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Taming Chaos: Stabilization of Aperiodic
Attractors by Noise

Walter J. Freeman, H.-J. Chang, B. C. Burke, P. A. Rose, and J. Badler

Abstract—A model named “KIII” of the olfactory system con-
tains an array of 64 coupled oscillators simulating the olfactory
bulb (OB), with negative and positive feedback through low-pass
filter lines from single oscillators simulating the anterior olfactory
nucleus (AON) and prepyriform cortex (PC). It is implemented
in C to run on Macintosh, IBM, or UNIX platforms. The output
can be set by parameter optimization to point, limit cycle,
quasi-periodic, or aperiodic (presumably chaotic) attractors. The
first three classes of solutions are stable under variations of
parameters and perturbations by input, but they are biologically
unrealistic. Chaotic solutions simulate the properties of time-
dependent densities of olfactory action potentials and EEG’s,
but they transit into the basins of point, limit cycle, or quasi-
periodic attractors after only a few seconds of simulated run time.
Despite use of double precision arithmetic giving 64-bit words, the
KIII model is exquisitely sensitive to changes in the terminal bit
of parameters and inputs. The global stability decreases as the
number of coupled oscillators in the OB is increased, indicating
that attractor crowding reduces the size of basins in the model to
the size of the digitizing step (�10�16). Chaotic solutions having
biological verisimilitude are robustly stabilized by introducing
low-level, additive noise from a random number generator at
two biologically determined points: rectified, spatially incoherent
noise on each receptor input line, and spatially coherent noise
to the AON, a global control point receiving centrifugal inputs
from various parts of the forebrain. Methods are presented for
evaluating global stability in the high dimensional system from
measurements of multiple chaotic outputs. Ranges of stability are
shown for variations of connection weights (gains) in the KIII
model. The system is devised for pattern classification.

Index Terms—Additive noise, attractor crowding, chaos, elec-
troencephalography, neural network, olfactory system, pattern
classification, stability assay.

I. INTRODUCTION

EXPERIMENTS in animals reveal that the electroen-
cephalograms (EEG’s) of the primary sensory cortices

for vision, audition, olfaction, and touch have spatiotemporal
patterns relating to external stimuli [1], [2]. The patterns
have the form of spatial amplitude modulation of a broad
spectrum, aperiodic wave form [3], that is common to all
the 8 8 traces simultaneously recorded at the cortical
surfaces. Following training of the experimental subjects to
respond to conditioned stimuli, the spatial patterns, expressed
as 64 1 column vectors, can be classified in respect to
the discriminated conditioned stimuli. In the language of
dynamics, each sensory cortex maintains a low dimensional
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global aperiodic attractor with multiple “wings,” one for each
class of learned stimuli [4]. During an act of perception the
activity of the cortex is confined into an appropriate “wing” by
which the appropriate spatial pattern occurs. The process can
be modeled by a stimulus-induced state transition in a complex
dynamical system, which is composed of an array of coupled
nonlinear oscillators based in excitatory and inhibitory neuron
ensembles, and which maintains a stable chaotic state before
and after step inputs are given. The long-range purpose is to
use nonlinear dynamics in fast and accurate pattern recognition
in simulation of the capabilities of biological intelligence [5],
[6]. The present aim is to evaluate the stability of the extant
model.

The KIII model of the olfactory system consists of a
set of parametric ordinary differential equations [7], which
become difference equations (ODE’s) in a digital embod-
iment [8]–[10]. They incorporate the synaptic connections
and express the physiological time delays and distributed
interactions among the cell ensembles. The model has an
unspecified number of point, limit cycle, quasi-periodic, and
chaotic attractors [11]. Examination of solutions in the first
three classes has shown them to be stable under perturbation
by inputs and variation of parameter values on the order of
5–50% of center values, optimized by methods previously
described [12].

However, the high-dimensional ODE set parameterized to
give chaotic behavior reveals an exquisite sensitivity to any
small change in input or in a parameter value, which is
revealed by loss of a previously optimized aperiodic trajectory.
Further, when free running in a chaotic mode, sooner or later
the model undergoes a state transition from an assigned chaotic
attractor to a new stable orbit or point. A measure of this
instability is the time from initialization to the onset of the
transition [13]. Stability decreases with increasing size of the
array of coupled oscillators. An exceedingly small numerical
perturbation in parameters or variables can change the state of
the whole system from one attractor to another, indicating that
it is due to attractor crowding [14]–[16], by which the size
of the basins shrinks to the scale of the word size in double
precision arithmetic that gives a digital increment of 1 in 64
bits.

