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Taming Chaos: Stabilization of Aperiodic
Attractors by Noise

Walter J. Freeman, H.-J. Chang, B. C. Burke, P. A. Rose, and J. Badler

Abstract—A model named “KIII” of the olfactory system con-
tains an array of 64 coupled oscillators simulating the olfactory
bulb (OB), with negative and positive feedback through low-pass
filter lines from single oscillators simulating the anterior olfactory
nucleus (AON) and prepyriform cortex (PC). It is implemented
in C to run on Macintosh, IBM, or UNIX platforms. The output
can be set by parameter optimization to point, limit cycle,
quasi-periodic, or aperiodic (presumably chaotic) attractors. The
first three classes of solutions are stable under variations of
parameters and perturbations by input, but they are biologically
unrealistic. Chaotic solutions simulate the properties of time-
dependent densities of olfactory action potentials and EEG's,
but they transit into the basins of point, limit cycle, or quasi-
periodic attractors after only a few seconds of simulated run time.
Despite use of double precision arithmetic giving 64-bit words, the
Kl model is exquisitely sensitive to changes in the terminal bit

of parameters and inputs. The global stability decreases as the

number of coupled oscillators in the OB is increased, indicating
that attractor crowding reduces the size of basins in the model to
the size of the digitizing step £107'%). Chaotic solutions having
biological verisimilitude are robustly stabilized by introducing
low-level, additive noise from a random number generator at
two biologically determined points: rectified, spatially incoherent
noise on each receptor input line, and spatially coherent noise
to the AON, a global control point receiving centrifugal inputs
from various parts of the forebrain. Methods are presented for
evaluating global stability in the high dimensional system from
measurements of multiple chaotic outputs. Ranges of stability are
shown for variations of connection weights (gains) in the Kiil
model. The system is devised for pattern classification.

Index Terms—Additive noise, attractor crowding, chaos, elec-
troencephalography, neural network, olfactory system, pattern
classification, stability assay.

I. INTRODUCTION

global aperiodic attractor with multiple “wings,” one for each
class of learned stimuli [4]. During an act of perception the
activity of the cortex is confined into an appropriate “wing” by
which the appropriate spatial pattern occurs. The process can
be modeled by a stimulus-induced state transition in a complex
dynamical system, which is composed of an array of coupled
nonlinear oscillators based in excitatory and inhibitory neuron
ensembles, and which maintains a stable chaotic state before
and after step inputs are given. The long-range purpose is to
use nonlinear dynamics in fast and accurate pattern recognition
in simulation of the capabilities of biological intelligence [5],
[6]. The present aim is to evaluate the stability of the extant
model.

The KIlI model of the olfactory system consists of a
set of parametric ordinary differential equations [7], which
become difference equations (ODE’s) in a digital embod-
iment [8]-[10]. They incorporate the synaptic connections
and express the physiological time delays and distributed
interactions among the cell ensembles. The model has an
unspecified number of point, limit cycle, quasi-periodic, and
chaotic attractors [11]. Examination of solutions in the first
three classes has shown them to be stable under perturbation
by inputs and variation of parameter values on the order of
5-50% of center values, optimized by methods previously
described [12].

However, the high-dimensional ODE set parameterized to
give chaotic behavior reveals an exquisite sensitivity to any
small change in input or in a parameter value, which is
revealed by loss of a previously optimized aperiodic trajectory.
Further, when free running in a chaotic mode, sooner or later
the model undergoes a state transition from an assigned chaotic

XPERIMENTS in animals reveal that the electroenyitractor to a new stable orbit or point. A measure of this

