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Abstract. Self-organizing processes are crucial for the development of
living beings. Practical applications in robots may benefit from the self-
organization of behavior, e.g. for the increased fault tolerance and en-
hanced flexibility provided that external goals can also be achieved. We
present several methods for the guidance of self-organizing control by
externally prescribed criteria. We show that the degree of self-organized
explorativity of the robot can be regulated and that problem-specific er-
ror functions, hints, or abstract symbolic descriptions of a goal can be
reconciled with the continuous robot dynamics.

1 Introduction

Intrinsically motivated but non-trivial behavior is an important prerequisite for
autonomous robot development. Self-organization of robot control is a promising
approach, where the resulting behavior is characterized by on-going exploration
or by a refinement of those behavioral traits that can be called natural for a spe-
cific robot in a particular environment [1,2]. Animals, including humans, acquire
their behavioral repertoire in a similar way, behavioral elements are developed
autonomously and are further refined during the whole life span. Nevertheless,
modulatory effects on the self-organizing behavior can be imposed as well by
the environment. Animals can learn by imitation or by downright teaching from
superior fellows. Furthermore, behavior is subject to the dictate of drives that
are partly intrinsic and partly external to the agent. Finally, humans derive goals
for their own behavior from rational reasoning.

Incentives for behavioral adaptation is an interesting subject for study in be-
havioral science where the interference of such higher forms of learning with the
underlying self-organization does not seem to be a problem. In robotics, how-
ever, the situation is different. Although promising examples exist [1,3,4], self-
organization of behavior is still a field of active exploration. Further questions such
as the interaction of learning by self-organization and learning by supervision or
by external reinforcement are just starting to gain scientific interest.
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Usually, goal-oriented behavior is achieved by directly optimizing the parame-
ters of a control program such that the goal is approached more closely. The learn-
ing system must receive information about whether or not the behavior actually
approaches the goal. This information may be available via a reward signal in rein-
forcement learning or by a fitness function in evolutionary algorithms. We will al-
low for different types of goal-related information when aiming at a combination of
self-organizing control with external drives. For this combination the term guided
self-organization (GSO) was proposed [5,6]. In this general perspective, GSO is
the combination of goal-oriented learning and developmental self-organization.
Each of the two learning paradigms bring about their particular benefits and GSO
aims at combining them in an optimal manner. Self-organizing systems tend to
have a high tolerance against failures and degrade gracefully, which is an advan-
tage that should not be given up when developing systems aiming to achieve tasks
in practical applications. Although being interested in the wider context, we will
be dealing in this particular study with a specific approach to self-organizing con-
trol, namely homeokinetic learning [7].

What can we expect from a guided homeokinetic controller? It has been shown
earlier that a variety of behaviors can emerged from the principle of homeo-
kinesis [1,2]. This process of self-organization selects certain elements from the
space of action sequences such that a set of behaviors is realized. The emerging
behaviors show a coherent sensorimotor dynamics of the particular robot in its
environment. The goal is now to shape the self-organization process to produce
desired or preferred behaviors within a short time. Part of the idea is to channel
the exploration of the homeokinetic controller around certain behaviors, such
that control modes can be found which match the given robotic task.

In the present paper, we will discuss three mechanisms of guidance. The first
one uses online reward signals to shape the emerging behaviors and is briefly
discussed in Section 3. A second mechanism for guiding consists in the incorpo-
ration of supervised learning e. g. by specific nominal motor commands that we
call teaching signals (Section 4). Using distal learning [8] we study the utilization
of teaching signals in terms of sensor values in Section 5. In Section 6 we propose
a third mechanism that allows for the specification of mutual motor teaching.
The latter two are presented here for the first time.

2 Self-organized Closed Loop Control

Self-organizing control for autonomous robots can be achieved by establishing
an intrinsic drive towards behavioral activity as described by the homeokinetic
principle [7], for details cf. [1,2].

