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1 Introduction

The search for factors that explain the cross section of expected stock returns has produced hundreds

of potential candidates, as noted by Cochrane (2011) and most recently by Harvey et al. (2015),

McLean and Pontiff (2016), and Hou et al. (2017). A fundamental task facing the asset pricing field

today is to bring more discipline to the proliferation of factors – a task that the literature has been

trying to address using a variety of methods. In this paper, we approach this problem from the

following angle: how can we judge whether a new factor adds explanatory power for asset pricing,

relative to the existing set of hundreds of factors the literature has so far produced?

This paper provides a framework for systematically evaluating the contribution of individual

factors relative to the myriad of existing factors, and conducting appropriate statistical inference

in this high-dimensional setting. In particular, we show how to estimate and test the marginal

importance of any factor gt in pricing the cross section of expected returns beyond what is explained

by a high-dimensional set of potential factors ht, where gt and ht could be tradable or non-tradable

factors. We assume the true asset pricing model is approximately low-dimensional; however, in

addition to relevant asset pricing factors, gt and ht include redundant ones that add no explanatory

power to the model, as well as useless ones that have no explanatory power at all. Selecting the

relevant factors from ht and conducting proper inference on the contribution of gt above and beyond

those factors is the aim of this paper. Our methodology can be thought of as a conservative test for

new factors, which benchmarks them against a large-dimensional set of existing ones.

When ht consists of a small number of factors, testing whether gt is useful in explaining asset

prices while controlling for the factors in ht is straightforward: it simply requires estimating the

loadings of the stochastic discount factor (SDF) on gt and ht, and testing whether the loading of

gt is different from zero (see Cochrane (2009)). This exercise not only tells us whether gt is useful

for pricing the cross section, but it also reveals how shocks to gt affect marginal utility, which has a

direct economic interpretation.

When ht consists of potentially hundreds of factors, however, standard statistical methods to

estimate and test the SDF loadings become infeasible or result in poor estimates and invalid inference,

because of the curse of dimensionality. Although variable selection techniques (e.g., least absolute

shrinkage and selection operator, LASSO) can be useful in selecting the correct variables under

certain conditions and thereby reducing the dimensionality of ht, relying on this result produces

very poor approximations to the finite-sample distributions of the estimators, unless appropriate

econometric methods are used to explicitly account for model-selection mistakes (see Chernozhukov

et al. (2015)). This means that, for example, simply applying a model-selection tool like LASSO to

a large set of factors and checking whether a particular factor gt is significant (or even just checking
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if it gets selected) is not a reliable way to determine whether gt is actually one of the true factors.

The methodology we propose in this paper marries these new econometric methods (in partic-

ular, the double-selection LASSO method of Belloni et al. (2014b)) with two-pass regressions such

as Fama-MacBeth to evaluate the contribution of a factor to explaining asset prices specifically in

a high-dimensional setting. Without relying on prior knowledge about which factors to include as

controls among a large number of factors in ht, our procedure selects factors that are either useful in

explaining the cross section of expected returns or are useful in mitigating the omitted variable bias

problem due to potential model selection mistakes. We show that including both types of factors as

controls is essential to conduct reliable inference on the SDF loading of gt.

We apply our methodology to a large set of factors proposed in the last 30 years; in particular, we

collect and construct a large factor data library containing 150 risk factors. This factor zoo contains

many potentially redundant factors, and is thus an ideal dataset to show our empirical results. As an

example, consider the seasonality factor of Heston and Sadka (2008). This factor has a statistically

significant alpha with respect to the Fama-French 3-factor model (t-stat 2.06) in our sample. So, if

evaluated against this benchmark model, one would conclude that seasonality is a useful factor. But

seasonality turns out to be highly correlated with momentum (for example, it has a correlation of

0.63 with Carhart momentum). And if one evaluates it against a model that includes momentum

(like the Fama-French 4 factor model), the alpha becomes small and statistically insignificant (t-

stat of -0.87). This example highlights the importance of the benchmark in evaluating new factors.

Most papers in the literature that aim to produce new factors, nonetheless, choose the benchmark

model somewhat arbitrarily, subject to a potential data-mining bias. Our procedure systematically

constructs the best low-dimensional benchmark to evaluate new factors using the entire factor zoo.

We perform a variety of empirical exercises that illustrate the use of our procedure in the data.

We start by evaluating the marginal contribution of recent factors proposed in the last five years

(2012 - 2016) to the large set of factors proposed before then. The new factors include – among

others – the two new factors introduced by Fama and French (2015) and Hou et al. (2015), and the

intermediary-based factors from He et al. (2016). Note that our test is conservative: it requires a

new factor gt to contribute to explaining the cross-section relative to the entire universe of existing

factors ht. Given the large dimensionality of the factors produced in the literature, one might wonder

whether, in practice, any additional factor could ever make a significant contribution. We show that

indeed several of the newly proposed factors (e.g., profitability and investment) have significant

marginal explanatory power for expected returns.

Second, we propose a recursive exercise in which factors are tested as they are introduced against

previously proposed factors. The exercise shows that our procedure would have deemed factors as

redundant or spurious in most cases, while finding significance for a small number of factors. Over
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time, our procedure would have screened out many factors at the time of their introduction, thus

helping address the proliferation of factors. Going forward, our test can be used to make inference

about new factors that will be introduced in the future.

Third, we study the robustness of our procedure from different angles. We show that our results

are robust to using alternative methods to reduce the dimensionality of ht, like Elastic Net and PCA.

We also show that the results are robust to alternative portfolio constructions. Most importantly,

we explore in detail the robustness with respect to the tuning parameters. Like all machine learning

methods, our procedure involves the choice of tuning parameters (in particular two, one for each

selection step). In our analysis, we choose them by cross-validation; in the robustness section, we

also show that our empirical findings are robust to varying the tuning parameters in the neighborhood

of the values chosen by the cross-validation procedure.

The double-selection (DS) estimation procedure we propose, that combines cross-sectional asset

pricing regressions with the double-selection LASSO of Belloni et al. (2014b) (designed originally for

linear treatment effect models), starts by using a two-step selection method to select “control” factors

from ht, and then estimates the SDF loading of gt from cross-sectional regressions that include gt

and the selected factors from ht.

As the name implies, the “double selection” of factors from ht happens in two stages; both

stages are crucial to obtain correct inference on gt. A first set of factors is selected from ht based on

their pricing ability for the cross-section of returns. Factors whose covariances appear to contribute

little to pricing assets in the cross section are excluded from the set of controls. This first step –

effectively an application of standard LASSO to the set of potential factors ht – has the advantage

of selecting factors based on their usefulness in pricing the cross section of assets, as opposed to

other commonly used selection methods (e.g., principal components) that select factors based on

their ability to explain the time-series variation of returns. Using a cross-sectional approach with

factor covariances as inputs is expected to deliver more relevant factors for asset pricing.

This first step therefore chooses a low-dimensional model to explain the cross section using only

factors in ht. This model selection step corresponds closely to the approach taken in the current

literature dealing with the proliferation of asset pricing factors (e.g., Kozak et al. (2017)): take a

large set of factors (ht), apply some dimension-reduction method (LASSO, Elastic net, PCA, etc.),

and interpret the resulting low-dimensional model as the SDF. Importantly, the interpretation of the

selected model in the literature has relied on the so-called “oracle property” of LASSO and other

model-selection methods: an asymptotic property that guarantees that under certain assumptions,

as the sample size goes to infinity, the procedures will eventually recover the true model. The first

step in our procedure, therefore, is similar in spirit to what has been commonly applied in the recent

literature.
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In this paper, however, we make one step forward, and recognize that in practice the “oracle

property” never holds. For instance, LASSO makes frequent and potentially important mistakes

when recovering the SDF, as we show in simulations. To make things worse, the failure of the

“oracle property” in finite samples is also a problem for addressing the question we focus on in this

paper: whether a new factor gt improves over the factors in ht. Mistakes in selecting the reduced-

dimension model from ht also make inference on gt invalid. The LASSO selection may exclude some

factors that have small SDF loadings in sample, but whose covariance with returns are nonetheless

highly cross-sectionally correlated with exposures to gt. Any omission of relevant factors due to

model-selection errors distorts the asymptotic distribution of the estimator, leading to incorrect

inference on the significance – and even the sign – of gt’s SDF loading. This issue is well-known

in the statistics literature (see, for example, Leeb and Pötscher (2005)), and it has spurred a large

econometrics literature on uniformly valid inference, with important consequences for asset pricing

tests that we explore in this paper.

The key contribution of our paper is to show that despite the mistakes that LASSO inevitably

makes in selecting the model, correct inference can be made about the contribution to asset pricing of

a factor gt. To obtain reliable asymptotic inference for gt, including a second stage of factor selection

is crucial. The second step adds to the set of controls selected by the first-stage LASSO additional

factors whose covariances with returns are highly correlated in the cross section with the covariance

between returns and gt (this step uses a second LASSO, since it still has to choose among many

factors in ht). Intuitively, we want to make sure to include even factors with small in-sample SDF

loadings, if omitting them may still induce a large omitted variable bias due to the cross-sectional

correlation between their risk exposures and the risk exposures to gt. It is also possible that some

variables selected from the second stage are redundant or even useless, but their inclusion only leads

to a moderate loss in efficiency.

After selecting the set of controls from ht (including all factors selected in either of the two

selection stages), we conduct inference on gt by estimating the coefficient of a standard two-pass

regression using gt and the selected control factors from ht. This post-selection estimation step is

also useful to remove biases arising from regularization in any LASSO procedure; see, for example,

Friedman et al. (2009). We then conduct asymptotic inference on the SDF loading of gt using a

central-limit result we derive in this paper. We show in simulation that our estimator performs well

in finite samples, and substantially outperforms alternative estimators.