E_ce_:phalogrg_ms (EEG's) of the primary sensory corticggstability is the time from initialization to the onset of the
for vision, audition, olfaction, and touch have spatiotemporghnsition [13]. Stability decreases with increasing size of the
patterns relating to external stimuli [1], [2]. The pattegray of coupled oscillators. An exceedingly small numerical
have the form of spatial amplitude modulation of a broagerturbation in parameters or variables can change the state of
spectrum, aperiodic wave form [3], that is common to athe whole system from one attractor to another, indicating that
the 8 x 8 tracgs smgl?aneously recoro_led at the _corﬂcgl is due to attractor crowding [14]-[16], by which the size
surfaces. Following training of the experimental subjects i the basins shrinks to the scale of the word size in double
respond to conditioned stimuli, the spatial patterns, eXpresﬁécision arithmetic that gives a digital increment of 1 in 64
as 64 x 1 column vectors, can be classified in respect igq

the dis_,criminated conditioned stim_uli. _In the Ianguage_ of Prior studies of chaotic systems have emphasized the sup-
dynamics, each sensory cortex maintains a low dimensionalssion of chaos or the entrainment of two or more elements
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attractors in an extension of preliminary work [13]. Prior work
to control chaos has been focused on suppressing chaos or
phase locking chaotic generators [17], [18]. Most prior uses
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Fig. 1. The topologic diagram of the olfactory system is based in the anatomical and physiological properties. Noise from external sources is given at
the receptors. Central noise is focused into the anterior olfactory nucleug.(KII

of noise have been to achieve destabilization, as in simulatedn Section Il the KIlIl model is briefly reviewed, and the
annealing and stochastic resonance [19]. Liljgmstand Wu types of noise are described along with the nodes of injection
[20] found that activity expressed as temporal noise in and the reasons for choosing those nodes. The state variables
associative neural network reduced recall time in associati@ad the equations have already been described in detail [5],
memory tasks. Billah and Shinozuka [21] reported stabilizatidfi], [8], [12]. In Section Il the criteria are listed and described,

of nonlinear networks by multiplicative noise. Wackerbaueaccording to which the aperiodic outputs of nodes in the Klll
[22] used noise to stabilize the Lorenz attractor. Fryska ampdel are optimized to conform to biological measurements,
Zohdy [23] put a Markovian process on every ordinary difand some representative traces, power spectra, and amplitude
ferential equation (ODE) of a three-dimensional piecewiddstograms are shown. In Section IV algorithms are given to
linear system to randomize the rounding-off of floating poirgvaluate the global stability of the KIill model in aperiodic
arithmetic in numerical simulation. They used the shadowirigates. The ranges are shown for the variations of input and of
lemma to assure the existence of a numerically shadowi#&€ important parameters over which stability obtains. Results
trajectory. Since each point on a digital trajectory is mereffe discussed and evaluated in Section V.

close to a corresponding point of the true trajectory, the
computed trajectory is shadowed by the true trajectory [24], I
[25]. Because the olfactory system and its Klll model both
have Lyapunov exponents for which the real parts fluctuate
above and below zero [7], the KIll model cannot solvé" Klll Topology

the shadowing problem, owing to the resulting numerical The central olfactory system consists of the bulb (OB),
instabilities [12], [13], [16], [25]. anterior olfactory nucleus (AON), and prepyriform cortex

. THE HYBRID KIIl M ODEL WITH ADDITIVE NOISE
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(PC). Input from receptorsH) goes to periglomerularK), 5-

and mitral cells {4). The mitral cells transmit to granule

cells () and to AON and PC, from which the final output 4

is sent to the external capsule (EC) from deep pyramidal cells

(C), as well as back to the OB and AON. The nodes in 34

the topological diagram (Fig. 1) represent neural aggregates. E 5

When the neurons in an aggregate have no interactions with § ]

others, they are represented by a KO set, as for exaipled £ 1

C. An aggregate of interactive neurons is represented by a Kl

set, consisting of a transmitting KO set and a receiving KO set 0

undergoing continuous renewal. Mutually excitatory neurons

form a Kl. set °, M, E, and A), and mutually inhibitory -1+

neurons form a Klset (3, I, andB), both comprising positive 3 2 1 0 1 2 3
feedback and having only zero and nonzero point attractors. Wave Amplitude