The dynamical evolution of the sensor values x ∈ R
n of the robot is described

by
xt+1 = ψ(xt) = M(xt, yt,A) + ξt+1. (1)

where M is the internal predictive model that maps the sensations x and the
actions y ∈ R

m to the predicted sensory inputs, A is a set of parameters and ξ
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is the mismatch between the predicted and the actually observed sensor values.
In this study, the internal model M is implemented as a linear neural network:

M(xt, yt,A) = Ayt + Sxt + b, (2)

where A = (A,S, b). The actions y are generated by a controller function

yt = K (xt, C, h) = g (Cxt + h) (3)

where g(·) is a componentwise sigmoidal function, we use gi(z) = tanh(zi), C is
a weight matrix and h is a bias vector.

The parameters A of the model are adapted online to minimize the prediction
error ‖ξ‖2 (Eq. 1) via gradient descent. However, the minimization is ambiguous
with respect to A and S because y is a function of x, see (3). In contrast to
our earlier approach [5], we introduce a bias into the model learning in order to
capture the essential part of the mapping by the matrix A. This is achieved by
the adaptation of A based on a prediction error that is obtained for a discounted
S term, i. e.

ΔA = εA (ξt+1 + δSxt) y�t , (4)
ΔS = εAξt+1x

�
t , (5)

where a small value of δ = 0.001 fully serves the purpose and εA = 0.1 is a
learning rate.

If the parameters of the controller (C, h) are also adapted by the minimiza-
tion of the prediction error ‖ξ‖2 then stable but typically trivial behaviors are
achieved. The robot may get trapped in any state with ξ = 0 which happens
prevalently when it is doing nothing. There are, however, specific cases where
such a principle can be successfully applied: If the drive for activity is pro-
vided from outside or brought about by e. g. evolution [9], or if a homeostatic
rule is applied to, for instance, the neural activity [10,11]. The homeokinetic
paradigm [7,1] instead suggests to use the so-called postdiction error. This error
is the mismatch

vt = xt − x̂t (6)

between true sensor values xt and reconstructed sensor values x̂t that are defined
using Eq. 1 as

x̂t = ψ−1 (xt+1) (7)

assuming that ψ is invertible. If x̂t (rather than xt) had been actually observed
then by definition the best possible prediction based on the present model M (1)
would have been made. The error functional minimizing the postdiction error vt
is called time-loop error (TLE) and can be approximated by

ETLE = ‖vt‖2 = ξ�t+1

(
LtL

�
t

)−1
ξt+1, (8)

where Lt,ij = ∂ψ(xt)i

∂xt,j
is the Jacobian matrix of ψ at time t. Thus another impor-

tant feature of this error quantity becomes evident: The minimization of v entails
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the minimization of the inverse Jacobian. This in turn means that small eigen-
values of L are increased. Thus the controller performs stabilization in inverted
time, i. e. destabilization in forward time. This eliminates the trivial fixed points
(in sensor space) and enables spontaneous symmetry breaking phenomena. The
reader might wonder why the system does not start to behave chaotically or reach
uncontrollable oscillations. The reason is that the destabilization is limited by
the nonlinearities g(·) and that the TLE is invariant to oscillation frequencies as
discussed in [12]. Intuitively, the homeokinesis can be understood as the drive
to sustain a non-trivial behavior that can be predicted by the internal model.
Since the internal model is very simple smooth behaviors are preferred. Fig. 1
illustrates how the homeokinetic controller is connected to a robot.
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Fig. 1. The Homeokinetic controller connected to the Spherical robot in the sen-
sorimotor loop. The Spherical robot is driven by weights that are moved along the
axes by actuator and is equipped with axis-orientation sensors (xi). The homeokinetic
controller consists of the controller function K and the predictor M , both together
form ψ (Eq. 1). The TLE is obtained by propagating ξt+1 through ψ in inverted time.

