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TAME ARCS ON WILD CELLS
CHARLES L. SEEBECK III!

ABsTRACT. We prove here that, for 235, every cell in E® con-
tains a tame arc and that, for product cells B»*X I*C Er*X E*
=Enr, every k-dimensional polyhedron PCB™ %X I* is tame in E™,

1. Introduction. Bing showed in [1] that every 2-cell in 3-dimen-
sional Euclidean space contains a tame arc and in [2] that there is a
2-sphere that is wild but for which all subarcs are tame. We obtain
here analogous results in higher dimensions (= 5). First we show that
for n=5, any subarc of any k-cell in E® can be approximated by
subarcs tame in E”. Then we show that if C is any (m—k)-cell in
En»k [¥C E*is the k-fold product of the unitinterval I, m<n—2, and
n=35, then every sub k-cell of CXI*C E** X EF is tame in E*. Since
there are cells in this class of factored cells that are wild at every

point [10] we have a generalization of Bing’s example [2] to higher
dimensions.

2. The approximation theorems. First we give a few definitions.
Let X C M be closed subsets of E". Let d denote the usual metric on
E», A homeomorphism % of M is an e-push of (M, X) if there is an
isotopy k¢ of M such that ko=Identity, hi=h, d(h.(x), x) <e for each
t&1I and each x €M, and 4, is the identity outside the e-neighborhood
of X in M for each ¢. If P is a polyhedron and h: P—E" is an embed-
ding we say that & is tame if there is a homeomorphism H of E* such
that H -k is piecewise linear (PL).

LeEMMA 1. Suppose X is a compact subset of E», Int X=¢, X
does not locally separate E*, G is a compact 1-dimensional subpolyhedron
of E*, n=4, and € >0. Then there is an e-push h of (E*, GN\X) such
that H(G)NX =

Proor. The proof is an immediate consequence of general position
and Corollary 5.6 of [3].

LEMMA 2. Suppose X is a compact subset of E*, Int X =&, X does
not locally separate E*, P is a 2-dimensional subpolyhedron of E*, n=4,
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and € >0. Then there is an e-push h of (E*, PNX) such that h(PYNX s
totally disconnected.

PRrOOF. Let K be a triangulation of P and {K;|i=1,2, - - - } the
sequence of zth derived barycentric subdivisions of K. We shall use
Lemma 1 to construct an e-push % of (E*, PMNX) such that AU | k}l)
NX = . Clearly k then satisfies the conclusion of Lemma 2.

Let e,=¢/2 and apply Lemma 1 with (X, G, ¢) replaced by (X,
| K}, &), obtaining an e-push &, of (E*, | K}| NX) such that k(| K}|)
NX=g. Let =d(m(|K}|), X) and 7; be some positive number
chosen depending on %;. (See [8] or Theorem 3.4 of [7].) Set e
=min{e1/2, 81/2, m}. As before we obtain an e-push k7 of (E=,
h| K3 NX) such that b{ - (| K3| )N X = &. Set hy=h{ - by. Continu-
ing in this way we obtain a sequence {h,} of homeomorphisms of
E». Since €;11<¢€;/2, lim;,, h;=h is an e-map of E" supported on a
compact set. Because €;,;=<6;/2, h(UIKH )JNX = and because the
n; are chosen sufficiently small depending on the k;, & is a homeo-
morphism. Thus 4 is the required e-push of (E*, X).

THEOREM 3. Let M be a PL m-manifold topologically embedded in
Er, G a 1-dimensional subpolyhedron of M, G’ a subpolyhedron of G
that is tame in E*, n=5, and m=2. Then for each € >0 there is an
e-embedding a:G—M such that o is tame in E and o| G’ =inclusion:
G'—E"

PRrOOF. It is sufficient to consider the case that M is a 2-cell, Gis an
arc, and G’ = {end points of G }. Using Lemma 2 we shall construct an
embedding a:G—M fixed on G’ such that E*—a(G) is uniformly
locally 1-connected (1-ULC). By Theorem 4.2 of [4], & is thus tame.