The interaction of excitatory and inhibitory neuron populatlop'_slg_ 2 The sigmoid curve, shown for two values @ — 182

forms a Kil set (OB, AON, and PC), which has point, Iimltand 5.0, shows pulse density;, as a function of wave density,
cycle, and quasi-periodic attractors. The interaction of the where Q,, is the upper asymptote of.. The derivative of the
Kl, set and the three Kll sets is modeled with the KIlI sefunction, dq/dv, gives the nonlinear gain. The peak gain is at the
p . value vmax. ¢ = Qm{l — exp[—(e¥ — 1)/Qm)|}, dp/dv = exp
Feedforward transmission through the lateral olfactory tract|iS_ (. Z1)/0,.], vmax = In (Qm).
fast, so delays are not explicitly introduced. Feedback through
the medial olfactory tract (MOT) is slow and dispersed, ] ) o
owing to the distributions of axonal conduction velocities an@f @xons to dendrites are represented by gain coefficiénts,
distances [7]. Delays are modeled by second order low-pd&¥n the jth to the:th node. Trigger zones at cell bodies
filters [12]. convert dendritic current density to pulse density. In neural
The excitatory and inhibitory neurons in the OB, AON, an@opulations the wave-pulse conversion is given by a static
PC form sheets of neuropil without discrete internal boundariggnlinear function, the asymmetric sigmoid curve (Fig. 2),
in directions parallel to the surface of the brafinput axons With a single paramete®,,, that determines the maximal pulse
are spatially coarse-grained by glia forming glomeruli, whicHensity, the mean firing density, and the steepness of the curve.
are nests of axons, dendrites and their synapses, Thg KIFhe derivative gives the nonlinear gaip/dv [4], [8], that has
set is represented by ans8 8 array of Kll subsets, that areits maximal value at wave amplitudg,.x = In (@)
fully interconnected at thé/; and G; nodes, conforming to ~ The range of wave-pulse conversion holds the pulse-wave
a toroidal boundary condition. The K}, and Kll,. sets are conversion at synapses within a small-signal, near-linear range,
in lumped form in the present stage of development of thighich makes it possible to represent it by a gain coefficient.
KIll model. It is the nonlinearity at the trigger zones that mediates the
In digital embodiments the dynamics is re-formulated frorgtability of the KllIl set and its components. The Kdet has a
ODE'’s into difference equations. The continuous tissue M®nzero point attractor that maintains its operation above the
represented in the model by as many spatial compartmewave value of maximal slope of the sigmoid, so that excitatory
for the Kl and Kl subsets as computational resources c#iput decreases its loop gain, and inhibitory input increases it
support. Continuous time is replaced with discrete time stef8], [27]. The Kl,,, set is stabilized at a point or limit cycle
Numerical solutions to the ODE’s were obtained with thattractor that keeps its operation below the value of maximal
Livermore Solver (LSODE) [12]. The basic time step waslope. Inhibitory input stabilizes it by reducing its loop gain,
set at 1 ms and was flexibly adjusted to shorter lengthesd excitatory input increases its loop gains. For high values
depending on the local rate of change of the state varialok (7,,, > 5, which occur in animals that are motivated to
under integration. search for odorsR input destabilizes the basal state. The
entire OB transits to near-periodic oscillation in the gamma
range ¢, 40 < f < 100 Hz) on inhalation, and it returns to
B. State Variables and Reciprocal Conversions the basal state during exhalation, during which there not
The dynamics of each node is represented by a linegtivated.
second order ODE with two real rate constants, which areThe asymmetry of the nonlinear conversion of wave to
evaluated from the rates of rise and decay of OB, AON, afuilse density at trigger zones is essential for the mechanism
PC impulse responses in the open loop state established urtdeinput-dependent state transitions from the background,
deep anesthesia. State variables are continuous in time in 1ii¢-type state to the narrow-band oscillation in the burst
wave modes corresponding to EEG measurements of dendrititate. The transition is facilitated by increase in the,KI
current density, and in the pulse mogecorresponding to gains between selected subsets of excitatory neurons, during
extracellular observations of action potentials, and to thearning in accordance with the Hebb rule, which shapes a
outputs of the OB, AON, and PC to each other and otheratrix of coefficients resembling those in Amari, Hopfield,
parts of the brain. The synapses convert axonal pulse dengityderson, and Kohonen associational networks. The state
to dendritic wave density. The synaptic weights at the inputsansition is blocked by reduction of the gains of selectgg K
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nodes to other K|}, nodes. This occurs during habituatiomeural populations of the olfactory system. The criteria for
to insignificant or ambiguous or background odors duringptimization are that the Klll outputs have

