Fifth National Conference on Artificial Intelligence (AAAI-1986),

pp. 89–97, Philadelphia, Pennsylvania, USA. Morgan Kaufmann Publishers,

Los Altos, California, USA.

Scholz, U. (2000). Extracting state constraints from PDDL-like planning domains.

In Proceedings of the AIPS-2000 Workshop on Analyzing and Exploiting Domain

Knowledge for Efficient Planning, pp. 43–48.

Shanahan, M. (1997). Solving the Frame Problem: A Mathematical Investigation of the

Common Sense Law of Inertia. The MIT Press, Cambridge, Massachusetts, USA.

Shoham, Y. (1987). Nonmonotonic logics: Meaning and utility. In McDermott, J. P.

(Ed.), Proceedings of the Tenth International Joint Conference on Artificial Intelli-

gence (IJCAI-1987), pp. 388–393, Milan, Italy. Morgan Kaufmann Publishers,

Los Altos, California, USA.

Slaney, J., & Thiébaux, S. (2001). Blocks world revisited. Artificial Intelligence, 125(1-

2), 119–153.

Smith, D. E. (2003). The case for durative actions: A commentary on PDDL2.1.

Journal of Artificial Intelligence Research, 20, 149–154. Available at ❤tt♣✿✴✴✇✇✇✳

❥❛✐r✳♦r❣✴❝♦♥t❡♥ts✴✈✷✵✳❤t♠❧.

Smith, D. E., & Weld, D. S. (1999). Temporal planning with mutual exclusion rea-

soning. In Dean, T. (Ed.), Proceedings of the Sixteenth International Joint Con-

ference on Artificial Intelligence (IJCAI-1999), pp. 326–337, Stockholm, Sweden.

Morgan Kaufmann Publishers, San Francisco, California, USA. Available at

❢t♣✿✴✴❢t♣✳❝s✳✇❛s❤✐♥❣t♦♥✳❡❞✉✴♣✉❜✴❛✐✴✐❥❝❛✐✾✾✲t❣♣✳♣s.

Störr, H.-P. (2001). Planning in the fluent calculus using binary decision diagrams.

AI Magazine, 22(3), 103–106. See also ❤tt♣✿✴✴✇✇✇✳❛❛❛✐✳♦r❣✴▲✐❜r❛r②✴▼❛❣❛③✐♥❡✴

❱♦❧✷✷✴✷✷✲✵✸✴✈♦❧✷✷✲✵✸✳❤t♠❧ and the BDDPlan web page at ❤tt♣✿✴✴✇✇✇✳st♦❡rr✳

♥❡t✴❜❞❞♣❧❛♥✳❤t♠❧.

Tate, A. (1977). Generating project networks. In Reddy, R. (Ed.), Proceedings of

the Fifth International Joint Conference on Artificial Intelligence (IJCAI-1977), pp.

888–893, Cambridge, Massachusetts, USA.

Thielscher, M. (1996a). Causality and the qualification problem. In Aiello, L. C.,

Doyle, J., & Shapiro, S. C. (Eds.), Proceedings of the Seventh International Con-

ference on Principles of Knowledge Representation and Reasoning (KR-1996), pp.

51–62, Cambridge, Massachusetts, USA. Morgan Kaufmann Publishers, San

Francisco, California, USA.

Thielscher, M. (1996b). Qualification and causality. Tech. rep. TR-96-026, Interna-

tional Computer Science Institute (ICSI), Berkeley, California, USA.

Thielscher, M. (1997). Qualified ramifications. In Kuipers, B., & Webber, B. (Eds.),

Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI-

302 Bibliography

1997), Providence, Rhode Island, USA. The MIT Press, Cambridge, Massa-

chusetts, USA.

Thielscher, M. (1998). Introduction to the fluent calculus. Electronic Transactions

on Artificial Intelligence, 2(3–4), 179–192. Available at ❤tt♣✿✴✴✇✇✇✳❡♣✳❧✐✉✳s❡✴❡❥✴

❡t❛✐✴✶✾✾✽✴✵✵✻✴.

Veloso, M. M., Carbonell, J. G., Pérez, A., Borrajo, D., Fink, E., & Blythe, J. (1995).