Finally, it is worth pointing out an alternative motivation for the methodology proposed in this

paper. Theoretical asset pricing models often predict that some factors (gt) should be part of the

SDF, i.e. they should enter the investors’ marginal utility. Theoretical models, however, are often

very stylized, and their ability to explain the cross-section is limited. This suggests that, in reality,
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investors may care about other risk factors that are not explicitly predicted by the model. This

creates an omitted variable problem when testing for the SDF loading of gt: if the true SDF contains

additional factors not explicitly incorporated in the estimation, the estimate for the loading of gt will

be biased. Our methodology – that estimates the loading of gt while taking a stand on the “omitted

factors” by choosing them from the large set ht – can then be seen as a way to address this omitted

factor concern when estimating SDF loadings. In this sense, it is related to Giglio and Xiu (2016), that

show how to make inference on risk premia in the presence of omitted factors. The crucial difference

between the two approaches is that Giglio and Xiu (2016) focus on the estimation of risk premia (the

compensation investors require for holding the gt risk), whereas this paper makes inference on SDF

loadings of observable factors in gt. Both SDF loadings and risk premia have important, though very

distinct, economic interpretations; they have different theoretical properties, and different tools need

to be used to address the omitted factor problem in the two cases. Importantly, only SDF loadings,

addressed in this paper, can speak to the contribution of factors to explaining asset prices (see

Cochrane (2009)), and therefore SDF loadings are the appropriate concept to refer to for disciplining

the zoo of factors.

Our paper builds on several strands of the asset pricing and econometrics literature. In addition

to a large literature devoted to identifying asset pricing factors1 and a vast econometrics literature

on estimating factor models,2 our paper is most closely related to the recent literature on the high

dimensionality of cross-sectional asset pricing models. Green et al. (2016) test 94 firm characteristics

through Fama-Macbeth regressions and find that 8-12 characteristics are significant independent de-

terminants of average returns. McLean and Pontiff (2016) use an out-of-sample approach to study

the post-publication bias of 97 discovered risk anomalies. Harvey et al. (2015) adopt a multiple

testing framework to re-evaluate past research and suggest a new benchmark for current and future

factor fishing. Following on this multiple-testing issue, Harvey and Liu (2016) provide a bootstrap

technique to model selection. Recently, Freyberger et al. (2017) propose a group LASSO procedure

to select characteristics and to estimate how they affect expected returns nonparametrically. Kozak

et al. (2017) use model-selection techniques to approximate the SDF and the mean-variance effi-

cient portfolio as a function of many test portfolios, and compare sparse models based on principal

1Some of the factors proposed in the literature are based on economic theory (e.g., Breeden (1979), Chen et al.

(1986), Jagannathan and Wang (1996), Lettau and Ludvigson (2001), Yogo (2006), Pástor and Stambaugh (2003a),

Adrian et al. (2014), He et al. (2016)); others are constructed using firm characteristics, such as Fama and French

(1993, 2015), Carhart (1997), and Hou et al. (2015).
2See, among the many papers, Jensen et al. (1972), Fama and MacBeth (1973), Ferson and Harvey (1991), Shanken

(1992), Jagannathan and Wang (1996), Welch (2008), and Lewellen et al. (2010). These papers, along with the majority

of the literature, rely on large T and fixed n asymptotic analysis for statistical inference and only deal with models in

which all factors are specified and observable. Recent literature relies on alternative asymptotic designs, including Bai

and Zhou (2015), Gagliardini et al. (2016), Gagliardini et al. (2017), Connor et al. (2012), Giglio and Xiu (2016), and

Raponi et al. (2017), for better small-sample performance and robustness to model misspecification.
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components of returns with sparse models based on characteristics.

A crucial distinction between our paper and the existing literature is that we focus on the

evaluation of a new factor, rather than testing or estimating an entire reduced-form asset pricing

model, e.g., in the GRS test of Gibbons et al. (1989). To the extent that our procedure is used to

test a new factor gt that is determined ex-ante and motivated by theory, it is not directly subject to

the multiple testing concern that Harvey and Liu (2016) aim to address.3 Our procedure also helps

alleviate the concern of data-snooping, another form of multiple testing (see e.g., Lo and MacKinlay

(1990), Harvey et al. (2015)), because we suggest imposing discipline to the selection of controls as

opposed to the conventional practice of selecting arbitrary controls that leaves the researcher much

more freedom.

Of course, the existing literature has routinely attempted to evaluate the contribution of new

factors relative to some benchmark model, typically by estimating and testing the alpha of a regres-

sion of the new factor onto existing factors (e.g., Barillas and Shanken (2018) and Fama and French

(2016)). Our methodology differs from the existing procedures in several ways. First, we do not

use as control an arbitrary set of factors from ht (e.g., the three Fama-French factors), but rather

we select from ht the control model that best explains the cross section of returns. In addition, our

procedure aims to minimize the potential omitted variable bias while enhancing statistical efficiency.

Second, we not only test whether the factor of interest gt is useful in explaining asset prices, but

we also estimate its role in driving marginal utility (its coefficient in the stochastic discount factor);

this is important to be able to interpret the results in economic terms and relate them to the models

that motivated the choice of gt. Third, our procedure handles both traded and non-traded factors.

Fourth, our procedure leverages information from the cross section of the test assets in addition to

the times-series of the factors. Lastly, our inference is valid given a large dimensional set of controls

and test assets in addition to an increasing span of time series.

Finally, our paper is related to a large statistical and machine-learning literature on variable

selection and regularization using LASSO and post-selection inference. For theoretical properties of

LASSO, see Bickel et al. (2009), Meinshausen and Yu (2009), Tibshirani (2011), Wainwright (2009),

Zhang and Huang (2008), Belloni and Chernozhukov (2013). For the post-selection-inference method,

see, for example, Belloni et al. (2012), Belloni et al. (2014b), and review articles by Belloni et al.

(2014a) and Chernozhukov et al. (2015). Our asymptotic results are new to the existing literature in

two important respects. First, our setting is a large panel regression with a large number of factors,

in which both cross-sectional and time-series dimensions increase. Second, our procedure in fact

3The two methodologies could potentially be combined to produce more conservative inference that also deals with

the possibility that the set of test factors gt is selected ex-post after looking at the inference results, raising concerns

about multiple testing. We leave this for future research. Relatedly, Giglio et al. (2018) tackle the multiple testing of

alphas in a linear asset pricing model.
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selects covariances between factors and returns, which are contaminated by estimation errors, rather

than factors themselves that are immediately observable.

The rest of the paper is organized as follows. In Section 2, we set up the model, present our

methodology, and develop relevant statistical inference. In Section 3, we show several empirical

applications of the procedure, and explore the robustness of the results. Section 4 concludes. The

appendix contains technical details and Monte Carlo simulations.

2 Methodology

2.1 Model Setup

We start from a linear specification for the SDF:

mt := γ−1
0 − γ−1

0 λ⊺

vvt := γ−1
0 (1− λ⊺

ggt − λ⊺

hht), (1)

where γ0 is the zero-beta rate, gt is a d× 1 vector of factors to be tested, and ht is a p× 1 vector of

potentially confounding factors. Without loss of generality, both gt and ht are de-meaned; that is,

they are factor innovations satisfying E(gt) = 0 and E(ht) = 0. λg and λh are d× 1 and p× 1 vectors

of parameters, respectively. We refer to λg and λh as the SDF loadings of the factors gt and ht.

Our goal in this paper is to make inference on the SDF loadings of a small set of factors gt

while accounting for the explanatory power of a large number of existing factors, collected in ht.

That is, the main question in this paper is to evaluate the marginal contribution of gt relative to a

high-dimensional benchmark model ht.

Note that the factors in ht are not necessarily all useful factors: their corresponding SDF load-

ings may be equal to zero. This framework therefore potentially includes redundant factors (factors

that have zero SDF loadings but whose covariances with returns are correlated in the cross section

with the covariance between returns and the SDF), as well as completely useless factors (factors that

have zero SDF loadings and whose covariances with returns are uncorrelated with the covariances

of returns with the SDF). So part of the procedure we propose will reduce the dimensionality of

ht, trying to eliminate the useless and redundant factors, obtaining a low-dimensional benchmark

model.

In addition to gt and ht, we observe a n × 1 vector of test asset returns, rt. Because of (1),

expected returns satisfy:

E(rt) = ιnγ0 + Cvλv = ιnγ0 + Cgλg + Chλh, (2)

where ιn is a n × 1 vector of 1s, Ca = Cov(rt, at), for a = g, h, or v. Furthermore, we assume the
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dynamics of rt follow a standard linear factor model:

rt = E(rt) + βggt + βhht + ut, (3)

where βg and βh are n × d and n × p factor-loading matrices, ut is a n × 1 vector of idiosyncratic

components with E(ut) = 0 and Cov(ut, vt) = 0.

Equation (2) represents expected returns in terms of (univariate) covariances with the factors,

multiplied by λg and λh. An equivalent representation of expected returns can be obtained in terms

of multivariate betas:

E(rt) = ιnγ0 + βgγg + βhγh, (4)

where βg and βh are the factor exposures (i.e., multivariate betas) and γg and γh are the risk premia

of the factors. SDF loadings λ and risk premia γ are directly related through the covariance matrix

of the factors, but they differ substantially in their interpretation. The risk premium of a factor tells

us whether investors are willing to pay to hedge a certain risk factor, but it does not tell us whether

that factor is useful in pricing the cross section of returns. For example, a factor could command a

nonzero risk premium without even appearing in the SDF, simply because it is correlated with the

true factors. As discussed extensively in Cochrane (2009), to understand whether a factor is useful

in pricing the cross section of assets, we should look at its SDF loading instead of its risk premium.