learning. The reduction enhances oscillatory responses ta) stable and robust aperiodic oscillations having nefde
repetitive input in the delta ranged,(1 < f < 10 Hz), type power spectra;

which includes the respiratory driving frequencies, so that2) nearly periodic oscillations with peaks in the gamma
habituation to background inputs facilitates the destabilization g range during excitatory inputs Corresponding to EEG
to foreground odor input [4], [8], because the habituated pursts on inhalation;

input augments the nonspecific excitatory bias of backgroundz) spatially coherent wave forms over all subsets of the

input. The gamma/delt&g/d) ratio in the power spectrum of Kl,,, nodes and also of the KI nodes in the Klj,

Kl aperiodic time series offers a useful criterion of system both in and between bursts;

performance. 4) transition from background to burst #10 ms with the
stated input;

C. Inputs of Stimuli and Noise 5) amplitude histograms in both wave and pulse modes that

are nearly Gaussian;

6) means and distributions of periglomerular cell, Kut-
puts above the point of maximal slope of the sigmoid
and below the maximal (excitatory) asymptote;

7) means and distributions of mitral Jsland granule KJ

A small impulse to one or more of th& nodes serves
to initiate activity, starting from an unstable zero point and
transiting to a basal aperiodic attractor of the Klll model. Sim-
ulated sensory input given to multipfenodes is normalized to
give a fixed total amplitude, tha_t IS optl_mlzed an_d cc_)mpre_ssed outputs below the point of maximal slope of the sigmoid
on the scale of a power function. This operation is derived S }

o . and above the minimal asymptote;
from and comparable to the normalization and dynamic range .
X : . . < “8) nearly equal means for the Kland Kl,, nodes;
compression that is performed on olfactory receptor input into ,
: 9) and nearly zero offset of the means for the mitral cell
the OB [7] by the periglomerular cells (K). Input from R . : .
. . . . L Kl,, nodes, irrespective of the mean amplitudes of the
nodes in the pulse density mode is discretized in time at 1 ms

intervals and in space to the Kland Kl,,,, subsets. The wave Klg, and. Klp, nodes. ) ) )
form of the simulated sensory input is a 200 ms step function Representative parameter values keyed to Fig. 1 are listed in

with the leading and trailing edges rounded by a half cycle of@ble I. These are useful starting guesses for optimization of

50 Hz cosine with its mean amplitude set at half the amplitud@® K!Il model on any other platform, but cannot be expected
of the step. This form models the respiratory cycle, and § reproduce on other platforms precisely the chaotic time
reduces the ringing in the model that is observed with impulSE"ies illustrated here.

inputs [8]. Noise is made with a random number generator

giving a normal density function with zero mean and un@. An Assay of Sensitivity for Destabilization
standard deviation (SD). The noise is added at two locations, . . o
As optimization of parameters to achieve these criteria pro-

corresponding to the two sources of external perturbation ((:)éeded the KIlIl system without noise became progressively
the olfactory system [27]. Input by way of the receptor axong '

is purely excitatory, and their firings are locally uncorrelated(‘:.3 le attractor spontaneouslv. An assav of sensitivity was
The Gaussian noise is full-wave rectified, and an independ%ﬁ{f: P Y. y Y

time series is added to eadh line to the K, and Ki,, iscovered following a routine change in programming. A

nodes. Centrifugal inputs from various parts of the brain glne of code calling for repeated division by a constant was