The TLE (8) can be minimized by gradient descent which gives rise to a
parameter dynamics that evolves simultaneously with the state dynamics:

xt+1 = ψ (xt) + ξt+1, (9)

Ct+1 = Ct − εC
∂

∂C
ETLE and ht+1 = ht − εh

∂

∂h
ETLE , (10)

where εC = εh = 0.1 is chosen for the learning rate. We use a fast synaptic
dynamic for the learning of the controller and the model such that the system
adapts quickly. Assuming sensory noise, the TLE is never zero nor has a vanishing
gradient such that the rule (10) produces an itinerant trajectory in the parameter
space, i. e. the robot traverses a sequence of behaviors that are determined by
the interaction with the environment. These behaviors are, however, waxing and
waning and their time span and transitions are hard to predict.

Let us consider as a first example a robot with two wheels that is equipped
with wheel velocity sensors. In the beginning the robot rests, but after a short
time it autonomously starts to drive forward and backward and to turn. If a
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wall is encountered such that the wheels stop the robot will immediately stop
the motors and eventually drive in the free direction. A more complex exam-
ple for the self-organization of natural behaviors is provided by the Spherical
robot (Fig. 1) which starts to roll around different internal axes as we will see be-
low. Furthermore, high-dimensional systems such as snake- or chain-like robots,
quadrupeds, and wheeled robots have been successfully controlled [13]. It is of
particular interest that the control algorithm induces a preference for movements
with a high degree of coordination among the various degrees of freedom. All
the robotic implementations demonstrate the emergence of play-like behavior,
which are characterized by coordinated whole body movements seemingly with-
out a specific goal. The coordination among the various degrees of freedom arises
from their physical coupling that is extracted and enhanced by the controller,
because each motor neuron is adapted to be sensitive to coherent changes in all
degrees of freedom due to Eq. 10. In this paper we will propose a mechanism to
guide the self-organizing behaviors towards desired behaviors.

3 Guided Self-organizing Control

How can we guide the learning dynamics such that a given goal is realized by
the self-organizing process? One option is to modify the lifetime of the transient
behaviors depending on a given reward signal. For this purpose we can explicitly
modify the frequencies of occurrence of different behaviors and obtain more of
a desired and less of an undesired behavior. The prediction error ξ occurs as a
factor in the learning rule (8), i. e. the lifetime of well predictable behavior is
extended such that the original TLE already contains a reward for predictability
in this formalism. When applying this method to the Spherical robot (Fig. 1)
we can, for example, achieve fast locomotion by rewarding high velocity and
obtain curved driving and spinning modes when rewarding rotational velocity
around the upwards axis, see [5] for more details.

A second and more stringent form of guidance will be studied in the present
paper. We will formulate the problem in terms of problem-specific error functions
(PSEF) that indicate an external goal by minimal values. A trivial example of
such an error function is the difference between externally defined and actually
executed motor actions. This is a standard control problem which, however,
becomes hard if the explorative dynamics is to be preserved.

Guided self-organization (GSO) focuses on this interplay between the explo-
rative dynamics implied by homeokinetic learning and the additional drives. The
challenge in the combination of a self-organizing system with external goals be-
comes clear when recalling the characteristics of a self-organizing system. One
important feature is the spontaneous breaking of symmetries of the system.
This is a prerequisite for spontaneous pattern formation and is usually achieved
by self-amplification, i.e. small noisy perturbations cause the system to choose
one of several symmetric options while the intrinsic dynamics then causes the
system to settle into this asymmetric state. A nonlinear stabilization of the self-
amplification forms another ingredient of self-organization. These two conditions
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which we will call our working regime, are to be met for a successful guidance of
a self-organizing system. There are a number of ways to guide the homeokinetic
controller which we will discuss in the following.

