
Taming Pretrained Transformers
for Extreme Multi-label Text Classification

Wei-Cheng Chang
Carnegie Mellon University

Hsiang-Fu Yu
Amazon

Kai Zhong
Amazon

Yiming Yang
Carnegie Mellon University

Inderjit S. Dhillon
Amazon & UT Austin

ABSTRACT

We consider the extreme multi-label text classi�cation (XMC) prob-

lem: given an input text, return the most relevant labels from a large

label collection. For example, the input text could be a product de-

scription on Amazon.com and the labels could be product categories.

XMC is an important yet challenging problem in the NLP commu-

nity. Recently, deep pretrained transformer models have achieved

state-of-the-art performance on many NLP tasks including sen-

tence classi�cation, albeit with small label sets. However, naively

applying deep transformer models to the XMC problem leads to

sub-optimal performance due to the large output space and the label

sparsity issue. In this paper, we propose X-Transformer, the �rst

scalable approach to �ne-tuning deep transformer models for the

XMC problem. The proposed method achieves new state-of-the-art

results on four XMC benchmark datasets. In particular, on a Wiki

dataset with around 0.5 million labels, the prec@1 of X-Transformer

is 77.28%, a substantial improvement over state-of-the-art XMC ap-

proaches Parabel (linear) andA�entionXML (neural), which achieve

68.70% and 76.95% precision@1, respectively. We further apply X-

Transformer to a product2query dataset from Amazon and gained

10.7% relative improvement on prec@1 over Parabel.

CCS CONCEPTS

• Computing methodologies→ Machine learning; Natural lan-

guage processing; • Information systems→ Information retrieval.

KEYWORDS

Transformer models, eXtreme Multi-label text classi�cation

ACM Reference Format:

Wei-Cheng Chang, Hsiang-Fu Yu, Kai Zhong, Yiming Yang, and Inderjit

S. Dhillon. 2020. Taming Pretrained Transformers for Extreme Multi-label

Text Classi�cation. In Proceedings of the 26th ACM SIGKDD Conference on

Knowledge Discovery and Data Mining (KDD ’20), August 23–27, 2020, Virtual

Event, CA, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/

3394486.3403368

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7998-4/20/08.
https://doi.org/10.1145/3394486.3403368

1 INTRODUCTION

We are interested in the Extreme multi-label text classi�cation

(XMC) problem: given an input text instance, return the most rele-

vant labels from an enormous label collection, where the number

of labels could be in the millions or more. One can view the XMC

problem as learning a score function f : X ×Y → R, that maps an

(instance, label) pair (x, y) to a score f (x, y). The function f should

be optimized such that highly relevant (x, y) pairs have high scores,

whereas the irrelevant pairs have low scores. Many real-world ap-

plications are in this form. For example, in E-commerce dynamic

search advertising, x represents an item and y represents a bid

query on the market [20, 21]. In open-domain question answering,

x represents a question and y represents an evidence passage con-

taining the answer [4, 11]. In the PASCAL Large-Scale Hierarchical

Text Classi�cation (LSHTC) challenge, x represents an article and y

represents a category of the Wikipedia hierarchical taxonomy [17].

XMC is essentially a text classi�cation problem on an industrial

scale, which is one of the most important and fundamental topics in

machine learning and natural language processing (NLP) communi-

ties. Recently, deep pretrained Transformers, e.g., BERT [5], along

with its many successors such as XLNet [30] and RoBERTa [13],

have led to state-of-the-art performance on many tasks, such as

question answering, part-of-speech tagging, information retrieval,

and sentence classi�cation with very few labels. Deep pretrained

Transformermodels induce powerful token-level and sentence-level

embeddings that can be rapidly �ne-tuned on many downstream

NLP problems by adding a task-speci�c lightweight linear layer on

top of the transformer models.

However, how to successfully apply Transformer models to XMC

problems remains an open challenge, primarily due to the extremely

large output space and severe label sparsity issues. As a concrete

example, Table 1 compares the model size (in terms of the number

of model parameters) and GPU memory usage, when applying a 24-

layer XLNet model to a binary classi�cation problem (e.g., the MNLI

dataset of GLUE [27]) versus its application to anXMCproblemwith

1 million labels. Note that the classi�er for the MNLI problem and

XMC problem has a model size of 2K and 1025M, respectively. This

means that the latter is a much harder problem than the former from

the model optimization point of view. Additionally, in attempting

to solve the XMC problem, we run out of GPU memory even for a

single example mini-batch update. Table 1 gives the details of the

GPU memory usage in the training stages of one forward pass, one

backward pass and one optimization step, respectively.

In addition to the computational challenges, the large output

space in XMC is exacerbated by a severe label sparsity issue. The

left part of Figure 1 illustrates the “long-tailed” label distribution

https://doi.org/10.1145/3394486.3403368
https://doi.org/10.1145/3394486.3403368
https://doi.org/10.1145/3394486.3403368

XLNet-large model (# params) (batch size, sequence length)=(1,128)

problem encoder classi�er total load model +forward +backward +optimizer step

GLUE (MNLI) 361 M 2 K 361 M 2169 MB 2609 MB 3809 MB 6571 MB

XMC (1M) 361 M 1,025 M 1,386 M 6077 MB 6537 MB OOM OOM

Table 1: On the left of are themodel sizes (numbers of parameters) when applying the XLNet-largemodel to theMNLI problem

vs. the XMC (1M) problem; on the right is the GPU memory usage (in megabytes) in solving the two problems, respectively.

The results were obtained on a recent Nvidia 2080Ti GPU with 12GB memory. OOM stands for out-of-memory.

in the Wiki-500K data set [25]. Only 2% of the labels have more

than 100 training instances, while the remaining 98% are long-tail

labels with much fewer training instances. How to successfully

�ne-tune Transformer models with such sparsely labeled data is a

tough question that has not been well-studied so far, to the best of

our knowledge.

Figure 1: On the left,Wiki-500K shows a long-tail distribution

of labels. Only 2.1% of the labels havemore than 100 training

instances, as indicated by the cyan blue regime. On the right

is the clusters distribution after our semantic label indexing

based on di�erent label representations; 99.4% of the clusters

have more than 100 training instances, which mitigates the

data sparsity issue for �ne-tuning of Transformer models.

