
Taming Heterogeneity—The Ptolemy Approach

JOHAN EKER, JÖRN W. JANNECK, EDWARD A. LEE, FELLOW, IEEE, JIE LIU, XIAOJUN LIU,
JOZSEF LUDVIG, STEPHEN NEUENDORFFER, SONIA SACHS,AND YUHONG XIONG

Invited Paper

Modern embedded computing systems tend to be heterogeneous
in the sense of being composed of subsystems with very different
characteristics, which communicate and interact in a variety of
ways—synchronous or asynchronous, buffered or unbuffered, etc.
Obviously, when designing such systems, a modeling language
needs to reflect this heterogeneity. Today’s modeling environments
usually offer a variant of what we call amorphous heterogeneity
to address this problem. This paper argues that modeling systems
in this manner leads to unexpected and hard-to-analyze interac-
tions between the communication mechanisms and proposes a
more structured approach to heterogeneity, called hierarchical
heterogeneity, to solve this problem. It proposes a model structure
and semantic framework that support this form of heterogeneity,
and discusses the issues arising from heterogeneous component
interaction and the desire for component reuse. It introduces the
notion of domain polymorphism as a way to address these issues.

Keywords—component-based design, embedded systems,
heterogeneous modeling, models of computation.

I. INTRODUCTION

Modern embedded systems are typically software enabled,
interconnected, and engage the physical world. Among other
things, they must be reliable, concurrent, and reactive in real
time. To ensure these requirements in the face of growing
complexity, designers may be able to use formal methods that
allow designs to be analyzed and verified. Embedded sys-
tems also tend to beheterogeneous, i.e., they include subsys-

Manuscript received December 20, 2001; revised August 31, 2002. This
work, as part of the Ptolemy project, was supported in part by the Defense
Advanced Research Projects Agency (DARPA); in part by the Micro-
electronics Advanced Research Corporation/DARPA Gigascale Silicon
Research Center; in part by the State of California MICRO program; and
in part by the following companies: Agilent Technologies, Cadence Design
Systems, Hitachi, National Semiconductor, and Philips.

J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, S. Neuendorffer,
S. Sachs and Y. Xiong are with the Electrical Engineering and
Computer Sciences Department, University of California at Berkeley,
Berkeley, CA 94720-1770 (e-mail: johane@eecs.berkeley.edu; jan-
neck@eecs.berkeley.edu; eal@eecs.berkeley.edu; liuj@eecs.berkeley.edu;
liuxj@eecs.berkeley.edu; neuendor@eecs.berkeley.edu;
ssachs@eecs.berkeley.edu; yuhong@eecs.berkeley.edu).

J. Ludvig is with Athena Semiconductors Inc., Fremont, CA 94538
(e-mail: jludvig@directvinternet.com).

Digital Object Identifier 10.1109/JPROC.2002.805829

tems with very different characteristics such as mechanical,
hydraulic, analog, and digital hardware, as well as software
that is oriented toward dataflow, realizes control logic, deals
with resource allocation, or must provide some real-time per-
formance. Much effort has been invested in creating formal
models that elegantly describe each of these characteristics,
and the selection of formal models and tools when designing
an embedded system involves decisions that can have impor-
tant consequences for a project.

However, each model typically represents only one aspect
of the entire system, and thus only part of its total behavior.
To evaluate the behavior of the system as a whole, these
models must be composed in some fashion so that their prop-
erties can be considered together. Thisheterogeneous com-
positionmust represent interaction and communication be-
tween models while preserving the properties of each indi-
vidual model.

Brute-force composition of heterogeneous models may re-
sult in what we callemergent behavior. Model behavior is
emergent if it is caused by the interaction between character-
istics of different formal models, and if it was not intended
or foreseen by the author of the model. Emergent behavior
is therefore always a surprise to the designer, and potentially
violates properties the designer expects from the individual
formal models, thereby interfering with the ability to analyze
the entire model.

One example of an emergent behavior is priority inver-
sion between threads in a real-time operating system. In this
case threads are interacting using two different communi-
cation mechanisms: mutual exclusion using monitors and a
fixed priority scheduling mechanism. Looking at each mech-
anism in isolation, a designer naturally expects that the thread
scheduler will preempt low-priority threads when a high-pri-
ority thread is ready to execute. Instead, by locking a monitor,
a low-priority thread may stall a high-priority thread for an
unbounded amount of time.

We will call a style of handling heterogeneous models that
allows various interaction mechanisms to be specified be-
tween a group of components at the same timeamorphous,

0018-9219/03$17.00 © 2003 IEEE

PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003 127

since it does not constrain the applicability of different in-
teraction styles by scoping or similar constructions. Con-
structing complex models in an environment that supports
amorphous heterogeneity is prone to produce models that
exhibit emergent behavior such as the priority inversion de-
scribed above.

This paper presents a more structured,hierarchically het-
erogeneous, approach to compose different models. This ap-
proach is studied in the Ptolemy project and implemented in
the Ptolemy II software environment. Using hierarchy, one
can effectively divide a complex model into a tree of nested
submodels, which are at each level composed to form a net-
work of interacting components. Our approach constrains
each of these networks to be locally homogeneous, while al-
lowing different interaction mechanisms to be specified at
different levels in the hierarchy.

One key concept of hierarchical heterogeneity is that the
interaction specified for a specific local network of compo-
nents covers the flow of data as well as the flow of control
between them. We call such a framework amodel of com-
putation(MoC), as it defines how computation takes place
among a structure of computational components, effectively
giving a semantics to such a structure.

To facilitate hierarchical composition, an MoC must be
compositional in the sense that it not only aggregates a net-
work of components, but also turns that network itself into a
component that in turn may be aggregated with other models,
possibly under a different MoC. We present an automata-
based approach to study the compatibility and composition-
ality of components with their MoC frameworks.

Because each local submodel is governed by one well-de-
fined MoC, it can be understood solely in the terms of this
MoC, and it can be analyzed in the formal framework de-
fined by it, while at the next higher level of the hierarchy
the submodel is considered atomic for the purpose of under-
standing or analyzing its containing model. This localization
of analyzability allows individual components to be refined
into more detailed models without affecting the properties of
the rest of the system. Thus, analysis, compilation, and code
generation become compositional.

The remainder of this paper is structured as follows.
Section II summarizes some of the related work in this
area. Section III motivates hierarchical decomposition with
a small example, while Section IV introduces the basic
structure of these models and the notion of adomain that
implements a formal MoC. Section V describes some of the
issues that arise in hierarchical heterogeneous modeling,
especially concerning which models can be embedded in
which other models, and discusses our approach. Section VI
sketches the contributions of a hierarchically heterogeneous
model structure to the task of generating code for a variety
of targets, and we conclude in Section VIII.

II. RELATED WORK

Different modeling techniques reflect different ways of
thinking by designers, and their intentions when abstracting
system properties.

Continuous time (CT) models, such as ordinary differen-
tial equations (ODEs) and differential algebraic equations,
have been used for modeling mechanical dynamics, analog
circuits, chemical processes, and many other physical sys-
tems. Design tools such as Spice [40], Saber (by Analogy
Inc., Beaverton, OR), and early versions of Simulink (by The
MathWorks, Natick, MA) are based on these models.

