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A wide variety of social, biological or technological systems can be described as processes

taking place on networked structures in continuous interaction with other networks. We

propose here a new methodology to describe, anticipate and manage, in real time, the out-of-

equilibrium dynamics of processes that evolve on interconnected networks. This goal is

achieved through the full analytical treatment of the phenomenology and its reduction to a

two-dimensional flux diagram, allowing us to predict at every time step the dynamical con-

sequences of modifying the links between the different ensembles. Our results are consistent

with real data and the methodology can be translated to clustered networks and/or inter-

connected networks of any size, topology or origin, from the struggle for knowledge on

innovation structures to international economic relations or disease spreading on social

groups.
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M
any real-world networks can be considered as systems
with an own identity that connect with other entities
forming what is known as a network of networks. For

example, the functionality of transportation routes, the Internet,
the financial networks or the human brain can only be under-
stood focusing on the connectivity between different networks1–4.

Although we are starting to unveil the nature of these complex
ensembles, it is well established that some of their properties
drastically differ from those of isolated networks. For instance,
the robustness of a network can be strongly affected by the
interdependency with other networks producing unwanted cas-
cading effects due to node failures5. Furthermore, although syn-
chronisability of an isolated network increases when reducing the
number of connections between highly connected nodes6, net-
works of networks behave in the opposite way, requiring the
creation of new links between hubs to achieve the synchronisa-
tion manifold7.

The fact that network properties are modified when they
interact with other networks opens the possibility of identifying
optimal interlinks—connector links from now on—between
them. For instance, the importance of a network within a network
of networks, measured as the accumulated eigenvector centrality8,
is strongly dependent on its spectral properties (namely, the
largest eigenvalue of its adjacency matrix) and on the specific
connector nodes, i.e., nodes with connector links to other
networks9.

One major limitation of the former analyses is that they have
mainly focused on the asymptotic equilibrium state of the system,
such as the existence of Nash equilibria10, the final state of a
cascading process2 or the stability of the synchronisation mani-
fold11–13. However, many real processes are permanently far from
equilibrium, sometimes because the configuration of the system
does not allow the existence of equilibrium points, others because
changes introduced by external perturbations, such as an exo-
genous environment, are faster than the time required to reach a
permanent regime14–16. Networks do not escape from this reality,
as the majority of real networked systems are continuously
evolving in time17.

Under the framework of networks competing for a given
resource, a major objective could be to minimise—or maximise—
the time to reach equilibrium instead of the final value of a certain
outcome. For example, consider two interconnected networks
that compete to capture the highest number of moving and/or
replicating agents inside them, with the possibility of modifying
their connector links. This environment could model companies
of the same economical sector competing for clients, innovation
or market share18–20, research centres or hospitals competing for
knowledge, influence or highly qualified professionals10, or vil-
lages that get in touch to optimise their own financial resilience21,
to cite a few. In all these cases, the optimal strategy for networks
with the highest number of nodes and links is to use peripheral
connections to interact with the rest9,22. However, such weak
connections make the redistribution of moving agents very slow
compared with other strategies. This fact leads to a natural
question: Why shouldn’t we look for a time-dependent sub-
optimal connection strategy, which, as compensation, requires
much shorter times to reach the equilibrium? Furthermore, what
if networks decided to modify their strategy of connection at a
certain time to avoid a detrimental equilibrium state?

In this study we describe how dynamical processes on net-
works of networks arrive to an equilibrium state and the potential
guidance of such transient behaviour through the real-time pre-
cise management of the links that connect them. In particular, we
introduce a new framework based on the spectral properties of
the systems under study. The analytical treatment of the problem
allows to predict how connector links between networks influence

the evolution of the whole system and the consequences of tuning
such links in real time. We also propose a diversity of applications
describing the potentiality of this new perspective and paths for
its further development.