Let K be a triangulation of E* and K, K,, - - - the sequence of 7th
derived barycentric subdivisions of K. It follows from general position
and Lemma 2 that there is an ¢/2-push £, of (E*», GN I Kf| ) such that
m(|Ki|)NM is totally disconnected and &i(|K}|)NG'=J. Thus
there is an ¢/2-embedding a;:G—M fixed on G’ such that a;(G)
f\hll Kﬂ =. Now as in the proof of Lemma 2 we set ¢ =¢/2,
61 =d(au(G), kl(lKﬂ)), 71 >0 chosen depending on aj, 71 >0 chosen
depending on A, e2=min{el/2, 81/4,7}, and ¢ =min{el/2, 8/4, i }.
Then using Lemma 2 we find an e/ -push &; of (E», hl(l K%I YN M) such
that h{ - k(| K3| )N M is totally disconnected. Let hy=h{ -h,. We can
again find an embedding a;:G—M such that d(a, o) <&, ax(G)
f\hz(lKgl):,@', and a is fixed on G’. Continuing in this way we
construct a sequence a;:G—M of ¢;-embeddings and a sequence { h,-}
of homeomorphisms of E”. Because €;41=¢;/2, the a; converge to an
e-map a:G—M. The 7; can be picked so as to guarantee that « is an
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e-embedding. Similarly the k; converge to an e-push of (E», M).
Because max {e;y;, €] S8,/24, oz(G)f\h(U{‘;]|Kf|)=,®'. Thus A1
«a(G)NU,|K3| =, and so E*—k-a(G) is 1-ULC. Therefore
k! o and hence « is tame.

COROLLARY 3.1. Suppose N is a PL n-manifold, M is a PL m-mani-
fold topologically embedded in N, G is a 1-dimensional polyhedron,
G'CG is a subpolyhedron, B:G— M is an embedding such that 6| G':G
—N is tame, n=5, and m= 2. Then for each € >0 there is an embedding
a:G—M such that d(a, B) <, a] G’ =B] G’, and a:G—N 1s tame.

Proor. First take an infinite triangulation of G—G’ and approxi-
mate 8 by an embedding 8':G—M such that {3’| G’=ﬁ| G’ and B’ is
locally PL on G—G’. Then apply Theorem 3 to a sequence of compact
subpolyhedra of 8/(G—G’). Thus we obtain an embedding a:G—M
such that a| G'=6| G’ and al G—G' is locally tame in E®. Thus a:G
—N is tame (Theorem 4.2 of [4]).

THEOREM 4. Suppose N is a PL n-manifold, M is a PL m-manifold
topologically embedded in N, every 2-complex of M can be approximated
by a 2-complex in M thatistamein N,and SSm=n—2. Then each k-
dimensional polyhedron P topologically embedded in M, k<m, can be
approximated in M by embeddings that are tame in N.

Proor. It follows from [5] and either [6] or [9] that an approxima-
tion of P is tame if its complement is 1-ULC. Such an approximation
is found by modifying the proof of Theorem 3. Let L be a triangula-
tion of M and L;, L,, - - - the cequence of barvcentric subdivisions.
Similarly let K, K., - - - be the sequence of barycentric subdivisions
of a triangulation of N. Using techniques similar to those above it is
possible to construct a homeomorphism % of N such that k(U| K}|)
NM= and h(U|Kfl YN(UQ,) =& where Q; is a close approxima-
tion of ILf| for each 7 that is tame in N. Now for each 7 we can find an
arc 4 ;C M such that C,~=h(| Kﬂ YNMCA;and 4;— C;islocally tame
in M. Since M —C;is 1-ULC, M —A4;is 1-ULC and hence 4; is tame.
Using 4 ; we can construct, for each 7, a homeomorphism f; of M mov-
ing points a distance depending on f;_; so that fi(P)NC;= . Thus as
in the proof of Lemma 2 and Theorem 3 we can construct an e-push f
of (M, P) such that f(P)N\(UC,)=&. Thus N—f(P) is 1-ULC and
the required approximation has been found.

It is evident that we have actually proved the following.

ADDENDUM TO THEOREM 4. Under the hypotheses of Theorem 4 it is
possible to find for each € >0 an e-push f of (M, P) such thatf[ P:P—>N
is tame.
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3. Subpolyhedra of factored cells. We say that an m-cell CCE"
factors k-times if for some homeomorphism k:E"—E" and some
(m—FE)-cell BCE"*, h(C) =B XI*C E»*X E* where I* is the k-fold
product of the interval I naturally embedded in E* and B XI*CE™*
X E* is the product embedding.

THEOREM 5. Suppose C is an m-cell topologically embedded in E*, C
factors k-times, n=5, and m=n—2. Then every embedding of any com-
pact k-dimensional polyhedron into C is tame in E™.