Discrete-event (DE) models have a global notion of time
and time-stamped events. They are suitable for modeling
timing properties in digital circuits, network traffic, and
queuing systems. Languages and tools like Very High-Speed
Integrated Circuit Hardware Description Language (VHDL)
[41], Verilog [45], and ns [10] are primarily based on
these models. In some DE models, the time stamps of all
events are multiples of a predefined time interval. These
discrete-time models are used in discrete control systems
and cycle-accurate simulations.

In many system modeling methodologies, time is ab-
stracted away. Synchronous/reactive (SR) models [6]
abstract time into discrete “ticks,” and all events in the
system are synchronized to them. A system reacts to these
events, and the reaction is assumed to take zero time —
the synchrony assumption. Modeling methodologies like
Statecharts [21] and languages like Esterel [7], Signal
[19], Lustre [20], and Argos [36] realize examples of these
models.

Software systems usually have an even higher level
of abstraction, such that the ordering relation only exists
among a subset of events in the system. Synchronous
message-passing models, like Hoare’s communicating
sequential processes (CSP) [23] and Milner’s calculus
of communicating systems [37], use an atomic message
exchange mechanism to model communications among
processes. They clearly specify communication events
among processes, but not the interleaving of events inside
parallel processes. Examples of languages that support this
MoC are Lotos [11] and Occam [47].

Asynchronous message-passing models of computation,
such as Kahn’s process networks (PNs) [24] and dataflow
models [31], use first-in, first-out (FIFO) queues to model
the communication among processes. Only events within the
same communication channel are strictly ordered, while the
ordering among events in different channels remains unspec-
ified. Various special cases of dataflow models, like syn-
chronous dataflow (SDF) [30], Boolean dataflow [13], and
cyclo-static dataflow (CSDF) [28], are used for specifying
signal process algorithms, since in these models, many prop-
erties like deadlock and memory requirements are statically
analyzable. Dataflow models have been used within tools
such as GRAPE II [28], SPW (by Cadence, San Jose, CA),
and COSSAP [27].

The models previously described usually characterize only
a single aspect of a complex system. For heterogeneous sys-
tems, as seen in communication systems, electromechanical
or electrooptical systems, software enabled control systems,
and hybrid systems, the modeling and design methodolo-
gies and environments that can integrate semantically distinct
models are in high demand [18], [39], [5].

128 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

Many languages and tools that were developed based on
a single model start to embrace other models. VHDL-AMS
[16] extends the DE-based VHDL language with the ability
to model and simulate analog components. Recent ver-
sions of Simulink [38] have the capabilities of integrating
discrete-time and state-transition components with a CT
framework. Extensions have been made to the Esterel
language to include asynchronous computations [42], [1].

New frameworks have also been developed to formally
characterize heterogeneity in systems. The hybrid system
theories integrate CT differential equations with discrete
automata [4]. The *charts (pronounced “star charts”) for-
malism combines finite state machines with a variety of
concurrent models of computation [29]. New languages
and tools emerge to support heterogeneous modeling ap-
proaches. The Moses framework [17] is being developed
to support various event-based models, like Petri nets,
dataflow, and DE models. The El Greco system [12] (now
called SystemStudio) supports a generalized form of the
CSDF MoC [9] and allows hierarchical combination of state
machine-based control logic and dataflow models. A lan-
guage under development, Rosetta [3], provides support for
specifying multiple aspects of a system, each one belonging
to a different domain. However, most of these languages and
tools are based on a limited number of models and restrict
the way that they can be combined.

The Ptolemy II software environment [14] provides
support for hierarchically combining a large variety of
models of computation and allows hierarchical nesting
of the models. Modeling, simulation, and design of large
concurrent real-time systems can be achieved with a high
level of confidence that emergent behavior will not occur.

III. M OTIVATING EXAMPLE

In this section, we try to illustrate some of the issues
arising in modeling a heterogeneous system by walking
through a small example. We represent the models as
block diagrams, since this seems to be the most readily
understandable representation, and because block diagrams
are a very common way to present artifacts in science and
engineering in general, and in Ptolemy in particular.

The model in Fig. 1 is intended to represent a system con-
sisting of threecomponents(represented by blocks), , and

, connected by continuoussignals , , and (rep-
resented by the arcs between the blocks). These signals have
a direction, i.e., each is created by one of the components and
received by one or several components. Since they are con-
tinuous, we may think of them as having a well-defined value
for each point in time, as they would, e.g., if they were elec-
trical signals. This is a typical model of continuous system
with a process , governed by a controller consisting of two
subcomponents and .

Abstractly, the arcs then represent functions from the
real numbers (or some appropriately chosen interval in)
to some set of values, while the blocks stand for functions
on these continuous functions which can be described by

Fig. 1 A model of a CT system.

equations. For example, the effect of the systemmay be
written as

with

Similarly, the two controller blocks may be construed as
equations between their input signals and output signals, i.e.,

which can be transformed into

In the context of this discussion, it is important to note that
the model in Fig. 1 can be readily understood as unambigu-
ously describing a system, and we can easily derive a formal
mathematical description from it, as well as an understanding
of what it means in terms of a specific application.

Now we modify this model slightly by making the con-
troller discretein time, executing periodically at a given fre-
quency. The controller interfaces the CT systemby a sam-
pler (which transforms the continuous signal into a dis-
crete sequence of values) and a zero-order hold (which
conversely maps a sequence of values into a CT signal

), as shown in Fig. 2.
The result of this is in fact aheterogeneoussystem,

consisting of continuous and discrete components. The
model now contains more than one kind of interaction
between components—in addition to the CT signals from
the previous example, we also have discrete signals between
the components describing the controller.

Interpreting this model, however, is not quite as straight-
forward as it was for the purely continuous model, because
there are several possible interpretations of what this model
does, and they differ in the way they order the computa-
tions performed in the blocks and . When a new sample
is generated, the new value, say , is available to both,

and . If now is executed before , it computes the
value , which is sent to . If now ex-
ecutes, it takes this value as the current one, and computes

.

EKER et al.: TAMING HETEROGENEITY—THE PTOLEMY APPROACH 129

Fig. 2 An amorphous model of a heterogeneous system.

However, if first executes, it has and the previous
value produced by as inputs, and thus produces

, where is a unit delay, i.e.,
, for any integer . This is then followed by the

execution of , computing , although this
value will not be used by until the next sample.

The key to this ambiguity is that while the CT portions of
the model have a cleanly defined, Newtonian physical notion
of time, the discrete portions have not been assigned a clear
semantics. What is the value ofat time ? The function
is indexed by an integer. Suppose we declare that at time
has value if . Then we get the first
execution. On the other hand, if we declare thathas value

if , then we get the second. These
are equally valid ways to reconcile the disparate semantics
of continuous and discrete time.

If we take the second interpretation, then we should per-
haps be consistent and choose a similar interpretation for the
discrete signal . This would introduce a one-step delay be-
tween the sampler and. Without this, however, we would
have a weirdly amorphously heterogeneous model.

The choice has implications for implementation. For
instance, it is relatively easy to assume a specific kind of
communication between components (say, discrete signals
are sent asynchronously between components astokens), and
describe itandasuitablestrategy for the flowofcontrolamong
them. Such a description could say that a data token, after it
has been received and then used in some computation, is con-
sumed, and the component cannot do any more computation
until it has a “fresh” token on each of its input lines. This rule
would disambiguate the above case, ascould not compute
until has finished and produced a fresh result token for.