the olfactory system are concentrated into the AON, whm%anged tp repeate_d multiplication b_y the reqprocal. Thoggh
- . athematically equivalent, one version transited to sustained

serves as a subsidiary control center. Its output is broadly .~ . A . o~
o . . .~ . —aperiodic oscillation, whereas the other gave a quasi-periodic
distributed to the OB by its divergent feedback projection.” .~ : ) )
. X ] oscillation after <1 s of simulated run time. This change
The inputs are predominantly excitatory, so random numbI% licated the round-off error in the terminal bit. Zak [28] used
time series is off-set by +1 SD. It is added to the LOT input to P X

CT T . : randomization of the terminal bits in digital state variables to

Kl., node, from which it is disseminated as spatially coheren : o . "
‘ . . ; simulate neurodynamics with “terminal chaos.” In the absence
noise. It is smoothed by the low-pass filters in the MOT dela . :
. : . X o f a shadow trajectory, one version was used to track the other
lines. The amplitudes of the two noise SD’s are optimized as

described below. The input and output of the Kitode are not one, and the sensitivity was measured by the run time to detect

significantly correlated, showing that the noise is not sim jvergence of the two versions ([13, Figs. 12 and 13]). By this
gniticantly e 9 Pist the randomization of the terminal bit in all of the state
amplified and fed back into the system.

variables was found to delay but not prevent divergence of the
two time series or eventual transition from an aperiodic orbit
to a point or limit cycle attractor. Furthermore, any minute
change in the input amplitude or in any parameter so changed
the global performance of the Klll system, that the parameter
set had to be re-optimized to bring the KIll output within the
Parameter optimization algorithms are used to determine thigove criteria.
parameter values required to simulate the experimental datdhe addition of the designated noise stabilized the system,
from measurements of the EEG and action potentials from theth in respect to changes of input and of parameters. An

ss stable and more likely to transit to a point or limit

IIl. SIMULATION OF EEG’S AND PULSE DENSITIES

A. Criteria for Optimization of Performance
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TABLE | Periglomerular module
GIVEN THE SPECIFIED INPUT WAVE FORM, THE LINEAR RATES

AND DELAYS, AND THE NONLINEAR SIGMOID FUNCTIONS,
THERE WERE 24 GaIN PARAMETERS TO BE OPTIMIZED é 1.0
0.0 r

Parameter: initial value minimal  maximal 0 500 1000 1500 2000
For n-channel KIp: ms

kpr 0.500 0.008 1.100

kpp 0.900 0.900 1.300
For n-channel KIlp:

Kmm 1.600  0.350  2.400

Kgm 1.723 1400 2400

Kmg 2.363 2.000 2900

kgg 2.245 1.900 2400

Kmlr 1000  0.008  3.000
kmip 0050  0.002 0760

For Knaon:
Kee 1200 0390  1.202
kie 1372 0930  2.100
Kei 1426 0790 2300
kij 1.571 0.760 1.700
For Kllpc: . - . . .
Kan 0823  0.006 1200 0 500 1000 1500 2000
kba 1947 0790 2300 ms
11:“& ;'ggi gg% :37';88 Prepyriform cortex module
kpe 0.698 0.498 2.098 04
Keb1 1.543 1044 4544 <
For MOT gains: g 0.0
kg1d1 2.349 1649 3349 -0.4
kpd2 1.087 0287 3.587 5 o 000 500 000

ki1d3 2.553 0.003 9.553

ms
kglgsa 2305 0005 8305

Fig. 3. Time series are from representative PG, OB, AON, PC nodes.

example in Fig. 3 shows the time series of representatiye Kl Periglomerular Cells

Kl Kle,, and Kl,, nodes, with the initial transit from an

unstable fixed point to its stable performance under noise.