PRrOOF. Let B be an (m—k)-cell in E~*, P a finite k-dimensional
polyhedron topologically embedded in B XI*CE*XEF, n=5, and
1<k<m=n—2. It follows from [5] and either [6] or [9] that P is
tame in E® if E»—P is 1-ULC. However, E*—P is 1-ULC if each
2-complex in E* can be homotopied off P by arbitrarily small
homotopies. Let K be a finite 2-complex. First find a very small
homotopy of |K | such that for some subdivision K’ each 2-cell of K’
either projects onto a 0- or 1-simplex of E*~* or else lies in E»~* Xt for
some tEE*. Since n—k=(m—k)+2E"*—B is locally 0-connected.
Thus it follows that any 0- or 1-simplex in E*~* can be hemotopied off
B by a small homotopy. Thus any 2-cell of K’ that projects onto a
0- or 1-cell of E»* can be homotopied off B X I*. Let ¢ be a 2-cell of
K’',tEE*, and e CE**Xt. For n —k=4 it follows from Lemma 2 that
there is an e-push % of (E**Xt, o) such that (o) (B Xt) is 0-dimen-
sional. For  —k =23 we can use the techniques of the proof of Lemma
2 to find an embedding %:0—FE"* X!t such that &(c)M\(BX?) is 0-
dimensional and % is close to the inclusion of ¢ into E**X¢f. Let
A=h(@)N\(BXI¥). A is a 0-dimensional subset of BX?. Let P be a
k-dimensional polyhedron topologically embedded into B XI*. Let
T C P be defined as follows: & T if there is a neighborhood U of x in
P and a point yE€ E** such that UCyXI*. Then T is open in P and
P is locally tame at each point of U [5]. We shall construct a map
f:BXE*—BXE* such that p;-f=p, where p,=projection: BXE*
—B, f(AYNPCT, and d(f, Id| BX E*) is small. For each (x, t)E4
N(P—T), let &, >0 be chosen so that for some t,EE* with d(t,, t) <e:
and for all ¥’ EB with d(x', x) <e,, (x', t;) E(BXE*)—P. Now for
some finite number of xE B, the e,-neighborhoods of the x’'s cover
p1(AN(P—T)). Since 4 is totally disconnected it is possible to cover
p1(AN(P—T)) by closed sets By, - - -, By that are pairwise disjoint
and, for each i=1, - - -, &, there is an x; such that B; lies in the ;-
neighborhood of "x;. Define f(x,y)=(x,y+t.,;—t) for xEB;. Then
extend py-f:UB; X E¥*—EF to a map f»: B X E¥—EF such that d(f, ps)
<e. Then extend f to BXE* by setting f=1Id Xf;: BXE¥—~BXE*.
Then f(4)NPCT. Now f can be extended to an e-map of E*such that
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pr-f=p1: Er—E~*, Thus f-h(e)PCT. Since P is locally tame at
each point of T there is an approximation g of f-% such that g(e) NP
= . Thus Er—P is 1-ULC and P is tame in E*.

COROLLARY 5.1. Let CC E" be an m-cell that factors 1-time. Let P be
a k-dimensional polyhedron topologically embedded in C, k<m=n-—2,
and n=5. Then for each € >0 there is an e-push H of (C, P) such that
H(P) is tame in E.

Proor. This is actually a corollary to the proofs of Theorem 3 and
Theorem 5. Let K be a triangulation of E* and suppose C=B XTI
CE™1XE! Then there is an approximation j of the inclusion map z:
| K2| =E" such that j(| K*|)NC is a 0-dimensional subset of B X {4,

- t,,} for some numbers ¢, - - -, {,&I. Thus for any k-dimen-
sional polyhedron P CC, there is a small homeomorphism & of C such
that h(P)ﬂj|K2| = . Thus we can obtain by a sequence of such
steps a small homeomorphism H of C such that E»— H(P) is 1-ULC.
Thus H(P) is tame.

REMARKS. Do Theorem 3 and Theorem 5 remain true if the hy-
pothesis # =5 is replaced by n =4? Does Theorem 5 remain true if the
hypothesis m <n—2 is replaced by m =n—1? More specifically take
Bing's 2-sphere SC E? [2]. Are all subarcs of SXTC E* tame?

Theorem S is sharp in the sense that there are examples of cells that
factor k-times and for which some (2+1)-dimensional subcell is wild.

Daverman has independently proved Theorem 3 for the case
m=2.
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