On the other hand, this rule assumes that the compo-
nents we apply it to are engaged in only one kind of data
exchange—if we imagine to produce, say, a continuous
output signal, we would need another rule to tell us which
value this signal has during the time that our first rule says
that may not compute. And so on for each new kind of
signal we care to connect to.

So the desire for a precise and unambiguous description of
the dataflow and control flow between components, which

Fig. 3 A hierarchically heterogeneous version of the model in
Fig. 2.

works best in homogeneous models that have only one kind
of dataflow between components, seems to oppose the use of
heterogeneous models. Clearly, arbitrarily mixing different
kinds of dataflow between components, as in Fig. 2, in an
amorphously heterogeneous way leads to ambiguities that
are usually much harder to locate than in our trivial example
above.

The Ptolemy approach, on the other hand, reconciles the
wish for a homogeneous and thus predictable model with the
desire to mix partial models of different kinds in a common
heterogeneous model by hierarchically nesting submodels of
potentially different kinds.

The model in Fig. 3 shows how the amorphous model from
Fig. 2 is disambiguated by the use of hierarchical hetero-
geneity. The controller componentsand are now con-
tained in a submodel embedded in a (CT) top-level model.
Both the top-level model and the controller submodel are
homogeneous, and are governed by a specific set of rules
that determine how data flows and when and how compu-
tation happens—in this case, a CT top-level model and an
SDF model for the discrete controller model.

In fact, the rules for SDF models say that a component con-
sumes tokens upon performing a computational step, and re-
quires a predefined number of tokens to be present (here, al-
ways one) before being able to make this step. By placing or
not placing an initial token onto the signal between and

, we can even select unambiguously one of the two possible
behaviors of the discrete part of this model, as shown in Fig. 4.

SDF does not have a notion of time, and it does not need
one in order to interact with CT models. Reactions of the syn-
chronous subsystem are instantaneous from the perspective
of the continuous system.

IV. M ODEL STRUCTURE AND SEMANTICS

A. Actor-Oriented Modeling and Design

Ptolemy advocates anactor-orientedview of a system,
where the basic building block of a system is anactor. Actors

130 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

Fig. 4 The two different behaviors for the discrete controller.

are concurrent components that communicate through inter-
faces calledports. Relations define the interconnect between
these ports, and thus the communication structure between
actors.

Actor orientation is a way of structuring and conceptual-
izing a system that complements the object-oriented tech-
niques that today are widely used to structure software sys-
tems. Viewing a system as a structure of actors emphasizes
its causal structure and its concurrent activities, along with
their communication and data dependencies. An object-ori-
ented perspective sees the state of a system as a structure of
objects that are related by references to each other. A con-
sequence of an actor-oriented view of a system is a decou-
pling of the transmission of data from the transfer of control;
by contrast, object orientation has come to mean that objects
can communicate only bycalling each other’s methods, ef-
fectively transferring control to each other’s code.

By contrast, the communication among actors may or may
not be related to the flow of control. Ptolemy actors gener-
alize those described by Agha [2] in that they are not neces-
sarily associated with a thread of control. Each actor may run
in its own thread, or the entire model may run sequentially
in a single thread. It is the MoC, rather than the individual
actors themselves, that defines the details of scheduling and
communication, and whether and how these are related.

Factoring this functionality out of the actors into a
common coordinating context has two important conse-
quences. First, it makes actors much more reusable, as an
actor describes abstract functionality that can be run in a
large number of different ways. Second, a composition of
actors governed by some MoC can more easily be analyzed
and understood, as there is no way that different actors might
have made different assumptions about the way control flow
and communication are handled.1

The structure imposed by an MoC on a collection of ac-
tors may be exploited in a number of ways. The system may
now possibly be analyzed for certain properties (such as ab-
sence of deadlocks, boundedness of resources, fairness of
execution, timeliness of results), and, of course, compilers
translating a model to a target architecture might also use the
knowledge about the MoC to optimize the generated code
(e.g., by computing static schedules, using buffers efficiently,
or removing redundant checks for conditions that are guar-
anteed by the MoC).

We will now present the structure of a Ptolemy model in
more detail, showcase some common models of computation

1Of course, not all problems concerning actor compatibility simply dis-
appear, but as we will see, this framework provides promising approaches
for addressing these issues.

used in embedded systems modeling, and discuss the issues
arising from hierarchical composition of models of compu-
tation.

B. Model Structure

An actor can beatomic, in which case it must be at the
bottom of the hierarchy. An actor can becomposite, in which
case it contains other actors. Note that a composite actor can
be contained by another composite actor, so hierarchies can
be arbitrarily nested.

Actors haveports, which are their communication inter-
faces. A port can be an input port, an output port, or both.
Communication channels are established by connecting
ports. A port for a composite actor can have both con-
nections to the inside and to the outside, thus linking the
communication from inside actors to outside actors.

For example, in Fig. 5, the top-level composite actor con-
tains actors A1 and A2. Actor A2 is also a composite actor,
as suggested by the different icon, which contains actors A3
and A4. Actors A1, A3, and A4 are atomic actors. Port P2 of
A2 is an external port and connects to port P1 on the outside
and port P3 on the inside. Note that the top-level composite
actor has no external ports, implying that it completely en-
capsulates the design.

C. Execution

Actors, both atomic and composite, are executable. The
execution of a composite actor is a controlled composition of
the execution of the actors it contains. This compositionality
of execution is the key to managing heterogeneity hierarchi-
cally.

An execution in Ptolemy II has the following phases:
setup, iterate, and wrapup, where each phase may have
more fine-grained phases.

The setup phase is divided intopreinitializeandinitialize
phases. The preinitialization subphase usually deals with
structural information, like constructing dynamically created
actors, determining the widths of ports, and creating (do-
main specific) receivers. The initialization phase initializes
parameters, resets local state, and produces initial tokens.
Typically, the preinitialization of an actor is performed
exactly once during the actor’s life of execution, and before
any other execution of the actor. The initialization of an
actor is performed once after the preinitialization and type
resolution. It may be performed again if the semantics
requires that the actor to be reinitialized, for example, in the
hybrid system formalism [33].

Actors perform atomic executions (callediterations) in the
iterate phase. An iteration is a finite computation that leads
the actor to a quiescent state. The MoC of a composite actor
determines how the iteration of one actor is related to the
iterations of other actors in the same composite.

To coordinate the iterations among actors, an iteration is
further broken down into prefire, fire, and postfire. Prefire
tests the preconditions for the actor to execute, such as the
presence of sufficient inputs to complete the iteration. The
computation of the actor is typically performed during the
fire phase. Typically, computation involves reading inputs,

EKER et al.: TAMING HETEROGENEITY—THE PTOLEMY APPROACH 131

Fig. 5 A hierarchical model in Ptolemy II.

processing data, and producing outputs. The persistent state
of the actor is updated in postfire.

Note that despite the fact that computation occurs during
the fire phase, the state of the actor is not updated until post-
fire. This supports fixed-point iteration in some models of
computation, such as synchronous reactive models and CT
differential equations. These models of computation com-
pute the fixed point of actor outputs while keeping the state
of each actor constant. The state of an actor can only be up-
dated after the fixed point has been reached. This requires the
firing of each actor several times before the actor is postfired.

The execution is wrapped up exactly once at the end of
the execution. Typically, actors release resources that were
allocated during execution.