Integrating planning and learning: The PRODIGY architecture. Journal of Ex-

perimental and Theoretical Artificial Intelligence, 7(1), 81–120.

Vere, S. A. (1983). Planning in time: Windows and durations for activities and goals.

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 5(3), 246–

267.

Weld, D. S., Anderson, C. R., & Smith, D. E. (1998). Extending graphplan to handle

uncertainty and sensing actions. In Proceedings of the Fifteenth National Confer-

ence on Artificial Intelligence and Tenth Innovative Applications of Artificial Intel-

ligence Conference (AAAI-1998 / IAAI-1998), pp. 897–904, Madison, Wisconsin,

USA. AAAI Press, Menlo Park, California, USA / The MIT Press, Cambridge,

Massachusetts, USA.

Wilkins, D. E. (1988). Causal reasoning in planning. Computational Intelligence, 4(4),

373–380.

Winograd, T. (1972). Understanding Natural Language. Academic Press.

Department of Computer and Information Science

Linköpings universitet

Dissertations

Linköping Studies in Science and Technology

No 14 Anders Haraldsson: A Program Manipulation
System Based on Partial Evaluation, 1977, ISBN
91-7372-144-1.

No 17 Bengt Magnhagen: Probability Based Verifica-
tion of Time Margins in Digital Designs, 1977,
ISBN 91-7372-157-3.

No 18 Mats Cedwall: Semantisk analys av process-
beskrivningar i naturligt språk, 1977, ISBN 91-
7372-168-9.

No 22 Jaak Urmi: A Machine Independent LISP Com-
piler and its Implications for Ideal Hardware,
1978, ISBN 91-7372-188-3.

No 33 Tore Risch: Compilation of Multiple File
Queries in a Meta-Database System 1978, ISBN
91-7372-232-4.

No 51 Erland Jungert: Synthesizing Database Struc-
tures from a User Oriented Data Model, 1980,
ISBN 91-7372-387-8.

No 54 Sture Hägglund: Contributions to the Develop-
ment of Methods and Tools for Interactive De-
sign of Applications Software, 1980, ISBN 91-
7372-404-1.

No 55 Pär Emanuelson: Performance Enhancement in
a Well-Structured Pattern Matcher through Par-
tial Evaluation, 1980, ISBN 91-7372-403-3.

No 58 Bengt Johnsson, Bertil Andersson: The
Human-Computer Interface in Commercial
Systems, 1981, ISBN 91-7372-414-9.

No 69 H. Jan Komorowski: A Specification of an Ab-
stract Prolog Machine and its Application to
Partial Evaluation, 1981, ISBN 91-7372-479-3.

No 71 René Reboh: Knowledge Engineering Tech-
niques and Tools for Expert Systems, 1981, ISBN
91-7372-489-0.

No 77 Östen Oskarsson: Mechanisms of Modifiability
in large Software Systems, 1982, ISBN 91-7372-
527-7.

No 94 Hans Lunell: Code Generator Writing Systems,
1983, ISBN 91-7372-652-4.

No 97 Andrzej Lingas: Advances in Minimum Weight
Triangulation, 1983, ISBN 91-7372-660-5.

No 109 Peter Fritzson: Towards a Distributed Program-
ming Environment based on Incremental Com-
pilation,1984, ISBN 91-7372-801-2.

No 111 Erik Tengvald: The Design of Expert Planning
Systems. An Experimental Operations Planning
System for Turning, 1984, ISBN 91-7372-805-5.

No 155 Christos Levcopoulos: Heuristics for Minimum
Decompositions of Polygons, 1987, ISBN 91-
7870-133-3.

No 165 James W. Goodwin: A Theory and System
for Non-Monotonic Reasoning, 1987, ISBN 91-
7870-183-X.

No 170 Zebo Peng: A Formal Methodology for Auto-
mated Synthesis of VLSI Systems, 1987, ISBN
91-7870-225-9.

No 174 Johan Fagerström: A Paradigm and System for
Design of Distributed Systems, 1988, ISBN 91-
7870-301-8.

