USENIX Association

Proceedings of the
5th Symposium on Operating Systems
Design and Implementation

Boston, M assachusetts, USA
December 9-11, 2002

THE ADVANCED COMPUTI

ING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Taming aggressive replication in the Pangaea wide-area file system

Yasushi Saito, Christos Karamanolis, Magnus Karlsson, and Mallik Mahalingam
Storage Systems Department, HP Labs, Palo Alto, CA, USA
{ysaito,christos,karlsson,mmalli@hpl.hp.com

Abstract Speed: Hide the wide-area networking latency; file access
speed should resemble that of a local file system.

Pangaea is a wide-area file system that supports data S_R@éﬁlability and autonomy: Avoid depending on the

ing among a comm.unity of widely .distri_buted users. ltis availability of any specific node. Pangaea must adapt
built on a symmetrically decentralized infrastructure that automatically to server additions, removals, failures and
consists of commodity computers provided by the end hanwork partitioning.

users. Computers act autonomously to serve data to their o)
local users. When possible, they exchange data with nea§fork economy: Minimize the use of W|d.e-area net-
peers to improve the system's overall performance, ava"_works. Nodes are not distributed uniformly; some nodes

ability, and network economy. This approach is realized by &€ in the same LAN, whereas some others are half way
aggressively creating a replica of a file whenever and wher-2€ross the globe. Pangaea should transfer data between
ever it is accessed. nodes in physical proximity, when possible, to reduce

This paper presents the design, implementation, andlatency and save network bandwidth.
evaluation of the Pangaea file system. Pangaea offers e
ficient, randomized algorithms to manage highly dynamtig

and potentially large groups of file replicas. It applies Op- h h f . | d

timistic consistency semantics to replica contents, but fi such a system, each server unctions auton_omousy an
. ' a“ows reads and writes to its files even when disconnected.

also offers stronger guarantees when required by the users

. mor mputer me available, or as th tem con-
The evaluation demonstrates that Pangaea outperformsfesx- ore computers become available, or as the system co

isting distributed file systems in large heterogeneous enw_uration changes, servers dynamically adapt and collab-
9 y 9 9 Orate with each other, in a way that enhances the overall

ronments, typical of the Internet and of large corporate 'Bérformance and availability of the system.
tranets.) o . o
Pangaea realizes symbiosis pytvasive replication. It
aggressively creates areplica of a file or directory whenever
. and wherever it is accessed. There is no single “master”
1 Introduction replica of a file. Any replica may be read or written at any
time, and replicas exchange updates among themselves in
Pangaea is a wide-area file system that supports the dailyeer-to-peer fashion. Pervasive replication achieves high
storage needs of a distributed community of users. It igparformance by serving data from a server close to the point
platform for ad-hoc data sharing—it enables multinationaf access, high availability by letting each server contain
corporations, distributed groups of collaborating users, aitelworking set, and network economy by transferring data
content management systems to exchange data efficieattyong close-by replicas. The following sections introduce
using a file system. two key strategies used to implement pervasive replication.
Pangaea builds a unified file system across a federation
of up to thousfands of widely disFributed computers coR- q Graph-based replica management
nected by dedicated or virtual private networks. We cur-
rently assume that all servers are trusted; relaxing the trBahgaea’s replica management must satisfy three goals.
relationship is future work. The system faces continuokgst, it must support a large number of replicas, to max-
reconfiguration, with users moving, companies restructimize availability. Second, it needs to manage the repli-
ing, and computers being added or removed. Thus, Pangeeesa of each file independently, since it is difficult to pre-
must meet three key goals: dict file-access patterns accurately in a wide area. Third, it

(Ne argue that a system should followyanbiotic design
achieve these goals in dynamic, wide-area environments.

needs to support dynamic addition and removal of replicesry little concurrent write sharing, and that users demand
even when some nodes are not available. Pangaea addressesstency only within a window of minutes [31) 35]. Pan-
these challenges by maintaining a sparse, yet strongly cgaea’s actual window of inconsistency is around 5 seconds
nected and randomized graph of replicas for each file. Tihea wide area, as we show in Sectjon]7.6. In addition, Pan-
graph is used both to propagate updates and to discayaea provides an option that synchronously pushes updates
other replicas during replica addition and removal. This all replicas and gives users confirmation of their update
design offers three important benefits: delivery (Sectiofi 5]3). We thus believe that Pangaea’s con-
sistency semantics are sufficient for the ad-hoc data sharing
Available and inexpensive membership management: that Pangaea targets.
A replica can be added by connecting to a few live pangaea does not support applications that require strong
replicas that it discovers, no matter how many othgpnsistency such as open-close consistency, that use locks,

replicas are unavailable. Since the graph is spargethat synchronize using directory operations (i.e., “lock
adding or removing a replica involves only a constaffes”),

cost, regardless of the total number of replicas.

Available update distribution: Pangaea can distribute
updates to all live replicas of a file as far as its graph 3 Related work
connected. The redundant and flexible nature of graphs

makes them extremely unlikely to be disconnected evgaditional local-area distributed file systems do not meet
after multiple node or link failures. our goals of speed, availability, and network economy. Sys-

Network economy: The random-graph design facilitateems such as xFSi[2] and Frangipanil[33] rely on tight node
the efficient use of wide-area network bandwidth, for@ordination for replica management and cannot overcome
system with an aggressive replication policy. Pangalég non-uniform networking latencies and frequent network
achieves this by clustering replicas in physical proxinfartitioning that are typical in wide-area networks.
ity tightly in the graph, and by creating a spanning tree Pervasive replication resembles the persistent caching
along faster edges dynamically during update propagesed in client-server file systems such as AFESI [13],
tion. Coda[20], and LBFS[21]. Pangaea, however, can harness

nodes to improve the system’s robustness and efficiency.

First, it provides better availability. When a server crashes,

there are always other nodes providing access to the files

A distributed service faces two inherently conflicting chait hosted. Updates can be propagated to all live replicas

lenges: high availability and strong data consistency @/en when some of the servers are unavailable. The de-

37]. Pangaea aims at maximizing availability: at any timeentralized nature of Pangaea also allows any node to be

users must be able to read and write any replica and tegoved (even permanently) transparently to users. Sec-

system must be able to create or remove replicas withond, Pangaea improves efficiency by propagating updates

blocking. between nearby nodes, rather than between a client and a
To address this challenge, Pangaea uses two technidixesl server and, creating new replicas from a nearby exist-

for replica management. First, it pushes updates to rephig replica. In this sense, Pangaea generalizes the idea of

cas rather than invalidating them, since the former achievdsid replication [16] that utilizes surrogate Coda servers
higher availability in a wide area by keeping up-to-date daveaced in strategic (but fixed) locations to improve the per-
in more locations. This approach may result in manafgrmance and availability of the system.

ing unnecessary replicas, wasting both storage space arfdangaea’s replication follows an optimistic approach

networking bandwidth. To ameliorate this problem, Pasimilar to that of mobile data-sharing services, such as Lo-

gaea lets each node remove inactive replicas, as discusaedNotes|[[15], TSAE[[10], Bayou [32], and Roam [25].

in Sectiorl 4.4. These systems lack replica location management and rely
Second, Pangaea manages replica contents optimmti-polling, usually by humans, to discover and exchange

cally. It lets any node issue updates at any time, propagaipdates between replicas. Pangaea keeps track of repli-

them among replicas in the background, and detects andogess automatically and distributes updates proactively and
solves conflicts after they happen. Thus, Pangaea supptassparently to all the users. Most of these systems repli-
only “eventual” consistency, guaranteeing that a user seage at the granularity of the whole database (except Roam,

a change made by another user in some unspecified futuhéch supports subset replicas). In contrast, Pangaea'’s files

time. Recent studies, however, reveal that file systems farel directories are replicated independently, and some of its

1.2 Optimistic replica coordination

operations (e.g., “rename”) affect multiple files, each rep® Pangaea: a structural overview

cated on a different set of nodes. Such operations demand

a new protocol for ensuring consistent outcome after cofis section overviews the structure of a server and the ma-

flicts, as we discuss in Sectipn p.2. Pangaea offers a sjfi-data structures it maintains. Pangaea’s design follows a

ple conflict resolution policy similar to that of Roam, Losymmetrically distributed approach. A Pangaeaer han-

cus [36], or Coda [18]. We chose this design over more giies file-access requests from users. We assume that a user

phisticated approaches (as in Bayou), because Pangaealg@f a single server during a log-in session (lasting, say,

make no assumptions about the semantics of file-systariew hours), so that on-demand replication improves file-

operations. access latency; the user may move between servers over
time. Each server maintains local hard disks, used to store

FARSITE [1] and Pangaea both build a unified file Sygeplica}s of files and directorigs. Servers_interact y\(ith e_ach
tem across a federation of nodes, but they have differ@€r in a peer-to-peer fashion to provide a unified file-
objectives. FARSITE’s goal is to build a reliable servicgyStem.
on top of untrusted nodes using Byzantine consensus pro-
tocols, and it is designed primarily for local-area network8.1 Definitions
Pangaea assumes trusted servers, but it dynamically repli-

cates files at the edge to minimize the use of wide-area n& USe the t_emeOde andser_ver interchangeably. Nodes
works. are automatically grouped inteegions, such that nodes

within a region have low round-trip times (RTT) between
em 5ms in our implementation). Pangaea uses region

Recent peer-to-peer data sharing systems, built on toﬁ X . : :
jormation to optimize replica placement and coordina-

load-balanced, fault-tolerant distributed hash tables, sh
! . 108,
many properties with Pangaea. Systems such as OFS licates data at th larity of fil q
and PASTI[27] employ heuristics to exploit physical prox- angaea repiicales data at the granuianty of iles an
imity when locating data, but they do not support correats directories as files with spec[al contents. Thus, we
current in-place updates of hierarchically structured dati?® the ternfile to refer to a regula_r file or a directory. A.n
Pangaea, unlike these systems, provides extra machirf represents a known connection between two replicas

for conflict detection and resolution, as we discuss in sél. f|.|e; updates to the file flow along edges. 'The replicas
tion[5.3. Oceanstoré [17] builds a file system with stro a file and the edges between them comprise a strongly

consistency by routing updates through a small “core” nnected graph. The set of replicas of a file is called the

replicas. Pangaea, instead, allows in-place updating of &S feplica set

replica without centralized coordination to maximize avail-

ability. Ivy [22] is a peer-to-peer file system that lets data 82 Structure of a server
updated, any time, anywhere, by exchanging operation |
between replicas. Because the replicas poll remote logs
quently, it supports stronger consistency than Pangaea.
log-based update propagation also allows for more vers
tile conflict resolution than in Pangaea. However, becaLﬁE
Ivy forces each user to read the logs of all other writers, it
can only support a small file system with a small number of
writers.