D. Domains

In Ptolemy II, an implementation of an MoC associated
with a composite actor is called adomain.2 A domain defines
the communication semantics and the execution order among
actors. It is realized by two classes: adirectorand areceiver
class.

The communication mechanism is implemented usingre-
ceivers. Receivers are contained in input ports, and there
is one receiver for each communication channel. Receivers
could represent FIFO queues, mailboxes, proxies for a global
queue, or rendezvous points. In the model in Fig. 5, there is
a receiver in the input ports P2, P3, and P5. Port P0 has no
receiver because it is not connected to an input channel.

Actors, when resident in a domain, acquire domain-spe-
cific receivers. By separating computation and communica-
tion in this way, many actors (calleddomain-polymorphic
actors) can be reused in different domains. We discuss do-
main-polymorphism in further detail in Section V.

The execution order of the actors contained in a composite
is controlled by adirector. Since receivers and directors must
work together, the director is also responsible for creating
receivers. When a composite actor is fired, the director inside
the composite actor fires the actors of the contained model.

Fig. 5 shows a hierarchical model using two different do-
mains. In the model, the top-level composite actor contains
a director D1, and A2 is a hierarchical composite actor with
director D2. Hence, director D1 controls the execution order
of actors A1 and A2, and director D2 controls the execution

2The term “domain” comes from a fanciful notion in astrophysics that
there are regions of the universe with different sets of laws of physics. An
MoC represents the “laws of physics” of the submodel governed by it.

of A3 and A4 whenever A2 is executed. The receiver in port
P1, created by director D1, mediate communication between
ports P1 and P2. Likewise, receivers created by director D2
mediate communication between ports P2 and P3, and be-
tween ports P4 and P5.

We present here some domains that we have realized in
Ptolemy II. This is far from being a complete list. The intent
is to show the diversity of the models of computation under
study.

1) Communicating Sequential Processes:In the CSP
domain, created by Neil Smyth, actors represent processes
that communicate by atomic instantaneous rendezvous.
Receivers in this domain implement the rendezvous points.
An attempt to put a token into a receiver will not complete
until a corresponding attempt is made to get a token from the
same receiver, and vice versa. As a consequence, the process
that first reaches a rendezvous point will stall until the other
process also reaches the same rendezvous point [22].

2) Continuous Time:The CT domain [34] models
ODEs, extended to allow the handling of DEs. Special
actors that representintegratorsare connected in feedback
loops in order to represent the ODEs. Each connection in
this domain represents a CT function, and the components
denote the relations between these functions.

Each receiver in the CT domain is a buffer with size one.
It contains the value of the continuous function of the corre-
sponding connection at a specific time instant. The execution
of a CT model involves the computation of a numerical so-
lution to the ODEs. In an iteration of a CT model, time is
advanced by a certain amount, and a fixed-point value of all
the continuous functions is computed. As mentioned previ-
ously, this fixed-point computation may involve firing indi-
vidual actors multiple times.

3) Discrete Event:In the DE domain, created by Lukito
Muliadi, actors communicate through events placed on a
(continuous) time line. Each event has a value and a time
stamp. Actors process events in chronological order. The
output events produced by an actor are required to be no
earlier in time than the input events that were consumed. In
other words, DE models arecausal.

The execution of this model uses a global event queue.
When an actor generates an output event, the event is placed
in the queue and sorted according to its time stamp. Receivers
in this domain are proxies for the global event queue. During
each iteration of a DE model, the events with the smallest
time stamp are removed from the global event queue, and
their destination actor is fired.

132 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

4) Process Network:In the PN domain, created by Tom
Parks, actors represent processes that communicate by (con-
ceptually infinite capacity) FIFO queues [25]. Receivers in
this model implement these FIFO queues. Writing to the
queues always succeeds, while reading from an empty queue
blocks the reader process. The simple blocking-read- non-
blocking-write rule ensures the determinacy of the model.

5) Synchronous Dataflow:An SDF model [30] is a par-
ticularly restricted special case of a PN model. When an actor
is executed in this model, it consumes a fixed number of to-
kens from each input port and produces a fixed number of to-
kens to each output port. A valuable property of SDF models
is that deadlock and boundedness can be statically analyzed.
Receivers in this domain represent FIFO queues with fixed
finite capacity, and the execution order of components is stat-
ically scheduled.

V. COMPONENT INTERACTIONS AND DOMAIN

POLYMORPHISM

A domain controls the communication between actors3 by
determining the receivers on their input ports. Also, the di-
rector of a domain may control the execution order of the ac-
tors. In effect, the receiver and director decouple the idiosyn-
crasies of interaction in a domain from the requirements of
the actors embedded in it.

The concept of domain-specific receivers and directors
that form the interface between actors and their environment
seems to suggest that any actor, including every model in any
domain, may be embedded into any other model, because all
rely on a common notion of execution (atomic firing) and a
common notion of communication (receivers). Clearly, this
is most desirable, since it maximizes the reuse of components
and models. Unfortunately, things are not so simple.

In software terms, by defining the receiver notion, we have
essentially specified aninterface, a set oflexical conven-
tions for sending or receiving information to and from the
environment of an actor. For example, all receivers have a

method, which is used to obtain a token stored in the
receiver. Since the receiver notion is generic, there are many
different realizations of these conventions (which is, after all,
the whole point in the design of this abstraction). Unfortu-
nately, any two such realizations are not necessarily compat-
ible.

For instance, all the actors have a method that the
director uses to start their execution. In this method, an actor
may call the method of the receiver to obtain an input
token. In the SDF domain, the scheduler guarantees that an
actor is fired only when there is a token in its receiver. So an
SDF actor does not need to check the availability of a token
before calling . By contrast, in the DE domain, the di-
rector does not make the same guarantee, so the actors should

3Remember that these actors may be atomic or may, in fact, themselves
be formulated as models in some, possibly different, domain. It is testimony
to the power of the domain framework that this distinction is irrelevant to
the following discussion.

check the availability of a token by calling be-
fore calling . If an SDF actor is used in DE, it may cause
an exception by calling on an empty receiver.

To ensure validity of our models, however, we would like
to statically check the compatibility of an actor with a do-
main it is embedded in. This suggests that we need to pre-
cisely specify the behavior of the receivers and directors in
different domains. Our approach is to define automata that
model the combined role of receivers and directors. These
automata are called domain automata, since they essentially
specify the communication behavior of the domains. We also
describe the behavior of the actors using automata and check
the compatibility of the actor with a domain by composing
the domain automata with the actor automata. This approach
is sketched later. More information can be found in [32].

Among the many variants of automata models, we choose
interface automata [15] for their strength in the composi-
tion semantics. As with other automata models, interface au-
tomata consist of states and transitions4 and are usually de-
picted by bubble-and-arc diagrams. There are three different
kinds of transitions in interface automata: input, output, and
internal transitions. When modeling a software component,
input transitions correspond to the invocation of methods on
the component or the returning of method calls from other
components. Output transitions correspond to the invocation
of methods on other components or the returning of method
calls from the component being modeled. Internal transitions
correspond to computations inside the component. For ex-
ample, Fig. 6 shows the interface automaton model for an
SDF actor. This figure is a screen shot of a model in the
Ptolemy II interface automata domain. The convention in
interface automata is to label the input transitions with an
ending ”?”, the output transitions with an ending “!”, and in-
ternal transitions with an ending “;”. Fig. 6 does not contain
any internal transitions. The block arrows on the sides denote
the inputs and outputs of the automaton. They are:

1) : invocation of the method of the actor;
2) : return from the method;
3) : invocation of the method of the receiver at the

input port of the actor;
4) : token returned by the call;
5) : invocation of the method of the re-

ceiver;
6) : value true returned by the call,

meaning that the receiver contains one of more tokens;
7) : value false returned by the call,

meaning that the receiver does not contain any token.
The initial state is state 0. When the actor is in this state,

and the method is called, it calls on the receiver
to obtain a token. After receiving the token in state 3, it per-
forms some computation, and returns from . Note that
this actor does not check the availability of tokens before
calling . By contrast, the automaton in Fig. 7 describes
an actor that performs this check. We will show that this latter
actor is domain polymorphic in that it can work in multiple
domains.