Prior studies of chaotic systems have emphasized the sup-
pression of chaos or the entrainment of two or more elements
into the same aperiodic time series. In the present study the
effects were studied of additive noise on the stability of chaotic
attractors in an extension of preliminary work [13]. Prior work
to control chaos has been focused on suppressing chaos or
phase locking chaotic generators [17], [18]. Most prior uses

1057–7122/97$10.00 1997 IEEE
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Fig. 1. The topologic diagram of the olfactory system is based in the anatomical and physiological properties. Noise from external sources is given at
the receptors. Central noise is focused into the anterior olfactory nucleus (KIIaon).

of noise have been to achieve destabilization, as in simulated
annealing and stochastic resonance [19]. Liljenström and Wu
[20] found that activity expressed as temporal noise in an
associative neural network reduced recall time in associative
memory tasks. Billah and Shinozuka [21] reported stabilization
of nonlinear networks by multiplicative noise. Wackerbauer
[22] used noise to stabilize the Lorenz attractor. Fryska and
Zohdy [23] put a Markovian process on every ordinary dif-
ferential equation (ODE) of a three-dimensional piecewise
linear system to randomize the rounding-off of floating point
arithmetic in numerical simulation. They used the shadowing
lemma to assure the existence of a numerically shadowed
trajectory. Since each point on a digital trajectory is merely
close to a corresponding point of the true trajectory, the
computed trajectory is shadowed by the true trajectory [24],
[25]. Because the olfactory system and its KIII model both
have Lyapunov exponents for which the real parts fluctuate
above and below zero [7], the KIII model cannot solve
the shadowing problem, owing to the resulting numerical
instabilities [12], [13], [16], [25].

In Section II the KIII model is briefly reviewed, and the
types of noise are described along with the nodes of injection
and the reasons for choosing those nodes. The state variables
and the equations have already been described in detail [5],
[6], [8], [12]. In Section III the criteria are listed and described,
according to which the aperiodic outputs of nodes in the KIII
model are optimized to conform to biological measurements,
and some representative traces, power spectra, and amplitude
histograms are shown. In Section IV algorithms are given to
evaluate the global stability of the KIII model in aperiodic
states. The ranges are shown for the variations of input and of
the important parameters over which stability obtains. Results
are discussed and evaluated in Section V.

II. THE HYBRID KIII M ODEL WITH ADDITIVE NOISE

A. KIII Topology

The central olfactory system consists of the bulb (OB),
anterior olfactory nucleus (AON), and prepyriform cortex
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(PC). Input from receptors () goes to periglomerular (),
and mitral cells ( ). The mitral cells transmit to granule
cells ( ) and to AON and PC, from which the final output
is sent to the external capsule (EC) from deep pyramidal cells
( ), as well as back to the OB and AON. The nodes in
the topological diagram (Fig. 1) represent neural aggregates.
When the neurons in an aggregate have no interactions with
others, they are represented by a KO set, as for exampleand

. An aggregate of interactive neurons is represented by a KI
set, consisting of a transmitting K0 set and a receiving K0 set
undergoing continuous renewal. Mutually excitatory neurons
form a KI set ( , , , and ), and mutually inhibitory
neurons form a KIset ( , , and ), both comprising positive
feedback and having only zero and nonzero point attractors.
The interaction of excitatory and inhibitory neuron populations
forms a KII set (OB, AON, and PC), which has point, limit
cycle, and quasi-periodic attractors. The interaction of the
KI set and the three KII sets is modeled with the KIII set.
Feedforward transmission through the lateral olfactory tract is
fast, so delays are not explicitly introduced. Feedback through
the medial olfactory tract (MOT) is slow and dispersed,
owing to the distributions of axonal conduction velocities and
distances [7]. Delays are modeled by second order low-pass
filters [12].

The excitatory and inhibitory neurons in the OB, AON, and
PC form sheets of neuropil without discrete internal boundaries
in directions parallel to the surface of the brain.input axons
are spatially coarse-grained by glia forming glomeruli, which
are nests of axons, dendrites and their synapses, The KII
set is represented by an 8 8 array of KII subsets, that are
fully interconnected at the and nodes, conforming to
a toroidal boundary condition. The KII and KII sets are
in lumped form in the present stage of development of the
KIII model.