S . .
?ﬁg_e Pangaea server is currently implemented as a user-
Space NFSv3 loopback server (Fighite 1). The server con-
1Sts of four main modules:

S protocol handler receives requests from applica-
tions, updates local replicas, and generates requests
for the replication engine. It is built using the SFS
toolkit [19] that provides a basic infrastructure for NFS

) o i _ request parsing and event dispatching.
A number of companies are active in the field of wide-

area collaborative data sharing, including FileFish, Scal&€Plication engine accepts requests from the NFS proto-
WebFS, and Xythos. They offer a uniform, seamless inter- col handler and the reph_cgﬂon engine running on other
face for sharing files in a wide-area network, independentn°des. It creates, modifies, or removes replicas, and
of the physical locations of users and data. Some of themforwards requests to other nodes if necessary. It is the
provide features such as intelligent location of the cached@'gest part of the Pangaea server.

copy closest to the user. However, they all use a centralizamy module implements transaction-like semantics for lo-
database to keep track of the location of files and replicas.cal disk updates via redo logging. The server logs all
Thus, their design does not meet Pangaea’s goals of availthe replica-update operations using this service, allow-
ability and autonomy. ing them to survive crashes.

peer edge

1/O request
(application)

K]

Pangaea
NFS protocol
handler el

replication P
engine membership ;

el | | (AR
communication /3 oe ‘/‘f‘go -‘-’

Figure 1: The structure of the Pangaca server.

bronze replica

-gold replica

-downlinks

Vo

. o Figure 2. An example of a directory /joe and file ljoe/foo
Membership module maintains the status of other nOde%ach replica of joe stores three pointers to the gold replicas of

including their liveness, available disk space, the Io%b . Each replica of foo keeps a backpointer to the parent di-

tions of root-directory replicas, the list of regions in th?ectory. Bronze replicas are connected randomly to form strongly
system, the set of nodes in each region, and a round-Yégnected graphs. Bronze replicas also have uni-directional links
time (RTT) estimate between every pair of regions. to the gold replicas of the file, which are not shown here.

This module runs an extension of van Renesse’s gossip-

based protocol [34]. Each node periodically sends {i§s end, the directory entry of a file lists the file’s gold
knowledge of nodes’ status to a random node chosghicas. Second, gold replicas perform several tasks that
from its I|ve-node.l|st; the recipient merges this list Wit v hard to do in a completely distributed way. In particu-
its own. A few fixed nodes are designated as “lanfy, they are used as pivots to keep the graph connected after
marks” and they bootstrap newly joining nodes. Thepermanent node failure, and to maintain a minimum repli-
protocol has been shown to disseminate membershipiBgion factor for a file. They form a clique in the file’s graph
formation quickly with low probability of false failure g4 that they can monitor each other for these tasks. These
detection. _ o _ issues are discussed in more detail in Segfjon 4. Currently,
The region and RTT information is gossiped as part phngaea designates replicas created during initial file cre-
the membership information. A newly booted node olyion as gold and fixes their locations unless some of them
tains the region information from a landmark. It thegy;, permanently.

polls a node in each existing region to determine whereg,cp, replica stores ackpointer that indicates its loca-
itbelongs or to create a new singleton region. In €ach {5y i the file-system name space. A backpointer includes
gion, the node with the smallest IP address elects itsg{f, parent directory’s ID and the file’s name within the di-
as a leader and periodically pings nodes in other regigagonf It is used for two purposes: to resolve conflicting

lo measure the _RTT')) directory operations (Sectign $.2), and to keep the direc-
This membership-tracking scheme, especially the R1dyy entry up-to-date when the gold replica set of the file
management, is the key scalability bottleneck Fhanges (Sectidi §.2).

our system—its netyvork 'ban.dW|dth consumption in Figure[3 shows the key attributes of a replica. The times-
a 10,000-node configuration is estimated to be 10K,

| | p ¢s) and the version vectowy) [23] record the last
bytes/second/node. ~ We plan to use external RTise the file was modified. Their use is described in more

estimatipn serviges, such as IDMaps [9], once they k?’J"étail in Sectiori b.GoldPeersare uni-directional links to
come widely available. the gold replicas of the filePeerspoint to the neighboring
(gold or bronze) replicas in the file’s graph.

3.3 Structure of a file system

Pangaea decentralizes both the replica-set and consistéhcy Replica set management

management by maintaining a distributed graph of replicas

for each file. Figurg]2 shows an example of a system with Pangaea, a replica is created when a user first accesses
two files. Pangaea distinguishes two types of repliga&i the file, and it is removed when a node runs out of disk
andbronze. They can both be read and written by users gpace or finds a replica to be inactive. Because these oper-
any time, and they both run an identical update-propagat@iions are frequent, they must be carried out efficiently and
prO_tOCC_)L. Gold replicas, however’ play an additional role in 1A replica stores multiple backpointers when the file is hard-linked
maintaining the hierarchical name space. A backpointer need not remember the locations of the parent-directo;y

First, golq replicas act as _Stamng points from whicRpjicas, since a parent directory is always found on the same node due to
bronze replicas are found during path-name traversal. th@namespace-containment property (Se¢fioh 4.3).

struct Replica S must replicate the file’s parent directory. This recursive

Ig;:ﬁ'}gtamp jj ggi?iéﬂ'gﬁis”ﬁé;”;%“&ﬁl'g 'a[fj " step may continue all the way up to the root directory. The
W VersionVector // Maps IP addr— TimeStamp locations of root replicas are maintained by the membership
goldPeers: Set(NodelD) /7 Set of IP addresses service (Sectiop 3]2).

peers: Set(NodelD)

backptrs: Set(FilelD, String) // Pair of (dirlD, fname Pangaea performssaort-cut replica creation to transfer

data from a nearby existing replica. To create a replica of

end F, Sfirst discovers the file’s gold replicas in the directory
Str?nCtn? Ir-Egttrrﬁln entry during the path-name lookuBthen requests the file
ﬁd‘r’:1 FﬁeID 9 contents from the gold replica closest3¢sayP). P then
downlinks: Set(NodelD) finds a replica closest t8 among its own graph neighbors
en?: Timestamp (sayX, which may beP itself) and forwards the request to
: X, which in turn sends the contents $o At this point,S
Figure 3: Key attributes of a replica. replies to the user and lets her start accessing the replica.

This request forwarding is performed because the directory
without blocking, even when some nodes that store replicagy knowsF’s gold replicas, and there may be a bronze
are unavailable. This section describes algorithms basedeplica closer td® than the gold ones.
random walks that achieve these goals. The new copy must be integrated into the file’s replica
graph to be able to propagate updates to and receive updates
from other replicas. Thus, in the backgrousd;hoosesn
existing replicas of, adds edges to them, and requests
We describe the interactions between the modules of them to add edges to the new repliceSinThe selection of
system and the use of various data structures using a sinfpleeers must satisfy three goals:
scenario—a user on servgcreates fild= in directoryD.

For the moment, assume thaklready stores a replicae Include gold replicas so that they have more choices dur-
of D (if not, Screates one, using the protocol described in ing future short-cut replica creation.
Section 4.R.) FirstS determines the location af initial
replicas offF, which will become the gold replicas of the
file (a typical value fog is 3). One replica will reside 08.
The otheig— 1 replicas are chosen at random from different Be sufficiently randomized so that, with high probabil-
regions in the system to improve the expected availability ity, the crash of nodes does not catastrophically discon-
of the file. SecondsS creates the local replica fdt and nect the file's graph.
adds an entry foF in the local replica oD. Sthen replies
to the client, and the client can start accessing the file. Pangaea satisfies all these goals simultaneously, as a
In the backgroundS disseminates two types of updateseplica can have multiple edgeS.chooses three types of
It first “floods” the new directory contents to other diregpeers for the new replica. Fir§adds an edge to a random
tory replicas. It also floods the contents Bf(which is gold replica, preferably one from a different region tign
empty, save for attributes such as permissions and ownergive that gold replica more variety of regions in its neigh-
to its gold-replica nodes. In practice, as we describe in Sgor set. Second, it asks a random gold replicaP5ay pick
tion[§, we deploy several techniques to reduce the overheael replica (amoné’s immediate graph neighbors) closest
of flooding dramatically. As a side effect of the propagae S. Third, S asksP to choosem— 2 random replicas us-
tion, the replicas oD will point to F’s gold replicas so ing random walks that start fro and perform a series of
that the latter can be discovered during future path-namRPC calls along graph edges. This protocol ensures that the

4.1 File creation

¢ Include nearby replicas so that updates can flow through
fast network links.

lookups. resulting graph isn edge- and node- connected, provided
that it wasm-connected before.
4.2 Replica addition Parametem trades off availability and performance. A

small value increases the probability of graph disconnec-
The protocol for creating additional replicas for a file is rution (i.e., the probability that a replica cannot exchange up-
when a user tries to access a file not present in her lodates with other replicas) after node failures. A large value
node. Say that a user on noflerants to read filé&. Aread for mincreases the overhead of graph maintenance and up-
or write request is always preceded by a directory lookdpate propagation by causing duplicate update delivery. We
(during theopen request) ors. Thus, to create a replicafound thatm= 4 offers a good balance in our prototype.