Results
Basic concepts and definitions. Our departure point is the study
of the out-of-equilibrium dynamics of a process occurring on two
networks A and B, which interconnect through a limited number
of connector links to give rise to a network of (two) networks T .
The evolution with time of the process is given by

nðtÞ ¼ Mnðt � 1Þ ¼ Mtnð0Þ ; ð1Þ

where M is a generic transition matrix describing the dynamical
process occurring on both networks, nðtÞ is the vector that stands
for the state of the system at time t and nð0Þ is the initial con-
dition (see Supplementary Note 1 for details).

Vector nðtÞ represents different magnitudes depending on the
nature of the system. It might be people in sociological contexts23,
organisms or molecules in biological environments24, amount of
money or goods and services in financial and economic
networks25, or knowledge in innovation networks18, to cite just
a few. For simplicity, we will use the generic term population
vector for nðtÞ and consequently each node i has a population
niðtÞ at time t and each network a population PAðtÞ and PBðtÞ
equal to the fraction of the total population that remains on its
nodes at each time.

Regarding the asymptotic equilibrium of the system, it is easy
to see that nðtÞ ! uT;1 when time grows, being uT;1 the

eigenvector associated to the largest eigenvalue of the transition
matrix M. Furthermore, uT;1 is known to depend strongly on the

connector nodes, i.e., those connected through the connector
links, as well as on the largest eigenvalues λA;1 and λB;1 obtained

from the isolated networks A and B9. For convenience throughout
this work, we consider networks A and B such that λA;1 > λB;1. As

λ1 grows with the number of links and nodes, we call A the strong
network and B the weak one.

The eigenvector associated to the largest eigenvalue of the
matrix that represents a network is known as the eigenvector
centrality8. It has been widely used to measure the topological
importance of nodes within a network26,27 and has been
experimentally proved to be critical in knowledge spreading
systems21,28. We will name central (C) and peripheral (P) nodes
of networks A and B those nodes i with large and small centrality
ðu1Þi respectively, calculated when each network is isolated from
the other (and therefore being a constant quantity for each node
during the whole process).

Finally, it was shown in ref. 9 that connecting two networks
through nodes with low centrality (i.e., with a peripheral–peripheral
(PP) connection) leads the strong network A to retain the highest
possible population, whereas connecting them through central
nodes (central–central (CC) connection) benefits the most the
weakest network. However, the outcome of both connection
strategies was measured at equilibrium, regardless of the time
required to achieve it and without considering the ability of
networks to modify their interconnections. We will now analyse the
importance of studying dynamical systems on networks of networks
when they are far from the equilibrium state.

An illustrative example of why time matters. Let us make use of
a recent model on knowledge spreading on innovation
networks18,25,29. Nodes represent individuals or firms that com-
pete –or collaborate– with the rest for the most valuable knowl-
edge for the production of a certain good or the control of a
technique, taking into account that knowledge can only be
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created through collaboration dynamics and knowledge exchange
with the partners. In these works, knowledge exchange is
understood as formal or informal Research & Development
(R&D) relationships that can be described by bilateral interac-
tions among individuals30,31. Furthermore, it has already been
shown in many contexts (e.g., the biotechnology industry19) that
less-linked organisations are the most likely to fail, so connecting
to other firms in a networked structure seems to be, in general, a
good strategy.

The equation describing the dynamics of knowledge spreading
on the network is

niðtÞ ¼
X

j¼fnngi

njðt � 1Þ ; ð2Þ

where niðtÞ is the knowledge accumulated by the individual i at
time t and such knowledge can only be transferred from
individual j to individual i in one time step if they are connected
through a link. fnngi represents the nearest neighbours of node i.
The dynamics can be written in matrix form as

nðtÞ ¼ Mnðt � 1Þ ¼ Gnðt � 1Þ ; ð3Þ

where G is the adjacency matrix of the network, whose elements
are Gij ¼ 1 if nodes i and j are connected and Gij ¼ 0 otherwise.

As we have two networks A and B, they compete for the
amount of knowledge accumulated in their respective nodes. In
particular, they can describe firms or groups of professionals that
compete for the most efficient development of a product, social
groups such as tribes, villages or regions that compete for the
control of agricultural, industrial or military techniques, or any
other contexts in which two groups of people interact and
exchange knowledge that can make them more competent in the
development of a certain task.