4Transitions are called actions in [15].

EKER et al.: TAMING HETEROGENEITY—THE PTOLEMY APPROACH 133

Fig. 6 Interface automaton model for an SDF actor.

Fig. 7 Interface automaton model for a domain-polymorphic actor.

Fig. 8 and 9 show the domain automata for the SDF and
DE domains, respectively. Here,and represent the call
and the return of the method of the receiver, which is
used by an actor to put a token into the receiver. The SDFDo-
main automaton encodes the assumption of the SDF domain
that an actor is fired only after a token is put into the receiver.
On the other hand, in the DE domain, an actor may be fired
without a token being put into the receiver at its input. This
is indicated by the transition from state 0 to state 7 in Fig. 9.

To check the compatibility of the two previously described
actors with the SDF and DE domains, we can compose the
actor automata with the domain automata. In the theory of in-
terface automata, two automata are compatible if their com-
position is not empty. The composition of the SDFActor with
the SDF domain automaton is shown in Fig. 10. It is not
empty, so the SDF actor can be used in the SDF domain.
However, the composition of the SDFActor with the DE do-
main automaton is empty, so the SDF actor cannot be used
in the DE domain. This is because the actor may call
when there is no token in the receiver, and this call is not ac-
cepted by an empty DE receiver.

Now, let us compose the PolyActor in Fig. 7 with the SDF
and DE domain automata. The results are shown in Fig. 11
and 12. Since these compositions are not empty, we have
verified that PolyActor can work in both domains.

Although the preceding suggests composing the au-
tomaton model of an actor with each of the domain automata
for checking compatibility, there is a much more elegant
way to characterize the domain-polymorphic behavior of
actors. To do this, we can take advantage of the alternating
simulation relation of interface automata. For example, there
is an alternating simulation relation from SDFDomain to
DEDomain. This is indicated in Fig. 13, which depicts this
relation as part of a partial order on domain automata. In this
diagram, DE is above SDF because there is an alternating
simulation relation from SDF to DE. The other automata in
this diagram are omitted in this paper for the sake of brevity.

By applying a theorem of interface automata, if an actor
automaton is compatible with a certain domain automaton P,
it is also compatible with all the other domain automata from
which there is an alternating simulation relation to P. There-
fore, once we have verified that PolyActor is compatible with
DEDomain, we have also established that it is compatible
with SDFDomain. So in fact, we do not need to compute the
composition in Fig. 11 The top element in Fig. 13 is the Do-
main Polymorphic automaton (DP), to which there is an al-
ternating simulation relation from all the other automata. If
an actor is compatible with DP, it is then compatible with all
the domains below. The exact design of the DP automaton is
part of our future research.

134 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

Fig. 8 SDF domain automaton.

VI. GENERATING CODE

A. Translating Models

Formal system models are used in several ways. At their
most basic, formal models can be used to prototype and vali-
date new designs. After the model has been created and vali-
dated, it is typically translated by hand into code for a system
implementation. This code is written in an appropriate target
architecture-specific language that compiles directly onto the
target architecture. If the system being designed is an ap-
plication-specific integrated circuit, then the implementation
code will often consist of a hardware description language,
such as VHDL or Verilog. Similarly, if the system is a micro-
processor system, then the implementation code will likely
be some flavor of C [26]. If the system is heterogeneous, then
more than one language is usually used.

However, this translation process is complex and prone to
error, which reduces the value of any testing and verifica-
tion done on the model. A more robust strategy is to follow
the precepts ofmodel-based design[44], where the model is
used as the specification for the system, and the realization is
synthesized from the model. This is sometimes calledcode
generation. In this case, implementation code is generated
directly from the model by acode generator. To generate the
most efficient code possible, this generator is usually written
with a particular type of model and target architecture in
mind [46], thus following the precepts of platform-based de-
sign [43]. To handle hierarchical models, either the model
can be flattened, resulting in a large, generally amorphous
model, or code can be recursively generated at each level of
the hierarchy, incorporating the output of code generation at
one point in the hierarchy into code generated at a higher
level.

B. Domain Optimizations

A key part of a code generator that creates efficient code
is analyzing the model to determine how it can best be
transformed into implementation code. This analysis must
take into account both the control flow and communication
between actors. This information is readily available in
a Ptolemy domain, allowing transformations to be easily
written.

For example, the sizes of communication queues in an
SDF domain model can be statically determined, since the
actors are statically scheduled. Replacing the queues with
circularly addressed arrays usually results in more efficient
implementation code [8]. Furthermore, since the order in
which actors are fired is known during code generation, op-
timizations can be made between actors to improve the gen-
erated code. For a model in the PN domain, the number of
executing processes can often be reduced by consolidating
chains of actors together into a single process. This is often
useful if the system is being implemented on a micropro-
cessor using expensive operating system threads.

These optimizations might be possible for an amorphous
model, although the analysis required would be much more
complex. Using hierarchical heterogeneity, the MoC is spec-
ified by the designer as part of the design and a design tool
needs only make use of that information. In an amorphous
model, as the complexity of a system model grows, and as
the types of communication styles allowed are increased, the
analysis necessary to determine whether a particular opti-
mization is possible must also increase. On the other hand,
when composing models of computation, the analysis and
transformations during code generation do not individually
increase in complexity, but are simply applied hierarchically.

EKER et al.: TAMING HETEROGENEITY—THE PTOLEMY APPROACH 135

Fig. 9 DE domain automaton.

Fig. 10 Composition of the SDF domain and the SDF actor automata.

VII. A N EXAMPLE FROM HIGH-ENERGY PHYSICS

To better illustrate the utility of hierarchically heteroge-
neous design, we describe the model of a data acquisition
(DAQ) system designed for high-energy physics experi-
ments. The goal of this system is to capture information from
a particle detector, which is made up of a large number of
individual sensors. The DAQ system also preprocesses the
information to identify the relatively small amount of data
which is experimentally significant. After filtering out the
data that are not useful, the remaining data from each indi-
vidual sensor are aggregated into a single stream for storage
and later off-line analysis. Because of the large numbers
of sensors (often several thousand), and high sample rates

(10 samples/s), this processing and aggregation must be
done in real time. Furthermore, understanding and modeling
the physics of the problem is important for making good
system-level tradeoffs.

The DAQ system model presented in the following sec-
tions was primarily designed for neutrino astrophysics exper-
iments, although the components of the system can be reused
for other physics experiments. The model includes anevent
generatorused to simulate properties of the physical events
under observation and the geometry of the detector, asensor
modelused to simulate the properties of individual sensors,
ananalog DAQ front-end modelused to simulate the analog
signal processing and sampling of the input signal, and adig-
ital DAQ back-end modelthat simulates signal quantization,

136 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

Fig. 11 Composition of the SDF domain and the domain-polymorphic actor automata.