4.3 Name-space containment To remove a replica, the server sends notices to the
i)) " replica’s graph neighbors. Each neighbor, in turn, initiates a
The procedures for file creation and replica addition bo Edom v?/all?starti?lg from a randon?gold redﬁ]‘m‘d uses
require a file’s parent directory to be present on the Saf& protocol described in Sectipn 4.2 to establish a replace-
nodg. Par!gaea, n fact, derr‘?ands that fo: every f|Ie|3 all 'Tjtrer{ént edge with another live replica. Starting the walk from
mhedlate dlregtorlers]_, up to the root, are always replicated ot ¢ o1q replica ensures that the graph remains strongly
the same node. Thisime-space-containment reqUIreMent . nected. A similar protocol runs when a node detects an-

yields two benefits. First, it naturally offers the availabilyney noders permanent death, as we describe in Sg¢gtion 6.
ity and autonomy benefits of island-based replication [14].

That is, it enables lookup and access to every replica even
when the server is disconnected and allows each nodét® Summary

Lake ?tback;p (:f the f;lge s%/stemdlog:tall_y. V\I/? qu?r?ufy thfelﬁ‘ﬁe graph-based pervasive replication algorithms described
en(T |t§ n fedc_ 'Ot@' ’ ec?n) | S|mp|(|j¢s € (.:ons'fﬁt this section offer some fundamental benefits over tradi-
resolution of directory operations, as we diSCuss IN Sgfgng) approaches that have a fixed set of servers manage

tion5.2. . . . r%[i')lica locations.
On the other hand, this requirement increases the system-

wide storage overhead by 1.5% to 25%, compared 10 §fnple and efficient recovery from failures: Graphs
idealized scheme in which directories are stored on onlyare, by definition, flexible—spanning edges 4ay
one node([28F We consider the overhead to be reason- repjica makes the graph incrementally more robust and
able, as users already pay many times more storage cost byficient. Moreover, using just one type of edges both

replicating files in the first place. to locate replicas and to propagate updates simplifies
the recovery from permanent failures and avoids any
4.4 Bronze replica removal system disruption during graph reconfiguration.

This section describes the protocol for removin bronzDeeCOUpIing of directories and files: Directory ~ entries
P 9 point only to gold replicas, and the set of gold replicas is

r(;pllcain Gnolgtrr?pcljlca;s arev(len;(i)ved O?rLy ?15 : dﬁlr?e iﬂecrttypically stable. Thus, a file and its parent directory act
ota permanent node 10ss. We discuss the ha gotpe ‘mostly independently once the file is created. Adding or
manent failures in Sectidn 6.

A replica i d for t iol b removing a bronze replica for the file does not require a
repiica Is removed for two possible reasons. ecau_sechange to the directory replicas. Adding or removing a
a node has run out of disk space, or the cost of keeping

. . . i A gold or bronze replica for the directory does not require
the replica outweighs its benefits. To reclaim disk space, o change to the file replicas. These are key properties
Pangaea uses a randomized GD-Size algorithr [24]. Wefor the system’s efficiency
examine 50 random replicas kept in the node and calculate '
their merit values using the GD-Size function that considers
both the replica’s size and the last-access time [5]. The propagating updates
replica with the minimum merit is evicted, and five replicas
with the next-worst merit values are added to the Candidaﬁﬁs Section describes Pangaea’s So|utions to three Cha'_
examined during the next round. The algorithm is repeatefiges posed by optimistic replication: efficient and reli-
until it frees enough space on the disk. able update propagation, handling concurrent updates, and

Optionally, a server can also reclaim replicas not worfhe |ack of strong consistency guarantees.
keeping. We currently use a competitive updates algorithm

for this purposel[12]. Here, the server keeps a per-repl . .
counter that is incremented every time a replica recei\gg' Efficient update flooding

a remote update and is reset to zero when the replica|-_j~r'~‘,3 basic method for propagating updates in Pangaea is
read. When the counter's value exceeds a threshold (43{fyging along graph edges, as shown in Figlre 4. When-
our prototype), the server evicts the replica. ever a replica is modified on a server, the server pushes the
2 Due to the lack of wide-area file system traces, we analyzed the septlre file contents to all the. graph nelghbors, whichin t.um
age overhead using a fresh file system with RedHat 7.3 installed. TRéWard the contents to their neighbors, and so on, until all

overhead mainly depends on the spatial locality of accesses, i.e., theth@ replicas receive the new contents. This simple flooding
gree to which files in the same directory are accessed together. We expect

the overhead in practice to be much closer to 1.5% than 25%, becauséThe gold-replica set is kept as a part of the replica’s attributes; see
spatial locality in typical file-system traces is usually high. Figure[}.

r: Replica being updated. step of the algorithm. Thus, it consumestimes the op-

thegg sz]fijg“‘:\ilf/)”ew'y issued timal network bandwidth, whenm is the number of edges

Send (r.fid, r.v, r.data) to nodes in r.peers per replica. Harbingers eliminate redundant update deliver-
Unlog (r.fid, r.vv) after all the neighbors reply. ies.
when Update (fid, vv, data) is received from node n. _
if this update has already been applied then Reply to n Pangaea uses a_tWO_ phase prOtOCOI to propagate updates
else Log and apply the update. that exceed a certain size (1KB). In phase one, a small mes-
Reply to n sage that only contains the timestamps of the update, called

Forward the update to r.peers - {n}.

Unlog after all the neighbors reply. a harbinger, is flooded along graph edges. The update bod-

ies are sent, in phase two, only when requested by other
Figure 4: A simple flooding algorithm to distribute updates. nodes. When a node receives a new harbinger, it asks the
This code assumes that updates are issued one at a tie; the han- gender of the harbinger (the immediate upstream replica in
dling of concurrent updates is discussed in Section[5.2] the flooding chain) to push the update body. Simultane-
ously, it forwards the harbinger to other neighbors in the
algorithm guarantees reliable update delivery as long as gteph. When a node receives a duplicate harbinger with-
replica graph is strongly connected. The following thresut having received the update body, it asks its sender to
sections introduce techniques for improving the efficieneggtry later. This is required because the sender of the ear-
of the basic flooding algorithm. liest harbinger may crash before sending the update body.
If a node receives a harbinger after having received the up-
date body, it tells the sender to stop sending the update. We
chose the harbinger threshold of 1KB, because we found
A major drawback of flooding is that it propagates the ethat delta sizes follow a bimodal distribution—one peak
tire file contents even when only one byte has been modiound 200 bytes representing directory operations, and a
fied. Delta propagation improves the propagation efficien@igtter plateau around 20KB representing bulk wiffes.
while maintaining the logical simplicity of flooding. Here, This harbinger algorithm not only saves network usage,
whenever a portion of a file is changed (e.g., adding an dxx also shrinks the effective window of replica inconsis-
try to a directory), Pangaea propagates only a small, sency. When a user tries to read a file for which only a
mantic description of the change, calleddta. Deltas, in harbinger has been received, she waits until the actual up-
general, must be applied in the same order to every replitzte arrives. Since harbinger-propagation delay is indepen-
to produce the same result. We ensure this by having edelmt of the actual update size, the chance of a user seeing
delta carry two timestamps: thdd timestamp that repre- stale file contents is greatly reduced.
sents the state of the replica just before the change, and the
new timestamp that shows the state of the replica after the
changel[15]. A replica applies a delta only when its curredtl.3 Optimization 3: exploiting physical topology
timestamp matches the delta’s old timestamp. Otherwise, it o
resorts to full contents transfer, with potential conflict re§larbingers have another positive side effect. They favor the
olution as described in Sectipn b.2. In practice, updates 47 Of fastlinks, because a node requests the body of an up-
handled almost exclusively by deltas, and full-state transf&tt€ from the sender of the first harbinger it receives. How-
happens only when there are concurrent writes, or wheR\¢"> Unpredictable node or link load may reduce this bene-
node recovers from a crash. fit. A simple extenglon tq t.he harbl.nger algor!tljm improves
Pangaea further reduces the size of updates by dgﬁ%d_ata propagation efficiency, Wlthou_t requiring any coor-
merging, akin to the feature implemented in Coda [zcﬂ!nat_lon between nodes. Before pushing (or forwarding) a
For example, when a file is deleted right after it is modj!a/Pinger over a graph edge, a server adds a delay propor-
fied (which happens often for temporary files), the sen/pnal to the estimated speed of the edge«&DT in our
guashes the modification if it has not yet been sent to otff@plementation). This way, Pangaea dynamically builds

replicas. Delta merging is transparent to users becaus@ §°2nning tree whose shape closely matches the physical
adds no delay to propagation. network topology. Figurg]5 shows an example. In Sec-

tion[7.6, we show that this technique drastically reduces
the use of wide-area networks when updating shared files.