Instead of �ne-tuning deep Transformer models and dealing

with the bottleneck classi�er layer, an alternative is to use a more

economical transfer learning paradigm as studied in the context

of word2vec [15], ELMo [19], and GPT [22]. For instance, ELMo

uses a (bi-directional LSTM) model pretrained on large unlabeled

text data to obtain contexualized word embeddings. When applying

ELMo on a downstream task, these word embeddings can be used as

input without adaptation. This is equivalent to freezing the ELMo

encoder, and �ne-tuning the downstream task-speci�c model on

top of ELMo, which is much more e�cient in terms of memory as

well as computation. However, such a bene�t comes at the price of

limiting the model capacity from adapting the encoder, as we will

see in the experimental results in Section 4.

In this paper, we propose X-Transformer, a new approach that

overcomes the aforementioned issues, with successful �ne-tuning

of deep Transformer models for the XMC problem. X-Transformer

consists of a Semantic Label Indexing component, a Deep Neural

Matching component, and an Ensemble Ranking component. First,

Semantic label Indexing (SLI) decomposes the original intractable

XMC problem into a set of feasible sub-problems of much smaller

output space via label clustering, which mitigates the label sparsity

issue as shown in the right part of Figure 1. Second, the Deep Neural

Matching component �ne-tunes a Transformer model for each of

the SLI-induced XMC sub-problems, resulting in a better mapping

from the input text to the set of label clusters. Finally, the Ensemble

Ranking component is trained conditionally on the instance-to-

cluster assignment and neural embedding from the Transformer,

and is used to assemble scores derived from various SLI-induced

sub-problems for further performance improvement.

In our experiments, the proposed X-Transformer achieves new

state-of-the-art results on four XMC benchmarks and leads to im-

provement on two real-would XMC applications. On a Wiki dataset

with a half million labels, the precision@1 of X-Transformer reaches

77.28%, a substantial improvement over the well-established hierar-

chical label tree approach Parabel [20] (i.e., 68.70%) and the compet-

ing deep learning method A�entionXML [32] (i.e., 76.95%). Further-

more, X-Transformer also demonstrates great impact on the scalabil-

ity of deep Transformer models in real-world large applications. In

our application of X-Transformer to Amazon Product2Query prob-

lem that can be formulated as XMC, X-Transformer signi�cantly

outperforms Parabel too. The dataset, experiment code, models are

available: https://github.com/OctoberChang/X-Transformer.

2 RELATED WORK AND BACKGROUND

2.1 Extreme Multi-label Classi�cation

Sparse LinearModels. To overcome computational issues, most

existing XMC algorithms use sparse TF-IDF features (or slight

variants), and leverage di�erent partitioning techniques on the

label space to reduce complexity. For example, sparse linear one-vs-

all (OVA) methods such as DiSMEC [1], ProXML [2] and PPDSparse

[31] explore parallelism to speed up the algorithm and reduce the

model size by truncating model weights to encourage sparsity. OVA

approaches are also widely used as building blocks for many other

approaches, for example, in Parabel [20] and SLICE [7], linear OVA

classi�ers with smaller output domains are used.

The e�ciency and scalability of sparse linear models can be fur-

ther improved by incorporating di�erent partitioning techniques

on the label spaces. For instance, Parabel [20] partitions the labels

through a balanced 2-means label tree using label features con-

structed from the instances. Recently, several approaches are pro-

posed to improve Parabel. Bonsai [9] relaxes two main constraints

in Parabel: 1) allowing multi-way instead of binary partitionings

of the label set at each intermediate node, and 2) removing strict

balancing constraints on the partitions. SLICE [7] considers build-

ing an approximate nearest neighbor (ANN) graph as an indexing

structure over the labels. For a given instance, the relevant labels

can be found quickly from the nearest neighbors of the instance

via the ANN graph.

https://github.com/OctoberChang/X-Transformer

Deep Learning Approaches. Instead of using handcrafted TF-

IDF features which are hard to optimize for di�erent downstream

XMC problems, deep learning approaches employ various neural

network architectures to extract semantic embeddings of the in-

put text. XML-CNN [12] employs one-dimensional Convolutional

neural networks along both sequence length and word embedding

dimension for representing text input. As a follow-up, SLICE con-

siders dense embedding from the supervised pre-trained XML-CNN

models as the input to its hierarchical linear models. More recently,

A�entionXML [32] uses BiLSTMs and label-aware attention as the

scoring function, and performs warm-up training of the models

with hierarchical label trees. In addition, A�entionXML consider

various negative sampling strategies on the label space to avoid

back-propagating the entire bottleneck classi�er layer.

2.2 Transfer Learning Approaches in NLP

Recently, the NLP community has witnessed a dramatic paradigm

shift towards the “pre-training then �ne-tuning” framework. One

of the pioneering works is BERT [5], whose pre-training objectives

are masked token prediction and next sentence prediction tasks.

After pre-training on large-scale unsupervised corpora such as

Wikipedia and BookCorpus, the Transformer model demonstrates

vast improvement over existing state-of-the-art when �ne-tuned

on many NLP tasks such as the GLUE benchmark [27], named

entity recognition, and question answering. More advanced vari-

ants of the pre-trained Transformer models include XLNet [30] and

RoBERTa [13]. XLNet considers permutation language modeling as

the pre-training objective and two-stream self-attention for target-

aware token prediction. It is worth noting that the contextualized

token embeddings extracted from XLNet also demonstrate compet-

itive performance when fed into a task-speci�c downstream model

on large-scale retrieval problems. RoBERTa improves upon BERT

by using more robust optimization with large-batch size update,

and pre-training the model for longer till it truly converges.

However, transferring the success of these pre-trained Trans-

former models on the GLUE text classi�cation to the XMC problem

is non-trivial, as we illustrated in Table 1. Before the emergence of

BERT-type end-to-end �ne-tuning, the canonical way of transfer

learning in NLP perhaps comes from thewell-knownWord2Vec [15]

or GloVe [18] papers. Word2vec is a shallow two-layer neural net-

work that is trained to reconstruct the linguistic context of words.

GLoVe considers a matrix factorization objective to reconstruct the

global word-to-word co-occurrence in the corpus. A critical down-

side of Word2vec and GloVe is that the pre-trained word embed-

dings are not contextualized depending on the local surrounding

word. ELMo [19] and GPT2 [22] instead present contextualized

word embeddings by using large BiLSTM or Transformer models.

After the models are pre-trained, transfer learning can be easily

carried out by feeding these extracted word embeddings as input

to the downstream task-speci�c models. This is more e�cient com-

pared to the BERT-like end-to-end additional �ne-tuning of the

encoder, but comes at the expense of losing model expressiveness.

In the experimental results section, we show that using �xed word

embeddings from universal pre-trained models such as BERT is not

powerful enough for XMC problems.