Fig. 12 Composition of the DE domain and the domain-polymorphic actor automata.

Fig. 13 An example of the partial order of domain automata.

digital signal processing, and data losses due to buffer over-
flow during aggregation. We briefly summarize the physics
of the experiment and show how the system can be modeled
using a hierarchically heterogeneous model. A more com-
plete description of the system can be found in [35].

A. Neutrino Astronomy Experiments

Neutrino astrophysics experiments are intended to detect
high-energy neutrinos in the cosmic ray flux. Neutrinos are
very weakly interacting particles and can penetrate galactic
dust clouds and even the entire earth without being stopped
or losing energy. Despite their weak interactions, neutrinos
can interact with nucleons and generate high-energy muons.
These charged particles can be detected more easily. At very
high energies (100 GeV), the muon’s momentum is ap-
proximately half the neutrino energy. At these energies, the
neutrino-induced muon flux is so small that detectors have
to cover areas of one kmwith volume on the order of one
km or more to detect astrophysical neutrinos. One of the few
known ways to instrument a large detector uses optical de-

EKER et al.: TAMING HETEROGENEITY—THE PTOLEMY APPROACH 137

Fig. 14 Model that calculates arrival time of Cherenkov radiation.

tection of Cherenkov radiation. Cherenkov radiation is elec-
tromagnetic radiation generated by charged particles (in this
case, the muons) moving faster through a polarizing medium
than the local speed of light in the medium. The power spec-
trum of Cherenkov radiation is proportional to the frequency
of the emitted photons. The very faint Cherenkov radiation
is detected by large diameter (8-12 in) photomultiplier tubes
(PMTs) enclosed by pressure resistant optical module (OM)
spheres. A vertical string of detector modules intercepts a
Cherenkov cone along a cone section, i.e., a wedge or a hy-
perbola. This intersection creates a characteristic time profile
along the string: the relative timing of photons registered by
OMs is a function of the position of the OM and the direc-
tion of the particle track. Detecting this radiation, correlated
across a number of sensors in the string allows extrapolation
of the original path of the neutrino. Particles emit Cherenkov
radiation under a fixed angle. If the distance between the
particle track and the string is called, the projection of the
nearest point onto the string coordinate (here, chosen to be)
is named , the angle of the track relative to the string (the
zenith angle) is called, and denotes the speed of light, the
equation for the hit time becomes

(1)

While this geometric model is an oversimplification of the
physics, it is sufficient for an initial exploration for systems
engineering purposes. A Ptolemy model calculating the event
arrival times is shown in Fig. 14.

Given the parameters of the neutrino path, this SDF model
creates a sequence of coordinates for eight equidistant mod-
ules along a detector string and calculates the corresponding
hit times for each module. These times are used to generate
events in the top-level DE system model (shown in Fig. 15).
These events simulate the arrival of Cherenkov radiation at
the PMTs at the correct times. Note that the cone2time model
itself executes in zero time, and we have simply used the SDF
model as a convenient way of organizing the computation of
the event times. The calculated times are converted into timed
DEs by theTimedDelayactors. The times computed by this
model for an interesting neutrino path are plotted in Fig. 16.

B. Sensor Model

PMTs are stochastic amplifiers: a photon can create a
single photoelectron at the surface of the photocathode,
which is then accelerated toward an electron multiplier
chain by a strong electrostatic field where it creates multiple
secondary electrons. Thepulse height distribution(PHD) is
the most important performance characteristics of a PMT.5

A DE model of the stochastic amplification properties of
a PMT is shown in Fig. 17. This model simply applies a
random amplitude and delay to the incoming event.

C. Front End

A typical DAQ front end consists of a preamplifier, a signal
shaper to limit the bandwidth of the circuit and improve the
signal-to-noise ratio of detector signals, a sample/hold (S/H)
circuit, and an analog-to-digital converter (ADC).6

The CT PMT waveform and preamplifier model in Fig. 18
use a single fourth-order low-pass filter with 5-ns time con-
stant, corresponding to 60-MHz preamplifier bandwidth.
The first pole is given explicitly with an integrator and feed-
back loop, while the remaining three are lumped into a simple
Laplace transfer function. The dynamics of such a system can
be specified in other ways, of course, but this representation
both naturally describes the CT dynamics of the PMT and
emphasizes the lack of synchronization between input events
and the sampling of the signal. The preamplified and shaped
waveforms are sampled at 10-ns intervals, and the samples
are discretized to the ADC resolution of 12 bit, i.e., an in-
teger between 0 and 4095.

5A good PHD is nearly Gaussian with width� � 1. Individual pho-
toelectrons are also delayed by a random drift time due to the inhomogeneity
of the accelerating electrostatic field. The average drift time (� 20 ns) and
the time spread (� 2 ns) of the drift time distribution can be modeled with
a normal distributionN(t ; �).

6Most of the information about the path of an incoming neutrino is carried
by the arrival time of Cherenkov radiation at each PMT. The arrival time can
be extracted from a PMT pulse by sampling it with high resolution (12 bit)
at a high rate [100 million samples/s (MSPS)] and fitting a parameterized
analytical expression for the expected waveform to the sampled data. For
PMT pulses, three free parameters (amplitude, offset, and a pulse time) are
used, and three samples are sufficient to calculate the pulse parameters. A
PMT pulse with 15–20 ns width gives 3–5 nonzero samples at 100 MSPS
sampling rate. The statistical error for the time parameter of the fit is usually
less than 20% of the sampling period, or about 2 ns.

138 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

Fig. 15 Complete system model.

Fig. 16 The arrival time of Cherenkov radiation (ns) versus string position for a horizontal track
100 m from the string.

An important issue for mixed DE/CT simulation is effi-
ciency. While a DE simulation is evaluated only at times at
which at least one variable is changing, CT models are eval-
uated continuously at time intervals that are set by the dif-
ferential equation solver of the simulator. The use of a pe-
riodic sampling actor as an S/H stage model also requires
the simulator to evaluate the model every 10 ns. This is very

inefficient, since the average hit rate of a PMT is 1 kHz,
and the PMT pulse is only 100 ns long. A free-running CT
model would create an unnecessary computational overhead.
By embedding it into amodal model, a finite state machine
(shown in Fig. 19) determines when the CT model executes.
This embedded modal model contains a state machine with
two states, an inactive state and a state that acti-

EKER et al.: TAMING HETEROGENEITY—THE PTOLEMY APPROACH 139

Fig. 17 DE model of the stochastic amplification properties of a PMT.

Fig. 18 CT model of the PMT pulse shape.

Fig. 19 Controller of the PMT and DAQ front end.

vates the CT model. The transition from the to the
state is triggered by the presence of a trigger signal, the tran-
sition back into the state occurs as soon as the output of
the CT model falls below a given threshold. This allows low
overhead simulation without losing relevant information.

The model combining the stochastic and CT properties of
each PMT is shown in Fig. 20. This model also contains the
digital signal processing aspects of the system, which are de-
scribed using hierarchical SDF models12-bit quantization

and trigger detection. This model generates output events
that consist of an array of four 12-bit samples, corresponding
to samples at the leading edge of a PMT pulse.

