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TAME ARCS ON WILD CELLS

CHARLES L. SEEBECK III1

Abstract. We prove here that, for «=ï5, every cell in E" con-

tains a tame arc and that, for product cells Bm~kXIkGEn~kXEk

=£", every ¿-dimensional polyhedron PCBm~kY.Ik is tame in E".

1. Introduction. Bing showed in [l] that every 2-cell in 3-dimen-

sional Euclidean space contains a tame arc and in [2] that there is a

2-sphere that is wild but for which all subarcs are tame. We obtain

here analogous results in higher dimensions (ii5). First we show that

for «2:5, any subarc of any ¿-cell in En can be approximated by

subarcs tame in E". Then we show that if C is any (m — &)-celI in

En~k, PÇ_Ek is the ¿-fold product of the unit interval I,m^n — 2, and

«=ï5, then every sub ¿-cell of CXPCEn~kXEk is tame in En. Since

there are cells in this class of factored cells that are wild at every

point [lO] we have a generalization of Bing's example [2] to higher

dimensions.

2. The approximation theorems. First we give a few definitions.

Let X(ZM be closed subsets of En. Let d denote the usual metric on

E". A homeomorphism h of M is an e-push of (M, X) if there is an

isotopy hi of M such that ho = Identity, hi = h, d(ht(x), x)<e for each

f £/ and each xQM, and ht is the identity outside the «-neighborhood

of X in M for each /. If P is a polyhedron and &:P—>En is an embed-

ding we say that h is tame if there is a homeomorphism H of En such

that H-his piecewise linear (PL).

Lemma 1. Suppose X is a compact subset of E", Int X = 0, X

does not locally separate En, G is a compact l-dimensional subpolyhedron

of En, n^4, and e>0. Then there is an e-push h of (£", Gi\X) such

that h(G)C\X = 0.

Proof. The proof is an immediate consequence of general position

and Corollary 5.6 of [3].

Lemma 2. Suppose X is a compact subset of En, Int X = 0, X does

not locally separate En, P is a 2-dimensional subpolyhedron of E", «^4,
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and e >0. Then there is an e-push h of (En, PC\X) such that h(P)P\X is

totally disconnected.

Proof. Let if be a triangulation oí P and {Ki\i = l, 2, ■ ■ ■ } the

sequence of ith derived barycentric subdivisions of K. We shall use

Lemma 1 to construct an e-push h of (En, PC\X) such that A(U\k\\)

C\X = 0. Clearly h then satisfies the conclusion of Lemma 2.

Let €i = e/2 and apply Lemma 1 with (X, G, e) replaced by (X,

| K\ |, €i), obtaining an e-push hx of (£", | K\ \ C\X) such that Ai(| K\ \ )

C\X = 0. Let ô1 = d(hi(\K{\), X) and tjj be some positive number

chosen depending on hi. (See [8] or Theorem 3.4 of [7].) Set e2

= min{ei/2, ôi/2, 771}. As before we obtain an e2-push hi of (£",

hi\K\\C\X) such that hi ■hl(\K\\)r\X = 0. Set h=hi-h. Continu-
ing in this way we obtain a sequence [hi] of homeomorphisms of

-E". Since €,+i<e,/2, lim,_00fe¿ = A is an e-map of En supported on a

compact set. Because £<+íáo,/2í'I h(\}\K\\)r\X = 0 and because the

ru are chosen sufficiently small depending on the hi, Ä is a homeo-

morphism. Thus h is the required e-push of (En, X).

Theorem 3. Let M be a PL m-manifold topologically embedded in

En, G a 1-dimensional subpolyhedron of M, G' a subpolyhedron of G

that is tame in En, n^5, and m^2. Then for each e>0 there is an

e-embedding a : G—*M such that a is tame in En and a \ G' = inclusion :

G'-*E".

Proof. It is sufficient to consider the case that M is a 2-cell, G is an

arc, and G' = {end points of G}. Using Lemma 2 we shall construct an

embedding a'.G^M fixed on G' such that En — a(G) is uniformly

locally 1-connected (1-ULC). By Theorem 4.2 of [4], a is thus tame.

Let -rv be a triangulation of E" and K\, ÜC2, • • • the sequence of ith

derived barycentric subdivisions of K. It follows from general position

and Lemma 2 that there is an e/2-push hi of (En, GC\ \K\\) such that

hi(\K\\)r\M is totally disconnected and hi(\K\\)r\G'= 0. Thus
there is an e/2-embedding cti'.G—*M fixed on G' such that cti{G)

r\hi\K\\ =0. Now as in the proof of Lemma 2 we set ei=e/2,

8i = d(c¿i(G), hi(\K%\)), rji >0 chosen depending on «i, i?i>0 chosen

depending on hi, e2 = min{ei/2, Si/4,77}, and e¿ =min{ei/2, §i/4, r¡{ }.

