TAME ARCS ON WILD CELLS

CHARLES L. SEEBECK III1

ABSTRACT. We prove here that, for $n \ge 5$, every cell in E^n contains a tame arc and that, for product cells $B^{m-k} \times I^k \subset E^{n-k} \times E^k = E^n$, every k-dimensional polyhedron $P \subset B^{m-k} \times I^k$ is tame in E^n .

- 1. Introduction. Bing showed in [1] that every 2-cell in 3-dimensional Euclidean space contains a tame arc and in [2] that there is a 2-sphere that is wild but for which all subarcs are tame. We obtain here analogous results in higher dimensions (≥ 5). First we show that for $n \geq 5$, any subarc of any k-cell in E^n can be approximated by subarcs tame in E^n . Then we show that if C is any (m-k)-cell in E^{n-k} , $I^k \subset E^k$ is the k-fold product of the unit interval I, $m \leq n-2$, and $n \geq 5$, then every sub k-cell of $C \times I^k \subset E^{n-k} \times E^k$ is tame in E^n . Since there are cells in this class of factored cells that are wild at every point [10] we have a generalization of Bing's example [2] to higher dimensions.
- 2. The approximation theorems. First we give a few definitions. Let $X \subset M$ be closed subsets of E^n . Let d denote the usual metric on E^n . A homeomorphism h of M is an ϵ -push of (M, X) if there is an isotopy h_t of M such that $h_0 = \text{Identity}$, $h_1 = h$, $d(h_t(x), x) < \epsilon$ for each $t \in I$ and each $x \in M$, and h_t is the identity outside the ϵ -neighborhood of X in M for each t. If P is a polyhedron and $h: P \to E^n$ is an embedding we say that h is tame if there is a homeomorphism H of E^n such that $H \cdot h$ is piecewise linear (PL).
- LEMMA 1. Suppose X is a compact subset of E^n , Int $X = \emptyset$, X does not locally separate E^n , G is a compact 1-dimensional subpolyhedron of E^n , $n \ge 4$, and $\epsilon > 0$. Then there is an ϵ -push h of $(E^n, G \cap X)$ such that $h(G) \cap X = \emptyset$.

PROOF. The proof is an immediate consequence of general position and Corollary 5.6 of [3].

LEMMA 2. Suppose X is a compact subset of E^n , Int $X = \emptyset$, X does not locally separate E^n , P is a 2-dimensional subpolyhedron of E^n , $n \ge 4$,

Copyright @ 1971, American Mathematical Society

Received by the editors June 21, 1970.

AMS 1969 subject classifications. Primary 5478, 5570, 5705; Secondary 5701, 5720, 5760.

Key words and phrases. Tame embedding, ϵ -push, 1-ULC, locally separates E^n , wild cell.

¹ Supported by NSF Grant GP19462.

and $\epsilon > 0$. Then there is an ϵ -push h of $(E^n, P \cap X)$ such that $h(P) \cap X$ is totally disconnected.

PROOF. Let K be a triangulation of P and $\{K_i | i=1, 2, \cdots\}$ the sequence of ith derived barycentric subdivisions of K. We shall use Lemma 1 to construct an ϵ -push h of $(E^n, P \cap X)$ such that $h(\bigcup |k_i^1|) \cap X = \emptyset$. Clearly h then satisfies the conclusion of Lemma 2.

Let $\epsilon_1 = \epsilon/2$ and apply Lemma 1 with (X, G, ϵ) replaced by $(X, |K_1^1|, \epsilon_1)$, obtaining an ϵ_1 -push h_1 of $(E^n, |K_1^1| \cap X)$ such that $h_1(|K_1^1|) \cap X = \emptyset$. Let $\delta_1 = d(h_1(|K_1^1|), X)$ and η_i be some positive number chosen depending on h_1 . (See [8] or Theorem 3.4 of [7].) Set $\epsilon_2 = \min\{\epsilon_1/2, \delta_1/2, \eta_1\}$. As before we obtain an ϵ_2 -push h_2' of $(E^n, h_1|K_2^1|\cap X)$ such that $h_2' \cdot h_1(|K_2^1|)\cap X = \emptyset$. Set $h_2 = h_2' \cdot h_1$. Continuing in this way we obtain a sequence $\{h_i\}$ of homeomorphisms of E^n . Since $\epsilon_{i+1} < \epsilon_i/2$, $\lim_{i \to \infty} h_i = h$ is an ϵ -map of E^n supported on a compact set. Because $\epsilon_{i+j} \le \delta_i/2^j$, $h(\bigcup |K_i^1|)\cap X = \emptyset$ and because the η_i are chosen sufficiently small depending on the h_i , h is a homeomorphism. Thus h is the required ϵ -push of (E^n, X) .