D. Back-End Model

The communication of data and control messages between
the DAQ front end (analog electronics and ADC), the digital
signal processing and the final storage (on a CPU farm) is

140 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

Fig. 20 Model of the PMT and DAQ front end.

Fig. 21 Network structures within an FPGA.

accomplished with a static network of transmitting and re-
ceiving nodes.7 Fig. 21 illustrates the network structures of
an FPGA. This network uses a custom datagram protocol that
can be implemented in a small fraction of available FPGA
logic. A simple, high-performance packet-routing strategy
with static routing tables is used to transport messages be-
tween nodes of the hardware network.Router circuitssplit
nets into subnets. A router reads every packet destination ad-
dress and reroutes the packet to the internal network if the
packet’s destination address matches the address of the local
subnet. Data from multiple subnets are merged bycombiner
circuits into one output stream. Since the transmitter archi-
tecture is nonblocking, a combiner uses FIFOs on its inputs to
buffer incoming data until the output line becomes available.
The sizes of the FIFOs are statically determined, which may
cause packets to be dropped. Thetransmitter circuitsand
receiver circuitspresent a parallel interface to the network

7The digitized signals from eight analog channels are fed into one
FPGA, which writes them into 27–Mbit double data rate static random
access memory waveform memories. Digital signal processing algorithms
inside the field programmable gate array (FPGA) are used to extract trigger
information such as event energy and timing. Processing of theGByte=s
data stream is continuous and dead-time-free. Eight FPGAs are connected
in a ring topology that is favorable owing to the simplicity of the board
design and the nearly optimal electrical line length, which helps minimizing
noise problems in the analog section.

that is asynchronous from the high data rate of the router and
combiner. All of the network circuits are modeled using SDF
models with finite state machines to track the states of the
packet protocol.

The DE model of the network of FPGAs is shown in
Fig. 22. This model shows the transmitters for each of the
eight DAQ channels, along with the combiners that merge
the incoming packet streams. A DE model is used instead
of a more synchronous model to allow explicit modeling
of the clock using a finite state machine. This improves
the simulation speed of the DE/SDF combination when the
network is known to be idle.

This heterogeneous model allows a designer to investigate
two particular aspects of the design: the design of the trigger
detection circuit used in Fig. 20, and the network topology
which is exemplified by Fig. 22. Optimal design of both of
these aspects requires in-depth understanding of the innate
heterogeneous nature of the system, from underlying physics
and continuous dynamics of the detector to digital signal pro-
cessing and network design. We believe that hierarchically
heterogeneous models, such as this one, can greatly help un-
derstanding the interactions between heterogeneous aspects
of the system, ultimately leading to better designs. Further-
more, the previously described model efficiently and accu-
rately simulates the operation of a real system across time
granularity differences of nearly six orders of magnitude.

VIII. C ONCLUSION

In this paper, we have proposed an actor-oriented, hierar-
chically heterogeneous approach as a way to minimize emer-
gent behavior in complex models, such as those of modern
embedded systems. This makes designs easier to understand,
and the additional structure imposed by the hierarchy may
be used for other purposes as well, such as analysis and code
generation.

The central notion in our concept of hierarchical model
decomposition is that of adomain, which implements a par-
ticular MoC. Technically, a domain serves to separate the
flow of control and data between components from the actual
functionality of individual components. Besides facilitating
hierarchical models, this factoring potentially also dramati-
cally increases the reusability of components and models.

EKER et al.: TAMING HETEROGENEITY—THE PTOLEMY APPROACH 141

Fig. 22 Model of a network of FPGA’s.

Key issues to this approach are the compatibility of ac-
tors with domains, and the compositionality of domains. To
characterize the dynamic interaction between actors and do-
mains, we use interface automata to model the behaviors of
actors, receivers, and directors. The compositionality of these
automata precisely defines the compatibility of actors with
domains. The notion ofdomain polymorphismcharacterizes
the reusability of actors.

Starting from the work presented here, future research is
needed on many aspects, several of which are listed here.

1) The diversity of embedded system applications gives
rise to a wide range of domains. Building frameworks
that help deep understanding of these domains and
their implication on analysis and code generation will
be a part of the Ptolemy project.

2) The interface automaton approach for characterizing
interactions among actors and domains is a starting
point for fully developing a behavioral type system.
We have also proposed using automata to do on-line
reflection of component states. In addition to run-time
type checking, the resulting reflection automata can
add value in a number of ways. For example, in a
reconfigurable architecture or distributed system, the
state of the reflection automata can provide informa-
tion on when it is safe to perform mutation. Reflection
automata can also be valuable debugging tools.

3) Migrating high-level models to embedded system im-
plementations is essential for truly applying the hier-
archical heterogeneous design methodology to real-
world applications. Besides the code generation fa-

142 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

cilities discussed in Section VI, how to characterize
embedded system architectures, and how to abstract
an application platform to better support hierarchical
run-time systems are in the critical path.

REFERENCES

[1] M. Adelantado and F. Boniol, “Controlling real-time asynchronous
tasks with Esterel synchronous language,” inProc. 13th Annu. ACM
Symp. Principles of Distributed Comput., 1994, p. 387.

[2] G. A. Agha,ACTORS: A Model of Concurrent Computation in Dis-
tributed Systems. Cambridge, MA: MIT Press, 1986, MIT Press
Series in Artificial Intelligence.

[3] P. Alexander, C. Kong, and D. Barton. (2000) Rosetta Semantics
Strawman. [Online]. Available: http://www.sldl.org

[4] P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry,Lecture Notes
in Computer Science: Hybrid Systems II. Heidelberg, Germany:
Springer-Verlag, 1995, vol. 999.

[5] D. Barker, “Requirements modeling technology: A vision for better,
faster, and cheaper systems,” presented at the VHDL Int. Users
Forum Fall Workshop (VIUF’00), Orlando, FL., Oct. 2000.

[6] A. Benveniste and G. Berry, “The synchronous approach to reactive
and realtime systems,”Proc. IEEE, vol. 79, pp. 1270–1282, Sept.
1991.

[7] G. Berry and G. Gonthier, “The Esterel synchronous programming
language: Design, semantics, implementation,”Sci. Comput. Pro-
gram., vol. 19, no. 2, pp. 87–152, 1992.

[8] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee,Software Synthesis
from Dataflow Graphs. Norwell, MA: Kluwer, 1996.

[9] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete,
“Cyclo-static dataflow,”IEEE Trans. Signal Processing, vol. 44,
pp. 397–408, Feb. 1996.

[10] L. Breslauet al., “Advances in network simulation,”IEEE Com-
puter, vol. 33, pp. 59–67, May 2000.

[11] E. Brinksma and T. Bolognesi, “Introduction to the ISO specification
language LOTOS,”Computer Netw. ISDN Syst., vol. 14, no. 1, 1987.

[12] J. Buck and R. Vaidyanathan, “Heterogeneous modeling and simu-
lation of embedded systems in El Greco,” inProc. 8th Int. Workshop
Hardware/Software Codesign 2000, 2000, pp. 142–146.

[13] J. T. Buck, “Scheduling dynamic dataflow graphs with bounded
memory using the token flow model,” Ph.D. dissertation, Univ.
California, Elec. Eng. Comput. Sci., Berkeley, 1993.