Our model assumes constant risk exposure and risk premia. In the empirical analysis, we thereby

recommend using characteristic-sorted portfolios instead of individual stocks. The main advantage

of using portfolios is that their risk exposures are more stable over time, as discussed at length in the

asset pricing literature. Gagliardini et al. (2016) and Kelly et al. (2017) allow for stock specific and

time-varying betas as well as time-varying risk premia, by modeling these quantities as functions

of characteristics or macro time series. Our framework can be extended to a similar setting, see

a detailed discussion in Giglio and Xiu (2016). In particular, the estimated SDF loadings can be

interpreted as estimates of their time-series averages, if the SDF loadings are time-varying.

Because the link between SDF loadings and risk premia depends on the covariances among

factors, it is useful to write explicitly the projection of gt on ht as

gt = ηht + zt, where Cov(zt, ht) = 0. (5)

Finally, for the estimation of λg, it is essential to characterize the cross-sectional dependence between

Cg and Ch, so we write the cross-sectional projection of Cg onto Ch as:

Cg = ιnξ
⊺ + Chχ

⊺ + Ce, (6)

where ξ is a d× 1 vector, χ is a d× p matrix, and Ce is a n× d matrix of cross-sectional regression

residuals.
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2.2 Challenges with Standard Two-Pass Methods in High-Dimensional Settings

Using two-pass regressions to estimate empirical asset pricing models dates back to Jensen et al.

(1972) and Fama and MacBeth (1973). Partly because of its simplicity, this approach is widely used

in practice. The procedure involves two steps, including one asset-by-asset time-series regression to

estimate individual factor loadings βs, and one cross-sectional regression of expected returns on the

estimated factor loadings to estimate risk premia γ. Because our parameter of interest is λg, the first

step needs to be modified to use covariances between returns and factors rather than multivariate

betas. In a low-dimensional setting, this method would work smoothly, as pointed out by Cochrane

(2009).

However, the empirical asset pricing literature has created hundreds of factors, which can include

useless and redundant factors in addition to useful factors; all the useful ones should be used as

controls in estimating λg and testing for its significance. Over time, the number of potential factors

p discovered in the literature has increased to the same scale as, if not greater than, n or T . In

such a scenario, the standard cross-sectional regression with all factor covariances included is at best

highly inefficient. Moreover, when p is larger than n, the standard Fama-MacBeth approach becomes

infeasible because the number of parameters exceeds the sample size.

Standard methodologies therefore do not work well if at all in a high-dimensional setting due to

the curse of dimensionality, so that dimension-reduction and regularization techniques are inevitable

for valid inference. The existing literature has so far employed ad hoc solutions to this dimensionality

problem. In particular, in testing for the contribution of a new factor, it is common to cherry-pick a

handful of control factors, such as the prominent Fama-French three factors, effectively imposing an

assumption that the selected model is the true one and is not missing any additional factors. However,

this assumption is clearly unrealistic. These standard models have generally poor performance

in explaining a large available cross section of expected returns beyond 25 size- and value-sorted

portfolios, indicating omitted factors are likely to be present in the data. The stake of selecting

an incorrect model is high, because it leads to an omitted variable bias when useful factors are not

included, or an efficiency loss when many useless or redundant factors are included.

2.3 Sparsity

This high-dimensionality issue is not unique to asset pricing. To address it, we need to impose

a certain low-dimensional structure on the model. In this paper, like in much of the recent asset

pricing literature, we impose a sparsity assumption that has a natural economic interpretation and

has recently been studied at length in the machine-learning literature. Imposing sparsity in our

setting means that a relatively small number of factors exist in ht, whose linear combinations along
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with gt nest the SDF mt, and those alone are relevant for the estimation of λg. More specifically,

sparsity in our setting means there are only s non-zero entries in λh, and in each row of η and χ,

where s is small relative to n and T . The sparsity assumption allows us to extract the most influential

factors, while making valid inference on the parameters of interest, without prior knowledge or even

perfect recovery of the useful factors that determine mt.

Does sparsity make sense in asset pricing? In fact, the asset pricing literature has adopted the

concept of sparsity without always explicitly acknowledging it. In addition to the proposed factor

or the factor of interest, almost all empirical asset pricing models include only a handful of control

factors, such as the Fama-French three or five factors, the momentum factor, etc. Such models

provide a parsimonious representation of the cross section of expected returns, hence they typically

outperform models with many factors in out-of-sample settings. This is a form of sparsity where the

few factors allowed to have non-zero SDF loadings are chosen ex ante. Moreover, sparse models are

easier to interpret and to link to economic theories, compared to alternative latent factor models,

which often use the principal components as factors. Last but not least, as advocated in Friedman

et al. (2009), one should “bet on sparsity” since no procedure does well in dense problems. The

notion of sparse versus dense is relative to the sample size, the number of covariates, the signal to

noise ratio, etc. Sparsity does not necessarily mean that the true model should always only involve

a very small number of factors in absolute terms, say 3 or 5. More non-zero coefficients can be

identified given better conditions (e.g., larger sample size).

2.4 LASSO and Model Selection Mistakes

To leverage sparsity, Tibshirani (1996) proposes the so-called LASSO estimator, which incorporates

into the least-squares optimization a penalty function on the L1 norm of parameters, which leads

to an estimator that has many zero coefficients in the parameter vector. The LASSO estimator has

appealing properties in particular for prediction purposes. With respect to parameter estimation,

however, a well-documented bias is associated with the non-zero coefficients of the LASSO estimate

because of the regularization. For these reasons, Belloni and Chernozhukov (2013) and Belloni

et al. (2012) suggest the use of a “Post-LASSO” estimator, which they have shown more desirable

statistical properties. The Post-LASSO estimator runs LASSO as a model selector, and then re-fits

the least-squares problem without penalty, using only variables that have non-zero coefficients in the

first step.

In the asset pricing context, the LASSO and Post-LASSO procedures could theoretically be

used to select the factors in ht with non-zero SDF loadings as controls for gt, therefore accounting

for the possibility that ht contains useless or redundant factors.

Unfortunately, these procedures are not appropriate when we conduct inference, because funda-
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mentally, LASSO and other machine learning methods aim for better prediction. LASSO is designed

to minimize the out-of-sample prediction error. Certain variables, even if they are part of the true

model, may be not worth of including for prediction purpose, because their contribution to predic-

tion is too small relative to the cost of inclusion. In fact, in any finite sample, we can never be sure

LASSO or Post-LASSO will select the correct model, just like we cannot claim the estimated param-

eter values in a given finite sample are equal to their population counterparts. But if the model is

misspecified, that is, if important factors are mistakenly excluded from the control, inference about

the SDF loadings will be affected by an omitted variable bias. Therefore, standard LASSO or Post-

LASSO regressions will generally yield erroneous inference, as we confirm in simulations in Appendix

A.

This omitted variable bias due to model-selection mistakes is exacerbated if risk exposures to

the omitted factors are highly correlated in the cross section with the exposures to gt, even though

these factors may have small SDF loadings (which is why they are likely omitted by LASSO). We

will therefore need to ensure that these factors are included in the set of controls even if LASSO

would suggest excluding them. Note this issue is not unique to high-dimensional problems – see, for

example, Leeb and Pötscher (2005) – but it is arguably more severe in such a scenario because model

selection is inevitable.

2.5 Two-Pass Regression with Double-Selection LASSO

To guard against omitted variable biases due to selection mistakes, we therefore adopt a double-

selection strategy in the same spirit as what Belloni et al. (2014b) propose for estimating the treat-

ment effect. The first selection (basically, standard LASSO) searches for factors in ht whose covari-

ances with returns are useful for explaining the cross section of expected returns. A second selection

(also using LASSO) is then added to search for factors in ht potentially missed from the first step,

but that, if omitted, would induce a large omitted variable bias. Factors excluded from both stages

of the double-selection procedure must have small SDF loadings and have covariances that correlate

only mildly in the cross section with the covariance between factors of interest gt and returns – these

factors can be excluded with minimal omitted variable bias. This strategy results in a parsimonious

model that minimizes the omitted factor bias ex ante when estimating and testing λg.

The regularized two-pass estimation proceeds as follows:

(1) Two-Pass Variable Selection

(1.a) Run a cross-sectional LASSO regression of average returns on sample covariances between
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factors in ht and returns:4

min
γ,λ

{
n−1

∥∥∥r̄ − ιnγ − Ĉhλ
∥∥∥
2

+ τ0n
−1‖λ‖1

}
, (7)

where Ĉh = Ĉov(rt, ht) = T−1R̄H̄⊺.5 This step selects among the factors in ht those

that best explain the cross section of expected returns. Denote {Î1} as the set of indices

corresponding to the selected factors in this step.

(1.b) For each factor j in gt (with j = 1, · · · , d), run a cross-sectional LASSO regression of Ĉg,·,j

(the covariance between returns and the jth factor of gt) on Ĉh (the covariance between

returns and all factors ht):
6

min
ξj ,χj,·

{
n−1

∥∥∥(Ĉg,·,j − ιnξj − Ĉhχ
⊺

j,·)
∥∥∥
2

+ τjn
−1‖χ⊺

j,·‖1

}
. (8)

This step identifies factors whose exposures are highly correlated to the exposures to gt

in the cross-section. This is the crucial second step in the double-selection algorithm,

that searches for factors that may be missed by the first step but that may still induce

large omitted variable bias in the estimation of λg if omitted, due to their covariance

properties. Denote {Î2,j} as the set of indices corresponding to the selected factors in the

jth regression, and Î2 =
⋃d

j=1 Î2,j .