2.3 Amazon Applications

Many challenging problems at Amazon amount to �nding relevant

results from an enormous output space of potential candidates: for

example, suggesting keywords to advertisers starting new cam-

paigns on Amazon, predicting next queries a customer will type

based on the previous queries he/she typed. Here we discuss key-

word recommendation system for Amazon Sponsored Products,

as illustrations in Fig.2, and how it can be formulated as XMC

problems.

Keyword recommendation system. Keyword Recommenda-

tion Systems provide keyword suggestions for advertisers to create

campaigns. In order to maximize the return of investment for the

advertisers, the suggested keywords should be highly relevant to

their products so that the suggestions can lead to conversion. An

XMC model, when trained on an product-to-query dataset such as

product-query customer purchase records, can suggest queries that

are relevant to any given product by utilizing product information,

like title, description, brand, etc.

Figure 2: keyword recommendation system

3 PROPOSED METHOD: X-TRANSFORMER

3.1 Problem Formulation

Motivations. Given a training set D = {(xi , yi) |xi ∈ X, yi ∈

{0, 1}L , i = 1, . . . ,N }, extreme multi-label classi�cation aims to

learn a scoring function f that maps an input (or instance) xi and a

label l to a score f (xi , l) ∈ R. The function f should be optimized

such that the score is high when yil = 1 (i.e., label l is relevant

to instance xi) and the score is low when yil = 0. A simple one-

versus-all approach realizes the scoring function f as

f (x, l) = wT

l
ϕ (x)

where ϕ (x) represents an encoding and W = [w1, . . . ,wL]
T ∈

R
L×d is the classi�er bottleneck layer. For convenience, we further

de�ne the top-b prediction operator as

fb (x) = Top-b
([
f (x, 1), . . . , f (x,L)

])
∈ {1, . . . ,L},

where fb (x) is an index set containing the top-b predicted labels.

As we pointed out in Table 1, it is not only very di�cult to �ne-tune

the Transformer encoders ϕT (x;θ) together with the intractable

classi�er layer W, but also extremely slow to compute the top-K

predicted labels e�ciently.

Figure 3: The proposed X-Transformer framework. First, Semantic Label Indexing reduces the large output space. Transform-

ers are then �ne-tuned on the XMC sub-problem that maps instances to label clusters. Finally, linear rankers are trained

conditionally on the clusters and Transformer’s output in order to re-rank the labels within the predicted clusters.

High-level Sketch. To this end, we propose X-Transformer as

a practical solution to �ne-tune deep Transformer models on XMC

problems. Figure 3 summarizes our proposed framework.

In a nutshell, X-Transformer decomposes the intractable XMC

problem to a feasible sub-problem with a smaller output space,

which is induced from semantic label indexing, which clusters the

labels. We refer to this sub-problem as the neural matcher of the

following form:

д(x,k) = wT

k
ϕT (x), k = 1, . . . ,K (1)

where K is the number of clusters which is signi�cantly smaller

than the original intractable XMC problem of size O (L). Finally,

X-Transformer currently uses a linear ranker that conditionally

depends on the embedding of transformer models and its top-b

predicted clusters дb (x).

f (x, l) =

σ
(

д(x, cl),h(x, l)
)

, if cl ∈ дb (x),

−∞, otherwise.
(2)

Here cl ∈ {1, . . . ,K } represents the cluster index of label l , д(x, cl)

is the neural matcher realized by deep pre-trained Transformers,

h(x, l) is the linear ranker, and σ () is a non-linear activation func-

tion to combine the �nal scores from д and h. We now further

introduce each of these three components in detail.

3.2 Semantic Label Indexing

Inducing latent clusters with semantic meaning brings several ad-

vantages to our framework. We can perform a clustering of labels

that can be represented by a label-to-cluster assignment matrix

C ∈ {0, 1}L×K where clk = 1means label l belongs to cluster k . The

number of clusters K is typically set to be much smaller than the

original label space L. Deep Transformer models are �ne-tuned on

the induced XMC sub-problem where the output space is of size K ,

which signi�cantly reduces the computational cost and avoids the

label sparsity issue in Figure 1. Furthermore, the label clustering

also plays a crucial role in the linear ranker h(x, l). For example,

only labels within a cluster are used to construct negative instances

for training the ranker. In prediction, ranking is only performed

for labels within a few clusters predicted by our deep Transformer

models.

Given a label representation, we cluster theL labels hierarchically

to form a hierarchical label tree with K leaf nodes [7, 9, 20, 32]. For

simplicity, we consider binary balanced hierarchical trees [14, 20]

as the default setting. Due to the lack of a direct and informative

representation of the labels, the indexing system for XMC may be

noisy. Fortunately, the instances in XMC are typically very informa-

tive. Therefore, we can utilize the rich information of the instances

to build a strong matching system as well as a strong ranker to

compensate for the indexing system.

Label embedding via label text. Given text information about

labels, such as a short description of categories in the Wikipedia

dataset or search queries on the Amazon shopping website, we can

use this short text to represent the labels. In this work, we use a

pretrained XLNet [19] to represent the words in the label. The label

embedding is the mean pooling of all XLNet word embeddings in

the label text. Speci�cally, the label embedding of label l is

ψtext-emb (l) =
1

|text(l) |

∑

w ∈text (l)

ϕxlnet (w)

where ϕxlnet (w) is the hidden embedding of tokenw in label l .

Label embedding via embedding of positive instances. The

short text of labels may not contain su�cient information and is

often ambiguous and noisy for some XMC datasets. Therefore we

can derive a label representation from embedding of its positive

instances. Speci�cally, the label embedding of label l is

ψpifa-t�df (l) = vl /∥vl ∥, vl =
∑

i :yil=1

ϕtf-idf (xi), l = 1, . . . ,L,

ψpifa-neural (l) = vl /∥vl ∥, vl =
∑

i :yil=1

ϕxlnet (xi), l = 1, . . . ,L.

We refer to this type of label embedding as Positive Instance Feature

Aggregation (PIFA), which is used in recent state-of-the-art XMC

methods [7, 9, 20, 32]. Note that X-Transformer is not limited by

the above mentioned label representations; indeed in applications

where labels encode richer meta information such as a graph, we

can use label representations derived from graph clustering and

graph convolution.