No 192 Dimiter Driankov: Towards a Many Valued
Logic of Quantified Belief, 1988, ISBN 91-7870-
374-3.

No 213 Lin Padgham: Non-Monotonic Inheritance for
an Object Oriented Knowledge Base, 1989, ISBN
91-7870-485-5.

No 214 Tony Larsson: A Formal Hardware Description
and Verification Method, 1989, ISBN 91-7870-
517-7.

No 221 Michael Reinfrank: Fundamentals and Logical
Foundations of Truth Maintenance, 1989, ISBN
91-7870-546-0.

No 239 Jonas Löwgren: Knowledge-Based Design Sup-
port and Discourse Management in User Inter-
face Management Systems, 1991, ISBN 91-7870-
720-X.

No 244 Henrik Eriksson: Meta-Tool Support for
Knowledge Acquisition, 1991, ISBN 91-7870-
746-3.

No 252 Peter Eklund: An Epistemic Approach to In-
teractive Design in Multiple Inheritance Hierar-
chies,1991, ISBN 91-7870-784-6.

No 258 Patrick Doherty: NML3 - A Non-Monotonic
Formalism with Explicit Defaults, 1991, ISBN
91-7870-816-8.

No 260 Nahid Shahmehri: Generalized Algorithmic
Debugging, 1991, ISBN 91-7870-828-1.

No 264 Nils Dahlbäck: Representation of Discourse-
Cognitive and Computational Aspects, 1992,
ISBN 91-7870-850-8.

No 265 Ulf Nilsson: Abstract Interpretations and Ab-
stract Machines: Contributions to a Methodol-
ogy for the Implementation of Logic Programs,
1992, ISBN 91-7870-858-3.

No 270 Ralph Rönnquist: Theory and Practice of
Tense-bound Object References, 1992, ISBN 91-
7870-873-7.

No 273 Björn Fjellborg: Pipeline Extraction for VLSI
Data Path Synthesis, 1992, ISBN 91-7870-880-X.

No 276 Staffan Bonnier: A Formal Basis for Horn
Clause Logic with External Polymorphic Func-
tions, 1992, ISBN 91-7870-896-6.

No 277 Kristian Sandahl: Developing Knowledge
Management Systems with an Active Expert
Methodology, 1992, ISBN 91-7870-897-4.

No 281 Christer Bäckström: Computational Complex-
ity of Reasoning about Plans, 1992, ISBN 91-
7870-979-2.

No 292 Mats Wirén: Studies in Incremental Natural
Language Analysis, 1992, ISBN 91-7871-027-8.

No 297 Mariam Kamkar: Interprocedural Dynamic
Slicing with Applications to Debugging and
Testing, 1993, ISBN 91-7871-065-0.

No 302 Tingting Zhang: A Study in Diagnosis Using
Classification and Defaults, 1993, ISBN 91-7871-
078-2.

No 312 Arne Jönsson: Dialogue Management for Nat-
ural Language Interfaces - An Empirical Ap-
proach, 1993, ISBN 91-7871-110-X.

No 338 Simin Nadjm-Tehrani: Reactive Systems in
Physical Environments: Compositional Mod-
elling and Framework for Verification, 1994,
ISBN 91-7871-237-8.

No 371 Bengt Savén: Business Models for Decision
Support and Learning. A Study of Discrete-
Event Manufacturing Simulation at Asea/ABB
1968-1993, 1995, ISBN 91-7871-494-X.

No 375 Ulf Söderman: Conceptual Modelling of Mode
Switching Physical Systems, 1995, ISBN 91-
7871-516-4.

No 383 Andreas Kågedal: Exploiting Groundness in
Logic Programs, 1995, ISBN 91-7871-538-5.

No 396 George Fodor: Ontological Control, Descrip-
tion, Identification and Recovery from Problem-
atic Control Situations, 1995, ISBN 91-7871-603-
9.

No 413 Mikael Pettersson: Compiling Natural Seman-
tics, 1995, ISBN 91-7871-641-1.

No 414 Xinli Gu: RT Level Testability Improvement by
Testability Analysis and Transformations, 1996,
ISBN 91-7871-654-3.