4 Guidance by Teaching

First we will describe how the problem-specific error functions (PSEF) can be
integrated and then we will consider a few examples. Recall that the adaptation
of the controller parameters is done by performing a gradient descent on the time-
loop error. The PSEF must depend functionally on the controller parameters
in order to allow the same procedure. Unfortunately, the simple sum of both
gradients is likely to steer the system out of its working regime and we cannot
easily identify a fixed weighting between the two gradients that would satisfy an
adequate pursuit of the goal and maintaining explorativity. One reason is that
the nonlinearities (cf. Eq. 3) in the TLE cause the gradient to vary over orders of
magnitude. A solution to this problem can be obtained by scaling the gradient of
the PSEF according to the Jacobian matrix of the sensorimotor loop such that
both gradients become compatible. It turns out that this transformation can be
obtained using the natural gradient with the Jacobian matrix of the sensorimotor
loop as a metric. The update for the controller parameters C is now given by

1
εC
ΔCt = −∂ETLE

∂C
− γ

∂EG
∂C

(
LtL

�
t

)−1
, (11)

where EG is the PSEF and γ > 0 is the guidance factor deciding the strength
of the guidance. For γ = 0 there is no guidance and we obtain the unmodified
dynamics, cf. (10).

For clarity we will start with a very simple goal, namely we want a robot
to follow predefined motor actions called teaching signals in addition to the
homeokinetic behavior. We can define the PSEF as the mismatch ηGt between
motor teaching signals yGt and the actual motor values, thus

EG = ‖ηGt ‖2 = ‖yGt − yt‖2. (12)

Since yt is functionally dependent on the controller parameters (3), the gra-
dient descent can be performed, i.e. the derivative reads ∂EG

∂Cij
= −ηGt,i g′i xt,j ,

where g′i = tanh′
(∑n

j=1 Cijxt,j + hi

)
. A similarly motivated approach is homeo-

taxis [14], where an action error is added to the TLE as well, however the error
was minimized in one step, and not along its gradient.

An evaluation of the guidance mechanism has been performed using the
TwoWheeled robot, which was simulated in our realistic robot simulator
LpzRobots [15]. The motor values determine the nominal wheel velocities and
the sensor values report the actual wheel velocities of both wheels. We provided
to both motors the same oscillating teaching signal. The resulting behavior is a
mixture between the taught behavior and self-organized dynamics depending the
value of γ. For γ = 0.01 the teaching signals are followed most of the time but
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with occasional exploratory interruptions, especially when the teaching signals
have a small absolute value. In this case the system is closer to the bifurcation
point where the two stable fixed points for forward and backward motion meet.
These interruptions cause the robot, for example, to move in curved fashion in-
stead of strictly driving in a straight line as the teaching signals dictate. The
exploration around the teaching signals might be useful in general to find modes
which are better predictable or more active.

5 Sensor Teaching and Distal Learning

Let us now transfer the motor teaching paradigm to sensor teaching signals.
This is a useful way of teaching because desired proprioceptive sensor values
can be more easily obtained than motor values, for instance by passively moving
the robot or parts of the robot. This kind of teaching is also commonly used
when humans learn a new skill, e. g. think of a tennis trainer that teaches a new
stroke by moving the arm and the racket of the learner. Thus, a series of nominal
sensations can be acquired that can serve as teaching signals. Setups where the
desired outputs are provided in a different domain than the actual controller
outputs are called distal learning [8]. Usually a forward model is learned that
maps actions to sensations (or more generally to the space of the desired output
signals). Then the mismatch between a desired and actual sensation can be back-
propagated to obtain the required change of action. The back-propagation can
also be done using an inversion of the forward model which we have already
at hand, see Eqs. 1 and 7. The idea is actually very simple, namely calculating
motor teaching signals from sensor teaching signal using the inverted model by
solving xDt = M(xt−1, y