3.3 Deep Transformer as Neural Matcher

After Semantic Label Indexing (SLI), the original intractable XMC

problem morphs to a feasible XMC sub-problem with a much

smaller output space of size K . See Table 2 for the exact K that

we used for each XMC data set. Speci�cally, the deep Transformer

model now aims to map each text instance to the assigned rel-

evant clusters. The induced instance-to-cluster assignment ma-

trix is M = YC = [m1, . . . ,mi , . . . ,mN]T ∈ {0, 1}N×K where

Y ∈ RN×L is the original instance-to-label assignment matrix and

C ∈ RL×K is the label-to-cluster assignment matrix provided by

the SLI stage. The goal now becomes �ne-tuning deep Transformer

models д(x,k ;W,θ) on {(xi ,mi) |i = 1, . . . ,N } such that

min
W,θ

1

NK

N
∑

i=1

K
∑

k=1

max
(

0, 1 − M̃ikд(x,k ;W,θ)
)2
, (3)

s.t. д(x,k ;W,θ) = wT

k
ϕtransformer (x),

where M̃ik = 2Mik − 1 ∈ {−1, 1}, W = [w1, . . . ,wK]
T ∈ RK×d ,

and ϕtransformer (x) ∈ R
d is the embedding from the Transformers.

We use the squared-hinge loss in the matching objective (3) as it

has shown better ranking performance as shown in [31]. Next, we

discuss engineering optimizations and implementation details that

considerably improve training e�ciency and model performance.

Pretrained Transformers. We consider three state-of-the-art

pre-trained Transformer-large-cased models (i.e., 24 layers with

case-sensitive vocabulary) to �ne-tune, namely BERT [5], XLNet [30],

and RoBERTa [13]. The instance embedding ϕ (x) is the "[CLS]"-like

hidden states from the last layer of BERT, RoBERTa and XLNet.

Computationally speaking, BERT and RoBERTa are similar while

XLNet is nearly 1.8 times slower. In terms of performance on XMC

tasks, we found RoBERTa and XLNet to be slightly better than

BERT, but the gap is not as signi�cant as in the GLUE benchmark.

More concrete analysis is available in Section 4.

It is possible to use Automatic Mixed Precision (AMP) between

Float32 and Float16 for model �ne-tuning, which can considerably

reduce the model’s GPU memory usage and training speed. How-

ever, we used Float32 for all the experiments as our initial trials of

training Transformers in AMPmode often led to unstable numerical

results for the large-scale XMC datasetWiki-500K.

Input Sequence Length. The time and space complexity of the

Transformer scales quadratically with the input sequence length,

i.e., O (T 2) [26], where T = len(x) is the number of tokenized sub-

words in the instance x. Using smaller T reduces not only the GPU

memory usage that supports using larger batch size, but also in-

creases the training speed. For example, BERT �rst pre-trains on

inputs of sequence length 128 for 90% of the optimization, and the

remaining 10% of optimization steps on inputs of sequence length

512 [5]. Interestingly, we observe that the model �ne-tuned with

sequence length 128 v.s. sequence length 512 does not di�er signif-

icantly in the downstream XMC ranking performance. Thus, we

�x the input sequence length to be T = 128 for model �ne-tuning,

which signi�cantly speeds up the training time. It would be interest-

ing to see if we can bootstrap training the Transformer models from

shorter sequence length and ramp up to larger sequence length

(e.g., 32, 64, 128, 256), but we leave that as future work.

Figure 4: Training rankers with the Teacher Forcing Nega-

tives(TFN) strategy. For illustration, we have N = 6 instances, L = 20

labels,K = 4 label clusters, andM ∈ {0, 1}6×4 denotes the instance-to-

cluster assignment matrix. For example, Cluster 1 with the orange

color contains the �rst 5 labels. The nonzeros of the �rst column of

M correspond to {x1, x2, x6 }, which are instances with at least one

positive label contained in Cluster 1. For each label in the �rst clus-

ter, the ranker using Teacher Forcing Negatives (TFN) only consid-

ers these three instances. Matcher-aware Negatives (MAN) strategy

is introduced in Section 3.4 to further add improved hard negatives

to enhance the TFN strategy.

Bootstrapping Label Clustering and Ranking. After �ne-

tuning a deep Transformer model, we have powerful instance rep-

resentation ϕtransformer (x) that can be used to bootstrap semantic

label clustering and ranking. For label clustering, the embedding

label l can be constructed by aggregating the embeddings of its

positive instances. For ranking, the �ne-tuned Transformer embed-

ding can be concatenated with the sparse TF-IDF vector for better

modeling power. See details in the ablation study Table 5.

3.4 Ranking

After the matching step, a small subset of label clusters is retrieved.

The goal of the ranker is to model the relevance between the in-

stance and the labels from the retrieved clusters. Formally, given a

label l and an instance x, we use a linear one-vs-all (OVA) classi�er

to parameterize the ranker h(x, l) = wT

l
ϕ (x) and train it with a

binary loss. For each label, naively estimating the weightswl based

on all instances {(xi ,Yi,l)}
N

i=1
takes O (N), which is too expensive.

Instead, we consider two sampling strategies that only include hard

negative instances to reduce the computational complexity: Teacher

Forcing Negatives (TFN) and Matcher-aware Negatives (MAN).

Teacher Forcing Negatives (TFN). for each label l , we only

include a subset of instances induced by the instance-to-cluster

assignment matrix M = YC. In particular, in addition to the pos-

itive instances corresponding to the l-th label, we only include

instances whose labels belong to the same cluster as the l-th label,

i.e., {(xi ,yi,l : i ∈ {i : Mi,cl
= 1}}. In Figure 4, we illustrate the

TFN strategy with a toy example. As the �rst �ve labels belong to

Cluster 1, and only {x1, x2, x6} contain a positive label within this

cluster, we only consider this subset of instances to train a binary

classi�er for each of the �rst �ve labels.

Matcher-aware Negatives (MAN). The Teacher Forcing strat-

egy only includes negative instances which are hard from the

“teacher”, i.e., the ground truth instance-to-clustering assignment

matrixM used to train our neural matcher. However,M is indepen-

dent from the performance of our neural matcher. Thus, training

ranker with the TFN strategy alone might introduce an exposure

bias issue, i.e., training-inference discrepancy. Instead, we also con-

sider including matcher-aware hard negatives for each label. In

particular, we can use the instance-to-cluster prediction matrix

M̂ ∈ {0, 1}N×K from our neural matcher, where the nonzeros of

the i-th row of M̂ correspond to the top-b predicted clusters from

дb (xi). In practice, we observe that a combination of TFN and MAN

yields the best performance, i.e., using M′ = YC + M̂ to include

hard negatives for each label. See Table 5 for a detailed Ablation

study.