5.1.1 Optimization 1: delta propagation

5.1.2 Optimization 2: harbingers

. . . . 4Pangaea batches NFS write requests and flushes data to disk and other
Flooding guarantees reliable delivery by propagating URpiicas only after a “commit” request/[4]. Thus, the size of an update can

dates (deltas or full contents) over multiple links at eagfow larger than the typical “write” request size of 8KB.

scribed in[[28]. Our principle is always to let the child file
(“foo " in our example), rather than its parentl(ite ”

® ® ® ® ® ® ® ® or “bob™”), dictate the outcome of the conflict resolution
©-® OiP S0 ® using the “last-writer-wins” rule. We thus let the file’s
B backpointer (Sectiof 3.3)uthoritatively define the file’s
O=E D-® ©~® O=~® location in the file-system namespace. We implement di-

rectory operations, such as “mv” and “rm”, as a change to
. _] ~ thefile’s backpointer(s). When a replica receives a change
Figure 5 An example of update propagation for a file with six 4 its hackpointer, it also reflects the change to its parents
replicas, A to F. Thick edges represent fast links. (1) An update by creating, deleting, or modifying the corresponding en-
is issued at A. (2) A sends a harbinger via the fat edge to C. C ? ! o’ L

trles[ff] The parent directory will, in turn, flood the change

forwards the harbinger to D and F quickly. (3) D forwards the ; . . .
harbinger to E. After some time, A sends the harbinger to B, and a toits repllcas. In practice, we randomly delay the dlreCtory_

spanning tree is formed. Links not in the tree are used as backups ~€Ntry patching and SUbsequent ﬂooding, bepause there is a
when some of the tree links fail. (4) The update’s body is pushed 900d chance that other replicas of the file will do the same.

(1) (2 (3 (4)

along the tree edges. In practice, steps 2-4 proceed in parallel. Figure[® illustrates how Pangaea resolves the first conflict
scenario. The same policy is used to resolve the mv-rmdir
5.2 Conflict resolution conflict: when a replica detects the absence of the direc-

tory entry corresponding to its backpointer, it re-creates the
With optimistic replication, concurrent updates are intry, which potentially involves re-creating the directory
evitable, although raré [35, B1]. We use a combination it$elf and the ancestor directories recursively, all the way to
version vectors and the last-writer-wins rule to resolve caifie root.
flicts. A directory in Pangaea is, in effect, merely a copy of the
First, recall that when delta timestamps mismatcBackpointers of its children. Thus, resolving conflicts on di-
servers revert to full-state transfer. We then use version vegctory contents is done by applying the “last-writer-wins”
tors [23] to separate true conflicts from other causes (elgle to individual entries. If a file is to be removed from a
missing updates) that can be fixed simply by overwritirf§jrectory, the directory still keeps the entry but marks it as
the replica. This simplifies conflict resolution. “‘dead” (i.e., it acts as a “death certificate’ [7]), so that we
For conflicts on the contents of a regular file, we cuf@n detect when a stale change to the entry arrives in the
rently offer users two options. The first is the “last-writefHture.
wins” rule using update timestamps (attributein Fig-
ure[3). In this case, the clocks of servers should be loosgh3 Controlling replica divergence
synchronized, e.g., using NTP, to respect the users’ intuitive
sense of update ordering. The second option is to concdtBe protocols described so far do not provide hard guar-
nate two versions in the file and let the user fix the conflightees for the degree of replica divergence—consistency is
manually. Other options, such as application-specific @chieved only eventually.
solvers[[36/ 18, 32], are certainly possible, but we have notl0 alleviate this problem, Pangaea introduces an option,
implemented them yet. called the “red button”, to provide users confirmation of up-
Conflicts regarding file attributes or directory entries afiate delivery. The red button, when pressed for a particular
more difficult to handle. They fall into two categories. Thil€, Sénds harbingers for any pending updates to neighbor-
first is a conflict between two directory-update operatior/89 replicas. These harbingers (and corresponding updates)

for example, Alice doesrhv /foo /alice/foo »and Ccirculate among replicas as described in Sedfion 5.1.2. A
Bob does fv /foo /bob/foo ” concurrently. In the feplica, however, does not acknowledge a harbinger until

end, we want one of the updates to take effect, but not bl the graph neighbors to which it forwarded the harbinger
The second category is a conflict between “rmdir” arfffknowledge it or time out (to avoid deadlocking, a replica
any other operation; for example, Alice doasaV* /foo replies immediately when it receives the same harbinger
Jalice/foo » and Bob does fmdir /alice " These twice). The user who pressed the red button waits until
problems are difficult to handle, because files may be repfi€ operation is fully acknowledged or some replicas time
cated on different sets of nodes, and a node might recéi, in which case the user is presented with the list of un-
only one of the conflicting updates and fail to detect trvailable replicas.

conflictin the flrf‘St place.) o 5 The replica can always find a replica of the parent directory in the
We only outline our solution here, as it is fully desame node, because of the name-space-containment property.

50: ts=2, d={[51, foo, 4], [52, alice, 5], [53, bob, 6]}
51: bp=[50, foo], ts=4

52: bp=[50, alice], ts=5, d={}

53: bp=[50, bob], ts=6, d={}

@)

%nmv foo /alicel/foo % mv foo /bob/foo

50: ts=8, d={[51, *f00, 8], n [50: ts=9, d={[51, *fo0, 9]
(2) [52, alice, 5], (2) [52, alice, 5],
[53, bob, 6]} [53, bob, 6]}
51: bp=[52, foo], ts=8 51: bp=[53, foo], ts=9
52: bp=[50,alice], ts=8, 52: bp=[50,alice],ts=5,d={}
d={[51, foo, 8]} 53: bp=[50,bob], ts=9,
53: bp=[50,bob],ts=6,d={} d={[51, foo, 9]}

Update sent from bob to alice:

(3) 50: ts=9, d={[51, *foo, 9], [52, alice, 5], [53, bob, 61}
51: bp=[53, foo], ts=9

52: bp=[50,alice], ts=10, d={[51,*foo, 8]}

53: bp=[50,bob], ts=9, d=[{51,foo, 9}]

Figure 6: Example of conflict resolution involving four files,
“/” (FileID=50), “/foo” (FileID=51), ‘/alice/” (FileID=52), and
“/bob/” (FileID=53). “ts=2" shows the replica’s timestamp.
“bp=[50,foo]” shows that the backpointer of the replica indi-
cates that the file has the name “foo” in the directory 50 (“/”).
“d={[51,fo0,4]}” means that the directory contains one entry, a
file “foo” with ID of 51 and timestamp of 4. Bold texts indicate
changes from the previous step. Entries marked “*foo” are death
certificates. (1) Two sites initially store the same contents. (2)
Alice does “mv /foo /alice/foo”. (2') Bob concurrently does “mv
/foo /bob/foo” on another node. Because Bob’s update has a newer
timestamp (ts=9) than Alice’s (ts=8), we want Bob’s to win over
Alice’s. (3) When Alice’s node receives the update from Bob’s,
the replica of file 51 will notice that its backpointer has changed
from [52, foo] to [53, foo]. This change triggers the replica to
delete the entry from /alice and add the entry to /bob .

This option gives the user confirmation that her upda
have been delivered to remote nodes and allows her to t
actions contingent upon stable delivery, such as emaili
her colleagues about the new contents. The red buttof,
however, still does not guarantee a single-copy serializa
ity, as it cannot prevent two users from changing the sahf

file simultaneously.

6 Failure recovery

For permanent failures, we try to clean all data structures
associated with the failed node so that the system runs as if
the node had never existed in the first place.

6.1 Recovering from temporary failures

Temporary failures are handled by retrying. A node persis-
tently logs any outstanding remote-operation requests, such
as contents update, random walk, or edge addition. A node
retries logged updates upon reboot or after it detects another
node’s recovery. This recovery logic may sometimes cre-
ate uni-directional edges or more edges than desired, but
it maintains the most important invariant, that the graphs
arem-connected and that all replicas are reachable in the
hierarchical name space.

Pangaea reduces the logging overhead during contents-
update flooding, by logging only the ID of the modified file
and keeping deltas only in memory. To reduce the memory
footprint further, when a node finds out that deltas to an
unresponsive node are piling up, the sender discards the
deltas and falls back on full-state transfer.