THEOREM 3. Let M be a PL m-manifold topologically embedded in E^n , G a 1-dimensional subpolyhedron of M, G' a subpolyhedron of G that is tame in E^n , $n \ge 5$, and $m \ge 2$. Then for each $\epsilon > 0$ there is an ϵ -embedding $\alpha: G \rightarrow M$ such that α is tame in E^n and $\alpha \mid G' = inclusion$: $G' \rightarrow E^n$.

PROOF. It is sufficient to consider the case that M is a 2-cell, G is an arc, and $G' = \{$ end points of $G \}$. Using Lemma 2 we shall construct an embedding $\alpha: G \rightarrow M$ fixed on G' such that $E^n - \alpha(G)$ is uniformly locally 1-connected (1-ULC). By Theorem 4.2 of [4], α is thus tame.

Let K be a triangulation of E^n and K_1, K_2, \cdots the sequence of ith derived barycentric subdivisions of K. It follows from general position and Lemma 2 that there is an $\epsilon/2$ -push h_1 of $(E^n, G \cap |K_1^2|)$ such that $h_1(|K_1^2|) \cap M$ is totally disconnected and $h_1(|K_1^2|) \cap G' = \emptyset$. Thus there is an $\epsilon/2$ -embedding $\alpha_1 \colon G \to M$ fixed on G' such that $\alpha_1(G) \cap h_1|K_1^2| = \emptyset$. Now as in the proof of Lemma 2 we set $\epsilon_1 = \epsilon/2$, $\delta_1 = d(\alpha_1(G), h_1(|K_1^2|)), \eta_1 > 0$ chosen depending on $\alpha_1, \eta_1' > 0$ chosen depending on $h_1, \epsilon_2 = \min\{\epsilon_1/2, \delta_1/4, \eta\}$, and $\epsilon_2' = \min\{\epsilon_1/2, \delta_1/4, \eta_1'\}$. Then using Lemma 2 we find an ϵ_2' -push h_2' of $(E^n, h_1(|K_2^2|) \cap M)$ such that $h_2' \cdot h_1(|K_2^2|) \cap M$ is totally disconnected. Let $h_2 = h_2' \cdot h_1$. We can again find an embedding $\alpha_2 \colon G \to M$ such that $d(\alpha_1, \alpha_2) < \epsilon_2, \alpha_2(G) \cap h_2(|K_2^2|) = \emptyset$, and α_2 is fixed on G'. Continuing in this way we construct a sequence $\alpha_i \colon G \to M$ of ϵ_i -embeddings and a sequence $\{h_i\}$ of homeomorphisms of E^n . Because $\epsilon_{i+1} \le \epsilon_i/2$, the α_i converge to an ϵ -map $\alpha \colon G \to M$. The η_i can be picked so as to guarantee that α is an

 ϵ -embedding. Similarly the h_i converge to an ϵ -push of (E^n, M) . Because $\max\{\epsilon_{i+j}, \epsilon'_{i+j}\} \leq \delta_i/2^{j+1}$, $\alpha(G) \cap h(\bigcup_{i=1}^{\infty} |K_i^2|) = \emptyset$. Thus $h^{-1} \cdot \alpha(G) \cap \bigcup_{i=1}^{\infty} |K_i^2| = \emptyset$, and so $E^n - h^{-1} \cdot \alpha(G)$ is 1-ULC. Therefore $h^{-1} \cdot \alpha$ and hence α is tame.

COROLLARY 3.1. Suppose N is a PL n-manifold, M is a PL m-manifold topologically embedded in N, G is a 1-dimensional polyhedron, $G' \subset G$ is a subpolyhedron, $\beta: G \to M$ is an embedding such that $\beta \mid G': G' \to N$ is tame, $n \ge 5$, and $m \ge 2$. Then for each $\epsilon > 0$ there is an embedding $\alpha: G \to M$ such that $d(\alpha, \beta) < \epsilon$, $\alpha \mid G' = \beta \mid G'$, and $\alpha: G \to N$ is tame.

PROOF. First take an infinite triangulation of G-G' and approximate β by an embedding $\beta': G \rightarrow M$ such that $\beta' \mid G' = \beta \mid G'$ and β' is locally PL on G-G'. Then apply Theorem 3 to a sequence of compact subpolyhedra of $\beta'(G-G')$. Thus we obtain an embedding $\alpha: G \rightarrow M$ such that $\alpha \mid G' = \beta \mid G'$ and $\alpha \mid G-G'$ is locally tame in E^n . Thus $\alpha: G \rightarrow N$ is tame (Theorem 4.2 of [4]).

THEOREM 4. Suppose N is a PL n-manifold, M is a PL m-manifold topologically embedded in N, every 2-complex of M can be approximated by a 2-complex in M that is tame in N, and $5 \le m \le n-2$. Then each k-dimensional polyhedron P topologically embedded in M, k < m, can be approximated in M by embeddings that are tame in N.