For the ranker input representation, we not only leverage the

TF-IDF features ϕtf-idf (x), but also exploit the neural embeddings

ϕneural (x) from either the pre-trained or �ne-tuned Transformer

model. After the ranker is trained, the �nal ranking scores are

computed via (2). We can further ensemble the scores from di�erent

X-Transformer models, which are trained on di�erent semantic-

aware label clusters or di�erent pre-trained Transformer models

such as BERT, RoBERTa and XLNet.

4 EMPIRICAL RESULTS

The experiment code, including datasets and �ne-tuned models are

publicly available. 1

4.1 Datasets and Preprocessing

XMCBenchmark Data. We consider four multi-label text clas-

si�cation data sets used in A�entionXML [32] for which we had

access to the raw text representation, namely Eurlex-4K, Wiki10-

31K, AmazonCat-13K and Wiki-500K. Summary statistics of the

data sets are given in Table 2. We follow the training and test split

of [32] and set aside 10% of the training instances as the validation

set for hyperparameter tuning.

Amazon Applications. We consider an internal Amazon data

set, namely Prod2�ery-1M, which consists of 14 million instances

(products) and 1 million labels (queries) where the label is positive

if a product is clicked at least once as a result of a search query. We

divide the data set into 12.5 million training samples, 0.8 million

validation samples and 0.7 million testing samples.

4.2 Algorithms and Hyperparameters

ComparingMethods. We compare our proposedX-Transformer

method to the most representative and state-of-the-art XMC meth-

ods including the embedding-based AnnexML [24]; one-versus-all

DiSMEC [1]; instance tree based PfastreXML [8]; label tree based

Parabel [20], eXtremeText [29], Bonsai [9]; and deep learning based

XML-CNN [12],A�entionXML [32] methods. The results of all these

baseline methods are obtained from [32, Table 3]. For evaluation

with other XMC approaches that have not released their code or

are di�cult to reproduce, we have a detailed comparison in Table 6.

Evaluation Metrics. We evaluate all methods with example-

based ranking measures including Precision@k (k = 1, 3, 5) and

Recall@k (k = 1, 3, 5), which are widely used in the XMC litera-

ture [3, 8, 20, 21, 23].

Hyperparameters. ForX-Transformer, all hyperparameters are

chosen from the held-out validation set. The number of clusters

1https://github.com/OctoberChang/X-Transformer

are listed in Table 2, which are consistent with the Parabel setting

for fair comparison. We consider the 24 layers cased models of

BERT [5], RoBERTa [13], and XLNet [30] using the Pytorch imple-

mentation from HuggingFace Transformers [28]2. For �ne-tuning

the Transformer models, we set the input sequence length to be

128 for e�ciency, and the batch size per GPU to be 16 along with

gradient accumulation step of 4, and use 4 GPUs per model. This

together amounts to a batch size of 256 in total. We use Adam [10]

with linear warmup scheduling as the optimizer where the learn-

ing rate is chosen from {4, 5, 6, 8} × 10−5. Models are trained until

convergence, which takes 1k, 1.4k, 20k, 50k optimization steps for

Eurlex-4K,Wiki10-31K, AmazonCat-13K,Wiki-500K, respectively.

4.3 Results on Public XMC Benchmark Data

Table 3 compares the proposed X-Transformer with the most repre-

sentative SOTA XMC methods on four benchmark datasets. Follow-

ing previous XMCworks, we focus on top predictions by presenting

Precision@k, where k = 1, 3, 5.

The proposed X-Transformer outperforms all XMC methods, ex-

cept being slightly worse than A�entionXML in terms of P@3 and

P@5 on the Wiki-500K dataset. We also compare X-Transformer

against linear baselines using Parabel model with three di�erent

input representations: (1) ϕpre-xlnet denotes pretrained XLNet em-

beddings (2) ϕt�df denotes TF-IDF embeddings (3) ϕfnt-xlnet ⊕ ϕt�df
denotes �netuned XLNet embeddings concatenated with TF-IDF

embeeddings. We clearly see that the performance of baseline (1)

is signi�cantly worse. This suggests that the ELMo-style transfer

learning, though e�cient, is not powerful to achieve good perfor-

mance for XMC problems. The performance of baseline (2) is similar

to that of Parabel, while baseline (3) further improves performance

due to the use of �ne-tuned XLNet embeddings.

A�entionXML [32] is a very recent deep learning method that

uses BiLSTM and label-aware attention layer to model the scoring

function. They also leverage hierarchical label trees to recursively

warm-start the models and use hard negative sampling techniques

to avoid using the entire classi�er bottleneck layer. Some of the

techniques in A�entionXML are complementary to our proposed X-

Transformer, and it would be interesting to see how X-Transformer

can be improved from those techniques.

4.4 Results on Amazon Applications.

Recall that the Amazon data consists of 12 million products and

1 million queries along with product-query relevance. We treat

queries as output labels and product title as input.We use the default

Parabel method (using TFIDF features) as the baseline method and

show X-Transformer’s relative improvement of precision and recall

over the baseline in Table 4.

4.5 Ablation Study

We carefully conduct an ablation study of X-Transformer as shown

in Table 5. We analyze the X-Transformer framework in terms of its

four components: indexing, matching, ranker input representation,

and training negative-sampling training algorithm. The con�gu-

ration Index 9 represents the �nal best con�guration as reported

2https://github.com/huggingface/transformers

https://github.com/OctoberChang/X-Transformer
https://github.com/huggingface/transformers

Dataset ntrn ntst |Dtrn | |Dtrn | L L̄ n̄ K

Eurlex-4K 15,449 3,865 19,166,707 4,741,799 3,956 5.30 20.79 64

Wiki10-31K 14,146 6,616 29,603,208 13,513,133 30,938 18.64 8.52 512

AmazonCat-13K 1,186,239 306,782 250,940,894 64,755,034 13,330 5.04 448.57 256

Wiki-500K 1,779,881 769,421 1,463,197,965 632,463,513 501,070 4.75 16.86 8192

Table 2: Data Statistics. ntrn ,ntst refer to the number of instances in the training and test sets, respectively. |Dtrn |, |Dtst | refer

to the number of word tokens in the training and test corpus, respectively. L is the number of labels, L̄ the average number of

labels per instance, n̄ the average number of instances per label, and K is the number of clusters. The four benchmark datasets

are the same as A�entionXML [32] for fair comparison.