Let us suppose both networks are initially disconnected, the
strongest starting with a total absence of knowledge and willing to
connect to the weakest one through the connector nodes to
obtain the maximum possible knowledge at the asymptotic
equilibrium, but at the same time minimising the time to such
equilibrium. For clarity, in this example we analyse the case in
which networks are interconnected through a unique connector
link, but as will be shown later generalisation to more links is
direct.

Figure 1 shows several strategies to optimise the total
transference of knowledge from a weak network B of NB nodes
towards a strong network A of NA nodes. PAðtÞ accounts for the
fraction of knowledge at network A at time t, obtained as PAðtÞ ¼
PNA

i¼1niðtÞ=
PNAþNB

i¼1 niðtÞ. In consequence, PBðtÞ ¼ 1� PAðtÞ.
Although most work on economic models are restricted

to cliques and stars of different sizes, most real R&D networks
are sparse, locally dense and show heterogeneous degree
distributions20,32. For this reason, and because this heterogeneity
is also a frequent property of a large amount of social
networks33–35, we have used two Barabási-Albert (scale-free)
networks for our example36. Supplementary Figs. 1 and 2 show
equivalent results for collaboration networks of physicians
working in two cities in Illinois, USA, and for financial networks
of two small villages in India, respectively, showing that the
applicability of the phenomenology is independent of the
particular properties of the networks under study.

First, we plot the evolution of knowledge in A for two static
strategies (i.e., maintaining the connector links along time):
connecting networks A and B through nodes with the highest
centrality (CC) and connecting through the most peripheral
nodes (PP). The former is the fastest strategy, but its final state is
very detrimental for the strong network A, whereas the latter is
the slowest strategy but reaches its optimum asymptotic situation.

Next, we implement different dynamic strategies (i.e., modifying
if necessary the connector links along time), trying to optimise at
the same time the accumulated knowledge and the time to reach
it: an exhaustive method in which the connector link maximises
the knowledge flux after n steps (for n ¼ 5 and 10) exploring all
possible combinations and an heuristic method based on
choosing a CC strategy (as it leads to fast dynamics far from
equilibrium) until the knowledge flux becomes very low, because
the CC-asymptotic equilibrium is being reached (t � 150), and
then changing to a PP strategy, which is slower but enables the
strong network to obtain its largest possible final amount of
knowledge. Figure 1 shows that the exhaustive method is the most
effective one, but at a very high computational cost, as, at each
time step t, we need to calculate the n following steps of the
knowledge distribution for all the possible NA ´NB connections
between both networks. On the other hand, the heuristic method
based on combining the CC and PP strategies yields a solution
that reaches the optimal knowledge for network A and it is only
slightly slower than the exhaustive method, but it is several orders
of magnitude faster to compute. Finally, note that if the target of
the experiment was to hamper the spreading of innovation
instead of promoting it, an effective heuristic strategy would be to
connect through a PP connection for a long time (minimising the
flux of information towards A) and, when the remaining
information at the weak network is that of the equilibrium when
the connection is CC, change drastically to a CC connection to
stop the flux.

In summary, the out-of-equilibrium dynamics of the system is
strongly dependent on how the connector links are placed
between both networks during the evolution of the process.
Furthermore, having some intuitions about the phenomenology
—such as using in this particular example the heuristic CC–PP
strategy—seems to be also of great help. However, how general
are these results? Can we solve the problem analytically and
obtain general rules to influence the evolution of the system
according to our interests? This is the target of the next sections.

Analytical approach to the phenomenology. Let us cast analy-
tical light to fully describe the phenomenology in a general fra-
mework. We focus on two independent networks that are
interconnected through a limited number of links, where a gen-
eric population (or knowledge, in the example presented above)
evolves with time and the connector links can be varied at any
time step. We are especially interested in obtaining a theoretical
expression for both the population distribution and the popula-
tion flux—i.e., the fraction of population that goes from one
network to the other per time step—at any time, to know pre-
cisely the future behaviour of the evolutionary process in function
of the properties of both networks, their potential connection
strategies and the initial population distribution (see Supple-
mentary Notes 1–8 for the complete analytical analysis of the
phenomenology and Supplementary Notes 5 and 6 for the gen-
eralisation to directed networks and to systems with more than
two networks, respectively).