6.2 Recovering from permanent failures

Permanent failures are handled by a garbage collection
(GC) module. The GC module periodically scans local
disks and discovers replicas that have edges to permanently
failed nodes. When the GC module finds an edge to a failed
tlagonze replica, it replaces the edge by performing a random
walk starting from a gold replica (Sectipn }4.4).
Er;'gecovering from a permanent loss of a gold replica is
re complex. When a gold replica, sBydetects a per-
gfjanent loss of another gold replidacreates a new gold
é‘)lica on a live node chosen using the criteria described
in Sectiorf 4.]L. Because gold replicas form a clique (Sec-
tion[3.3), P can always detect such a loss. This choice is
flooded toall the replicas of the file, using the protocol de-
scribed in Sectiop|5, to let them update their uni-directional
links to the gold replicas. SimultaneousR,updates the

Failure recovery in Pangaea is simplified due to three prdpeal replica of the parent directory(ies), found in its back-
erties: 1) the randomized nature of replica graphs that tolpeinter(s), to reflecP’s new gold-replica set. This change
ate operation disruptions; 2) the idempotency of update dpflooded to other replicas of the directories. Rarely, when
erations; including NFS requests; and 3) the use of a unifibeé system is in transient state, multiple gold replicas may
logging module that allows any operation to be re-startedhitiate this protocol simultaneously. Such a situation is

We distinguish two types of failures: temporary failresolved using the last-writer-wins policy, as described in
ures and permanent failures. They are currently distiBectiof5.P.

guished simply by their duration—a crash becomes permaRecovering from a permanent node loss is an inherently
nent when a node is suspected to have failed continuouskpensive procedure, because data stored on the failed node
for more than two weeks. Given that the vast majority ofiust eventually be re-created somewhere else. The prob-
failures are temporary [11] 3], we set two different goalkem is exacerbated in Pangaea, because it does not have
For temporary failures, we try to reduce the recovery coatcentral authority to manage the locations of replicas—

CPU Disk Mem

730MHz | Quantum Atlas 9WLS 256MB
1.8GHz | Quantum Atlas Tw367L | 512MB
400MHz | seagate Cheetah 39236LW 256MB

all surviving nodes must scan their own disks to discover Type
replicas that require recovery. To lessen the impact, theA
GC module tries to discover as many replicas that needsB
recovery as possible with a single disk scan. We set th c
default GC interval to be every three nights, which reduc&gble 1: The type and number of PCs used in the experiments.
the scanning overhead dramatically while still offering th&ll the CPUs are versions of Pentiums.
expected file availability in the order of six-nines, assum-
ing three gold replicas per file and a mean server lifetinoé a file or directory. The node-wide metadata file keeps
of 290 daysI[8]. the extended attributes of all replicas stored on the server,
including graph edges and version vectors. Data files for
. directories and the metadata file are both implemented us-
7 System evaluation ing the Berkeley DB library[[30] that maintains a hash table
in a file. The intention-log file is also implemented using
This section evaluates the design and implementationtjgé Berkeley DB to record update operations that must sur-
Pangaea. First, we investigate the baseline performancegé a node crash. All the Berkeley DB files are managed
overheads of Pangaea and show that it performs compgéing its “environments” feature that supports transactions
tively with other distributed file systems, even in a LANthrough low-level logging. This architecture allows meta-
Further, we measure the latency, network economy, afgta changes to multiple files to be flushed with a sequential
availability of Pangaea in a wide-area networking envirogrite to the low-level log.
ment in the following ways:

AW NH

o We study the latency of Pangaea using two workloads7a2 ~Experimental settings
personal workload (Andrew benchmark) and a BBS-like

workload involving extensive data sharing. For the peWe compare Pangaea to Linux’s in-kernel NFS version 3

sonal workload, we show that the user sees only local §E/Ver and Coda, all running on Linux-2.4.18, with ext3 as

cess latency on a node connected to a slow network 4 native file system. ,
that roaming users can benefit by fetching their personal/Vé 16t €ach Pangaea server serve only clients on the same

data from nearby sources. Using the second worklo&@de- Both Pangaea and NFS flush buffers synchronously
we show that as a file is shared by more users, Pangifedisk before replying to a client, as required by the NFS

progressively lowers the access latency by transferrifgecifications [4]. Coda supports two main modes of op-
data between nearby clients. eration: strongly connected mode (denoteda-s here-

) after) that provides open-close semantics, and weakly con-

e We demonstrate network economy by studying ho¥.cred mode (denotedda-w hereafter) that improves the
updates are propagated for widely shared files. ponse-time of write operations by asynchronously trick-
show that Pangaea transfers data predominantly Ofgg \ndates to the server. We mainly evaluate coda-w,
fast links. since its semantics are closer to Pangaea’s.

e To demonstrate the effect of pervasive replication on theTable[1 shows the machines we used for the evaluation.
availability of the system, we analyze traces from a fikell the machines are physically connected by a 100Mb/s
server and show that Pangaea disturbs users far less thduernet. Disks on all the machines are large enough
traditional replication policies. that replicas never had to be purged in either Pangaea or

Coda. For NFS and Coda, we configured a single server

on a type-A machine. Other machines are used as clients.

For Pangaea, all machines are used as servers and appli-

We have implemented Pangaea as a user-space NFS @afons access files from their local servers. For CPU-

sion 3) server using the SFS toolKit[19]. Our prototype intensive workloads (i.e., Andrew), we used a type-A ma-

plements all the features described in the paper, except ttfdne for all the experiments. The other experiments are
support for recovery from permanent failures (Secfipn 8pmpletely network-bound, and thus they are insensitive to
is still fragmentary. Pangaea currently consists of 30,00°U speeds.

lines of C++ code. For our wide-area experiments, we built a simulated
A Pangaea server maintains three types of files on " WAN to evaluate Pangaea reliably in a variety of network-

local file system: data files, the metadata file, and the ing conditions. We routed packets to a type-B FreeBSD

intention-log file. A data file is created for each replicanode (not included in the table) running Dummynet [26] to

7.1 Prototype implementation

add artificial delays and bandwidth restrictions. This router
node was fast enough never to become a bottleneck in any

§\° Overhead
of our experiments. 100 :

] Received
M Sent

m 75

. . = 50

7.3 Baseline performance in a LAN oe
This section evaluates Pangaea’s performance in a LAN us- 0

ing a sequential workload without data sharing. While such o 0T (62 T g gt
an environment is not Pangaea’s main target, we conducted O oF T o T O 0
this study to test Pangaea’s ability to serve people’s dafigure 7: Network bandwidth consumed during the Andrew
storage needs and to understand the system’s behavidreiighmark. The “overhead” bars show bytes consumed by
an idealized situation. harbingers and duplicate updates. The numbers above the bars

We created a variation of the Andrew benchrfRhttkat show the percentage of overhead.
simulates a single-person, engineering-oriented workloagblicas are gold and they form a clique, Pangaea would
It has the same mix of operations as the original Andrevéve consumed 4 to 9 times the bandwidtipang-2 were
benchmark([13], but the volume of the data is expandgdot for harbingers. Instead, its network usage is near-
twenty-fold to allow for accurate measurements on modesptimal, with less than 2% of the bandwidth wasted.
hardware. This benchmark, denotéddrew-Tcl hereafter, Table[3 shows network bandwidth consumption for com-
consists of five stages: (h)kdir: creating 200 directories, mon file-system update operations. Operations such as cre-
(2) copy: copying the Tcl-8.4 source files from one direcating a file or writing one byte show a high percentage of
tory to another, (3ytat: doing “Is -I” on the source files, overhead, since they are sent directly without harbingers,
(4) grep: doing “du” and “grep” on the source files, and (Sput they have only a minor impact on the overall wasted
compile: compiling the source code. We averaged resuliandwidth since their size is small. On the other hand, bulk
from four runs per system, with 95% confidence intervalrites, which make up the majority of the overall traffic,
below 3% for all the numbers presented. incur almost no overhead.

Table[2 shows the time to complete the benchmark.
Throughout the evaluation, labgang-N stands for a Pan-

i : : s 480 MOS0
gaea system withN (gold) replicas per file. Pangaea’s (\@0 A 6@\3\&\9
performance is comparable to NFS. This is as expected, 360 0«@@\5@?‘;‘@2@\ i _
because both systems perform about the same amountéi)fmo A oe® g?égplle
buffer flushing, which is the main source of overhead. Parg 190 stat
gaea is substantially slower onlyimkdir . This is because $ RRNN 9 frfk%yir
Pangaea must create a Berkeley DB file for each new direc- 0 N N
tory, which is a relatively expensive operation. Pangaea’s a@'\’&@ﬁo@o@%o@q—“ A\ Goéa—\“

performance is mostly independent of a file’s replication
factor, thanks to optimistic replication, where most of tHfelgure 8: Andrew-Tcl benchmark results on a node with a slow
replication processing happens in the background. network link. The labels nelxt to the bars indicate the link speeds.
Coda’s weakly connected modeogla-w) is very fast. For Pangaea, these are t1.16 links betweez? any two servers; for NFS
This is due to implementation differences: whereas Pé‘;rlf Coda, they are the links between clients and server. NFS took
gaea and NFS flush buffers to disk after every update opﬁe(gQ S-ecmﬁf[;; 4 Sth/IS(network. and it did not finish after two
ation, Coda avoids that by intercepting low-level fiIe-accessurs e > nemort
(VFS) requests using a small in-kernel module.
Figure[7 shows the network bandwidth used during tize .
benchmark. “Overhead” is defined to be harbingers a d4 Performance of personal workload in
update messages that turn out to be duplicateang-1 WANSs

does not involve any network activity since it stores fil§g, 14 the Andrew-Tcl benchmark to study the perfor-
only on the local server. Numbers fpang-3 and-4 ShOW 506 of the systems in WANS for a personal workload.

the effect of Pa_ngaea’s harbinge_zr algorithm in conserwgﬁrce this workload involves no data sharing, the elapsed
network-bandwidth usage. In this benchmark, becauset e depends (if at all) only on the latency and capacity of