The spectrum and amplitude histogram superimposed on its 2

nonlinear gaindp/dv, the derivative of its sigmoid, show that g 0

the distribution of the wave density values is wholly above the g 2

wave value,um.x = ln (@), at peak gain for KJ (Fig. 4), 4

and wholly to the left ofvy,., for Kl,,, (Fig.5), Kl., and 05 10 s 20

Kl,,. During bursts the distributions of wave amplitudes for log(®)

both the excitatory and inhibitory nodes in the OB, AON, and

PC are wider but stay left of,,,. 10 80
038 60

IV. EVALUATION OF STABILITY 06 40

04 0

A. Stability with Fixed Parameters ! . : r - 0

Thus far the state of the KllI model was evaluated by 00 03 Wave Aﬁpﬁmde '3 20

visual inspection of the ensemble of time series, by whick 4. The power spectrum and amplitude histogram are from a Pg (Kl
conformance to the established patterns of the EEG’s cou,@e_' P P P 9
be judged. The need was recognized for numerical descriptors

of the global state, that could be used to determine whether ) ) )
the model persisted in a designated initial state of arbitraRFC Spatial patterns [1], [2], [29], by which the amplitude

duration, and whether it returned to the same state reliatyy the common wave form was taken from each of 64
after repeated induction of gamma bursts. The test wouidnultaneously recorded traces, formed into ax64 column
characterize the present state of the KlIl model automaticaMgctor, and plotted as a point in 64 space. Recurrent patterns
without requiring detailed inspection of the time series, andfi@rmed a normally distributed cloud of points with a center
would assign a probability value to the likelihood of return odf gravity (“centroid”) that defined the class of pattern by its
the Kl model to the same attractor basin as before an inducgphtial ensemble average. The radius of the cluster measured
state transition. A method was adapted from classification oy the standard deviation (SD) defined the probability of
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Mitral Cells B. Effects of Variation of Parameters

The set of 24 gains to be optimized was too large to be
evaluated in one step. Each parameter was varied from its
optimized value over a range sufficient to reveal instability

& _2 in both directions, with the intent to rank the parameters in
< 4 order of sensitivity, and then jointly to change those few
05 10 s 20 simultaneously in accordance with optimization procedures
log(®) already reported [12]. Each stepwise change in a parameter

changed measurements in 28-space giving apparent drift of

the centroid by its mean, SD, peak frequency, and amplitude

distribution of the traces. A new criterion for instability was
20 80 adopted. The time ensemble average A and SD were calculated

15 60 for the set of statistics from the 10 segments (mean, SD,
© and g/d ratio), and they were plotted as a function of the

10 parameter value. The new criterion that emerged was the

05 20 SD of the cluster, which increased markedly between stable

- T r 0 domains outside both ends of the range of acceptable function.

-1 WaveA(x)nplitude 1 The simulated neural activity patterns in those upper and

' ' _ lower flanking domains did not conform to experimental
Fig. 5. The power spectrum and amplitude histogram are from the Qfhseryations from the olfactory system. By this new criterion
(Kl,,1 mitral cell) time series. . '

each parameter tested was shown to have a substantial range

in which the model was stable (Table I).
membership in the class. The distance of separation of two

or more classes was evaluated by the distance between their
centroids divided by the geometric mean of the two SD’s.

For the KIIl model a set of nine traces was taken from The analysis and evaluation of the performance of the Kill
representative node®’( M, M, Gi, E1, I, A1, By, andC). model are still strongly dependent on visual inspection, so
The traces were cut into 200 ms segments. Each segment geg further developments of stability assays are in progress.
seven measures (the four moments: mean, SD, skewness, Hmal criteria for conformance of the Kl model to EEG
kurtosis; and the slope, intercept, and SD from the fittéfl data are being expressed as fuzzy membership functions
line of the power spectrum in log—log coordinat@s,7 = 63), [30], either trapezoidal for average valueB-functions) or
plus the mean correlation kytransform between pairs of K| half-trapezoidal for varianceg7functions). Classification of
subsets to evaluate the commonality of wave form. Evaluatitimle simulated EEG segment as acceptable or not are by
of the distribution of points along each of the axes in 64-spatlee continued product (fuzzy AND operation) of the set of
combined with visual inspection of the traces showed that theembership values. Membership functions are also being
skewness, kurtosis, and spectral estimates varied too greatbnstructed for the stability criteria. A global stability rating
so they were dropped. Thg/d ratio was added [30], giving aon a graded scale is to be calculated from their contin-
point in 28-spaceq(x 3+ 1) for each measured time segmentied product. Further options may be the use of weights to
of the model. emphasize or attenuate subsets of criteria. The interactions