PROOF. It follows from [5] and either [6] or [9] that an approximation of P is tame if its complement is 1-ULC. Such an approximation is found by modifying the proof of Theorem 3. Let L be a triangulation of M and L_1, L_2, \cdots the sequence of barycentric subdivisions. Similarly let K_1, K_2, \cdots be the sequence of barycentric subdivisions of a triangulation of N. Using techniques similar to those above it is possible to construct a homeomorphism h of N such that $h(\bigcup |K_i^1|)$ $\cap M = \emptyset$ and $h(\bigcup |K_i^2|) \cap (\bigcup Q_i) = \emptyset$ where Q_i is a close approximation of $|L_i^2|$ for each i that is tame in N. Now for each i we can find an arc $A_i \subset M$ such that $C_i = h(|K_i^2|) \cap M \subset A_i$ and $A_i - C_i$ is locally tame in M. Since $M - C_i$ is 1-ULC, $M - A_i$ is 1-ULC and hence A_i is tame. Using A_i we can construct, for each i, a homeomorphism f_i of M moving points a distance depending on f_{i-1} so that $f_i(P) \cap C_i = \emptyset$. Thus as in the proof of Lemma 2 and Theorem 3 we can construct an ϵ -push fof (M, P) such that $f(P) \cap (UC_i) = \emptyset$. Thus N - f(P) is 1-ULC and the required approximation has been found.

It is evident that we have actually proved the following.

ADDENDUM TO THEOREM 4. Under the hypotheses of Theorem 4 it is possible to find for each $\epsilon > 0$ an ϵ -push f of (M, P) such that $f \mid P: P \rightarrow N$ is tame.

3. Subpolyhedra of factored cells. We say that an m-cell $C \subset E^n$ factors k-times if for some homeomorphism $h: E^n \to E^n$ and some (m-k)-cell $B \subset E^{n-k}$, $h(C) = B \times I^k \subset E^{n-k} \times E^k$ where I^k is the k-fold product of the interval I naturally embedded in E^k and $B \times I^k \subset E^{n-k} \times E^k$ is the product embedding.

THEOREM 5. Suppose C is an m-cell topologically embedded in E^n , C factors k-times, $n \ge 5$, and $m \le n-2$. Then every embedding of any compact k-dimensional polyhedron into C is tame in E^n .

PROOF. Let B be an (m-k)-cell in E^{n-k} , P a finite k-dimensional polyhedron topologically embedded in $B \times I^k \subset E^{n-k} \times E^k$, $n \ge 5$, and $1 \le k < m \le n-2$. It follows from [5] and either [6] or [9] that P is tame in E^n if E^n-P is 1-ULC. However, E^n-P is 1-ULC if each 2-complex in E^n can be homotopied off P by arbitrarily small homotopies. Let K be a finite 2-complex. First find a very small homotopy of |K| such that for some subdivision K' each 2-cell of K'either projects onto a 0- or 1-simplex of E^{n-k} or else lies in $E^{n-k} \times t$ for some $t \in E^k$. Since $n-k \ge (m-k)+2E^{n-k}-B$ is locally 0-connected. Thus it follows that any 0- or 1-simplex in E^{n-k} can be homotopied off B by a small homotopy. Thus any 2-cell of K' that projects onto a 0- or 1-cell of E^{n-k} can be homotopied off $B \times I^k$. Let σ be a 2-cell of K', $t \in E^k$, and $\sigma \subset E^{n-k} \times t$. For $n-k \ge 4$ it follows from Lemma 2 that there is an ϵ -push h of $(E^{n-k} \times t, \sigma)$ such that $h(\sigma) \cap (B \times t)$ is 0-dimensional. For n-k=3 we can use the techniques of the proof of Lemma 2 to find an embedding $h: \sigma \to E^{n-k} \times t$ such that $h(\sigma) \cap (B \times t)$ is 0dimensional and h is close to the inclusion of σ into $E^{n-k} \times t$. Let $A = h(\sigma) \cap (B \times I^k)$. A is a 0-dimensional subset of $B \times t$. Let P be a k-dimensional polyhedron topologically embedded into $B \times I^k$. Let $T \subset P$ be defined as follows: $x \in T$ if there is a neighborhood U of x in P and a point $y \in E^{n-k}$ such that $U \subset y \times I^k$. Then T is open in P and P is locally tame at each point of U [5]. We shall construct a map $f: B \times E^k \to B \times E^k$ such that $p_1 \cdot f = p_1$ where $p_1 = \text{projection}: B \times E^k$ $\rightarrow B$, $f(A) \cap P \subset T$, and $d(f, \text{Id} \mid B \times E^k)$ is small. For each $(x, t) \in A$ $\cap (P-T)$, let $\epsilon_x > 0$ be chosen so that for some $t_x \in E^k$ with $d(t_x, t) < \epsilon_x$ and for all $x' \in B$ with $d(x', x) < \epsilon_x$, $(x', t_x) \in (B \times E^k) - P$. Now for some finite number of $x \in B$, the ϵ_x -neighborhoods of the x's cover $p_1(A \cap (P-T))$. Since A is totally disconnected it is possible to cover $p_1(A \cap (P-T))$ by closed sets B_1, \dots, B_k that are pairwise disjoint and, for each $i=1, \dots, k$, there is an x_i such that B_i lies in the ϵ_{x_i} neighborhood of x_i . Define $f(x,y) = (x,y+t_{x_i}-t)$ for $x \in B_i$. Then extend $p_2 \cdot f : \bigcup B_i \times E^k \to E^k$ to a map $f_2 : B \times E^k \to E^k$ such that $d(f_2, p_2)$ $<\epsilon$. Then extend f to $B \times E^k$ by setting $f = \operatorname{Id} \times f_2 : B \times E^k \to B \times E^k$. Then $f(A) \cap P \subset T$. Now f can be extended to an ϵ -map of E^n such that $p_1 \cdot f = p_1 \colon E^n \to E^{n-k}$. Thus $f \cdot h(\sigma) \cap P \subset T$. Since P is locally tame at each point of T there is an approximation g of $f \cdot h$ such that $g(\sigma) \cap P = \emptyset$. Thus $E^n - P$ is 1-ULC and P is tame in E^n .