G
t−1,A) w.r.t. yG, cf. Eq. 2, which can in turn be inserted

into Eq. 12. Afterwards we apply the motor teaching mechanism (Section 4).
The potential of this method will become more obvious in the following more

complex example. We use a simulated robot named the Spherical which is of
relatively simple shape, but involves a complicated control problem, see Fig. 1.
We will consider the goal of restricting the movements of the robot to rotations
around one of its axes. The robot is actuated by three internal weights that
are movable along orthogonal axes. Thus a single change in the positions of
the weights results in a change of the center of mass of the robots and thus
in a certain rolling movement. Control has to take into account strong inertia
effects and a non-trivial map between motor actions and body movements. Let
us first consider the behavior without guidance (γ = 0). From a resting initial
situation, the rule (10) induces an increasing sensitivity by noise amplification
until a coherent physical movements develop. Shortly afterwards a regular rolling
behavior is executed which breaks down infrequently to give way for different
movement patterns. In particular the rolling modes around one of the internal
axes are seen to occur preferably, see Fig. 2(a,b). This modes are characterized
by small sensor values for the rotation axis whereas the remaining two sensor
values oscillate.
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Fig. 2. The Spherical robot without guidance explores its behavioral options. With
guidance it prefers a specific axis of rotation. (a) Amplitudes of the motor value oscil-
lations (y1...3) and the TLE (ETLE) averaged over 10 sec (scaled for visibility) without
guidance (γ = 0). Corresponding behaviors are indicated with letters A-D. (b) Sketch
of four typical behaviors (A-D), namely the rolling mode around the three internal
axis (A-C) and around any other axis (D); (c) Behavior for the distal learning task.
The percentage of rotation around each of the internal axes is shown for different values
of the guidance factor γ (no teaching for γ = 0). The rotation around the red (first)
axis is clearly preferred for non-zero γ (mean and standard deviation are plotted for
10 runs each of a duration of 60min).

In order to guide the robot into the rotation around the first axis we use
a distal teaching signal where the first component is zero and the remaining
two components contain the current sensor values such that they do not gener-
ate any learning signal (i.e. the mismatch is zero). The teaching signal vector
is formally xGt = (0 xt,2 xt,3)

�, where xt,1...3 are the sensor values at time
t. As a descriptive measure of the behavior, we used the index of the internal
axis around which the highest rotational velocity was measured at each mo-
ment of time. Figure 2(c) displays for different values of the guidance factor (γ)
and for each of the axes the percentage of time it was the major axis of rota-
tion. Without guidance there is no preferred axis of rotation as expected. With
distal learning the robot shows a significant preference for a rotation around
the first axis up to 75 %. For overly strong teaching, a large variance in the
performance occurs. This is caused by a too strong influence of the teaching
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signal on the learning dynamics. Remember that the rolling modes can emerge
due to the fine regulation of the sensorimotor loop to the working regime of
the homeokinetic controller, which cannot be maintained for large values of γ.
We may ask why is it not possible to force the controller to stay in the rota-
tional mode around the first axis? When the robot is in this rotational mode the
teaching signal is negligible. However, the controller’s drive to be sensitive will
increase the influence of the first sensor such that the mode becomes unstable
again.

To summarize, the Spherical robot with the homeokinetic controller can be
guided to move mostly by rotation around one particular axis, by specifying the
constancy of a single sensor as a teaching signal.

6 Guidance by Cross-Motor Teaching

Finally we will propose a guidance mechanism with internal teaching signals. As
an example we want to influence the controller to prefer a mirror-symmetry in
the motor patterns. This can be achieved by using the motor value of one motor
as the teaching signal for another motor and vice versa. For two motors, this
can be expressed as: yGt,1 = yt,2 and yGt,2 = yt,1, where yGt is again the nominal
motor value vector, see Eqs. 11 and 12. This self-supervised teaching induces soft
constraints which reduce the effective dimension of the sensorimotor dynamics
and thus guide the self-organization along a sub-space of the original control
problem.

Let us consider the TwoWheeled robot again and suppose the robot should
move mostly straight, not get stuck at obstacles or in corners and cover sub-
stantial parts of its environment. We will see that all this can be achieved by a
simple guidance of the homeokinetic controller where both motors are mutually
teaching each other.