A continuous run was initiated, and after the7/00 ms of multiple parameters varied simultaneously are yet to be
required for initialization of the model, a sample of temvaluated.
segments of 200 ms at intervals of 1000 ms was evaluatedThe robustness and stability of attractor states in the ol-
to give a normally distributed cluster of 10 points with itfactory system are attested by its capacity to support the
centroid and SD. If the points showed no drift, and no pointdentification of familiar odors recurring over long periods
were more than 2 SD from the centroid, the system wa$ time, and by the reproducibility of the measurements of
judged to be stable. The value of the threshold SD wits spatiotemporal neural activity patterns. Its capacity to
validated by visual inspection to confirm that the of all th&ansit rapidly and repeatedly through its attractors underlies
time series in every segment conformed to the nine criteita service in olfactory pattern classification [31]. The global
listed. The test was repeated with durations up to 50 s, arwbustness of this highly unstable neural mechanism, in the
then with 200 ms step segments given at 1 s intervals face of continuing processes of growth, learning, and unlearn-
induce gamma bursts. Test segments taken prior to the inpuaig [32] must be maintained by chemical and neurohumoral
showed that, despite the unpredictable variation in the wawentrols exercised both locally and from the brain stem cen-
forms of the multiple time series, the Klll system returnettifugally, though little is known about them. At present the
to the same basal state, within 200 ms after each input stgpbal stability of the Klll model is maintained and assayed
segment was ended. The same result followed delivery of reference to criteria extracted by experimental studies,
step inputs with varying amplitudes and spatial patterns, aftghich appear to reflect system invariants that may or may
input normalization and range compression in the manneot be used by the brain and the olfactory system, but are
described above. useful here.

V. DiscussiON AND CONCLUSIONS
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Networks of nonlinear ODE'’s serve to simulate the olfactory Particular note should be taken that the use of noise
EEG's and pulse densities when their parameters are adjudteat is shown in this paper does not serve either to
to give aperiodic time series indicative of chaotic attractorsiduce or suppress chaotic attractors, as described by
However, this approach brings three difficult problems Firstthers [34]-[37], but to maintain existing or desired chaotic
the sensitivity to initial conditions may be desirable for clasttractors.
sification of very weak patterned inputs, but it opens a door
nonselectively. Second, the aperiodic time series for successive
real inputs are never identical, so the identification of an REFERENCES
attractor for a recurring real input cannot be done by curve

fitting. The problem is compounded in the high dimensionalll J- M. Barrie, W. J. Freeman, and M. Lenhart, “Modulation by dis-
criminative training of spatial patterns of gamma EEG amplitude and

arrays of 'the K”l 'm.Odel with multi.ple uncorrelated time phase in neocortex of rabbits}: Neurophysiol.yol. 76, pp. 520-539,
series. Third, in digital representations of the model the 1996.

ODE'’s become difference equations. These are satisfactofgl W- J. Freeman and K. A. Grajski, “Relation of olfactory EEG to
. . L . . behavior: Factor analysisBehav. Neurosci.yol. 101, pp. 766-777,
for getting point and limit cycle solutions, but the truncation  jgg7

of the numbers in numerical approximations leads inevitably3] L. M. Kay, K. Shimoide, and W. J. Freeman, “Comparison of EEG

to numerical instabilities that may be difficult or impossible to It_ime Sefiesl fgom falllt :"faC],tOtnyS)éS_]fem VCVirt]h mOdle'Scompcgsfg gésnon'
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