6This benchmark is available frofnttp://www.hpl.hp.com/ the Ii_nk between the client and the server. FidJre 8 shows
personallysaito | the time needed to complete the benchmark. Pangaea and

http://www.hpl.hp.com/personal/ysaito
http://www.hpl.hp.com/personal/ysaito

pang-1 | pang-2 | pang-3 | pang-4 | NFS Coda-s | Coda-w | ext3
mkdir 2.04 2.04 2.18 2.28 0.316 | 2.25 0.047 0.021
copy 3.40 3.79 3.85 3.90 3.50 |201.0 0.85 0.264
stat 0.91 0.90 0.90 0.91 0.87 0.86 0.86 0.162
grep 2.09 2.11 2.13 2.13 2.20 1.22 1.20 0.925
compile 74.4 75.3 75.8 75.9 77.2 90.2 62.1 61.5
Total 82.84 | 84.14 | 84.86 | 85.12 | 84.08 |295.5 65.05 62.87

Table 2: Andrew-Tcl benchmark results in a LAN environment. Numbers are in seconds. Label pang-N shows Pangaea’s perfor-
mance when it creates N replicas for each new file. Ext3 is Linux’s native (local) file system.

pang-1 pang-2 pang-3 pang-4 NFS | coda-w | coda-s

Bytes Bytes | Overhead Bytes | Overhead Bytes | Overhead Bytes Bytes Bytes

Create 0 248 0% 1.29K 60% 2.61K 68% 503 1.46K 1.96K
write 1B 0 323 0% 854 61% 2.01K 68% 667 944 935
write 50KB 0 | 52.04K 0% | 104.98K 1.49% | 157.44K 1.52% | 53.21K | 55.56K | 82.13K
write 25MB 0 | 26.22M 0% | 52.44M 0.01% | 78.67M 0.02% | 26.76M | 1.56M | 38.75M

Table 3: Network bandwidth consumption for common file-system operations. Shows the total number of bytes transmitted between
all the nodes for each operation. “Overhead” shows the percentage of the bandwidth used by harbingers and duplicate updates.

Coda totally hide the network latency, because the bench-

H pang

mark is designed so that it reads all the source data from L] coda-w
the local disk, and the two systems can propagate updates 180
to other nodes in the background. On the other hand, theg 120 @
performance of NFS degrades severely across slow links. § ®; O
® 60 N /o
n
0
7.5 Roaming Fe o o o o
o o8 ST $7 ST
. NS % <7 N Ny
Roaming, i.e., a single user moving between different <7

nodes, is an important use of distributed file systems. \lA—/E]ure 9: The result of recompiling the Tel source code.

gxpeqt Pangaea to perform well i.n non-uniform ne_tworli§0Mb/S + 1Mb/s, for example, means that the link between the
in which nodes are connected with networks of differet, client nodes (link (a) in the right-side picture) is 100Mb/s, and

speeds. We simulated roaming using three no8eshich ke link between the benchmark client and the server (link (b)) is
stores the files initially and is the server in the case of1b/s. The speed of other links is irrelevant in this experiment.
Coda, and two type-A node€; and_Cz. We first run the 7.6 Data sharing in non-uniform environ-
Andrew-Tcl benchmark to completion on no@g, delete ¢

the*.o files, and then re-run only the compilation stage ments

of the benchmark on nodg,. We vary two parameters:the workload characteristics of wide-area collaboration
the link speed betwee@; andC, and the link speed be-gystems are not well known. We thus created a synthetic
tween them an&. As seen from Figurig]8, the performancgenchmark modeled after a bulletin-board system. In this
depends, if at all, only on these two parameters. benchmark, articles (files) are continuously posted or up-
Figure[9 shows the results. It shows that when the ndated from nodes chosen uniformly at random; other ran-
work is uniform, i.e., when the nodes are placed eithdomly chosen nodes (i.e., users) fetch new articles not yet
all close by or all far apart, Pangaea and Coda perforead. A file system’s performance is measured by two met-
comparably. However, in non-uniform networks, Pangagas: the mean latency of reading a file never accessed be-
achieves better performance than Coda by transferring dat@ by the server, and the wide-area network bandwidth
between nearby nodes. In contrast, Coda clients alwapmsumption for files that are updated. These two numbers
fetch data from the server. (Pangaea actually perforgespend, if at all, only on the file size, the number of exist-
slightly better in uniformly slow networks. We surmiséng replicas (since Pangaea can perform short-cut creation),
that the reason is that Pangaea uses TCP for data transfed, the order in which these replicas are created (since it
whereas Coda uses its own UDP-based protocol.) affects the shape of the graph). We choose an article size

ey O
, O:LAN O v T LT T T
D DT g N T T T
) e © — :10msRTT, 100Mbls 92 0.7571% ~Hub
. L oF —=-Random
° ° @ :100ms RTT, 5Mb/s S g 0.5 —pPangaea
- :300ms RTT, IMb/s S > 0.25
. 2)
Figure 10: Simulated network configurations modeled after our g S
corporate network. The gray circle represents the SF bay area < 0.0 T T T

metropolitan-area network (MAN), the upper bubble represents 0 10 20 30
Bristol (UK), and the other bubbles represent India, Israel, and

Japan. The number in a circle shows the number of servers run- .
ning in the LAN. Figure 11: The average time needed to read a new file in a col-

laborative environment. The X axis shows the number of existing
of 50KB, a size typical in Usenel [29]. We try t0 averrepiicas of a file. The Y axis shows the mean latency to access a
age out the final parameter by creating and reading ab@lston a node that does not yet store a replica of the file.
1000 random files for each sample point and computing the
mean. We run both article posters and readers at a constant
speed £5 articles posted or read/second), because our per-
formance metrics are independent of request inter-arrival
time. S 100

In this benchmark, we run multiple servers in a single B0l na oannana areea

(physical) node to build a configuration with a realistic size§ 60 L e S Ty (WAN)
To avoid overloading the CPU or the disk, we choose to ruf 4° B +Random (WAN)
six virtual servers on a type-B machine (Tgble 1), and threg 2° e [oPang (WAN)
virtual servers on each of other machines, with the tot 07 N N N
of 36 servers on 9 physical nodes. FigQiré 10 shows the
simulated geographical distribution of nodes, modeled after # of renlicas
HP’s corporate network. For the same logistical reasofégure 12: Wide-area network bandwidth usage during file

instead of Coda, we compare three versions of Pangaeaupdates. The Y axis shows the percentage of traffic routed
) _) through the indicated networks. “WAN+MAN” shows the traf-
pang: Pangaea with three gold replicas per new file. fic that lowed through non-LAN (i.c., those with >10ms RTT),

hub: This configuration centralizes replica managemetificreas “WAN™ shows the traffic that flowed through networks
th >180ms RTT (see also Figure[I0).

by creating, for each file, one gold replica on a serv&f
chosen from available servers uniformly at randor(#-of-replicas— 1) « filesize), Pangaea uses far less wide-
Bronze replicas connect only to the gold replica. Umrea network traffic since it transfers data preferentially
dates can still be issued at any replica, but they are alibng fast links using dynamic spanning-tree construction
routed through the gold replica. This roughly corrgSection5.13). This trend becomes accentuated as more
sponds to Coda. replicas are created.

random : This configuration creates a graph by using sim- _) i .
ple random walks without considering either gold repli- Fi9ure[13 shows the time thgang configuration took

cas or network proximity. It is chosen to test the effelf Propagate updates to replicas of files during the same ex-
of Pangaea’s graph-construction policy. periment. The “max” lines show large fluctuations, because

updates must travel over 300ms RTT links multiple times
We expect Pangaea’s access latency to be reducedisisg TCP. Both numbers are independent of the number of
more replicas are added, since that increases the chaegpdicas, because (given a specific network configuration)
of file contents being transferred to a new replica fromthe propagation delay depends only on the graph diameter,
nearby existing replica. Figufe|l1 confirms this predictiowhich is three, in this configuration. We believe that 4 sec-
In contrast, thehub configuration shows no speedup nonds average/15 seconds maximum delay for propagating
matter how many replicas of a file exist, because it alway8KB of contents over 300ms, 1Mb/s links is reasonable.
fetches data from the central replica. In fact, most of the time is spent in waiting when construct-
Figure [I2 shows the network bandwidth consumrg aspanning tree (Sectipn5J1.3); cutting the delay param-
tion during file updates. Although all the systems comiter would shrink the propagation latency, but potentially
sume the same total amount of traffic per update (i.eQuld worsen the network bandwidth usage.

of renlicas

0
> L15
e 0
QL 14 Lo A Central U
T SRl +:Random U
= 10 geltte)l_ (max) 83 1.0 -o-Pang U
g arbinger (max) g =S A Central HP
= —delta (mean) @ 0.5 +-Random HP
S 6 A A ----harbinger (mean) o c -o~Pang HP
S | T S =9
o 27 x x x SO0 T 1 T T T T 1
a 4 14 24 34 © ,$ o? S & &S

_ S % S 8O

renlicas vy
Figure 13: The time needed to propagate updates to all replicas. # of renlicas

The dashed lines show the time needed to distribute harbingers to Figure 14: File-reading latency in a simulated 3000-node sys-
replicas. They represent the window of inconsistency; i.e., ime tem. The meaning of the numbers is the same as in Figure[T]]

before which users may observe old contents. The solid lines rep-
resent the time needed to distribute actual updates. They represent
the number of seconds users wait before seeing the new contents.