No 416 Hua Shu: Distributed Default Reasoning, 1996,
ISBN 91-7871-665-9.

No 429 Jaime Villegas: Simulation Supported Indus-
trial Training from an Organisational Learning
Perspective - Development and Evaluation of
the SSIT Method, 1996, ISBN 91-7871-700-0.

No 431 Peter Jonsson: Studies in Action Planning: Al-
gorithms and Complexity, 1996, ISBN 91-7871-
704-3.

No 437 Johan Boye: Directional Types in Logic Pro-
gramming, 1996, ISBN 91-7871-725-6.

No 439 Cecilia Sjöberg: Activities, Voices and Arenas:
Participatory Design in Practice, 1996, ISBN 91-
7871-728-0.

No 448 Patrick Lambrix: Part-Whole Reasoning in De-
scription Logics, 1996, ISBN 91-7871-820-1.

No 452 Kjell Orsborn: On Extensible and Object-Rela-
tional Database Technology for Finite Element
Analysis Applications, 1996, ISBN 91-7871-827-
9.

No 459 Olof Johansson: Development Environments
for Complex Product Models, 1996, ISBN 91-
7871-855-4.

No 461 Lena Strömbäck: User-Defined Constructions
in Unification-Based Formalisms,1997, ISBN 91-
7871-857-0.

No 462 Lars Degerstedt: Tabulation-based Logic Pro-
gramming : A Multi-Level View of Query An-
swering, 1996, ISBN 91-7871-858-9.

No 475 Fredrik Nilsson: Strategi och ekonomisk styrn-
ing - En studie av hur ekonomiska styrsys-
tem utformas och används efter företagsförvärv,
1997, ISBN 91-7871-914-3.

No 480 Mikael Lindvall: An Empirical Study of
Requirements-Driven Impact Analysis in
Object-Oriented Software Evolution, 1997, ISBN
91-7871-927-5.

No 485 Göran Forslund: Opinion-Based Systems: The
Cooperative Perspective on Knowledge-Based
Decision Support, 1997, ISBN 91-7871-938-0.

No 494 Martin Sköld: Active Database Management
Systems for Monitoring and Control, 1997,
ISBN 91-7219-002-7.

No 495 Hans Olsén: Automatic Verification of Petri
Nets in a CLP framework, 1997, ISBN 91-7219-
011-6.

No 498 Thomas Drakengren: Algorithms and Com-
plexity for Temporal and Spatial Formalisms,
1997, ISBN 91-7219-019-1.

No 502 Jakob Axelsson: Analysis and Synthesis of Het-
erogeneous Real-Time Systems, 1997, ISBN 91-
7219-035-3.

No 503 Johan Ringström: Compiler Generation for
Data-Parallel Programming Langugaes from
Two-Level Semantics Specifications, 1997, ISBN
91-7219-045-0.

No 512 Anna Moberg: Närhet och distans - Studier av
kommunikationsmmönster i satellitkontor och
flexibla kontor, 1997, ISBN 91-7219-119-8.

No 520 Mikael Ronström: Design and Modelling of a
Parallel Data Server for Telecom Applications,
1998, ISBN 91-7219-169-4.

No 522 Niclas Ohlsson: Towards Effective Fault Pre-
vention - An Empirical Study in Software En-
gineering, 1998, ISBN 91-7219-176-7.

No 526 Joachim Karlsson: A Systematic Approach for
Prioritizing Software Requirements, 1998, ISBN
91-7219-184-8.

No 530 Henrik Nilsson: Declarative Debugging for
Lazy Functional Languages, 1998, ISBN 91-
7219-197-x.

No 555 Jonas Hallberg: Timing Issues in High-Level
Synthesis,1998, ISBN 91-7219-369-7.

No 561 Ling Lin: Management of 1-D Sequence Data
- From Discrete to Continuous, 1999, ISBN 91-
7219-402-2.

No 563 Eva L Ragnemalm: Student Modelling based
on Collaborative Dialogue with a Learning
Companion, 1999, ISBN 91-7219-412-X.

No 567 Jörgen Lindström: Does Distance matter? On
geographical dispersion in organisations, 1999,
ISBN 91-7219-439-1.