In digital embodiments the dynamics is re-formulated from
ODE’s into difference equations. The continuous tissue is
represented in the model by as many spatial compartments
for the KI and KII subsets as computational resources can
support. Continuous time is replaced with discrete time steps.
Numerical solutions to the ODE’s were obtained with the
Livermore Solver (LSODE) [12]. The basic time step was
set at 1 ms and was flexibly adjusted to shorter lengths,
depending on the local rate of change of the state variable
under integration.

B. State Variables and Reciprocal Conversions

The dynamics of each node is represented by a linear
second order ODE with two real rate constants, which are
evaluated from the rates of rise and decay of OB, AON, and
PC impulse responses in the open loop state established under
deep anesthesia. State variables are continuous in time in the
wave mode corresponding to EEG measurements of dendritic
current density, and in the pulse modecorresponding to
extracellular observations of action potentials, and to the
outputs of the OB, AON, and PC to each other and other
parts of the brain. The synapses convert axonal pulse density
to dendritic wave density. The synaptic weights at the inputs

Fig. 2. The sigmoid curve, shown for two values ofQm = 1.82
and 5.0, shows pulse density,q, as a function of wave density,
v, where Qm is the upper asymptote ofq. The derivative of the
function, dq=dv, gives the nonlinear gain. The peak gain is at the
value vmax. q = Qmf1 � exp[�(ev � 1)=Qm)]g, dp=dv = exp
[v � (ev � 1)=Qm]; vmax = ln (Qm).

of axons to dendrites are represented by gain coefficients,
from the th to the th node. Trigger zones at cell bodies
convert dendritic current density to pulse density. In neural
populations the wave-pulse conversion is given by a static
nonlinear function, the asymmetric sigmoid curve (Fig. 2),
with a single parameter that determines the maximal pulse
density, the mean firing density, and the steepness of the curve.
The derivative gives the nonlinear gain [4], [8], that has
its maximal value at wave amplitude .

The range of wave-pulse conversion holds the pulse-wave
conversion at synapses within a small-signal, near-linear range,
which makes it possible to represent it by a gain coefficient.
It is the nonlinearity at the trigger zones that mediates the
stability of the KIII set and its components. The KIset has a
nonzero point attractor that maintains its operation above the
wave value of maximal slope of the sigmoid, so that excitatory
input decreases its loop gain, and inhibitory input increases it
[8], [27]. The KI set is stabilized at a point or limit cycle
attractor that keeps its operation below the value of maximal
slope. Inhibitory input stabilizes it by reducing its loop gain,
and excitatory input increases its loop gains. For high values
of , which occur in animals that are motivated to
search for odors, input destabilizes the basal state. The
entire OB transits to near-periodic oscillation in the gamma
range ( Hz) on inhalation, and it returns to
the basal state during exhalation, during which theare not
activated.

The asymmetry of the nonlinear conversion of wave to
pulse density at trigger zones is essential for the mechanism
of input-dependent state transitions from the background,

-type state to the narrow-band oscillation in the burst
state. The transition is facilitated by increase in the KI
gains between selected subsets of excitatory neurons, during
learning in accordance with the Hebb rule, which shapes a
matrix of coefficients resembling those in Amari, Hopfield,
Anderson, and Kohonen associational networks. The state
transition is blocked by reduction of the gains of selected K
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nodes to other KII nodes. This occurs during habituation
to insignificant or ambiguous or background odors during
learning. The reduction enhances oscillatory responses to
repetitive input in the delta range ( Hz),
which includes the respiratory driving frequencies, so that
habituation to background inputs facilitates the destabilization
to foreground odor input [4], [8], because the habituated
input augments the nonspecific excitatory bias of background
input. The gamma/delta ratio in the power spectrum of
KIII aperiodic time series offers a useful criterion of system
performance.