Methods Prec@1 Prec@3 Prec@5 Methods Prec@1 Prec@3 Prec@5

Eurlex-4K Wiki10-31K

AnnexML [24] 79.66 64.94 53.52 AnnexML [24] 86.46 74.28 64.20

DiSMEC [1] 83.21 70.39 58.73 DiSMEC [1] 84.13 74.72 65.94

PfastreXML [8] 73.14 60.16 50.54 PfastreXML [8] 83.57 68.61 59.10

Parabel [20] 82.12 68.91 57.89 Parabel [20] 84.19 72.46 63.37

eXtremeText [29] 79.17 66.80 56.09 eXtremeText [29] 83.66 73.28 64.51

Bonsai [9] 82.30 69.55 58.35 Bonsai [9] 84.52 73.76 64.69

MLC2seq [16] 62.77 59.06 51.32 MLC2seq [16] 80.79 58.59 54.66

XML-CNN [12] 75.32 60.14 49.21 XML-CNN [12] 81.41 66.23 56.11

A�entionXML [32] 87.12 73.99 61.92 A�entionXML [32] 87.47 78.48 69.37

ϕpre-xlnet + Parabel 33.53 26.71 22.15 ϕpre-xlnet + Parabel 81.77 64.86 54.49

ϕt�df + Parabel 81.71 69.15 58.11 ϕt�df + Parabel 84.27 73.20 63.66

ϕfnt-xlnet ⊕ ϕt�df + Parabel 84.09 71.50 60.12 ϕfnt-xlnet ⊕ ϕt�df + Parabel 87.35 78.24 68.62

X-Transformer 87.22 75.12 62.90 X-Transformer 88.51 78.71 69.62

AmazonCat-13K Wiki-500K

AnnexML [24] 93.54 78.36 63.30 AnnexML [24] 64.22 43.15 32.79

DiSMEC [1] 93.81 79.08 64.06 DiSMEC [1] 70.21 50.57 39.68

PfastreXML [8] 91.75 77.97 63.68 PfastreXML [8] 56.25 37.32 28.16

Parabel [20] 93.02 79.14 64.51 Parabel [20] 68.70 49.57 38.64

eXtremeText [29] 92.50 78.12 63.51 eXtremeText [29] 65.17 46.32 36.15

Bonsai [9] 92.98 79.13 64.46 Bonsai [9] 69.26 49.80 38.83

MLC2seq [16] 94.26 69.45 57.55 MLC2seq [16] - - -

XML-CNN [12] 93.26 77.06 61.40 XML-CNN [12] - - -

A�entionXML [32] 95.92 82.41 67.31 A�entionXML [32] 76.95 58.42 46.14

ϕpre-xlnet + Parabel 80.96 63.92 50.72 ϕpre-xlnet + Parabel 31.83 20.24 15.76

ϕt�df + Parabel 92.81 78.99 64.31 ϕt�df + Parabel 68.75 49.54 38.92

ϕfnt-xlnet ⊕ ϕt�df + Parabel 95.33 82.77 67.66 ϕfnt-xlnet ⊕ ϕt�df + Parabel 75.57 55.12 43.31

X-Transformer 96.70 83.85 68.58 X-Transformer 77.28 57.47 45.31

Table 3: Comparing X-Transformer against state-of-the-art XMCmethods on Eurlex-4K,Wiki10-31K, AmazonCat-13K, andWiki-500K.

The baselines’ results are from [32, Table 3]. Note thatMLC2seq and XML-CNN are not scalable onWiki-500K. We also present

linear baselines (Parabel) with three input representations. Speci�cally, ϕpre-xlnet denotes pre-trained XLNet embeddings, ϕt�df
denotes TF-IDF embeddings, ϕfnt-xlnet ⊕ ϕt�df denotes �ne-tuned XLNet embeddings concatenate with TF-IDF embeddings.

Precision Recall

Methods @1 @5 @10 @1 @5 @10

X-Transformer 10.7% 7.4% 6.6% 12.0% 4.9% 2.8%

Table 4: Relative improvement over Parabel on the

Prod2Query data set.

in Table 3. There are four takeaway messages from this ablation

study, and we describe them in the following four paragraphs.

RankerRepresentation andTraining. Con�g. ID 0, 1, 2 shows

the e�ect of input representation and training strategy for the rank-

ing. The bene�t of using instance embedding from �ne-tuned trans-

formers can be seen from con�g. ID 0 to 1. In addition, from ID 1

to 2, we observe that using Teacher Forcing Negatives (TFN) is not

enough for training the ranker, as it could su�er from the exposure

Dataset Con�g. ID
X-Transformer Ablation Con�guration Evaluation Metric

indexing matching ranker input negative-sampling P@1 P@3 P@5 R@1 R@3 R@5

Eurlex-4K

0 pifa-t�df BERT ϕt�df (x) TFN 83.93 70.59 58.69 17.05 42.08 57.14

1 pifa-t�df BERT ϕt�df (x) ⊕ ϕneural (x) TFN 85.02 71.83 59.87 17.21 42.79 58.30

2 pifa-t�df BERT ϕt�df (x) ⊕ ϕneural (x) TFN + MAN 85.51 72.95 60.83 17.32 43.45 59.21

3 pifa-t�df RoBERTa ϕt�df (x) ⊕ ϕneural (x) TFN + MAN 85.33 72.89 60.79 17.32 43.39 59.16

4 pifa-t�df XLNet ϕt�df (x) ⊕ ϕneural (x) TFN + MAN 85.07 72.75 60.69 17.25 43.29 59.01

5 pifa-neural XLNet ϕt�df (x) ⊕ ϕneural (x) TFN + MAN 84.81 72.39 60.38 17.19 42.98 58.70

6 text-emb XLNet ϕt�df (x) ⊕ ϕneural (x) TFN + MAN 85.25 72.76 60.20 17.29 43.25 58.54

7 all XLNet ϕt�df (x) ⊕ ϕneural (x) TFN + MAN 86.55 74.24 61.96 17.54 44.16 60.24

8 pifa-neural all ϕt�df (x) ⊕ ϕneural (x) TFN + MAN 85.92 73.43 61.53 17.40 43.69 59.86

9 all all ϕt�df (x) ⊕ ϕneural (x) TFN + MAN 87.22 75.12 62.90 17.69 44.73 61.17

Wiki-500K

0 pifa-t�df BERT ϕt�df (x) TFN 69.52 49.87 38.71 22.30 40.62 48.65

1 pifa-t�df BERT ϕt�df (x) ⊕ ϕneural (x) TFN 71.90 51.58 40.10 23.27 42.14 50.42

2 pifa-t�df BERT ϕt�df (x) ⊕ ϕneural (x) TFN + MAN 74.68 53.64 41.50 24.56 44.26 52.50