Evolution of the population distribution. The evolution with
time of a generic process on two interconnected symmetric net-
works is given by

nðtÞ ¼ Mtnð0Þ ¼
X

NT

i¼1

λ
t
T;iαiuT;i ; ð4Þ

where nðtÞ represents the state of the system at time t, M is the
transition matrix describing the dynamical process, NT ¼ NA þ
NB is the number of nodes in the network of (two) networks T
that contains A, B and the set of connector links, and αi ¼
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nð0Þ � uT;i is the projection of the initial condition on the

i-eigenvector of matrix M of network T .
We consider networks A and B such that λA;1 > λB;1, with uA;i

and λA;i the i-eigenvector and the corresponding eigenvalue of

matrix MA of network A, respectively, and uB;i and λB;i the

i-eigenvector and the corresponding eigenvalue of matrix MB of
network B. Let us approximate the initial condition nð0Þ to

nð0Þ ¼ CAuA;1 þ CBuB;1 ; ð5Þ

where C2
A þ C2

B ¼ 1, and uA;1 and uB;1 are as mentioned the first

eigenvectors associated to networks A and B, meaning that initial
populations on A and B before interconnecting both networks are
already at equilibrium.

We introduce the distribution of population at time t between
both networks xðtÞ as

xðtÞ ¼
nðtÞ � uB;1
nðtÞ � uA;1

; ð6Þ

which is defined between 0 and 1. xðtÞ tends to 0 when most
population is on network A and nðtÞ ! uA;1 is equal to 1 when

the population is equally distributed on A and B, and tends to 1
when most population is on network B and nðtÞ ! uB;1.

Combining Eqs. (4) and (6), and taking into account that
applying matrix perturbation theory, we can obtain the first and
second eigenvalues and eigenvectors of T as quantities that are
only dependent on the eigenvalues and eigenvectors of networks
A and B isolated9, the weight of the connector links ϵ and the
information of the connector links that connect A and B, the
evolution with time of the distribution of population xðtÞ on the

network of networks T follows

xðtÞ �
K tLþ ϵF

Δλ

1� K tL ϵF
Δλ

þOðϵ2Þ ; ð7Þ

where

K ¼
λB;1Δλ� ðϵFÞ2

λA;1Δλþ ðϵFÞ2

 !

; L ¼
x0Δλ� ϵF

Δλþ x0ϵF

� �

;

Δλ ¼ λA;1 � λB;1, the initial population distribution

x0 ¼
nð0Þ�uB;1
nð0Þ�uA;1

¼ CB

CA
, and

F ¼ uA;1PuB;1 ¼
X

cl

ðuA;1Þi � ðuB;1Þj ; ð8Þ

being cl the set of connector links and P a matrix whose elements
are Plm ¼ Pml ¼ 1 if nodes l of A and m of B are connected
through a connector link, and Plm ¼ Pml ¼ 0 elsewhere (see
Supplementary Note 2 for the whole analytical calculation).
Therefore, F represents the sum of the products of the eigenvector
centralities of all connector nodes measured prior to intercon-
necting A to B, and for this reason we will name connection
strength to ϵF and normalised connection strength to ϵF=Δλ. F
can include as many connector links as desired—as far as the
nature of the system is that of two interconnected networks—and
such connector links might connect any nodes in networks A and
B. It is noteworthy that PP connections between networks lead to
low values of F, whereas CC connections (or a very large number
of PP connections) lead to large values of F.