C. Inputs of Stimuli and Noise

A small impulse to one or more of the nodes serves
to initiate activity, starting from an unstable zero point and
transiting to a basal aperiodic attractor of the KIII model. Sim-
ulated sensory input given to multiplenodes is normalized to
give a fixed total amplitude, that is optimized and compressed
on the scale of a power function. This operation is derived
from and comparable to the normalization and dynamic range
compression that is performed on olfactory receptor input into
the OB [7] by the periglomerular cells (KI). Input from
nodes in the pulse density mode is discretized in time at 1 ms
intervals and in space to the KIand KI subsets. The wave
form of the simulated sensory input is a 200 ms step function
with the leading and trailing edges rounded by a half cycle of a
50 Hz cosine with its mean amplitude set at half the amplitude
of the step. This form models the respiratory cycle, and it
reduces the ringing in the model that is observed with impulse
inputs [8]. Noise is made with a random number generator
giving a normal density function with zero mean and unit
standard deviation (SD). The noise is added at two locations,
corresponding to the two sources of external perturbation of
the olfactory system [27]. Input by way of the receptor axons
is purely excitatory, and their firings are locally uncorrelated.
The Gaussian noise is full-wave rectified, and an independent
time series is added to each line to the KI and KI
nodes. Centrifugal inputs from various parts of the brain to
the olfactory system are concentrated into the AON, which
serves as a subsidiary control center. Its output is broadly
distributed to the OB by its divergent feedback projection.
The inputs are predominantly excitatory, so random number
time series is off-set by +1 SD. It is added to the LOT input to
KI node, from which it is disseminated as spatially coherent
noise. It is smoothed by the low-pass filters in the MOT delay
lines. The amplitudes of the two noise SD’s are optimized as
described below. The input and output of the KInode are not
significantly correlated, showing that the noise is not simply
amplified and fed back into the system.

III. SIMULATION OF EEG’S AND PULSE DENSITIES

A. Criteria for Optimization of Performance

Parameter optimization algorithms are used to determine the
parameter values required to simulate the experimental data
from measurements of the EEG and action potentials from the

neural populations of the olfactory system. The criteria for
optimization are that the KIII outputs have

1) stable and robust aperiodic oscillations having near-
type power spectra;

2) nearly periodic oscillations with peaks in the gamma
range during excitatory inputs corresponding to EEG

bursts on inhalation;
3) spatially coherent wave forms over all subsets of the

KI nodes and also of the KI nodes in the KII
both in and between bursts;

4) transition from background to burst in ms with the
stated input;

5) amplitude histograms in both wave and pulse modes that
are nearly Gaussian;

6) means and distributions of periglomerular cell KIout-
puts above the point of maximal slope of the sigmoid
and below the maximal (excitatory) asymptote;

7) means and distributions of mitral KIand granule KI
outputs below the point of maximal slope of the sigmoid
and above the minimal asymptote;

8) nearly equal means for the KIand KI nodes;
9) and nearly zero offset of the means for the mitral cell

KI nodes, irrespective of the mean amplitudes of the
KI and KI nodes.

Representative parameter values keyed to Fig. 1 are listed in
Table I. These are useful starting guesses for optimization of
the KIII model on any other platform, but cannot be expected
to reproduce on other platforms precisely the chaotic time
series illustrated here.

B. An Assay of Sensitivity for Destabilization

As optimization of parameters to achieve these criteria pro-
ceeded, the KIII system without noise became progressively
less stable and more likely to transit to a point or limit
cycle attractor spontaneously. An assay of sensitivity was
discovered following a routine change in programming. A
line of code calling for repeated division by a constant was
changed to repeated multiplication by the reciprocal. Though
mathematically equivalent, one version transited to sustained
aperiodic oscillation, whereas the other gave a quasi-periodic
oscillation after 1 s of simulated run time. This change
implicated the round-off error in the terminal bit. Zak [28] used
randomization of the terminal bits in digital state variables to
simulate neurodynamics with “terminal chaos.” In the absence
of a shadow trajectory, one version was used to track the other
one, and the sensitivity was measured by the run time to detect
divergence of the two versions ([13, Figs. 12 and 13]). By this
test the randomization of the terminal bit in all of the state
variables was found to delay but not prevent divergence of the
two time series or eventual transition from an aperiodic orbit
to a point or limit cycle attractor. Furthermore, any minute
change in the input amplitude or in any parameter so changed
the global performance of the KIII system, that the parameter
set had to be re-optimized to bring the KIII output within the
above criteria.

The addition of the designated noise stabilized the system,
both in respect to changes of input and of parameters. An
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TABLE I
GIVEN THE SPECIFIED INPUT WAVE FORM, THE LINEAR RATES

AND DELAYS, AND THE NONLINEAR SIGMOID FUNCTIONS,
THERE WERE 24 GAIN PARAMETERS TO BE OPTIMIZED

example in Fig. 3 shows the time series of representative KI,
KI , KI , and KI nodes, with the initial transit from an
unstable fixed point to its stable performance under noise.
The spectrum and amplitude histogram superimposed on its
nonlinear gain, , the derivative of its sigmoid, show that
the distribution of the wave density values is wholly above the
wave value, , at peak gain for KI (Fig. 4),
and wholly to the left of for KI (Fig. 5), KI and
KI . During bursts the distributions of wave amplitudes for
both the excitatory and inhibitory nodes in the OB, AON, and
PC are wider but stay left of .