(2) Post-selection Estimation

Run an OLS cross-sectional regression using covariances between the selected factors from both

steps and returns:

(γ̂0, λ̂g, λ̂h) = arg min
γ0,λg ,λh

{∥∥∥r̄ − ιnγ0 − Ĉgλg − Ĉhλh

∥∥∥
2

: λh,j = 0, ∀j /∈ Î = Î1
⋃

Î2

}
. (9)

We refer to this procedure as a double-selection (DS) approach, as opposed to the single-selection

(SS) approach which only involves (1.a) and (2).

The LASSO estimators involve only convex optimizations, so that the implementation is quite

fast. Statistical software such as R, Python, and Matlab have existing packages that implement

LASSO using efficient algorithms. Note that other variable-selection procedures are also applicable.

Either (1.a) or (1.b) can be replaced by other machine-learning methods such as regression tree,

random forest, boosting, and neural network, as shown in Chernozhukov et al. (2016) for treatment-

effect estimation, or by subset selection, partial least squares, and PCA regressions (or with LASSO

4We use ‖A‖ and ‖A‖
1
to denote the operator norm and the L1 norm of a matrix A = (aij), that is,

√

λmax(A⊺A),

maxj

∑

i
|aij |, where λmax(·) denotes the largest eigenvalue of a matrix.

5For any matrix A = (a1 : a2 : . . . aT ), we write ā = T−1
∑T

t=1
at, Ā = A− ι

⊺

T ā.
6For any matrix A, we use Ai,· and A·,j to denote the ith row and jth column of A, respectively.
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selection on top of PCs similar to Kozak et al. (2017)). They call this general procedure double

machine learning. We advocate LASSO because the underlying asset pricing model is linear, the

selected model is more interpretable, and its theoretical properties are more tractable.

It is useful to relate our approach to the recent model selection method by Harvey and Liu

(2016). Their model selection procedure is an algorithm that resembles the forward stepwise re-

gression in Friedman et al. (2009) (a so-called “greedy” algorithm). Their algorithm evaluates the

contribution of each factor relative to a pre-selected best model through model comparison, and

builds up the best model sequentially. Just like LASSO cannot deliver the true model with certainty,

this algorithm cannot do so either, because it makes commitments to certain variables too early

which prevent the algorithm from finding the best overall solution later. Specifically, if one of the

factors in the pre-selected model is redundant relative to the factor under consideration (i.e., the

latter factor is in the DGP and the former one is a noisy version of it), the latter factor could either

be added or discarded depending on how noisy the former factor is. Neither scenario, however, yields

a model that is closer to the truth. In any case, if this algorithm were preferred to LASSO for any

reasons, we could easily substitute it in place of LASSO and still obtain correct inference, because

the double machine learning procedure explicitly accounts for model selection mistakes.

Our LASSO regression contains nonnegative regularization parameters, for example, τj (j =

0, 1, . . . , d), to control the level of penalty. A higher τj indicates a greater penalty and hence results

in a smaller model. The optimization becomes a least-squares problem if τj is 0. In practice, we

typically test one factor each time, so that this procedure involves two regularization parameters τ0

and τ1. To determine these parameters, we adopt the widely used cross-validation (CV) procedure,

see Friedman et al. (2009).

We can also give different weights to λh. Belloni et al. (2012) recommend a data-driven method

for choosing a penalty that allows for non-Gaussian and heteroskedastic disturbances. We adopt a

strategy in the spirit of Bryzgalova (2015), which assigns weights to λh proportional to the inverse

of the operator norm of the univariate betas of the corresponding factor in ht. This strategy helps

remove spurious factors in ht because of a higher penalty assigned on those factors with smaller

univariate betas.

2.6 Statistical Inference

We derive the asymptotic distribution of the estimator for λg under a jointly large n and T asymptotic

design. Whereas d is fixed throughout, s and p can either be fixed or increasing. In the appendix,

we prove the following theorem:

Theorem 1. Under Assumptions B.1 - B.6 in Appendix B.2, if s2T 1/2(n−1 + T−1) log(n∨ p∨ T ) =
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o(1), we have

T 1/2(λ̂g − λg)
L

−→ Nd (0,Π) ,

where the asymptotic variance is given by

Π = lim
T→∞

1

T

T∑

t=1

T∑

s=1

E
(
(1− λ⊺vt)(1− λ⊺vs)Σ

−1
z ztz

⊺

sΣ
−1
z

)
, Σz = Var(zt).

Note the asymptotic distribution of λ̂g does not rely on covariances (Cg, Ch) or factor loadings

(βg, βh) of gt and ht, because they appear in strictly higher-order terms, which further facilitates our

inference. The next theorem provides a Newey-West-type estimator of the asymptotic variance Π.

Theorem 2. Suppose the same assumptions as in Theorem 1 hold. In addition, Assumption B.7

holds. If qs3/2(T−1/2 + n−1/2) ‖V ‖MAX ‖Z‖MAX = op(1),
7 we have

Π̂
p

−→ Π,

where λ̂ = (λ̂g : λ̂h) is given by (9), and

Π̂ =
1

T

T∑

t=1

(1− λ̂⊺vt)
2Σ̂−1

z ẑtẑ
⊺

t Σ̂
−1
z

+
1

T

q∑

k=1

T∑

t=k+1

(
1−

k

q + 1

)(
(1− λ̂⊺vt)(1− λ̂⊺vt−k)Σ̂

−1
z

(
ẑtẑ

⊺

t−k + ẑt−kẑ
⊺

t

)
Σ̂−1
z

)
,

Σ̂z =
1

T

T∑

t=1

ẑtẑ
⊺

t , ẑt = gt − η̃
Ĩ
ht, η̃

Ĩ
= argmin

η

{
‖G− ηH‖2 : η·,j = 0, j /∈ Ĩ

}
,

and Ĩ is the union of selected variables using a LASSO regression of each factor in gt on ht:

min
ηj

{
T−1 ‖Gj,· − ηjH‖2 + τ̄jT

−1‖ηj‖1
}
, j = 1, 2, . . . , d. (10)

We stress that the inference procedure is valid even with imperfect model selection. That is,

the selected models from (7) and (8) may omit certain useful factors and include redundant ones,

which nonetheless has a negligible effect on the inference of λg. Using analysis similar to Belloni

et al. (2014b), the results can be strengthened to hold uniformly over a sequence of data-generating

processes that may vary with the sample size and only under approximately sparse conditions, so

that our inference is valid without relying on perfect recovery of the correct model in finite sample.

We provide in Appendix A an extensive set of simulations that show the finite-sample perfor-

mance of our estimator.

7We use ‖A‖
MAX

to denote the L∞-norm of A in the vector space.
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3 Empirical Analysis

3.1 Data

3.1.1 The Zoo of Factors

Our factor library contains 150 risk factors at the monthly frequency for the period from July 1976

to December 2017, obtained from multiple sources. First, we download all workhorse factors in the

U.S. equity market from Ken French’s data library. Then we add several published factors directly

from the authors’ websites, including liquidity from Pástor and Stambaugh (2003a), the q-factors

from Hou et al. (2015), and the intermediary asset pricing factors from He et al. (2016). We also

include factors from the AQR data library, such as Betting-Against-Beta, HML Devil, and Quality-

Minus-Junk. In addition to these 15 publicly available factors, we follow Fama and French (1993)

to construct 135 long-short value-weighted portfolios as factor proxies, using firm characteristics

surveyed in Hou et al. (2017) and Green et al. (2016).

To construct these factors, we include only stocks for companies listed on the NYSE, AMEX, or

NASDAQ that have a CRSP share code of 10 or 11. Moreover, we exclude financial firms and firms

with negative book equity. For each characteristic, we sort stocks using NYSE breakpoints based on

their previous year-end values, then build and rebalance a long-short value-weighted portfolio (top

30% - bottom 30% or 1-0 dummy difference) every June for a 12-month holding period. Both Fama

and French (2008) and Hou et al. (2017) have discussed the importance of using NYSE breakpoints

and value-weighted portfolios. Microcaps, i.e., stocks with market equity smaller than the 20th

percentile, have the largest cross-sectional dispersion in most anomalies, while accounting for only

3% of the total market equity. Equal-weighted returns overweight microcaps, despite their small

economic importance.

In Table 4 we report a complete list of the 150 factors and various descriptive statistics (pub-

lication years, the ending years of their sample used in the papers, monthly average returns, and

annualized Sharpe ratios), as well as the references.

3.1.2 Test Portfolios

We conduct our empirical analysis on a large set of standard portfolios of U.S. equities. We target U.S.

equities because of their better data quality and because they are available for a long period; however,

our methodology could be applied to any set of countries or asset classes. We focus on portfolios

rather than individual assets because characteristic-sorted portfolios have more stable betas, higher

signal-to-noise ratios, and they are less prone to missing data issues, despite the existence of a bias-

variance trade-off between the choice of portfolios and individual assets. Selecting few portfolios
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based on sorts of a handful characteristics is likely to tilt the results in favor of these factors, see

Harvey and Liu (2016). There might also be a loss in efficiency in using too few portfolios, e.g.,

Litzenberger and Ramaswamy (1979). In line with the suggestion of Lewellen et al. (2010), we base

our analysis on a large cross section of characteristic-sorted portfolios, which helps strike a balance

between having many individual stocks or a handful of portfolios.