Interestingly, the expression for xðtÞ only depends on the first
eigenvalues of the isolated networks λA;1 and λB;1, the centrality of

their connector nodes (through F, which depends on the first
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Fig. 1 Evolution of a dynamical process on two interconnected networks. They are two different Barabási-Albert (scale-free) networks36 of N
A
¼ N

B
¼ 250

nodes, L
A
¼ L

B
¼ 736 links, λ

A;1 ¼ 10:325 and λ
B;1 ¼ 10:253. We simulate the spreading of knowledge following a model of innovation networks18,25,29

where all knowledge is initially placed at the weak network B. Networks are initially disconnected and then connect through a single connector link

following different connection strategies. a Evolution with time of the knowledge accumulated at strong network A. The connection strategies are CC (the

most central node in A is connected to the most central node in B for all times), PP (the most peripheral node in A is connected to the most peripheral node

in B for all times), CC–PP (the networks swap from CC to PP strategy when the CC-asymptotic equilibrium has been reached, indicated by the red arrow at

t ¼ 150) and an exhaustive method choosing the most favourable connection for A from all possible scenarios after 5 and 10 steps. b Evolution with time of

the connector nodes—those that are connected to the other network—relative to the five different strategies. Each node is represented by its centrality

measured in networks A and B in isolation. c Plot of the knowledge of both networks at t ¼ 1200 time steps for the three different strategies indicated by

the dotted line in a. The radius of the nodes is proportional to their knowledge. Networks’ hubs are indicated in red.
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eigenvectors uA;1 and uB;1), the value of the weight of the

connector links ϵ and the initial condition (through x0).
In case we used a generic initial condition nð0Þ different to Eq.

(5), the analytic expression becomes more troublesome during the
beginning of the process, but in practice, after some steps, the
population would spread over both networks and Eq. (7) would
be fully applicable (Supplementary Note 4).

In summary, Eq. (7) describes the dynamics of the system for
all times and can be used to obtain how much population will be
at each network at any time and how the system would evolve if
we changed the connector links following any connection
strategy.

The population flux and the asymptotic equilibria. The popu-
lation flux _xðtÞ is a measure of how fast the population of network
A spreads towards network B at time t. It is an especially
important information, as it allows the networks to choose at
each step of the process the optimum strategy to maximise or
minimise such flow, depending on their particular interests.
Making use of the expression for xðtÞ at Eq. (7) we obtain

_xðtÞ ¼
dxðtÞ

dt
� K t ln Kð ÞL

1þ ϵF
Δλ

� �2

1� K tL ϵF
Δλ

� �2 þOðϵ2Þ ; ð9Þ

where K , L, Δλ, ϵ and F are as in Eq. (7) (see Supplementary
Note 3 for the analytical calculation).

High values of j _xðtÞj indicate fast changes in the population
distribution, whereas _xðtÞ ¼ 0 means that the system has attained
an equilibrium state that is obtained from Eq. (7):

xðt ! 1Þ ! xeq ¼
ϵF

λA;1 � λB;1

; ð10Þ

(see Supplementary Note 7 for details). When both networks are

connected through peripheral nodes (PP strategy) and therefore
ϵF � 0, xeq ¼ 0 and the equilibrium distribution of population

fills the strong network (A) and almost coincides with uA;1. On

the other hand, CC strategies—i.e. large values of ϵF—push the
population as much as possible towards the weak network (B), in
full agreement with Fig. 1 and ref. 9.

Furthermore, from Eq. (9) we obtain that when the initial
population distribution x0 is larger than that of the equilibrium
state, i.e., x0 > xeq, the flux _xðtÞ < 0 for all times, whereas x0 < xeq
implies _xðtÞ > 0 for all times. In other words, if the connecting
strategy (i.e., ϵF) between both networks is not changed during
the process, the population will flow monotonically from B to A
until the equilibrium is reached if x0 > xeq and from A to B if

x0 < xeq.
Figure 2 shows the absolute value of the population flux j _xðtÞj

as a function of the normalised connection strength ϵF=Δλ and
the initial population distribution x0, for t ¼ 1 and t ¼ 150, and
for two connected networks out of equilibrium calculated
numerically (a,b) with the scale-free networks used in Fig. 1,
and analytically (c,d) through Eq. (9). We can observe the full
agreement between both plots for low and high values of the time
t, even when the analytical approximation ignores the influence
of all NA þ NB � 2 eigenvalues and eigenvectors of order larger
than 2. Importantly, the white lines of Fig. 2(c) and (d)
correspond to the equilibrium states x0 ¼ xeq. It is noteworthy

that the population flux beyond the equilibrium line pushes the
population towards network A, whereas the flux tends towards
network B if we are under that boundary line, as predicted by the
analytical treatment of the phenomenology. Also, during the first
steps of the process the largest flux is found for CC connections
far away from the equilibrium (top-right corner of a and c).
However, for large times, networks coupled with PP connections,