COROLLARY 5.1. Let $C \subset E^n$ be an m-cell that factors 1-time. Let P be a k-dimensional polyhedron topologically embedded in C, $k < m \le n-2$, and $n \ge 5$. Then for each $\epsilon > 0$ there is an ϵ -push H of (C, P) such that H(P) is tame in E^n .

PROOF. This is actually a corollary to the proofs of Theorem 3 and Theorem 5. Let K be a triangulation of E^n and suppose $C = B \times I$ $\subset E^{n-1} \times E^1$. Then there is an approximation j of the inclusion map i: $|K^2| \to E^n$ such that $j(|K^2|) \cap C$ is a 0-dimensional subset of $B \times \{t_1, \dots, t_p\}$ for some numbers $t_1, \dots, t_p \in I$. Thus for any k-dimensional polyhedron $P \subset C$, there is a small homeomorphism k of k such that $k(P) \cap j |K^2| = \emptyset$. Thus we can obtain by a sequence of such steps a small homeomorphism k of k such that k and k are the such that k are the such that k and k are the such that k and k are the such that k are the such that k and k are the such that k and k are the such that k and k are the such that k are the such that k and k are the such that k are the such that k and k are the such that k are the such that k are the such that k and k are the such that k are the such that k are the such that k and k are the such that k are th

REMARKS. Do Theorem 3 and Theorem 5 remain true if the hypothesis $n \ge 5$ is replaced by n = 4? Does Theorem 5 remain true if the hypothesis $m \le n - 2$ is replaced by m = n - 1? More specifically take Bing's 2-sphere $S \subset E^3$ [2]. Are all subarcs of $S \times I \subset E^4$ tame?

Theorem 5 is sharp in the sense that there are examples of cells that factor k-times and for which some (k+1)-dimensional subcell is wild.

Daverman has independently proved Theorem 3 for the case m=2.

REFERENCES

- 1. R. H. Bing, Each disk in E³ contains a tame arc, Amer. J. Math. 84 (1962), 583-590. MR 26 #4331.
- 2. ———, A wild surface each of whose arcs is tame, Duke Math. J. 28 (1961), 1-15. MR 23 #A630.
- 3. R. H. Bing and J. M. Kister, Taming complexes in hyperplanes, Duke Math. J. 31 (1964), 491-511, MR 29 #1626.
- 4. J. L. Bryant and C. L. Seebeck III, Locally nice embeddings of polyhedra, Quart. J. Math. Oxford Ser. (2) 19 (1968), 257-274. MR 38 #2751.
- 5. ——, Locally nice embeddings in codimension three, Quart. J. Math. Oxford Ser. (2) 21 (1970), 265-272.
- A. V. Černavskii, Topological embeddings of manifolds, Dokl. Akad. Nauk SSSR 187 (1969), 1247–1250=Soviet Math. Dokl. 10 (1969), 1037–1041.
- 7. H. Gluck, Embeddings in the trivial range, Ann. of Math (2) 81 (1965), 195-210. MR 30 #3456.
- 8. T. Homma, On the embedding of polyhedra in manifolds, Yokohama Math. J. 10 (1962), 5-10. MR 27 #4236.
 - 9. R. Miller, Approximating codimension 3 embeddings (to appear).
 - 10. T. B. Rushing, Everywhere wild cells and spheres (to appear).

MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48823