We use a total of 750 portfolios as test assets. We start from a set of 36 portfolios: 3×2 portfolios

sorted by size and book-to-market ratio, 3 × 2 portfolios sorted by size and operating profitability,

3× 2 portfolios sorted by size and investment, 3× 2 portfolios sorted by size and short-term reversal

on prior (1-1) return, 3× 2 portfolios sorted by size and momentum on prior (2-12) return, and 3× 2

portfolios sorted by size and long-term reversal on prior (13-60) return. This set of test assets – all

available from Kenneth French’s website – captures a vast cross-section of anomalies and exposures

to different factors.8

We add to these 36 portfolios 714 additional ones obtained from our factor zoo, that cover

additional characteristics. In particular, we try to include all sets of 3×2 bivariate-sorted portfolios

from continuous factors in our factor zoo. These are the same sorting portfolios that are used to

construct the long-short factors. For each firm characteristic, the bivariate-sorted 3×2 portfolios are

constructed by intersecting its three groups with those formed on size (market equity). Notice that

the number of stocks in each 3×2 group can be unbalanced in the bivariate intersection. We only

include the resulting portfolios if each of the 6 groups contains a sufficient number of stocks (at least

10). This procedure gives us 119 sets of 3× 2 bivariate-sorted portfolios, yielding 714 portfolios.9

As a robustness check, we alternatively use in our analysis the set of 202 portfolios used in Giglio

and Xiu (2016): 25 portfolios sorted by size and book-to-market ratio, 17 industry portfolios, 25

portfolios sorted by operating profitability and investment, 25 portfolios sorted by size and variance,

35 portfolios sorted by size and net issuance, 25 portfolios sorted by size and accruals, 25 portfolios

sorted by size and momentum, and 25 portfolios sorted by size and beta.

For a second robustness check, we use 1,825 5×5 bivariate-sorted portfolios instead of the 750

3×2 portfolios. We start from a standard set of 175 portfolios: 25 portfolios sorted by size and book-

to-market ratio, 25 portfolios sorted by size and beta, 25 portfolios sorted by size and operating

8See the description of all portfolio construction on Kenneth French’s website: http://mba.tuck.dartmouth.edu/

pages/faculty/ken.french/data_library.html.
9There are 16 factors for which bivariate-sorted portfolios are not available. 8 of 16 are dummy or categorical

characteristics, including New equity issue(28), Dividend initiation (29), Dividend omission (30), Number of earnings

increases(45), Financial statements score (47), Financial statement Performance (90), Sin Stocks (122), and Convertible

Debt Indicator (150). The remaining 8 of 16 have certain portfolios with less than 10 firms or have missing values:

Industry-Adjusted Size (51), Dollar trading volume (53), Illiquidity (61), R&D increase (68), Corporate investment

(69), Change in Short-term Investments (87), Return on net operating assets (116), and Return on assets (127).
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profitability, 25 portfolios sorted by size and investment, 25 portfolios sorted by size and short-term

reversal on prior (1-1) return, 25 portfolios sorted by size and momentum on prior (2-12) return,

and 25 portfolios sorted by size and long-term reversal on prior (13-60) return. We then add 1,650

additional ones. The sorting procedure is same as that for the 3×2 portfolios, except that the stock

universe is divided into five groups for each characteristic.

3.2 Evaluating New Factors

In this section we apply our methodology to factors that have been proposed in the last five years

(2012-2016), drawing the benchmark model against which to evaluate them from the set of 135 factors

that were proposed before then.10 By placing ourselves in the position of researchers evaluating “new”

factors (as of 2012), we exemplify in this section how our procedure can be applied going forward

as more factors are proposed. Note that we have no ex-ante reason to expect the results to go in

either direction. On the one hand, given that the set of potential control factors is already extremely

large, one might think that new factors are unlikely to contribute much to pricing the cross section

of returns. On the other hand, we expect new research to potentially uncover better factors over

time, yielding factors that improve over the existing ones.

3.2.1 The First LASSO

We start with the first step of our procedure: the cross-sectional LASSO, closely related to the

dimension-reduction methods that recent papers in asset pricing have been using to tackle the factor

zoo (e.g., Kozak et al. (2017)): the objective of this first LASSO is to select a parsimonious model

that explains the cross-section of risk premia.

The advantage of applying model-selection methods like LASSO to a large set of factors is

that they estimate a low-dimensional representation of the entire SDF. Here, we present and discuss

the model selected from ht by LASSO, since it is the first step in our procedure; but we also show

empirically its fragility in selecting the model.

When we apply it in our context, LASSO indeed selects a relatively small model of the SDF, with

four factors: SMB (21), Net external finance (99), Change in shares outstanding (109), and Profit

margin (117). As discussed above, this first LASSO step corresponds closely to the way model-

selection methods have been applied in the asset pricing literature to estimate a low-dimensional

model for the SDF.

The main drawback of statistical model-selection methods is that in any finite sample they are

likely to make mistakes in selecting the factors, thus yielding the wrong model. It is useful to quantify

10The most recent factors in our library were introduced in 2016.
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the issue in our context, by showing empirically that LASSO is not able to robustly pin down the

identity of the factors in the model.

To evaluate the robustness of the LASSO selection, we explore how it depends on the LASSO

tuning parameter. Recall that, like other dimension-reduction methods, the LASSO estimator de-

pends on a tuning parameter – the penalty parameter τ0. This parameter is not pinned down by

theory, and must be selected by the researcher to trade off the fit and sparsity of the model. Differ-

ent choices of τ0 result in different models selected by the estimator; the estimator is robust if the

conclusions (in this case: which factors get selected) do not change substantially as τ0 varies.

A key question in this robustness exercise is to determine what is a reasonable range of values

for τ0 to consider. Of course, the estimator cannot be expected to be robust to the entire possible

range of τ0, since setting τ0 = 0 always selects all factors, and τ0 = ∞ selects no factors at all. We

propose here a procedure to select an ex-ante reasonable range of values τ0 to evaluate the robustness

of LASSO.

The starting point for our procedure is that in standard applications of machine learning,

tuning parameters are typically chosen by simulating the performance of the algorithm in the data,

and choosing values for the parameter for which the estimator performs the best in those simulations.

We use 10-fold cross-validation (CV) to pin down the two tuning parameters of the two LASSO steps

in our estimator. But these simulations are not deterministic: for example, in the case of 10-fold

CV, we divide the whole sample period into 10 disjoint and random subsamples. This means that

different sets of simulations will generally yield different values of the tuning parameters.

We therefore run the tuning-parameter-selection procedure multiple times, and explore the

robustness of the results across different sets of simulations. In the case of the first-stage LASSO,

we run 200 different 10-fold cross-validation exercises (by using 200 different randomization seeds).

For each seed, the CV will choose a different value of the tuning parameter τ0. We then look at

robustness of the selected model using these 200 different values for τ0. Therefore the range of

possible values for τ0 to consider in studying the robustness of LASSO is determined by the possible

(random) outcomes of the CV selection. This will effectively exclude values of τ0 that are unlikely

to be optimal using the CV criterion.

Figure 1 shows, for each factor (identified by its ID), in what fraction of the 200 LASSO-selected

models each factor appears. The figure shows striking variability in the model selection step. Only

SMB among 135 factors is actually selected more than 70% of the time. Instead, most of the factors

are selected in 1% to 20% of the cases, but not in the others.

If LASSO were able to perfectly select the true model, we should have found a small number of

factors (say, 3 to 5) to be selected 100% of the time, and the remaining factors to be selected 0% of
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the time. Instead, Figure 1 shows that LASSO clearly has difficulty in pinning down which factors

are the correct ones. This exercise cautions against using simple LASSO to decide whether a factor

should be included in the SDF or not.

3.2.2 The Second LASSO

To make proper inference on the marginal contribution of new factors gt, our procedure adds a second

LASSO step aimed at identifying the factors most likely to cause an omitted variable bias. Whereas

the first LASSO only depends on ht, this second LASSO depends on both gt and ht. This means

that for every factor proposed after 2012, there will be a different set of factors selected in the second

step. For reasons of space, we do not report all the factors for each gt here.

That said, it is useful to compare the average number of factors selected at the two stages. As

reported above, the first LASSO selects in our sample a very parsimonious model, with 4 factors.

The second-stage LASSO, instead, tends to select between 20 and 80 control factors. The striking

difference is due to the difference in the objective function for the two LASSO steps. The first step

aims to explain the cross-section of expected returns; for this purpose, the CV exercise selects a very

parsimonious model (i.e. a high τ0, indicating that a few factors go a long way in explaining the

cross-section of returns). Instead, the second LASSO has the objective of selecting factors that have

a high potential for omitted variable bias. Given that many factors in the control set ht are highly

correlated, this LASSO will retain many of those.

The number of factors selected by the first-stage LASSO can be interpreted as a measure of the

dimensionality of the underlying asset pricing model, at least as long as the “oracle property” holds.

There is, nonetheless, no theoretical relation between the number of factors selected in the second

stage and the number of true asset pricing factors in the model. Any factor that could potentially

bias the estimate of λg should be retained by the second LASSO, even redundant factors.

The fact that more factors are selected in the second stage is also consistent with the substantial

randomness we observe in the first stage selection. Many factors are close cousins. Including a subset

of them is more than enough, yet which subset to include depends on the subsamples. For this reason,

we expect substantial uncertainty in the first stage selection, as well as a large omitted variable bias

if only the first stage variables were used as controls.

3.2.3 The Double-selection (DS) Estimator

We now present our results about the marginal contribution of each factor gt using the DS method-

ology. Table 1 reports the results for the factors proposed in the last five years, among which we

find Quality-Minus-Junk (QMJ), Betting-Against-Beta (BAB), two investment factors, that is, CMA

from Fama and French (2015) (thereafter, FF) and IA from Hou et al. (2015) (thereafter, HXZ),
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two profitability factors, that is, RMW from FF and ROE from HXZ, the nontradable intermediary

capital factor from He et al. (2016), and several factors constructed on accounting measures.

The table contains five columns of results, each reporting the point estimate of the SDF loading

and the corresponding t-statistic. More specifically, the point estimate corresponds to the estimated

slope of the cross-sectional regression of returns on (univariate) betas for each factor, using different

methodologies to select the control factors: it represents the estimated average excess return in basis

points per month of a portfolio with unit univariate beta with respect to that factor. This number,

which we refer to as λs, is equal to the SDF loading λg but scaled to correspond to a unit beta

exposure for ease of interpretation. A positive estimate for the SDF loading indicates that high

values of the factor capture states of low marginal utility (good states of the world). We adjust the

sign of each factor a priori, based on the economic theory, intuition, or story in the original paper

that proposes this factor, so that a positive estimate should be viewed as being consistent with the

economic implication. The t-statistic in each column corresponds to the test of the hypothesis that

the slope is equal to zero, constructed using different methodologies across columns.