2
0.04

× 10–3

4

2

0

4

6

× 10–3

6

2

0

0.02

0

0.04

0.02

0

a b

dc

1.5

x
0

x
0

x
0x

0

1

0.5

0

2

1.5

1

0.5

0

2

1.5

1

0.5

0

0 0.5 1 0 0.5 1

0 0.5 10 0.5

� F /Δ � � F /Δ �

1

2

1.5

1

0.5

0

x (t = 1) x (t = 150)

x (t ) < 0

x (t ) < 0

x (t ) > 0

x (t ) > 0

Fig. 2 Comparison between the numerical and analytical calculations of the population flux. Population flux _xðtÞ (in absolute value, for clarity) as a function

of the normalised connection strength ϵF=Δλ and the initial population distribution x0 for two connected networks out of equilibrium. a, b Numerical

calculation of _xðtÞ for two scale-free networks of N ¼ 250 nodes (see caption of Fig. 1 for details), for t ¼ 1 (a) and t ¼ 150 (b). c, d Analytical

approximation to _xðtÞ for the same situations. These plots show that Eq. (9) is in quantitative agreement with the numerical results, despite only depending

on the first eigenvalues of networks A and B, and the centrality of the connector nodes. In the numerical simulations (a–b), the connection strength ϵF has

been modified by both changing the connector links (i.e., F) and the weight of the connector links (i.e., ϵ). This way, we have gradually swept ϵF=Δλ

from 0 to 1.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-13291-2 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:5314 | https://doi.org/10.1038/s41467-019-13291-2 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


which are still far from equilibrium, show the fastest dynamics
(top-left corner of b and d).

The population flux diagram and applicability of the frame-
work. We can use the results obtained above to create a popu-
lation flux diagram to be used as a general framework for the
study of processes over generic interconnected networks out of
equilibrium. Specifically, we make use of the following: first, the
equilibrium curve obtained through _xðtÞ ¼ 0, which depends on
the internal topology of the networks (i.e., their maximum
eigenvalues) and the connector links between both networks, but
is independent of the initial population distribution x0; and sec-
ond, _xðtÞ < 0 8t when x0 > xeq and _xðtÞ > 0 8t when x0 > xeq.

Therefore, orbits in a diagram ½ϵF=Δλ; xðtÞ� (as shown in Fig. 3)
will move at every step a vertical distance _xðtÞ given by Eq. (9)
towards the equilibrium boundary, while changing the connector
links will displace the orbit horizontally at any time. For example,
changing the connector links conveniently permits the orbit to
cross the equilibrium curve horizontally, enabling the change of
sign of the flux.

This way, we obtain a diagram that allows representing full
trajectories from any initial condition to any final equilibrium
state permitting to choose the connector links at each time step. If
we face the phenomenology as a game10, any kind of competition
rules are included in this framework, e.g., a unique network
seeking for acquiring the largest population in the shortest time, a
competition between networks in which competitors alternate in
choosing the connector links, etc.

In Fig. 3, we have plotted several sample orbits to show the
versatility of this framework. First, most of the population is
placed initially on the weak network B (x0 ¼ 2:5) and the target is
to move it to network A as fast as possible. This can be done
through the exhaustive method presented in Fig. 1 where at each
step the system chooses the connections that maximise the flux of
population after ten steps and gradual changes of strategy from
CC to CP, and finally to PP connections are shown (trajectory
(i)); but also through the heuristic method in which the networks