. ’ : O\O 100 i TOTPER revnenis t}. ------- ﬁ. e L 3
The “mean” lines show the mean time needed for an update is- . "o,
. o 80 A AT A Central U
sued at one replica to arrive at all replicas, for a file with a specific %3 A ‘s, 4| -+ Random U
number of replicas. The “m'ax” lines shgw the maximum time § 4612 — + "Z'Egﬂ?,;,’ HP
observed for an update to arrive at all replicas of the file. > +-Random HP
< 20 -~Pang HP
7.7 Performance and network economy ata =
large scale © 9§ § O?Q S S
NY
The previous section demonstrated Pangaea’s ability to # of renlicas

fetch data frqm a nearby source and distribute deaﬁﬁure 15: Wide-area network bandwidth usage during file up-
through fast links, yet only at a small scale. This Segates in simulated 3000-node systems. The meaning of the num-
tion investigates whether these benefits still hold at a trulys is the same as in Figure[T2}

large scale, by using a discrete event simulator that ru;n

Pangaea’s graph-maintenance and update-distribution algb%- Availability analysis

rithms. We extracted performance parameters from the regls section studies the effects of pervasive replication, es-
testbed we used in the previous section, and ran essentlﬁggia"y name-space containment, on the system’s avail-
the same workload as before. We test two network coghility. A Pangaea server replicates not just replicas ac-
figurations. The first configuration, callétP, is the same cessed directly by the users, but also all the intermediate di-
as Figurg 10, but the number of nodes in each LAN is ifsctories needed to look up those replicas. Thus, we expect
creased eighty-fold, to a total of 3000 nodes. The secqbghgaea to disrupt users less than traditional approaches
configuration, calledJ, keeps the size of each LAN at Sixhat replicate files (or directories) on a fixed number of
nodes, but it increases the number of regions to 500 g{¥}es.

connects regions using 200ms RTT, SMb/s links. We perform trace-based analysis to verify this predic-
Figures[I andl 15 show average file-read latency dieh. Two types of configurations are compared: Pangaea
network bandwidth usage in these configurations. Thegih one to three gold replicas per file, and a system that
figures show the same trend as before, but the differenteglicates the entire file system contents on one to four
between the configurations are more pronounced. In partiedes. Our trace was collected on our departmental file
ular, in theHP configuration, Pangaea propagates updaggyver, and it contains 24 users and 116M total accesses to
almost entirely using local-area network for popular file§66K files [31]. To simulate a wide-area workload from
since it crosses over wide-area links only a fixed numbertbis single-node trace, we assume that each user is on a dif-
times, regardless of the number of replicas. Inheonfig- ferent node; thus, all the simulated configurations contain
uration, Pangaea still saves bandwidth, more visibly whé# nodes.
many replicas exist. The systems cannot improve read laFor each configuration, we start from an empty file sys-
tency much irlJ, because most of the accesses are forcedém and feed the first half of the trace to warm the system
go over wide area links, but Pangaea still shows improwgs. We then artificially introduce remote node crashes or
ment with many replicas. wide-area link failures. To simulate the former situation,

ing systems in three aspects: access latency, efficient usage

100.0 —_ _ . . o
A pang-1 (1)
e 100 --pang-2 (1.65) of WAN bandwidth, and file availability.
) 1.0 —pang-3 (2.3)
5 01 —-fixed-1 (0.66)
5 ool ~fxed2(132) | Acknowledgements
* 0.001 —fixed-3 (1.96)
0.00017 T Lofixed-4 (2.62) We thank our shepherd Peter Druschel, the anonymous

T 1
123456 720212223 reviewers, and the members of our group in HP Labs—
of failures especially, Eric Anderson, Mahesh Kallahalla, Kim Kee-
Figure 16: Availability analysis using a file-system trace; the ton, Susan Spence, Ram Swaminathan, and John Wilkes—

users of a failed node move to a functioning node. The numbers for offering invaluable feedback that improved the quality
in parentheses show the overall storage consumption, normalized of this work.

to pang-1.

we crash 1 to 7 random nodes and redirect accesses byReferences
user on afallgd no.de to another random nod_e. To simul Atul Adya, William J. Bolosky, Miguel Castro, Ronnie
link failures, in which one to four nodes are isolated fro Chaiken, Gerald Cermak, John R. Douceur, John Howell,
the rest, we crash 20 to 23 random nodes and throw away Jacob R. Lorch, Marvin Theimer, and Roger Wattenhofer.
future activities by the users on the crashed nodes. We then FARSITE: Federated, available, and reliable storage for an
run the second half of the trace and observe how many of incompletely trusted environment. th Symp. on Op. Sys.
the users’ sessidfsan still complete successfully. We run ~ D€sign and Impl. (OSDJ))Boston, MA, USA, December

. . - ' - . . 2002.
simulation 2000 times for each configuration with different _) _
random seeds and average the results. [2] Thomas Anderson, Michael Dahlin, Jeanna Neefe, David

. e Patterson, Drew Roselli, and Randolph Warig. Serverless
Figure[I6 shows the results. For network partitioning, etwork File Systems. 145th Symp. on Op. Sys. Princi-

Pangaea wins by a huge margin; it shows near-100% avail- |ples (SOSP)pages 109-126, Copper Mountain, CO, USA,
ability thanks to pervasive replication, whereas the other December 1995.

configurations must rely on remote servers for much gi] william J. Bolosky, John R. Douceur, David Ely, and Mar-

the file operations. For node failures, the differences are vin Theimer. |Feasibility of a Serverless Distributed File

smaller. However, we can still observe that for the same System Deployed on an Existing Set of Desktop PCs. In

storage overhead, Pangaea offers better availability. E:/I(I)Er'llfi?cl)(g S'\)"sgsg;eﬂ‘ﬂgaggn'\t"aog?;rr;g SLCSQAE’- J?ﬁ’]sé Z(CS)C')%;'

[4] B. Callaghan, B. Pawlowski, and P. Staubach. RFC1813:
i NFS version 3 protocol specification. http://www.fags.org-
8 Conclu3|0ns [/rfcs/rfc1813.html, June 1995.

Pangaea is a wide-area file system that targets the needslfdr Pei Cao and Sandy Irani. Cost-Aware WWW proxy caching
data access and sharing of distributed communities of users. ?bgsc’lq_”g;nﬁbgt'leféusci'm&(ssg %%C%':T:Qéerri‘gge‘:h' and|Sys.
It federates commodity computers provided by users. Pan- ¥, LA ’ '

; ; ; P . ; 6] Frank Dabek, Frans Kaashoek, David Karger, Robert Mor-
gae_za is built 0.” three design principles: 1) pervaSIye r.e.pI[ris, and lon Stoica. Wide-area cooperative storage with CFS.
cation to provide low-access latency and high availability, " sin Symp. on Op. Sys. Principles (SOSRjges 202—

2) randomized graph-based replica management that adapts 215, | ake Louise, AB, Canada, October 2001.
to Change§ ir? the systgm and conserves WAN bandWidtP,] Alan J. Demers, Daniel H. Greene, Carl Hauser, Wes
and 3) optimistic consistency that allows users to access |ish, and John Larson. Epidemic algorithms for replicated
data at any time, from anywhere. database maintenance. [@h Symp. on Princ. of Distr.
The evaluation of Pangaea shows that Pangaea is as fastComp. (PODC)pages 1-12, Vancouver, BC, Canada, Au-
and as efficient as other distributed file systems, even in a 9ust1987.
LAN. The benefits of pervasive replication and the adap8] Armando Fox and Eric A. Brewer. Harvest, yield, and scal-
tive graph-based protocols become clear in heterogeneous ablé tolerant systems. 16th Workshop on Hot Topics in
environments that are typical of the Internet and large |n ggeﬁgg? fﬂﬁfhmfg(g'gﬂgi}méisﬁc_ﬁg?} Rio Rico,
tranets. In these environments, Pangaea outperforms exist- rmarkatos/papers/notos.ps

"We define a session to be either a directory operation @itink), [9] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y-. Shavitt, ar_ld
or a series of system calls to a file between and includipgn and L. Zhang. IDMaps: A global Internet host distance esti-
close . If any one of the system calls fails, we consider the session to mation service. I[EEE/ACM Trans. on Networking (TON)
fail. 9(5):525-540, October 2001.

http://www.usenix.org/publications/library/proceedings/osdi02
http://www.usenix.org/publications/library/proceedings/osdi02
http://www.acm.org/pubs/articles/proceedings/ops/224056/p109-anderson/p109-anderson.pdf
http://www.acm.org/pubs/articles/proceedings/ops/224056/p109-anderson/p109-anderson.pdf
http://portal.acm.org/toc.cfm?id=224056&coll=portal&dl=ACM&type=proceeding
http://portal.acm.org/toc.cfm?id=224056&coll=portal&dl=ACM&type=proceeding
http://research.microsoft.com/research/sn/Farsite/Sigmetrics2000.pdf
http://research.microsoft.com/research/sn/Farsite/Sigmetrics2000.pdf
http://www.faqs.org/rfcs/rfc1813.html
http://www.faqs.org/rfcs/rfc1813.html
http://citeseer.nj.nec.com/cao97costaware.html
http://citeseer.nj.nec.com/cao97costaware.html
http://www.usenix.org/publications/library/proceedings/usits97/
http://www.usenix.org/publications/library/proceedings/usits97/
http://portal.acm.org/toc.cfm?id=41840&coll=portal&dl=ACM&type=proceeding
http://portal.acm.org/toc.cfm?id=41840&coll=portal&dl=ACM&type=proceeding
http://www.csd.uch.gr/~markatos/papers/hotos.ps
http://www.csd.uch.gr/~markatos/papers/hotos.ps

[10] Richard A. Golding, Darrell D. E. Long, and John Wilkes[24] Konstantinos Psounis and Balaji Prabhakar. A randomized

[11]

[12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

[21]

[22]

(23]

The refdbms distributed bibliographic database system. In
USENIX Winter Tech. ConfSan Francisco, CA, USA, Jan-
uary 1994. [25]

Jim Gray. A census of Tandem system availability between
1985 and 1990IEEE Trans. on Reliability39(4):409-418,
October 1990.