The first column reports our main result – the estimates of SDF loadings for the factors in-

troduced since 2012, with corresponding t-statistics, obtained with our DS procedure. Most of the

new factors appear statistically insignificant – our test therefore deems them redundant or useless

relative to the factors introduced up to 2011. However, we still find a few important factors useful

in explaining the cross section, as their estimates are significantly different from zero: in particular,

profitability is strongly significant (this is true both of the version of HXZ and that of FF). HXZ’s

investment factor is also significant, as are the intermediary investment and QMJ (interestingly,

Gagliardini et al. (2017) also find empirical evidence in favor of the recently introduced factors, like

investment and profitability, using a different econometric strategy.) All other factors appear statis-

tically insignificant. These results show that our DS method can discriminate between useful and

redundant factors even when the set of controls contains hundreds of factors.

The second set of results reports the estimates that one would obtain using the naive SS method-

ology – that is, simply using one cross-sectional LASSO to select the factors to use as controls, without

the second selection step that is useful to avoid the omitted variable bias due to mistakes in model

selection. The results are quite different from the DS approach, with only one factor, the convertible

debt factor, appearing significant (with a negative sign); none of the other factors that appear sig-

nificant with the DS method do so when using SS. Given our discussion in the previous sections, it

should not be surprising that results obtained using the SS method differ from those obtained using

the DS method: our theoretical results and simulations show that the SS method is biased in finite

samples. This table shows that these biases play a major role empirically.

The third column shows instead what the estimates for the various factors would be if one
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simply used the Fama-French three factors (Market, SMB, HML) as controls, rather than selecting

the controls optimally among the myriad of potential factors. The results differ noticeably from the

benchmark with double selection. 9 out of 15 factors are significant against the Fama-French three

factor model. Of course, if the true SDF was known ex ante, selecting all and only the true factors

as controls would lead to the most efficient estimate for λg. In practice, however, it is unlikely that

we can pin down the entire SDF with certainty. The aim of our DS procedure is precisely to select

the controls statistically – avoiding arbitrary choices of control factors – while at the same time

minimizing the potential omitted variable bias.

The fourth column shows one more alternative way to compute SDF loadings: using standard

OLS estimation including in the cross-sectional regression all the hundreds of potential controls. This

panel therefore shows what happens if no selection is applied at all on the factors. As discussed in the

previous sections, this approach is unbiased but inefficient. We expect therefore (and confirm in the

table) that the results appear much more noisy and the estimates less significant than when operating

variable selection through our DS method. This result highlights the importance of machine learning

methods when sorting through the myriad of existing factors.

The last column of the table shows the average excess return of the factors, that is, their risk

premia. This number represents the compensation investors obtain from bearing exposure to that

factor, holding exposures to all other risk factors constant. As discussed, for example, in Cochrane

(2009), the risk premium of a factor does not correspond to its ability to price other assets. Using

the risk premium to assess the importance of a factor in a pricing model would be misleading. For

example, consider two factors that are both equally exposed to the same underlying risk, plus some

noise. Both factors will command an identical risk premium. Yet those factors are not both useful

to price other assets—regardless of their level of statistical significance. The most promising way to

reduce the proliferation of factors is not to look at their risk premium (no matter how significant it is),

but to evaluate whether they add any pricing information to the existing factors. Our paper proposes

a way to make this feasible even in a context of high dimensionality, when the set of potential control

factors is large. We come back to this point in the next section.11

To sum up, Table 1 shows that which factors are chosen as controls, and which econometric

procedure is used for estimation, make a large difference for the conclusions about the SDF loadings

and the usefulness of factors. Both the theoretical analysis and the simulations provided in this paper

suggest that the DS method allows researchers to make full use of the information in the existing

zoo of factors without introducing biases while accounting for efficiency losses.

11It is interesting to note that about half of these factors do not have a significant risk premium, while they typically

did in the original publications. This is partly due to the different sample period used here, and partly because we use

a unified sorting methodology in this paper, rather than the heterogeneous methods used in the original papers. This

result is consistent with the findings of Hou et al. (2017).
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3.3 Evaluating Factors Recursively

One of the motivations for using our methodology is that it can help distinguish useful from useless

and redundant factors as they are introduced in the literature. Over time, this should help limit the

proliferation of factors, and retain only those new factors that actually contain novel information to

price the cross section.

To illustrate this point, in each year starting in 1994 we consider the factors introduced during

that year, and use our DS procedure to test whether they are useful or redundant relative to factors

existing up to then. Note that the exercise is fully recursive, using only information available up to

time t when evaluating a factor introduced at time t, both in choosing the set of potential controls

ht and in constructing the test portfolios (which are therefore sorted on characteristics introduced

in the literature up to time t).

Table 2 reports the results. In the table, the factors introduced since 1994 are identified by

their ID; the table underlines the ones that appear to be statistically significant according to our

test, relative to the factors introduced before them. The table also reports the number of test assets

used in each year and the number of control factors in ht.

The results show that had our DS test been applied year by year starting in 1994, only 17 factors

would have been considered useful, and a large majority would have been identified as redundant or

useless.

It is useful to think about this exercise in light of the recent literature (e.g., McLean and Pontiff

(2016), Harvey et al. (2015)) that has highlighted and tried to address the existence of a multitude

of seemingly significant anomalies. The literature has proposed a variety of approaches, including

adopting a stricter requirement for significance (such as using a threshold for the t-statistic of 3).

Although the overarching theme is to tame the factor zoo, the perspectives are rather different. The

aforementioned papers emphasize the bias of data-snooping or raise the concern of multiple testing,

whereas our focus is on omitted controls. All these problems could contribute to the proliferation of

factors.

Our approach differs from the proposals in the existing literature in four substantial ways. First,

and most important, we explicitly address the problem of omitted variable bias due to potential model

selection mistakes when making inference about factors’ contribution to asset prices. Second, our

method directly takes into account the correlation among factors, rather than considering factors

individually and using Bonferroni-type bounds to assess their joint significance. We provide a sta-

tistical test of a factor’s contribution with desirable asymptotic properties, as demonstrated in the

previous sections, and do not rely on simulation or bootstrap methods whose statistical properties in

this context are unknown. Third, our method is specifically designed to handle hundreds of factors as
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controls, exploiting model-selection econometric advances to reduce the dimensionality of the factor

set. Fourth, the criterion we employ for selecting factors is based on the SDF loading, not the risk

premium of the factors (see a more detailed discussion on their differences in Section 3.2), as it is

the right quantity to evaluate the contribution of a factor to explaining asset prices.

The various approaches that have been proposed in the literature so far address complementary

issues to be overcome on the path to disciplining the zoo of factor. We leave for future research

refinements of these methods that can potentially combine insights from our work and other recent

papers.

Finally, it is useful to remark that this recursive exercise is simply meant as an illustration of

possible applications of our method. We do not deal here with some of the potential issues that

arise in ordering factors by their discovery date, such as the fact that the publication year might

not capture precisely when researchers and investors first learn about the factor.12 However, our

methodology is quite general, and does not require ht and gt to be ordered temporally at all. For

example, ht might contain all factors obtained from equity markets, and gt could contain factors

from option markets, in which case our test could be interpreted as evaluating whether option-based

factors help explain the cross section beyond what is explained by equity factors. We leave these

other applications to future research.

3.4 Robustness

In this section we explore the robustness of our estimator, and discuss some extensions of our setup.

The most important robustness test – presented first – is with respect to the tuning parameters,

especially since we have shown in Section 3.2.1 that the first step of our procedure (the LASSO

model selection) is not very robust to these changes.

3.4.1 Robustness to the Choice of Tuning Parameters

We explore in this section how robust our conclusions are to changes in the tuning parameters. Recall

that each dimension-reduction step via LASSO depends on one tuning parameter. Our DS procedure

uses LASSO in two separate steps, so two tuning parameters are needed. In this section, we focus on

our benchmark estimates in Table 1, and check the robustness of our inference about the marginal

contribution of the factors proposed after 2012.

Just as in Section 3.2.1, we need to decide on a reasonable range of values for the two tuning

12One alternative ordering that we have explored, and that is included in the internet appendix, uses the last year in

each paper’s sample rather than the publication year as an alternative – though still imperfect – measure of the year

in which the factor was discovered. Results are similar – 9 out of 12 factors significant in Table A1 are also significant

in Table 2 – though of course the results are by construction not invariant to the ordering of factors.
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parameters. We follow the procedure described before: we choose 200 different seeds for the CV

simulations; for every set of simulations, we obtain one estimate for the two tuning parameters. We

then look at how each λg’s t-statistic varies across choices of the tuning parameters. As before, this

procedure ensures that we only consider values for the tuning parameters that are reasonable, in the

specific sense that they are optimal given one set of CV simulations. Therefore, we exclude from the

robustness analysis values of the parameters that do not maximize the cross-validation criterion for

any of the 200 simulations.

We report the results of this robustness analysis in Figure 2 using heatmaps. Each panel

corresponds to a different factor gt. Different colors correspond to different levels of the t-statistics.

The two axes correspond to values for the two tuning parameters (in logs).