are connected through a CC connection until the system gets
close to the equilibrium state and then changes to a PP
connection (trajectory (ii)). Second, the population is initially
placed on network A (x0 ¼ 0). We choose an intermediate
connection that pushes the population towards network B and
when xðtÞ reaches a certain value (xðtÞ ¼ 0:6 in this case) the
connections and/or their weights are changed to drastically stop
the flux and maintain the population in that situation indefinitely
(trajectory (iii)). Finally, to exemplify the applicability of the
framework to mathematical games where each network/compe-
titor follows in turns a connection strategy in order to reach a
favourable final situation, in trajectory (iv) we study the simplest
case of the alternation of two different strategies. This
methodology shows that the final equilibrium of this situation
is equivalent to that of applying both strategies simultaneously
but weighting the connector links with half of their weight (see
Supplementary Note 8 for an analytical proof).

Besides the generic examples shown in Fig. 3, the analysis of a
real case might be of use to show the potentiality of our
framework. Let us focus on the Organisation for Economic Co-
operation and Development (OECD) Inter-Country Input-Out-
put database37 and study the evolution of the economic networks
of the 36 OECD countries from 2005 to 2015 through the analysis
of time series associated to finite Markov chains38,39. Concepts
such as networked economy and its relation with complexity have
increased in importance recently, in particular after the financial
crisis of 200838,40–42, although Leontief43,44 presented its famous
input–output model almost a century ago. In these networks, and
so in ours, each node is a segment of the economy of a country
and the links, which are weighted and directed, represent the
monetary flows of goods and services between such nodes. In the
Leontief theory, the input–output tables are used as systems of
linear equations and their solution is the reached equilibrium
after a whole year. Following this idea, our model follows Eq. (1)
where M is the transition matrix that models the evolution of the
economic network and we suppose that every year a different
equilibrium is reached. If L is the input–output table obtained
from ref. 37, Mij ¼ Lji=

P

iLji, and therefore each element Mij is

the fraction of economic sector i that flows to economic sector j.
This makes M a stochastic matrix and the process a Markov
chain. As this is a closed model, the system can be interpreted as
one in which there is no demand, or on the contrary as one in
which the demand is considered as a sector that consumes the
totality of its own output45. The elements of population nðtÞ
represent the relative amount of money (or goods and services) in
each economic sector at time t, and their long-term value given
by the elements of eigenvector uT;1 can be interpreted as a

quantity that is similar to the annual gross domestic product
shares38. The population distribution xðtÞ of a country, therefore,
yields how much relative amount of money has accumulated in
comparison with the whole OECD.

Figure 4 represents a numerical study of this dataset from the
optics of the methodology presented here, focusing on the
economic behaviour of the different countries after the crisis of
2008. There are 36 countries and 36 sectors per country, 1296
nodes in total, and i and j can belong to the same or different
country. As we are facing a directed network and each link has a
different weight, the normalised connection strength between two
networks A and B (being A the strong one) is given by
ðuLB;1PuA;1Þ=ðλA;1 � λB;1Þ. It is noteworthy that only the con-

nector links that go from the strong to the weak network are
relevant (see Supplementary Note 5 for details). This quantity can
be calculated between each pair of countries (see Supplementary
Movie 1), but also between a country and the rest of the OECD,
the latter analysed as a unique network and where the connection
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between networks are permitted at any time, becomes a path in the
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clarity, four different trajectories are plotted for two connected scale-free

networks (see caption of Fig. 1 for networks details).
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strength represents the inputs received by a country from the rest
of the OECD.

Figure 4a plots the evolution of the normalised connection
strength for Japan, Iceland and Spain with the rest of the OECD in
the 2005–2015 period. The population flux diagram for
the analysis of their economic behaviour is plotted in Fig. 4b.
In Fig. 4c, the correlation between the connection strength in a
year and its precedent, averaged along the 11-years period and for
all OECD countries, is shown, and in Fig. 4d we plot the
equilibria for every year and every country in the population flux
diagram. Our new point of view shows that Japan is the country
with the largest correlation, which means that its economic
relation with the rest of the OECD has remained similar during
the whole period. In fact, it is almost the only country whose
connectivity with the OECD grew after the 2008 crisis, yielding
an increase in its relative amount of goods and services
(xJapanð2015Þ> xJapanð2005Þ). Iceland, the country with the lowest