No 582 Vanja Josifovski: Design, Implementation and
Evaluation of a Distributed Mediator System for
Data Integration, 1999, ISBN 91-7219-482-0.

No 589 Rita Kovordányi: Modeling and Simulating
Inhibitory Mechanisms in Mental Image Rein-
terpretation - Towards Cooperative Human-
Computer Creativity, 1999, ISBN 91-7219-506-1.

No 592 Mikael Ericsson: Supporting the Use of Design
Knowledge - An Assessment of Commenting
Agents, 1999, ISBN 91-7219-532-0.

No 593 Lars Karlsson: Actions, Interactions and Narra-
tives, 1999, ISBN 91-7219-534-7.

No 594 C. G. Mikael Johansson: Social and Organi-
zational Aspects of Requirements Engineering
Methods - A practice-oriented approach, 1999,
ISBN 91-7219-541-X.

No 595 Jörgen Hansson: Value-Driven Multi-Class
Overload Management in Real-Time Database
Systems, 1999, ISBN 91-7219-542-8.

No 596 Niklas Hallberg: Incorporating User Values in
the Design of Information Systems and Services
in the Public Sector: A Methods Approach,
1999, ISBN 91-7219-543-6.

No 597 Vivian Vimarlund: An Economic Perspective
on the Analysis of Impacts of Information Tech-
nology: From Case Studies in Health-Care
towards General Models and Theories, 1999,
ISBN 91-7219-544-4.

No 598 Johan Jenvald: Methods and Tools in
Computer-Supported Taskforce Training, 1999,
ISBN 91-7219-547-9.

No 607 Magnus Merkel: Understanding and enhanc-
ing translation by parallel text processing, 1999,
ISBN 91-7219-614-9.

No 611 Silvia Coradeschi: Anchoring symbols to sen-
sory data, 1999, ISBN 91-7219-623-8.

No 613 Man Lin: Analysis and Synthesis of Reactive
Systems: A Generic Layered Architecture Per-
spective, 1999, ISBN 91-7219-630-0.

No 618 Jimmy Tjäder: Systemimplementering i prak-
tiken - En studie av logiker i fyra projekt, 1999,
ISBN 91-7219-657-2.

No 627 Vadim Engelson: Tools for Design, Interac-
tive Simulation, and Visualization of Object-
Oriented Models in Scientific Computing, 2000,
ISBN 91-7219-709-9.

No 637 Esa Falkenroth: Database Technology for Con-
trol and Simulation, 2000, ISBN 91-7219-766-8.

No 639 Per-Arne Persson: Bringing Power and Knowl-
edge Together: Information Systems Design for
Autonomy and Control in Command Work,
2000, ISBN 91-7219-796-X.

No 660 Erik Larsson: An Integrated System-Level De-
sign for Testability Methodology, 2000, ISBN 91-
7219-890-7.

No 688 Marcus Bjäreland: Model-based Execution
Monitoring, 2001, ISBN 91-7373-016-5.

No 689 Joakim Gustafsson: Extending Temporal Ac-
tion Logic, 2001, ISBN 91-7373-017-3.

No 720 Carl-Johan Petri: Organizational Information
Provision - Managing Mandatory and Discre-
tionary Use of Information Technology, 2001,
ISBN-91-7373-126-9.

No 724 Paul Scerri: Designing Agents for Systems with
Adjustable Autonomy, 2001, ISBN 91 7373 207
9.

No 725 Tim Heyer: Semantic Inspection of Software
Artifacts: From Theory to Practice, 2001, ISBN
91 7373 208 7.

No 726 Pär Carlshamre: A Usability Perspective on Re-
quirements Engineering - From Methodology to
Product Development, 2001, ISBN 91 7373 212 5.

No 732 Juha Takkinen: From Information Manage-
ment to Task Management in Electronic Mail,
2002, ISBN 91 7373 258 3.

No 745 Johan Åberg: Live Help Systems: An Approach
to Intelligent Help for Web Information Sys-
tems, 2002, ISBN 91-7373-311-3.