Each panel reports 200 black dots, corresponding to a choice of tuning parameters in one of

the CV simulation sets. The red cross in each graph is the average of these 200 tuning parameters,

and that is the level we use to generate the baseline results (Table 1). The figure shows that

inference for some factors is more robust than for others. The factors that appear significant in

the baseline appear generally robust, in the sense that the vast majority of choices for the tuning

parameters yield statistically significant results. Some of them (investment and profitability) appear

very robust. Others, like the intermediary investment factor, do not appear very robust, in the sense

that for a nontrivial subset of the tuning parameters considered, its significance vanishes. Other

factors appear strong and robust, though not statistically significant at standard levels in our main

results (for example, the Betting Against Beta factor). Finally, most other factors (like Growth in

Advertising Expense and Fama and French’s CMA) appear insignificant in the baseline, and robustly

so across the range of tuning parameters. These results confirm the main conclusions of our baseline

analysis, showing that a few of the recent factors appear to contribute significantly to explaining

the cross-section, and most of the remaining ones are redundant or useless; at the same time, they

provide a more nuanced view of the contribution of some of the factors.

Figure 3 shows the size of the selected model (the union of the factors selected at both steps of

our DS procedure) as a function of the two tuning parameters. The figure shows that our 200 tuning

parameters span a large subset of the parameter space: they induce the two-step selection procedure

to select models as small as 0 - 5 factors and as large as 120 factors. The range of tuning parameters

we consider therefore represents a statistically and economically meaningful set of possible choices.

Overall, Figures 2 and 3 are useful to refine the conclusions of our statistical analysis in Table

1, highlighting the most robust factors. We therefore recommend the use of heat maps like these to

evaluate the robustness of the significant discoveries by model selection procedures like ours.
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3.4.2 Robustness to Test Assets and Regularization Method

In this section we further explore the robustness of our results, with respect to the test assets used for

the estimation and the machine learning methodology used to select the control factors. As before,

we focus our robustness tests on the evaluation of recent factors (Table 1).

Column (1) of Table 3 reports our baseline results for convenience (as in the first column of

Table 1). Column (2) shows that the results are similar when sorting the test assets in 5× 5 instead

of 3 × 2 portfolios. In Column (3), we show consistent results when using a smaller number of test

assets, the 202 portfolios used in Giglio and Xiu (2016) and described in section 3.1.2.

Columns (4) and (5) show that our results also hold when using different dimension-reduction

procedures. Which method is preferred in each context depends on the underlying model assump-

tions, and given the assumptions we make, LASSO would be the most suitable model-selection

method. However, Elastic Net is a reasonable alternative to explore in this context: it combines a

penalty from LASSO with that of the Ridge regression. The model selected by the Elastic Net is

naturally larger, but, as column (4) in the table shows, the results are consistent with our benchmark

based on pure LASSO. An alternative, following Kozak et al. (2017), is to first construct PCA of

the factors, and then use LASSO on those. The results are reported in column (5). The results are

statistically weaker but broadly in line with those of the benchmark specification.13

Overall, while across the different robustness tests the significance of some factors varies, the

main conclusions of Table 1 appear quite robust to these changes in specification. That is, several

of the factors introduced recently have significant additional pricing power relative to all factors

introduced in the literature before 2012.

4 Conclusion

In this paper we propose a regularized two-pass cross-sectional regression approach to establish the

contribution to asset pricing of a factor gt relative to a set of control factors ht, where the potential

control set can have high dimensionality and include useless or redundant factors. Our procedure

uses recent model-selection econometric techniques (specifically the double-selection procedure of

Belloni et al. (2014b)) to systematically select the best control model out of the large set of factors,

while explicitly taking into account model selection mistakes.

We apply this methodology to a large set of factors that the literature has proposed in the last

13We should remark that the standard errors and the test we built are derived exactly for the case of LASSO. In

light of Chernozhukov et al. (2016), we expect the same formulae to work for other machine learning methods, such as

LASSO on PCs, despite the lack of theory (they do perform well in simulations). Nonetheless, it is interesting to see

that the conclusions are broadly similar.
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30 years. We uncover several interesting empirical findings. First, several newly proposed factors

(especially different versions of profitability) are useful in explaining asset prices, even after account-

ing for the large set of existing factors proposed up to 2012. Second, the SDF loadings’ estimates

for several factors (and the evaluation of the usefulness of those factors) are robust to changes in

the tuning parameters, despite the fact that the models selected vary substantially when the tuning

parameters are changed. This demonstrates how the two-step procedure is able to produce correct

inference overcoming the model selection mistakes that necessarily arise when applying statistical

selection methods. Third, applying our test recursively over time would have deemed only a small

number of factors proposed in the literature significant. Lastly, we demonstrate how our results differ

starkly from the conclusions one would obtain simply by using the risk premia of the factors or the

standard Fama-French three factor model as control (as opposed to the model selection procedure

we advocate).

Taken together, our results are quite encouraging about the continuing progress of asset pricing

research, and suggest that studying the marginal contribution of new factors relative to the vast set

of existing ones is a conservative and productive way to screen new factors and, going forward, bring

discipline to the “zoo of factors.”
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Lamont, O., Polk, C., and Saaá-Requejo, J. (2001). Financial constraints and stock returns. The review of

financial studies, 14(2):529–554.

Leeb, H. and Pötscher, B. M. (2005). Model selection and inference: Facts and fiction. Econometric Theory,

21(01):21–59.

Lerman, A., Livnat, J., and Mendenhall, R. R. (2008). The high-volume return premium and post-earnings

announcement drift. Technical report, Yale University.

Lettau, M. and Ludvigson, S. (2001). Resurrecting the (c) capm: A cross-sectional test when risk premia are

time-varying. Journal of Political Economy, 109(6):1238–1287.

Lev, B. and Nissim, D. (2004). Taxable income, future earnings, and equity values. The Accounting Review,

79(4):1039–1074.

Lewellen, J., Nagel, S., and Shanken, J. (2010). A skeptical appraisal of asset pricing tests. Journal of

Financial economics, 96(2):175–194.

Litzenberger, R. H. and Ramaswamy, K. (1979). The effects of personal taxes and dividends on capital asset

prices: Theory and empirical evidence. Journal of Financial Economics, 7:163–195.

Liu, W. (2006). A liquidity-augmented capital asset pricing model. Journal of Financial Economics, 82(3):631–

671.

Lo, A. W. and MacKinlay, A. C. (1990). Data-snooping biases in tests of financial asset pricing models. Review

of financial studies, 3(3):431–467.

Lou, D. (2014). Attracting investor attention through advertising. The Review of Financial Studies,

27(6):1797–1829.

Loughran, T. and Ritter, J. R. (1995). The new issues puzzle. The Journal of finance, 50(1):23–51.

Loughran, T. and Wellman, J. W. (2011). New evidence on the relation between the enterprise multiple and

average stock returns. Journal of Financial and Quantitative Analysis, 46(6):1629–1650.

Lyandres, E., Sun, L., and Zhang, L. (2008). The new issues puzzle: Testing the investment-based explanation.

The Review of Financial Studies, 21(6):2825–2855.

McLean, R. D. and Pontiff, J. (2016). Does academic research destroy stock return predictability? The

Journal of Finance, 71(1):5–32.

Meinshausen, N. and Yu, B. (2009). Lasso-type recovery of sparse representations for high-dimensional data.

The Annals of Statistics, 37(1):246–270.

Michaely, R., Thaler, R. H., and Womack, K. L. (1995). Price reactions to dividend initiations and omissions:

Overreaction or drift? The Journal of Finance, 50(2):573–608.

32



Miller, M. H. and Scholes, M. S. (1982). Dividends and taxes: Some empirical evidence. Journal of Political

Economy, 90(6):1118–1141.

Mohanram, P. S. (2005). Separating winners from losers among lowbook-to-market stocks using financial

statement analysis. Review of Accounting Studies, 10(2-3):133–170.

Moskowitz, T. J. and Grinblatt, M. (1999). Do industries explain momentum? The Journal of Finance,

54(4):1249–1290.

Novy-Marx, R. (2011). Logical implications of gasb’s methodology for valuing pension liabilities. Technical

report, National Bureau of Economic Research.

Novy-Marx, R. (2013). The other side of value: The gross profitability premium. Journal of Financial

Economics, 108(1):1–28.

Ortiz-Molina, H. and Phillips, G. M. (2014). Real asset illiquidity and the cost of capital. Journal of Financial

and Quantitative Analysis, 49(1):1–32.

Ou, J. A. and Penman, S. H. (1989). Financial statement analysis and the prediction of stock returns. Journal

of Accounting and Economics, 11(4):295–329.

Palazzo, B. (2012). Cash holdings, risk, and expected returns. Journal of Financial Economics, 104(1):162–

185.
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Table 1: Testing for Factors Introduced in 2012-2016

(1) (2) (3) (4) (5)

DS SS FF3 No Selection Avg. Ret.

λs tstat λs tstat λs tstat λs tstat avg.ret. tstat

id Factor Description (bp) (DS) (bp) (SS) (bp) (OLS) (bp) (OLS) (bp)

136 Cash holdings -34 -0.42 15 0.17 10 0.54 -18 -0.16 13 0.98

137 HML Devil 54 1.04 -13 -0.25 -100 -2.46** 68 0.84 23 1.46

138 Gross profitability 20 0.48 3 0.06 23 2.00** 13 0.26 15 1.45

139 Organizational Capital 28 0.92 -1 -0.03 20 1.91* 16 0.41 21 2.05**

140 Betting Against Beta 35 1.45 38 1.50 36 2.25** 49 1.49 91 5.98***

141 Quality Minus Junk 73 2.03** 4 0.11 39 3.10*** 50 1.04 43 3.87***

142 Employee growth 43 1.36 -4 -0.12 -12 -0.89 18 0.37 8 0.83

143 Growth in advertising -12 -1.18 0 0.03 12 1.32 -2 -0.13 7 0.84

144 Book Asset Liquidity 40 1.07 5 0.12 20 1.59 20 0.42 9 0.79

145 RMW 160 4.45*** 15 0.41 20 1.80* 74 1.48 34 3.21***

146 CMA 38 1.10 0 0.01 3 0.28 7 0.14 26 3.02***

147 HXZ IA 51 2.11** 5 0.21 21 1.94* 40 1.08 34 4.17***

148 HXZ ROE 77 3.37*** 23 0.83 33 2.92*** 104 2.87*** 57 4.99***

149 Intermediary Risk Factor 112 2.21** 60 1.19 4 0.08 22 0.32

150 Convertible debt -15 -1.36 -39 -3.22*** 26 3.32*** 17 1.01 11 1.70*

Note. The table reports tests for the contribution of factors introduced in 2012-2016 relative to the set of 135 potential

control factors introduced up to 2011. The test assets include 750 3×2 bivariate sorted portfolios published up to 2016.