correlation, behaved very differently. Its refusal to save the bank
system after the crisis is well known. The small country opted for
a change in its productive model, modifying in consequence
drastically the connections with the rest of the world
(see Supplementary Movie 1). This did not prevent Icelanders
falling sharply in their connections and their relative amount of
goods and services (xIcelandðtÞ) after the crisis, but permitted them
to recover slowly but in a stable manner. Furthermore, we have
followed an intermediate case, Spain. It suffered a drastic decrease
in 2008 mainly due to its brick-based economy. The strong
impact of the financial adjustment and the difficulties to change
the productive model in a relatively large and populated country
(the correlation of Spain data is large, see Fig. 4c) prevented it

from recovering so fast and up to 2015 its economic situation was
still far behind that of 2005 (xSpainð2015Þ<< xSpainð2005Þ).

Finally, Fig. 4d shows that the 11 equilibrium points of each
OECD country, with the exception of the boundary cases (USA
and Luxembourg, the largest and lowest maximum eigenvalues of
the OECD), collapse on the curve of equilibria plotted in Fig. 3 for
the two scale-free networks studied throughout the paper. This
fact reinforces the generality of the methodology and the
analytical results here presented (plotted in dashed line), and it
shows that the evolutionary dynamics that take place on a
network of networks mainly depends on the connector links and
the largest eigenvalues of the networks, but not on their topology
or the nature of the process.

Discussion
In this study we have shown that an adequate alteration of the
connector links between two interconnected networks allows for
the guidance of the dynamics of the system from any initial
condition to any desired final state, ruling its evolution according
to our necessities. We present a full analytical treatment of the
process and, in order to simplify the management of the system,
we introduce the population flux diagram, a two-dimensional
structure that contains the evolution of the population along time
comprising all possible initial conditions and connection strate-
gies. Our methodology is applicable to directed and non-directed
networks of any size or topology, as long as the dynamical evo-
lution of the system can be modelled through a transition matrix.
Furthermore, systems with more than two networks can also be
studied from this novel perspective, although the analysis
becomes more complex.
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For the sake of clarity, we first introduced a simple but
illustrative example based on a model that describes the
spreading of knowledge on a social network18,25,29 and verifies
in its simplest version M ¼ G, i.e., the transition and the
adjacency matrices coincide. However, our results can be
applied to any dynamical process described as nðtÞ ¼ Mtnð0Þ,
being nðtÞ the state vector of a certain variable at time t at each
node of the network. As a guiding example, we have studied the
economic networks of the 36 OECD countries from 2005 to
2015. Although this is just a partial study of the data, whose full
analysis is a promising line of research but whose extension
goes beyond the scope of this work, our methodology faces the
economic behaviour of the different nations from a novel
perspective that could be of help to develop active economic
policies depending on the economic and financial situation of
the country under study. Furthermore, we have devoted Sup-
plementary Note 9 to facilitate the potential application of our
methodology to other complex systems, such as mutation-
selection evolutionary processes22,46, the control and optimi-
sation of the growth of species on fragmented habitats47, the
description of disease spreading on social environments8, and
the potential analysis of a dataset that describes the evolution
between 1988 and 1999 of the inter-organisational collabora-
tion network in biotechnology20.

A different future line of research would be to extend this
methodology to analyse the dynamics of processes on a single
network where the links can be modified to tune the speed
towards the equilibrium or to retain the population within a
certain region of target nodes. Finally, we believe that the current
results may inspire further studies about how clustered networks,
networks of networks or multilayer networks48 behave out of
equilibrium where other variables such as robustness or vulner-
ability are the ones to be maximised (or minimised). As long as
we find networks where groups of nodes can be assigned to have a
common property (i.e., belonging to the same layer, cluster or
sub-network), the methodology proposed in this study could be
adapted to describe and manage the out-of-equilibrium evolution
of the whole system.

Data availability
All relevant data are available from the authors upon request.

Code availability
All relevant codes are available from the authors upon request.
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