For experimental evaluation we placed the robot in an environment cluttered
with obstacles and performed many trials for different values of the guidance
factor. In order to quantify the influence of the guidance we recorded the tra-
jectory, the linear velocity, and the angular velocity of the robot. We expect
an increase in linear velocity because the robot is to move straight instead of
turning. For the same reason the angular velocity should be lowered. In Fig. 3
the behavioral quantification and a sample trajectory are plotted. Additionally
the relative area coverage is shown, which reflects how much more area of the
environment was covered by the robot with guidance compared to freely moving
robot. As expected, the robot shows a distinct decrease in mean turning veloc-
ity and a higher area coverage with increasing values of the guidance factor.
Note that the robot is still performing turns and drives both backwards and
forwards and that it does not get stuck at the walls, as seen in the trajectory
in Fig. 3(b), such as sensitivity (exploration) and predictability (exploitation)
remain.
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Fig. 3. Behavior of the TwoWheeled robot when guided to move preferably straight.
(a) Mean and standard deviation (of 5 runs each 20 min) of the area coverage (area),
the average velocity 〈|v |〉, and the average angular velocity 〈|ωz|〉 for different values
of the guidance factor γ. Area coverage (box counting method) is given in percent of
the case without guidance (γ=0) (right axis). The robot is driving straighter and its
trajectory covers more area for larger γ; (b) An example trajectory of the robot with
γ = 0.005.

7 Discussion

We have presented here two new methods for guiding self-organizing behavior
that are based on teaching signals. Desired motor patterns were specified by
means of an error function that was integrated into the learning dynamics. The
strength of guidance can be conveniently adjusted. Because teaching information
is often given in the sensor space whereas learning is performed in the motor
representation, a transformation is necessary which is obtained from the adaptive
internal world model. The feasibility of both approaches was demonstrated by
robotic experiments.

We introduced cross-motor teachings in order to be able to specify relations
between different motor channels. If it is known or desired that certain degrees
of freedom of a robot should move in a coherent way, e. g. symmetrical or anti-
symmetrical, then these relation can be injected as soft constraints that reduce
the effective dimensionality of the system. As an example, the TwoWheeled
robot showed that by enforcing the symmetry between the left and right wheel
the behavior changes qualitatively to straight motion.

The exploratory character of the controller is nevertheless retained and helps
to find a behavioral mode even if the specification of the motor couplings is par-
tially contradictory. The resulting behaviors are not enforced by the algorithm.
For example the TwoWheeled robot can choose freely between driving forward
or backward whereas in direct teaching the direction of driving is obviously dic-
tated by an external teacher. Furthermore, it is evident that the robot remains
sensitive to small perturbations and continues to explore its environment.
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Guided self-organization using cross-motor teachings shares some properties
with other approaches to autonomous robot control such as evolutionary algo-
rithms [16] and reinforcement learning (RL) [17]. Evolutionary algorithms can
optimize the parameters of the controller and are able to produce the same be-
haviors as we found in this study, cf. [18,19,20]. A critical experiment would
investigate high-dimensional systems that cannot be decomposed into identical
components.

A further difference is that self-organizing control is merely modulated by
guidance, whereas evolutionary algorithms tend to converge to a static con-
trol structure. RL uses discrete actions or a parametric representation of the
action space. In either case, high-dimensional systems will cause slow conver-
gence. Preliminary experiments with a chain-like robot (cf. [13]) show a clear
advantage of cross-motor teaching in comparison to generic RL although similar
relations among the actions in RL compensate part of this drawback. Natural
actor-critics [21] may bring a further improvement of the RL control, but natu-
ral gradients can also be incorporated here. A decisive advantage of cross-motor
teaching may be that goal-directed behaviors emerge within the self-organization
of the dynamics from a symbolic description of the problem and do not need con-
tinuous training data such as in imitation learning [22].

It is, however, clearly an interesting option to adapt cross-motor teaching to
an imitation learning scenario. Although delayed rewards are still non-trivial for
continuous domains, RL can cope with them in principle, while the guidance
with rewards [5] requires instantaneous rewards.
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