Then using Lemma 2 we find an e2-push h{ of (£", Ai(|ü^| )P\M) such

thatÄ2 • Äi(IÄ"!I )C\M is totally disconnected. Let h% = hi -hi. We can

again find an embedding a2:G—*M such that d{cti, oíí)<*l, a2(G)

f~^h2(\ K%\) = 0, and a2 is fixed on G'. Continuing in this way we

construct a sequence a,:G—>M of e,-embeddingsand a sequence {hi}

of homeomorphisms of En. Becausee;+i^e,-/2, the a, converge to an

e-map a'.G-^M. The 77, can be picked so as to guarantee that a is an
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e-embedding. Similarly the hi converge to an e-push of (£", M).

Because max{ei+J-, t'i+j}ú0i/2'+\ a(G)r\h([)?,1\K2i\) = 0. Thus ft"1

•a(G)r\\J?=1\KÏ\=0, and so En-h~1-a(G) is 1-ULC. Therefore

h~l-a and hence a is tame.

Corollary 3.1. Suppose N is a PL n-manifold, M is a PL m-mani-

fold topologically embedded in N, G is a 1-dimensional polyhedron,

G'QG is a subpolyhedron, ß:G-+M is an embedding such that ß\ G':G'

—*N is tame, n ^ 5, and m^2. Then for each e > 0 there is an embedding

a : G—*M such that d(a, ß) <e, a \ G' = ß \ G', and a : G—>N is tame.

Proof. First take an infinite triangulation of G — G' and approxi-

mate ß by an embedding ß':G-+M such that ß'\G' = ß\G' and ß' is

locally PL on G — G'. Then apply Theorem 3 to a sequence of compact

subpolyhedra of ß'{G — G'). Thus we obtain an embedding a'.G-^M

such that a \ G' = ß | G' and a \ G — G' is locally tame in En. Thus a : G

—*N is tame (Theorem 4.2 of [4]).

Theorem 4. Suppose N is a PL n-manifold, M is a PL m-manifold

topologically embedded in N, every 2-complex of M can be approximated

by a 2-complex in M that is tame in N, and 5 ̂ m^n — 2. Then each k-

dimensional polyhedron P topologically embedded in M, k<m, can be

approximated in M by embeddings that are tame in N.

Proof. It follows from [5] and either [ó] or [9] that an approxima-

tion of P is tame if its complement is 1-ULC. Such an approximation

is found by modifying the proof of Theorem 3. Let L be a triangula-

tion of M and Li, L2, • ■ ■ the sequence of barycentric subdivisions.

Similarly let Ki, Ki, ■ ■ • be the sequence of barycentric subdivisions

of a triangulation of N. Using techniques similar to those above it is

possible to construct a homeomorphism h of N such that hQJ\K\\ )

!~\M=0 and &(U| K]\ )n(U<2¿) = 0 where Ç,- is a close approxima-

tion of | L\ | for each i that is tame in N. Now for each i we can find an

arc A ¿C M such that d = h( | K\ \ )(~\M C.A ¿ and A t — d is locally tame
in M. Since M— C; is 1-ULC, M — Ai'is 1-ULC and hence ^4,-is tame.

Using A i we can construct, for each i, a homeomorphism/,- of M mov-

ing points a distance depending on /,_i so that fi(P)í\Ci = 0. Thus as

in the proof of Lemma 2 and Theorem 3 we can construct an e-push/

of (M, P) such that/(P)n(UC,) = 0. Thus N-f(P) is 1-ULC and
the required approximation has been found.

It is evident that we have actually proved the following.

Addendum to Theorem 4. Under the hypotheses of Theorem 4 it is

possible to find for each e >0 an e-push f of (M, P) such thatf\P:P—*N

is tame.
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3. Subpolyhedra of factored cells. We say that an ra-cell CEE"

factors ¿-times if for some homeomorphism h:E"—^En and some

(w-fc)-cell BCE"-k, h(C)=BXPCE"-kXE" where P is the Wold
product of the interval / naturally embedded in Ek and B XPEEn~k

X-E* is the product embedding.

Theorem 5. Suppose C is an m-cell topologically embedded in En, C

factors k-times, «2:5, and m^n — 2. Then every embedding of any com-

pact k-dimensional polyhedron into C is tame in En.