IV. EVALUATION OF STABILITY

A. Stability with Fixed Parameters

Thus far the state of the KIII model was evaluated by
visual inspection of the ensemble of time series, by which
conformance to the established patterns of the EEG’s could
be judged. The need was recognized for numerical descriptors
of the global state, that could be used to determine whether
the model persisted in a designated initial state of arbitrary
duration, and whether it returned to the same state reliably
after repeated induction of gamma bursts. The test would
characterize the present state of the KIII model automatically
without requiring detailed inspection of the time series, and it
would assign a probability value to the likelihood of return of
the KIII model to the same attractor basin as before an induced
state transition. A method was adapted from classification of

Fig. 3. Time series are from representative PG, OB, AON, PC nodes.

Fig. 4. The power spectrum and amplitude histogram are from a PG (KIp)
node.

EEG spatial patterns [1], [2], [29], by which the amplitude
of the common wave form was taken from each of 64
simultaneously recorded traces, formed into a 641 column
vector, and plotted as a point in 64 space. Recurrent patterns
formed a normally distributed cloud of points with a center
of gravity (“centroid”) that defined the class of pattern by its
spatial ensemble average. The radius of the cluster measured
by the standard deviation (SD) defined the probability of
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Fig. 5. The power spectrum and amplitude histogram are from the OB
(KIm1 mitral cell) time series.

membership in the class. The distance of separation of two
or more classes was evaluated by the distance between their
centroids divided by the geometric mean of the two SD’s.

For the KIII model a set of nine traces was taken from
representative nodes (, , , , , , , , and ).
The traces were cut into 200 ms segments. Each segment gave
seven measures (the four moments: mean, SD, skewness, and
kurtosis; and the slope, intercept, and SD from the fitted
line of the power spectrum in log–log coordinates, ),
plus the mean correlation by-transform between pairs of KI
subsets to evaluate the commonality of wave form. Evaluation
of the distribution of points along each of the axes in 64-space
combined with visual inspection of the traces showed that the
skewness, kurtosis, and spectral estimates varied too greatly,
so they were dropped. The ratio was added [30], giving a
point in 28-space ( ) for each measured time segment
of the model.

A continuous run was initiated, and after the700 ms
required for initialization of the model, a sample of ten
segments of 200 ms at intervals of 1000 ms was evaluated
to give a normally distributed cluster of 10 points with its
centroid and SD. If the points showed no drift, and no points
were more than 2 SD from the centroid, the system was
judged to be stable. The value of the threshold SD was
validated by visual inspection to confirm that the of all the
time series in every segment conformed to the nine criteria
listed. The test was repeated with durations up to 50 s, and
then with 200 ms step segments given at 1 s intervals to
induce gamma bursts. Test segments taken prior to the inputs
showed that, despite the unpredictable variation in the wave
forms of the multiple time series, the KIII system returned
to the same basal state, within 200 ms after each input step
segment was ended. The same result followed delivery of
step inputs with varying amplitudes and spatial patterns, after
input normalization and range compression in the manner
described above.

B. Effects of Variation of Parameters

The set of 24 gains to be optimized was too large to be
evaluated in one step. Each parameter was varied from its
optimized value over a range sufficient to reveal instability
in both directions, with the intent to rank the parameters in
order of sensitivity, and then jointly to change those few
simultaneously in accordance with optimization procedures
already reported [12]. Each stepwise change in a parameter
changed measurements in 28-space giving apparent drift of
the centroid by its mean, SD, peak frequency, and amplitude
distribution of the traces. A new criterion for instability was
adopted. The time ensemble average A and SD were calculated
for the set of statistics from the 10 segments (mean, SD,
and ratio), and they were plotted as a function of the
parameter value. The new criterion that emerged was the
SD of the cluster, which increased markedly between stable
domains outside both ends of the range of acceptable function.
The simulated neural activity patterns in those upper and
lower flanking domains did not conform to experimental
observations from the olfactory system. By this new criterion,
each parameter tested was shown to have a substantial range
in which the model was stable (Table I).