No 746 Rego Granlund: Monitoring Distributed Team-
work Training, 2002, ISBN 91-7373-312-1.

No 757 Henrik André-Jönsson: Indexing Strategies for
Time Series Data, 2002, ISBN 917373-346-6.

No 747 Anneli Hagdahl: Development of IT-suppor-
ted Inter-organisational Collaboration - A Case
Study in the Swedish Public Sector, 2002, ISBN
91-7373-314-8.

No 749 Sofie Pilemalm: Information Technology for
Non-Profit Organisations - Extended Participa-
tory Design of an Information System for Trade
Union Shop Stewards, 2002, ISBN 91-7373-318-
0.

No 765 Stefan Holmlid: Adapting users: Towards a
theory of use quality, 2002, ISBN 91-7373-397-0.

No 771 Magnus Morin: Multimedia Representations of
Distributed Tactical Operations, 2002, ISBN 91-
7373-421-7.

No 772 Pawel Pietrzak: A Type-Based Framework for
Locating Errors in Constraint Logic Programs,
2002, ISBN 91-7373-422-5.

No 758 Erik Berglund: Library Communication
Among Programmers Worldwide, 2002, ISBN
91-7373-349-0.

No 774 Choong-ho Yi: Modelling Object-Oriented Dy-
namic Systems Using a Logic-Based Frame-
work, 2002, ISBN 91-7373-424-1.

No 779 Mathias Broxvall: A Study in the Computa-
tional Complexity of Temporal Reasoning, 2002,
ISBN 91-7373-440-3.

No 793 Asmus Pandikow: A Generic Principle for
Enabling Interoperability of Structured and
Object-Oriented Analysis and Design Tools,
2002, ISBN 91-7373-479-9.

No 785 Lars Hult: Publika Informationstjänster. En
studie av den Internetbaserade encyklopedins
bruksegenskaper, 2003, ISBN 91-7373-461-6.

No 800 Lars Taxén: A Framework for the Coordination
of Complex Systems´ Development, 2003, ISBN
91-7373-604-X

No 808 Klas Gäre: Tre perspektiv på förväntningar och
förändringar i samband med införande av in-
formationsystem, 2003, ISBN 91-7373-618-X.

No 821 Mikael Kindborg: Concurrent Comics - pro-
gramming of social agents by children, 2003,
ISBN 91-7373-651-1.

No 823 Christina Ölvingson: On Development of In-
formation Systems with GIS Functionality in
Public Health Informatics: A Requirements En-
gineering Approach, 2003, ISBN 91-7373-656-2.

No 828 Tobias Ritzau: Memory Efficient Hard Real-
Time Garbage Collection, 2003, ISBN 91-7373-
666-X.

No 833 Paul Pop: Analysis and Synthesis of Communi-
cation-Intensive Heterogeneous Real-Time Sys-
tems, 2003, ISBN 91-7373-683-X.

No 852 Johan Moe: Observing the Dynamic Behaviour
of Large Distributed Systems to Improve De-
velopment and Testing - An Empirical Study in
Software Engineering, 2003, ISBN 91-7373-779-
8.

No 867 Erik Herzog: An Approach to Systems En-
gineering Tool Data Representation and Ex-
change, 2004, ISBN 91-7373-929-4.

No 872 Aseel Berglund: Augmenting the Remote Con-
trol: Studies in Complex Information Naviga-
tion for Digital TV, 2004, ISBN 91-7373-940-5.

No 869 Jo Skåmedal: Telecommuting’s Implications on
Travel and Travel Patterns, 2004, ISBN 91-7373-
935-9.

No 870 Linda Askenäs: The Roles of IT - Studies of Or-
ganising when Implementing and Using Enter-
prise Systems, 2004, ISBN 91-7373-936-7.

No 874 Annika Flycht-Eriksson: Design and Use of
Ontologies in Information-Providing Dialogue
Systems, 2004, ISBN 91-7373-947-2.

No 873 Peter Bunus: Debugging Techniques for
Equation-Based Languages, 2004, ISBN 91-
7373-941-3.

No 876 Jonas Mellin: Resource-Predictable and Effi-
cient Monitoring of Events, 2004, ISBN 91-7373-
956-1.