3 pifa-t�df RoBERTa ϕt�df (x) ⊕ ϕneural (x) TFN + MAN 75.40 54.32 42.06 24.85 44.93 53.30

4 pifa-t�df XLNet ϕt�df (x) ⊕ ϕneural (x) TFN + MAN 75.45 54.50 42.24 24.81 45.00 53.44

5 pifa-neural XLNet ϕt�df (x) ⊕ ϕneural (x) TFN + MAN 76.34 55.50 43.04 25.15 45.88 54.53

6 text-emb XLNet ϕt�df (x) ⊕ ϕneural (x) TFN + MAN 74.12 52.85 40.53 24.18 43.30 50.98

7 all XLNet ϕt�df (x) ⊕ ϕneural (x) TFN + MAN 75.85 56.08 44.24 24.80 46.36 56.35

8 pifa-neural all ϕt�df (x) ⊕ ϕneural (x) TFN + MAN 77.44 56.84 44.37 25.61 47.18 56.55

9 all all ϕt�df (x) ⊕ ϕneural (x) TFN + MAN 77.28 57.47 45.31 25.48 47.82 57.95

Table 5: Ablation study of X-Transformer on Eurlex-4K andWiki-500K data sets. We outline four take away messages: (1) Con�g.

ID= {0, 1, 2} demonstrates better performance by using Matcher-aware Negatives (MAN) and Neural embedding for training

the rankers; (2) Con�g. ID= {2, 3, 4} suggests that, performance-wise, XLNet is similar to RoBERTa, and slightly better than

BERT; (3) Con�g. ID={4, 5, 6}manifests the importance of label clusters induced fromdi�erent label representations. (4) Con�g.

ID={7, 8, 9} indicates the e�ect of ensembling various con�guration of the models.

bias of only using the ground truth clustering assignment, but ig-

nores the hard negatives mistakenly produced by the Transformer

models. Note that techniques such as adding Matcher-aware neg-

atives (MAN) from previous model’s prediction to bootstrap the

next level’s model training is also used in A�entionXML [32].

Di�erent Transformer Models. Next, we analyze how the

three di�erent Transformer models (i.e., BERT, RoBERTa, XLNet)

a�ect the performance, as shown in Con�g. ID 2, 3, 4. For Wiki-

500K, we observe that the XLNet and RoBERTa are generally more

powerful than the BERT models. On the other hand, such an ad-

vantage is not clear for Eurlex-4K, possibly due to the nature of the

data set.

Label Representation for Clustering. The importance of dif-

ferent label representation for clustering is demonstrated in Con�g.

ID 4, 5, 6. For Eurlex-4K, we see that using label text embedding

as representation (i.e. text-emb) leads to the strong performance

compared to pifa-t�df (id 4) and pifa-neural (id 5). In contrast, pifa-

t�df becomes the best performing representation on theWiki-500K

dataset. This phenomenon could be due to the label text ofWiki-

500K being more noisy compared to Eurlex-4K, which deteriorates

the label clustering results onWiki-500K.

Ensemble Ranking. Finally, we show the advantage of ensem-

bing prediction from di�erent models as shown in Con�g. ID 7, 8, 9.

For Eurlex-4K, combining predictions from di�erent label represen-

tations (ID 7) is better than from di�erent Transformer models (ID

8). Combining all (ID 9) leads to our �nal model, X-Transformer.

4.6 Cross-Paper Comparisons

Many XMC approaches have been proposed recently. However, it

is sometimes di�cult to compare metrics directly from di�erent pa-

pers. For example, the P@1 of Parabel onWiki-500K is 59.34% in [7,

Table 2] and 68.52% in [20, Table 2], but we see 68.70% in Table 3.

The inconsistency may be due to di�erences in data processing,

input representation, or other reasons. We propose an approach to

calibrate these numbers so that various methods can be compared

in a more principled way. In particular, for each metricm(·), we use

the relative improvement over a common anchor method, which is

set to be Parabel as it is widely used in the literature. For a compet-

ing method X with a metricm(X) on a data set reported in a paper,

we can compute the relative improvement over Parabel as follows:
m (X)−m (Parabel)

m (Parabel)
× 100%, wherem(Parabel) is the metric obtained

by Parabel on the same data set in the same paper. Following the

above approach, we include a variety of XMC approaches in our

comparison. We report the relative improvement of various meth-

ods on two commonly used data sets, Eurlex-4K and Wiki-500K, in

Table 6. We can clearly observe that X-Transformer brings the most

signi�cant improvement over Parabel and SLICE.

5 CONCLUSIONS

In this paper, we propose X-Transformer, the �rst scalable frame-

work to �ne-tune Deep Transformer models that improves state-of-

the-art XMC methods on four XMC benchmark data sets. We fur-

ther applied X-Transformer to a real-life application, product2query

prediction, showing signi�cant improvement over the competitive

linear models, Parabel.

Eurlex-4K Wiki-500K

Method Source

Relative Improvement

Method Source

Relative Improvement

over Parabel (%) over Parabel (%)

Prec@1 Prec@3 Prec@5 Prec@1 Prec@3 Prec@5

X-Transformer Table 3 +6.27% +9.08% +8.55% X-Transformer Table 3 +12.49% +15.94% +17.26%

SLICE [7, Table 2] +4.27% +3.34% +3.11% SLICE [7, Table 2] +5.53% +7.02% +7.56%

GLaS [6, Table 3] -5.18% -5.48% -5.34% GLaS [6, Table 3] +4.77% +3.37% +4.27%

ProXML [2, Table 5] +3.86% +2.90% +2.43% ProXML [2, Table 5] +2.22% +0.82% + 2.92%

PPD-Sparse [20, Table 2] +1.92% +2.93% +2.92% PPD-Sparse [20, Table 2] +2.39% +2.33% + 2.88%

SLEEC [9, Table 2] -3.53% -6.40% -9.04% SLEEC [9, Table 2] -29.84% -40.73% -45.08%

Table 6: Comparison of Relative Improvement over Parabel. The relative improvement for each state-of-the-art (SOTA)method

is computed based on the metrics reported from its original paper as denoted in the Source column.

REFERENCES
[1] Rohit Babbar and Bernhard Schölkopf. 2017. DiSMEC: distributed sparse ma-

chines for extreme multi-label classi�cation. In WSDM.
[2] Rohit Babbar and Bernhard Schölkopf. 2019. Data scarcity, robustness and

extreme multi-label classi�cation. Machine Learning (2019), 1–23.
[3] Kush Bhatia, Himanshu Jain, Purushottam Kar, Manik Varma, and Prateek Jain.