Hakan Grahn and Per Steristr and Michel Dubois. Implé-
mentation and evaluation of update-based cache protoc[%a]
under relaxed memory consistency modélsture Genera-

tion Computer System$1(3), June 1995.

John Howard, Michael Kazar, Sherri Menees, David
Nichols, M. Satyanarayanan, Robert Sidebotham, and Mica-
hel West. Scale and performance in a distributed file systefi©
ACM Trans. on Comp. Sys. (TOCS{1), 1988.

M. Ji, E. Felten, R. Wang, and J. P. Singh. Archipelago:
an island-based file system for highly available and scalabté]
Internet services. IWSENIX Windows Systems Symposium
August 2000.

Leonard Kawell Jr., Steven Beckhart, Timoty Halvorsen,
Raymond Ozzie, and Irene Greif. Replicated docum
management in a group communication system.Ctmf.

on Comp.-Supported Coop. Work (CSC@hapel Hill, NC,

USA, October 1988.

Minkyong Kim, Landon P. Cox, and Brian D. Noble. Safety,
visibility, and performance in a wide-area file system. In
USENIX Conf. on File and Storage Sys. (FASWpnterey, 132]
CA, January 2002. Usenix.

John Kubiatowicz, David Bindel, Yan Chen, Steven Czer-
winski, Patrick Eaton, Dennis Geels, Ramakrishna Gum-
madi, Sean Rhea, Hakim Weatherspoon, Westley Weimer,
Chris Wells, and Ben Zhao. OceanStore: An architecture
for global-scale persistent storage 9ith Int. Conf. on Arch. [33]
Support for Prog. Lang. and Op. Sys. (ASPLOS-p&ges
190-201, Cambridge, MA, USA, November 2000.

P. Kumar and M. Satyanarayanan. Flexible and safe resolu-
tion of file conflicts. INUSENIX Winter Tech. Confpages 34
95-106, New Orleans, LA, USA, January 1995. [34]

David Mazeres. | A toolkit for user-level file systems. In
USENIX Annual Tech. ConBoston, MA, USA, June 2001.

Lily B. Mummert, Maria R. Ebling, and M. Satyanarayanan.
Exploiting weak connectivity for mobile file access. 1&tH [35]
Symp. on Op. Sys. Principles (SOSPges 143-155, Cop-
per Mountain, CO, USA, December 1995.

Athicha Muthitacharoen, Benjie Chen, and David Maes. [36]
A low-bandwidth network file system. [B8th Symp. on Op.
Sys. Principles (SOSPpages 174-187, Lake Louise, AB,
Canada, October 2001.

Athicha Muthitacharoen, Robert Morris, Thomer M. Gil 37]
and Benjie Chen. Ivy: A read/write peer-to-peer file syé-
tem. In/5th Symp. on Op. Sys. Design and Impl. (O$DI)
Boston, MA, USA, December 2002.

D. Scott Parker, Gerald Popek, Gerard Rudisin, Allen
Stoughton, Bruce Walker, Evelyn Walton, Johanna Chow,
David Edwards, Stephen Kiser, and Charles Kline. Detec-
tion of mutual inconsistency in distributed system&EE
Trans. on Software Engineerin§E-9(3):240-247, 1983.

(31]

web-cache replacement scheme. Ihfocom Anchorage,
AL, USA, April 2001.

David H. RatnerRoam: A Scalable Replication Systen for
Mobile and Distributed Computing PhD thesis, UC Los
Angeles, 1998. Tech. Report. no. UCLA-CSD-970044.

26] Luigi Rizzo. Dummynethttp://info.iet.unipi.

it/ luigi/ip dummynet/ , 2001.

Antony Rowstron and Peter Druschel. Storage management
and caching in PAST, a large-scale, persistent peer-to-peer
storage utility. In18th Symp. on Op. Sys. Principles (SOSP)
pages 188-201, Lake Louise, AB, Canada, October 2001.

] Yasushi Saito and Christos Karamanolis. Replica consis-

tency management in the pangaea wide-area file system.
Technical report, HP Labs, 2002. To be published.

Yasushi Saito, Jeffrey Mogul, and Ben Vergh-
ese. A Usenet performance study, September 1998.
http://www.research.digital.com/wrl/

projects/newsbench/

| Sleepycat Software. The Berkeley database, 2D6@.:

/Isleepycat.com

Susan Spence, Erik Riedel, and Magnus Karlsson. Adap-
tive consistency—patterns of sharing in a networked world.
Technical Report HPL-SSP-2002-10, HP Labs, February
2002.

Douglas B. Terry, Marvin M. Theimer, Karin Petersen,
Alan J. Demers, Mike J. Spreitzer, and Carl H. Hauser. Man-
aging update conflicts in Bayou, a weakly connected repli-
cated storage system. Ibth Symp. on Op. Sys. Princigles
(SOSP) pages 172-183, Copper Mountain, CO, USA, De-
cember 1995.

Chandramohan Thekkath, Timothy Mann, and Edward Lee.
Frangipani: a scalable distributed file system1&th Symp.

on Op. Sys. Principles (SO$R)ages 224-237, St. Malo,
France, October 1997.

Robbert van Renesse, Yaron Minsky, and Mark Hayden.
A gossip-style failure detection service. IFIP Int.
Conf. on Dist. Sys. Platforms and Open Dist. (Middle-
ware), 1998.http://www.cs.cornell.edu/Info/
People/rvripapers/pfd/pfd.ps

Werner Vogels! File system usage in Windows NT 4.0. In
17th Symp. on Op. Sys. Principles (SCSFges 93-109,
Kiawah Island, SC, USA, December 1999.

Bruce Walker, Gerald Popek, Robert English, Charles Kline,
and Greg Thiel. The Locus distributed operating system.
In[9th Symp. on Op. Sys. Principles (SCS#ges 49-70,
Bretton Woods, NH, USA, October 1983.

Haifeng Yu and Amin Vahdat. The Costs and Limits of
Availability for Replicated Services. 188th Symp. on Op.
Sys. Principles (SOSPpages 29-42, Lake Louise, AB,
Canada, October 2001.

http://citeseer.nj.nec.com/grahn95implementation.html
http://citeseer.nj.nec.com/grahn95implementation.html
http://citeseer.nj.nec.com/grahn95implementation.html
http://www.usenix.org/publications/library/proceedings/fast02
http://portal.acm.org/toc.cfm?id=378993&coll=portal&dl=ACM&type=proceeding
http://portal.acm.org/toc.cfm?id=378993&coll=portal&dl=ACM&type=proceeding
http://www.cs.cmu.edu/afs/cs/project/coda/Web/docdir/usenix95.pdf
http://www.cs.cmu.edu/afs/cs/project/coda/Web/docdir/usenix95.pdf
http://www.scs.cs.nyu.edu/~dm/nfsloop.ps
http://www.usenix.org/publications/library/proceedings/usenix01
http://www.acm.org/pubs/articles/proceedings/ops/224056/p143-mummert/p143-mummert.pdf
http://portal.acm.org/toc.cfm?id=224056&coll=portal&dl=ACM&type=proceeding
http://portal.acm.org/toc.cfm?id=224056&coll=portal&dl=ACM&type=proceeding
http://www.usenix.org/publications/library/proceedings/osdi02
file:citeseer.nj.nec.com/psounis01randomized.html
file:citeseer.nj.nec.com/psounis01randomized.html
http://ficus-www.cs.ucla.edu/ficus-members/ratner/papers/diss.ps.gz
http://ficus-www.cs.ucla.edu/ficus-members/ratner/papers/diss.ps.gz
http://info.iet.unipi.it/~luigi/ip_dummynet/
http://info.iet.unipi.it/~luigi/ip_dummynet/
http://www.research.digital.com/wrl/projects/newsbench/
http://www.research.digital.com/wrl/projects/newsbench/
http://sleepycat.com
http://sleepycat.com
http://www.acm.org/pubs/articles/proceedings/ops/224056/p172-terry/p172-terry.pdf
http://www.acm.org/pubs/articles/proceedings/ops/224056/p172-terry/p172-terry.pdf
http://www.acm.org/pubs/articles/proceedings/ops/224056/p172-terry/p172-terry.pdf
http://portal.acm.org/toc.cfm?id=224056&coll=portal&dl=ACM&type=proceeding
http://portal.acm.org/toc.cfm?id=224056&coll=portal&dl=ACM&type=proceeding
http://www.acm.org/pubs/articles/proceedings/ops/268998/p224-thekkath/p224-thekkath.pdf
http://portal.acm.org/toc.cfm?id=268998&coll=portal&dl=ACM&type=proceeding
http://portal.acm.org/toc.cfm?id=268998&coll=portal&dl=ACM&type=proceeding
http://www.cs.cornell.edu/Info/People/rvr/papers/pfd/pfd.ps
http://www.cs.cornell.edu/Info/People/rvr/papers/pfd/pfd.ps
http://www.cs.cornell.edu/vogels/NTFileTraces/index.htm
http://portal.acm.org/toc.cfm?id=319151&coll=portal&dl=ACM&type=proceeding
http://portal.acm.org/toc.cfm?id=800217&coll=portal&dl=ACM&type=proceeding
http://www-cse.ucsd.edu/sosp01/papers/vahdat.pdf
http://www-cse.ucsd.edu/sosp01/papers/vahdat.pdf