[14] J. Davis et al., “Ptolemy II—Heterogeneous Concurrent Mod-
eling and Design in Java,” Univ. California, Elec. Eng. Comput.
Sci., Berkeley, CA, Memo M99/40, University of California at
Berkeley/Electronics Research Laboratory (UCB/ERL), 1999.

[15] L. de Alfaro and T. A. Henzinger, “Interface automata,” inProc. 9th
Annu. Symp. Found. Software Eng., 2001, pp. 109–120.

[16] A. Doboli and R. Vemuri, “The definition of a VHDL-AMS subset
for behavioral synthesis of analog systems,” presented at the
IEEE/VIUF Int. Workshop Behav. Model. Simulation (BMAS’98),
Orlando, FL, 1998.

[17] R. Esser and J. W. Janneck, “Moses: A tool suite for visual modeling
of discrete-event systems,” inProc. Symp. Human-Centric Comput.
(HCC ’01), 2001, pp. 272–279.

[18] T. Grotker, R. Schoenen, and H. Meyr, “Pcc: A modeling technique
for mixed control/data flow systems,” inProc. Eur. Design Test Conf.
(ED&TC), 1997, pp. 482–486.

[19] P. Le Guernic, A. Benveniste, P. Bournai, and T. Gautier, “Signal:
A data flow oriented language for signal processing,”IEEE Trans.
Acoust., Speech, Signal Processing, vol. 34, pp. 362–374, Apr. 1986.

[20] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The syn-
chronous data flow programming language Lustre,”Proc. IEEE,
vol. 79, pp. 1305–1321, Sept. 1991.

[21] D. Harel, “Statecharts: A visual formalism for complex systems,”
Sci. Comput. Program., vol. 8, pp. 231–274, 1987.

[22] C. A. R. Hoare, “A theory of CSP,”Commun. ACM, vol. 21, no. 8,
Aug. 1978.

[23] , “Communicating sequential processes,” inComputer Sci-
ence. Englewood Cliffs, NJ: Prentice-Hall, 1985.

[24] G. Kahn, “The semantics of a simple language for parallel program-
ming,” in Proc. IFIP Cong. 74, 1974, pp. 471–475.

[25] G. Kahn and D. B. MacQueen, “Coroutines and networks of parallel
processes,” inProc. IFIP Cong. 77, 1977, pp. 993–998.

[26] B. W. Kernigan and D. M. Ritchie,The C Programming Language,
2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1988.

[27] J. Kunkel, “COSSAP: A stream driven simulator,” presented at the
IEEE Int. Workshop Microelectrion. Commun., Interlaken, Switzer-
land, Mar. 1991.

[28] R. Lauwereins, M. Engels, M. Ad, and J. A. Peperstraete, “Grape-II:
A system-level prototyping environment for dsp applications,”IEEE
Computer, vol. 28, pp. 35–43, Feb. 1995.

[29] B. Lee, “Specification and design of reactive systems,” Ph.D. dis-
sertation, Univ. California, Elec. Eng. Comput. Sci. Dept., Berkeley,
CA, 2000.

[30] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,”Proc.
IEEE, vol. 75, pp. 1235–1245, Sept. 1987.

[31] E. A. Lee and T. M. Parks, “Dataflow process networks,”Proc.
IEEE, vol. 83, pp. 773–798, May 1995.

[32] E. A. Lee and Y. Xiong, “System-level types for component-based
design,” inLecture Notes in Computer Science, Embedded Software,
T. A. Henzinger and C. M. Kirsch, Eds. Heidelberg, Germany:
Springer-Verlag, 2001, vol. 2211, pp. 148–165.

[33] J. Liu, X. Liu, T. J. Koo, B. Sinopoli, S. Sastry, and E. A. Lee, “A
hierarchical hybrid system model and its simulation,” inProc. 38th
IEEE Conf. Decision Contr., vol. 4, 1999, pp. 3508–3513.

[34] J. Liu, “Continuous time and mixed-signal simulation in Ptolemy
II,” Univ. California Elec. Eng. Comput. Sci., Berkeley, CA, Memo
M98/74, UCB/ERL, 1998.

[35] J. Ludvig, J. McCarthy, S. Neuendorffer, and S. R. Sachs, “Repro-
grammable platforms for high-speed data acquisition,” J. Design Au-
tomat. Embedded Syst., vol. 7, no. 4, pp. 341–364, Nov. 2002, to be
published.

[36] F. Maraninchi, “The Argos language: Graphical representation of
automata and description of reactive systems,” presented at the IEEE
Workshop Visual Lang., Kobe, Japan, 1991.

[37] R. Milner, Lecture Notes in Computer Science, A Calculus for
Communicating Systems. Heidelberg, Germany: Springer-Verlag,
1980, vol. 92.

[38] M. Mokhtari and M. Marie,Engineering Applications of MATLAB
5.3 and SIMULINK 3. Berlin, Germany: Springer-Verlag, 2000.

[39] P. J. Mosterman, “An overview of hybrid simulation phenomena and
their support by simulation packages,” inLecture Notes in Computer
Science, Hybrid Systems: Computation and Control. Heidelberg,
Germany: Springer-Verlag, 1999, vol. 1569, pp. 148–165.

[40] W. Nagel, “SPICE 2—A computer program to simulate semicon-
ductor circuits,” Univ. California Elec. Eng. Comput. Sci., Berkeley,
CA, Memo M520, UCB/ERL, 1975.

[41] Z. Navabi,VHDL Analysis and Modeling of Digital Systems. New
York: McGraw-Hill, 1993.

[42] M. Richard and O. Roux, “An attempt to confront asynchronous
reality to synchronous modelization in the Esterel language,”
in Lecture Notes in Computer Science, Formal Techniques in
Real-Time and Fault-Tolerant Systems. Heidelberg, Germany:
Springer-Verlag, 1992, vol. 571, pp. 429–450.

[43] A. Sangiovanni-Vincentelli, “Defining platform-based design,”
EEDesign, Feb. 2002.

[44] J. Sztipanovits and G. Karsai, “Model-integrated computing,”IEEE
Computer, vol. 30, pp. 110–112, Apr. 1997.

[45] D. E. Thomas and P. Moorby,The Verilog Hardware Description
Language. Norwell, MA: Kluwer, 1991.

[46] P. van der Wolf, P. Lieverse, M. Goel, D. La Hei, and K. Vissers,
“An MPEG-2 decoder case study as a driver for a system level de-
sign methodology,” inProc. Int. Symp. Hardware/Software Code-
sign (CODES), 1999, pp. 33–37.

[47] J. Wexler, Concurrent Programming in Occam 2. Chichester,
U.K.: Ellis Horwood, 1989, Ellis Horwood Series in Computers and
Their Applications.

Johan Eker, photograph and biography not available at time of publication.

Jörn W. Janneck, photograph and biography not available at time of pub-
lication.

Edward A. Lee (Fellow, IEEE), photograph and biography not available at
time of publication.

EKER et al.: TAMING HETEROGENEITY—THE PTOLEMY APPROACH 143

Jie Liu , photograph and biography not available at time of publication.

Xiaojun Liu , photograph and biography not available at time of publication.

Jozsef Ludvig, photograph and biography not available at time of publica-
tion.

Stephen Neuendorffer, photograph and biography not available at time of
publication.

Sonia Sachs, photograph and biography not available at time of publication.

Yuhong Xiong, photograph and biography not available at time of publica-
tion.

144 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003