2015. Sparse local embeddings for extreme multi-label classi�cation. In NIPS.
[4] Wei-Cheng Chang, Felix X. Yu, Yin-Wen Chang, Yiming Yang, and Sanjiv Ku-

mar. 2020. Pre-training Tasks for Embedding-based Large-scale Retrieval. In
International Conference on Learning Representations.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. Bert:
Pre-training of deep bidirectional transformers for language understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics (NAACL).

[6] Chuan Guo, Ali Mousavi, Xiang Wu, Daniel N Holtmann-Rice, Satyen Kale,
Sashank Reddi, and Sanjiv Kumar. 2019. Breaking the Glass Ceiling for
Embedding-Based Classi�ers for Large Output Spaces. In Advances in Neural
Information Processing Systems. 4944–4954.

[7] Himanshu Jain, Venkatesh Balasubramanian, Bhanu Chunduri, and Manik Varma.
2019. Slice: Scalable Linear Extreme Classi�ers Trained on 100 Million Labels for
Related Searches. In Proceedings of the Twelfth ACM International Conference on
Web Search and Data Mining. ACM, 528–536.

[8] Himanshu Jain, Yashoteja Prabhu, and Manik Varma. 2016. Extreme multi-
label loss functions for recommendation, tagging, ranking & other missing label
applications. In KDD.

[9] Sujay Khandagale, Han Xiao, and Rohit Babbar. 2019. Bonsai-Diverse and Shallow
Trees for Extreme Multi-label Classi�cation. arXiv preprint arXiv:1904.08249
(2019).

[10] Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimiza-
tion. In Proceedings of the International Conference on Learning Representations.

[11] Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. 2019. Latent retrieval for
weakly supervised open domain question answering. In Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics (ACL).

[12] Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, and Yiming Yang. 2017. Deep
learning for extreme multi-label text classi�cation. In Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM, 115–124.

[13] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. arXiv preprint arXiv:1907.11692
(2019).

[14] Mikko I Malinen and Pasi Fränti. 2014. Balanced k-means for clustering. In Joint
IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR)
and Structural and Syntactic Pattern Recognition (SSPR). Springer, 32–41.

[15] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Je� Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[16] Jinseok Nam, Eneldo Loza Mencía, Hyunwoo J Kim, and Johannes Fürnkranz.
2017. Maximizing Subset Accuracy with Recurrent Neural Networks in Multi-
label Classi�cation. In NIPS.

[17] Ioannis Partalas, Aris Kosmopoulos, Nicolas Baskiotis, Thierry Artieres, George
Paliouras, Eric Gaussier, Ion Androutsopoulos, Massih-Reza Amini, and Patrick
Galinari. 2015. LSHTC: A benchmark for large-scale text classi�cation. arXiv
preprint arXiv:1503.08581 (2015).

[18] Je�rey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:
Global vectors for word representation. In EMNLP. 1532–1543.

[19] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word
representations. In Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics (NAACL).

[20] Yashoteja Prabhu, Anil Kag, Shrutendra Harsola, Rahul Agrawal, and Manik
Varma. 2018. Parabel: Partitioned label trees for extreme classi�cation with
application to dynamic search advertising. In WWW.

[21] Yashoteja Prabhu and Manik Varma. 2014. Fastxml: A fast, accurate and stable
tree-classi�er for extreme multi-label learning. In KDD.

[22] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Im-
proving language understanding by generative pre-training. (2018).

[23] Sashank J Reddi, Satyen Kale, Felix Yu, Dan Holtmann-Rice, Jiecao Chen, and
Sanjiv Kumar. 2019. Stochastic Negative Mining for Learning with Large Output
Spaces. In AISTATS.

[24] Yukihiro Tagami. 2017. AnnexML: Approximate nearest neighbor search for
extreme multi-label classi�cation. In Proceedings of the 23rd ACM SIGKDD inter-
national conference on knowledge discovery and data mining. 455–464.

[25] Manik Varma. 2019. The Extreme Classi�cation Repository: Multi-label Datasets
& Code. http://manikvarma.org/downloads/XC/XMLRepository.html.

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS.

[27] AlexWang, Amanpreet Singh, JulianMichael, Felix Hill, Omer Levy, and Samuel R
Bowman. 2018. Glue: A multi-task benchmark and analysis platform for natural
language understanding. arXiv preprint arXiv:1804.07461 (2018).

[28] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
AnthonyMoi, Pierric Cistac, Tim Rault, R’emi Louf, Morgan Funtowicz, and Jamie
Brew. 2019. HuggingFace’s Transformers: State-of-the-art Natural Language
Processing. ArXiv abs/1910.03771 (2019).

[29] Marek Wydmuch, Kalina Jasinska, Mikhail Kuznetsov, Róbert Busa-Fekete, and
Krzysztof Dembczynski. 2018. A no-regret generalization of hierarchical softmax
to extreme multi-label classi�cation. In NIPS.

[30] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov,
and Quoc V Le. 2019. XLNet: Generalized Autoregressive Pretraining for Lan-
guage Understanding. In NIPS.

[31] Ian EH Yen, Xiangru Huang, Wei Dai, Pradeep Ravikumar, Inderjit Dhillon, and
Eric Xing. 2017. PPDsparse: A parallel primal-dual sparse method for extreme
classi�cation. In KDD. ACM.

[32] Ronghui You, Zihan Zhang, Ziye Wang, Suyang Dai, Hiroshi Mamitsuka, and
Shanfeng Zhu. 2019. AttentionXML: Label Tree-based Attention-Aware Deep
Model for High-Performance Extreme Multi-Label Text Classi�cation. In Ad-
vances in Neural Information Processing Systems. 5812–5822.

http://manikvarma.org/downloads/XC/XMLRepository.html

	Abstract
	1 Introduction
	2 Related Work and Background
	2.1 Extreme Multi-label Classification
	2.2 Transfer Learning Approaches in NLP
	2.3 Amazon Applications

	3 Proposed method: X-Transformer
	3.1 Problem Formulation
	3.2 Semantic Label Indexing
	3.3 Deep Transformer as Neural Matcher
	3.4 Ranking

	4 Empirical Results
	4.1 Datasets and Preprocessing
	4.2 Algorithms and Hyperparameters
	4.3 Results on Public XMC Benchmark Data
	4.4 Results on Amazon Applications.
	4.5 Ablation Study
	4.6 Cross-Paper Comparisons

	5 Conclusions
	References