V. DISCUSSION AND CONCLUSIONS

The analysis and evaluation of the performance of the KIII
model are still strongly dependent on visual inspection, so
that further developments of stability assays are in progress.
The criteria for conformance of the KIII model to EEG
data are being expressed as fuzzy membership functions
[30], either trapezoidal for average values (-functions) or
half-trapezoidal for variances (-functions). Classification of
the simulated EEG segment as acceptable or not are by
the continued product (fuzzy AND operation) of the set of
membership values. Membership functions are also being
constructed for the stability criteria. A global stability rating
on a graded scale is to be calculated from their contin-
ued product. Further options may be the use of weights to
emphasize or attenuate subsets of criteria. The interactions
of multiple parameters varied simultaneously are yet to be
evaluated.

The robustness and stability of attractor states in the ol-
factory system are attested by its capacity to support the
identification of familiar odors recurring over long periods
of time, and by the reproducibility of the measurements of
its spatiotemporal neural activity patterns. Its capacity to
transit rapidly and repeatedly through its attractors underlies
its service in olfactory pattern classification [31]. The global
robustness of this highly unstable neural mechanism, in the
face of continuing processes of growth, learning, and unlearn-
ing [32] must be maintained by chemical and neurohumoral
controls exercised both locally and from the brain stem cen-
trifugally, though little is known about them. At present the
global stability of the KIII model is maintained and assayed
by reference to criteria extracted by experimental studies,
which appear to reflect system invariants that may or may
not be used by the brain and the olfactory system, but are
useful here.
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Networks of nonlinear ODE’s serve to simulate the olfactory
EEG’s and pulse densities when their parameters are adjusted
to give aperiodic time series indicative of chaotic attractors.
However, this approach brings three difficult problems First,
the sensitivity to initial conditions may be desirable for clas-
sification of very weak patterned inputs, but it opens a door
nonselectively. Second, the aperiodic time series for successive
real inputs are never identical, so the identification of an
attractor for a recurring real input cannot be done by curve
fitting. The problem is compounded in the high dimensional
arrays of the KIII model with multiple uncorrelated time
series. Third, in digital representations of the model the
ODE’s become difference equations. These are satisfactory
for getting point and limit cycle solutions, but the truncation
of the numbers in numerical approximations leads inevitably
to numerical instabilities that may be difficult or impossible to
distinguish from chaotic time series.

The solution for these problems by use of additive noise was
suggested by analysis of the olfactory system, in which noise
is always present from its receptors and its centrifugal controls.
Endogenous noise is also present [27], both in additive form as
a manifestation of action potentials, and in multiplicative form
reflecting variation of neuronal parameters. However, neither
the addition of random numbers to internal state variables,
nor the random variation of parameters to give multiplicative
noise, sufficed alone for stabilization, nor did they improve
performance in the presence of the specified noise sources.
It now appears that noise is not only unavoidable; it is also
essential. This means that the attractor states manifested both
in the model and in the olfactory system are not chaotic.
They are hybrid. Chaotic attractors, like straight lines and
perfect spheres, do not exist in nature, but are mathematical
fictions to help in system design. The question, “Is brain
activity chaos or colored noise?” is answered, “neither,” by
this hypothesis. The ratio of amplitudes by which they coexist
can be calculated in models, as in the present case, but whether
the simulations are accurate for the biological systems has not
been determined.

Future testing of this hypothesis may be done in analog
computation, in which numerical instabilities are not at issue.
Earlier attempts to develop analog embodiments [33], [34]
were abandoned owing to component imprecision, drift with
temperature and aging, and especially the -type noise in
the operational amplifiers, which foretold that emergence of
the desired property in KIII outputs could not be distinguished
from capture of the global system by any one of its numerous
elements. The present finding indicates that an analog approach
should be re-explored to determine whether the intrinsic noise
of components, particularly when they are reduced in size for
LSI and VLSI, can be used to simulate action potentials in
place of random number generators. Such an approach may
solve another major problem, which is the amount of compu-
tational resource that is required for digital solution of ODE’s.
It is unlikely that models deriving from chaotic neurodynamics
can be brought into the commercial and industrial arenas, until
they are embodied in fully parallel analog or hybrid digital-
analog devices. The taming of chaos by noise may open a
path to that development.

Particular note should be taken that the use of noise
that is shown in this paper does not serve either to
induce or suppress chaotic attractors, as described by
others [34]–[37], but to maintain existing or desired chaotic
attractors.
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