Proof. Let B be an (m — k)-cell in En~k, P a finite ¿-dimensional

polyhedron topologically embedded in BXPEEn~kXEk, n^5, and

l^Km^w-2. It follows from [S] and either [ó] or [9] that P is

tame in En if En-P is 1-ULC. However, En-P is 1-ULC if each

2-complex in En can be homotopied off P by arbitrarily small

homotopies. Let if be a finite 2-complex. First find a very small

homotopy of | K | such that for some subdivision K' each 2-cell of K'

either projects onto a 0- or 1-simplex of En~k or else lies in E"~kXt for

some tEEk. Since n — k=z(m — k)-\-2En~k — B is locally 0-connected.

Thus it follows that any 0- or 1-simplex in En~k can be homotopied off

S by a small homotopy. Thus any 2-cell of K' that projects onto a

0- or 1-cell of En~k can be homotopied off BXP- Let <r be a 2-cell of

K', t EEk, and <rCEn-kXt. For n - k è 4 it follows from Lemma 2 that

there is an e-push h of {En~kXt, <r) such that h(<r)f~\(B Xt) is 0-dimen-

sional. For n — k = 3 we can use the techniques of the proof of Lemma

2 to find an embedding h:a-+En-kXt such that h(ff)r\(BXt) is 0-

dimensional and h is close to the inclusion of a into En~kXt. Let

A =h(o)r\{BXP). A is & 0-dimensional subset of BXt. Let P be a

¿-dimensional polyhedron topologically embedded into BXP. Let

T<ZP be defined as follows: xET if there is a neighborhood U of x in

P and a point yEEn~k such that UEyXP. Then T is open in P and

P is locally tame at each point of U [S]. We shall construct a map

f:BXEk-+BXEk such that pvf = pi where pi = projection: BXEk

-+B,f(A)r\PCT, and d(f, ld\BXEk) is small. For each (*, t)EA
C\(P— T), let ex >0 be chosen so that for some tx(EEk with d(tx, t) <ex

and for all x'EB with d(x', x)<ex, (x', tx)E(BXEk)-P. Now for

some finite number of xEB, the «^-neighborhoods of the x's cover

pi{AC\(P — T)). Since A is totally disconnected it is possible to cover

pi{A(~\{P—T)) by closed sets Bu ■ ■ ■ , Bk that are pairwise disjoint

and, for each t=l, • ■ • , k, there is an #,- such that B( lies in the e^-

neighborhood of xt. Define f(x,y) = (x,y-\-tXi — t) for xEB,. Then

extend p2-f:\JBiXEk^>Ek to a map/2:5X£*-►£* such that d(/2, p2)

<e. Then extend / to BXEk by setting f=ldXf2:BXEk-^BXEk.
Thenf(A)Í^PE T. Now/can be extended to an e-map of En such that
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pvf=p1:E"-*En-k. Thus f-h(a)r\PCT. Since P is locally tame at

each point of T there is an approximation g oíf-h such that g(a)r\P

= 0. Thus En-P is 1-ULC and P is tame in En.

Corollary 5.1. Let CQEn be an m-cell that factors 1-time. Let P be

a k-dimensional polyhedron topologically embedded in C, k<m^n — 2,

and w^5. Then for each e >0 there is an e-push H of (C, P) such that

H{P) is tame in E".

Proof. This is actually a corollary to the proofs of Theorem 3 and

Theorem 5. Let K be a triangulation of E" and suppose C = BXI

C-En_1X-El. Then there is an approximation j of the inclusion map i:

\K*\ -»£» such that j(\K2\)r\C is a 0-dimensional subset of BX {h,

• • ■ , tp\ for some numbers h, ■ ■ • , £j,£7. Thus for any ¿-dimen-

sional polyhedron PC.C, there is a small homeomorphism hoi C such

that h(P)r\j\K2\ —0. Thus we can obtain by a sequence of such

steps a small homeomorphism H of C such that En — H(P) is 1-ULC.

Thus H(P) is tame.

Remarks. Do Theorem 3 and Theorem 5 remain true if the hy-

pothesis n 5; 5 is replaced by n = 4? Does Theorem 5 remain true if the

hypothesis m^n — 2 is replaced by m = n— 1? More specifically take

Bing's 2-sphere SCE3 [2]. Are all subarcs of 5X/C-E4 tame?

Theorem 5 is sharp in the sense that there are examples of cells that

factor ¿-times and for which some (¿+l)-dimensional subcell is wild.

Daverman has independently proved Theorem 3 for the case

m = 2.
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