No 883 Magnus Bång: Computing at the Speed of Pa-
per: Ubiquitous Computing Environments for
Healthcare Professionals, 2004, ISBN 91-7373-
971-5

No 882 Robert Eklund: Disfluency in Swedish human-
human and human-machine travel booking di-
alogues, 2004. ISBN 91-7373-966-9.

No 887 Anders Lindström: English and other Foreign
Linquistic Elements in Spoken Swedish. Studies
of Productive Processes and their Modelling us-
ing Finite-State Tools, 2004, ISBN 91-7373-981-2.

No 889 Zhiping Wang: Capacity-Constrained Produc-
tion-inventory systems - Modellling and Analy-
sis in both a traditional and an e-business con-
text, 2004, ISBN 91-85295-08-6.

No 893 Pernilla Qvarfordt: Eyes on Multimodal Inter-
action, 2004, ISBN 91-85295-30-2.

No 910 Magnus Kald: In the Borderland between
Strategy and Management Control - Theoreti-
cal Framework and Empirical Evidence, 2004,
ISBN 91-85295-82-5.

No 918 Jonas Lundberg: Shaping Electronic News:
Genre Perspectives on Interaction Design, 2004,
ISBN 91-85297-14-3.

No 900 Mattias Arvola: Shades of use: The dynamics of
interaction design for sociable use, 2004, ISBN
91-85295-42-6.

No 920 Luis Alejandro Cortés: Verification and
Scheduling Techniques for Real-Time Embed-
ded Systems, 2004, ISBN 91-85297-21-6.

No 929 Diana Szentivanyi: Performance Studies of
Fault-Tolerant Middleware, 2005, ISBN 91-
85297-58-5.

No 933 Mikael Cäker: Management Accounting as
Constructing and Opposing Customer Focus:
Three Case Studies on Management Accounting
and Customer Relations, 2005, ISBN 91-85297-
64-X.

No 937 Jonas Kvarnström: TALplanner and Other Ex-
tensions to Temporal Action Logic, 2005, ISBN
91-85297-75-5.

Linköping Studies in Information Science

No 1 Karin Axelsson: Metodisk systemstrukturering
- att skapa samstämmighet mellan informa-
tionssystemarkitektur och verksamhet, 1998.
ISBN-9172-19-296-8.

No 2 Stefan Cronholm: Metodverktyg och använd-
barhet - en studie av datorstödd metodbaserad
systemutveckling, 1998. ISBN-9172-19-299-2.

No 3 Anders Avdic: Användare och utvecklare - om
anveckling med kalkylprogram, 1999. ISBN-91-
7219-606-8.

No 4 Owen Eriksson: Kommunikationskvalitet hos
informationssystem och affärsprocesser, 2000.
ISBN 91-7219-811-7.

No 5 Mikael Lind: Från system till process - kriterier
för processbestämning vid verksamhetsanalys,
2001, ISBN 91-7373-067-X

No 6 Ulf Melin: Koordination och informationssys-
tem i företag och nätverk, 2002, ISBN 91-7373-
278-8.

No 7 Pär J. Ågerfalk: Information Systems Actabil-
ity - Understanding Information Technology as
a Tool for Business Action and Communication,
2003, ISBN 91-7373-628-7.

No 8 Ulf Seigerroth: Att förstå och förändra sys-
temutvecklingsverksamheter - en taxonomi för
metautveckling, 2003, ISBN91-7373-736-4.

No 9 Karin Hedström: Spår av datoriseringens vär-
den - Effekter av IT i äldreomsorg, 2004, ISBN
91-7373-963-4.

No 10 Ewa Braf: Knowledge Demanded for Action -
Studies on Knowledge Mediation in Organisa-
tions, 2004, ISBN 91-85295-47-7.

No 11 Fredrik Karlsson: Method Configuration -
method and computerized tool support, 2005,
ISBN 91-85297-48-8.

No 12 Malin Nordström: Styrbar systemförvaltning
- Att organisera systemförvaltningsverksamhet
med hjälp av effektiva förvaltningsobjekt, 2005,
ISBN 91-85297-60-7.