Sample period is from July 1976 to December 2017. For columns (1) - (4), we show the estimate of the SDF loading

scaled to correspond to a unit beta exposure for ease of interpretation, λs, and the t-statistic. The first column uses the

double-selection (DS) method, our benchmark. The tuning parameters chosen are the average of selections by 10-fold

cross-validation using 200 random seeds. The second column uses the single-selection (SS) method that only controls

for the first stage model. The third column uses the Fama-French three factors as controls. The fourth column uses all

factors as controls, without using dimension-reduction techniques, with simple OLS. The last column reports the risk

premium of each tradable factor.
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Table 2: Testing Factors Recursively by Year of Publication

(1) (2) (3)

Year # Assets # Controls New factors (IDs)

1994 138 25 26 27

1995 150 27 28 29 30

1996 150 30 31 32 33

1997 168 33 34

1998 174 34 35 36 37 38 39 40 41 42 43 44

1999 228 44 45 46

2000 234 46 47 48 49 50 51

2001 252 51 52 53 54 55 56 57 58

2002 294 58 59 60 61

2003 312 61 62 63 64 65 66

2004 336 66 67 68 69 70 71 72 73 74

2005 372 74 75 76 77 78 79 80 81 82 83 84 85 86

87 88 89 90

2006 456 90 91 92 93 94 95 96 97 98 99 100 101 102

2007 516 102 103 104 105 106 107 108

2008 552 108 109 110 111 112 113 114 115 116 117 118 119 120

2009 618 120 121 122 123 124

2010 636 124 125 126 127 128 129

2011 666 129 130 131 132 133 134 135

2012 702 135 136

2013 708 136 137 138 139

2014 720 139 140 141 142 143 144

2015 738 144 145 146 147 148

2016 750 148 149 150

Note. The table reports the results of a recursive factor-testing exercise, from 1994 to 2016. We test the factors using

data available up to the publication year of each paper. For each year t, column (1) reports the number of test assets

available for the test at that point in time, sorted on characteristics published up to then. Column (2) reports the

number of controls available in each year t, i.e. the number of potential controls in ht based on factors published up to

then. Column (3) shows for each year the IDs of the factors that were published with data up to that year. We then

test whether each new factor contributes to explaining asset prices relative to the factors published in previous years,

using only the data up to the publication year t. We underline the IDs in column (3) every time the factor appears

significant and robust based on our double-selection test. The tuning parameters chosen are the average of selections

by 10-fold cross-validation using 200 random seeds.
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Table 3: Robustness for Factors Introduced in 2012-2016

(1) (2) (3) (4) (5)

Bivariate 3× 2 Bivariate 5× 5 202 Portfolios Elastic Net PCA

λs tstat λs tstat λs tstat λs tstat λs tstat

id Factor Description (bp) (DS) (bp) (DS) (bp) (DS) (bp) (DS) (bp) (DS)

136 Cash holdings -34 -0.42 34 0.40 131 0.89 -13 -0.14 -65 -0.62

137 HML Devil 54 1.04 15 0.29 56 0.57 62 1.23 -27 -0.51

138 Gross profitability 20 0.48 28 0.66 88 1.42 -11 -0.26 16 0.35

139 Organizational Capital 28 0.92 23 0.75 6 0.16 12 0.38 21 0.57

140 Betting Against Beta 35 1.45 43 1.94* 31 1.03 28 1.12 59 2.56***

141 Quality Minus Junk 73 2.03** 58 1.67 123 2.45** 74 2.13** 71 1.89*

142 Employee growth 43 1.36 12 0.34 54 1.34 51 1.49 -4 -0.09

143 Growth in advertising -12 -1.18 6 0.57 17 1.30 9 0.74 -6 -0.57

144 Book Asset Liquidity 40 1.07 -24 -0.61 37 0.77 26 0.68 24 0.63

145 RMW 160 4.45*** 104 3.13*** 112 1.98** 125 3.43*** 88 2.11**

146 CMA 38 1.10 19 0.59 33 0.52 32 0.85 18 0.44

147 HXZ IA 51 2.11** 44 1.87* -45 -1.42 69 2.77*** 36 1.31

148 HXZ ROE 77 3.37*** 72 2.62*** 116 2.22*** 103 3.85*** 41 1.46

149 Intermediary Risk Factor 112 2.21** 38 0.73 -16 -0.33 -16 -0.33 103 1.92*

150 Convertible debt -15 -1.36 -6 -0.56 68 5.13*** -12 -1.08 -9 -0.88

Note. The table reports robustness tests for the estimates of SDF loadings for factors introduced in 2012-2016 relative

to the set of 135 factors introduced up to 2011. The first column shows the same results as in the first column of

Table 1 for convenience. The second column shows the results using bivariate-sorted 5×5 portfolios, and the third

column uses 202 downloaded portfolios. In the forth column, we use Elastic Net selection for control factors using

the double-selection method. In the last column, we use the principal components of factors as controls using the

double-selection method. The tuning parameters chosen are the average of selections by 10-fold cross-validation using

200 random seeds.
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Table 4: Factor Zoo

ID Description Year.pub Year.end Avg.Ret. Annual S.R. Reference

1 Excess Market Return 1972 1965 0.64% 50.6% Jensen et al. (1972)

2 Market Beta 1973 1968 -0.08% -5.4% Fama and MacBeth (1973)

3 Earnings to price 1977 1971 0.28% 29.7% Basu (1977)

4 Dividend to price 1979 1977 0.01% 0.6% Litzenberger and Ramaswamy (1979)

5 Unexpected quarterly earnings 1982 1980 0.12% 26.3% Rendleman et al. (1982)

6 Share price 1982 1978 0.02% 2.2% Miller and Scholes (1982)

7 Long-Term Reversal 1985 1982 0.34% 36.3% Bondt and Thaler (1985)

8 Leverage 1988 1981 0.21% 24.3% Bhandari (1988)

9 Cash flow to debt 1989 1984 -0.09% -17.0% Ou and Penman (1989)

10 Current ratio 1989 1984 0.06% 7.7% Ou and Penman (1989)

11 % change in current ratio 1989 1984 0.00% 0.5% Ou and Penman (1989)

12 % change in quick ratio 1989 1984 -0.04% -11.9% Ou and Penman (1989)

13 % change sales-to-inventory 1989 1984 0.17% 46.2% Ou and Penman (1989)

14 Quick ratio 1989 1984 -0.02% -2.9% Ou and Penman (1989)

15 Sales to cash 1989 1984 0.01% 1.5% Ou and Penman (1989)

16 Sales to inventory 1989 1984 0.09% 16.1% Ou and Penman (1989)

17 Sales to receivables 1989 1984 0.14% 22.8% Ou and Penman (1989)

18 Bid-ask spread 1989 1979 -0.04% -3.3% Amihud and Mendelson (1989)

19 Depreciation / PP&E 1992 1988 0.11% 12.1% Holthausen and Larcker (1992)

20 % change in depreciation 1992 1988 0.08% 23.1% Holthausen and Larcker (1992)

21 Small Minus Big 1993 1991 0.21% 24.5% Fama and French (1993)

22 High Minus Low 1993 1991 0.28% 34.3% Fama and French (1993)

23 Short-Term Reversal 1993 1989 0.15% 21.7% Jegadeesh and Titman (1993)

24 6-month momentum 1993 1989 0.21% 27.8% Jegadeesh and Titman (1993)

25 36-month momentum 1993 1989 0.09% 13.4% Jegadeesh and Titman (1993)

26 Sales growth 1994 1990 0.04% 5.8% Lakonishok et al. (1994)

27 Cash flow-to-price 1994 1990 0.31% 32.5% Lakonishok et al. (1994)

28 New equity issue 1995 1990 0.10% 8.7% Loughran and Ritter (1995)

29 Dividend initiation 1995 1988 -0.03% -3.4% Michaely et al. (1995)

30 Dividend omission 1995 1988 -0.18% -18.0% Michaely et al. (1995)

Note. The factor zoo contains 150 tradable factors for monthly data from July 1976 to December 2017. In addition

to these publicly available factors, we follow Fama and French (1993) to construct value-weighted portfolios as factors

using firm characteristics collected in Green et al. (2016) and Hou et al. (2017). In the table, we have listed the factor

publication year, the end year of the test sample in the original paper, the monthly average return, the annualized

Sharpe ratios, and the paper references.

38



ID Description Year.pub Year.end Avg.Ret. Annual S.R. Reference

31 Working capital accruals 1996 1991 0.22% 46.0% Sloan (1996)

32 Sales to price 1996 1991 0.35% 41.8% Barbee Jr et al. (1996)

33 Capital turnover 1996 1993 -0.11% -16.6% Haugen and Baker (1996)

34 Momentum 1997 1993 0.63% 50.2% Carhart (1997)

35 Share turnover 1998 1991 -0.02% -2.1% Datar et al. (1998)

36 % change in gross margin - % change in sales 1998 1988 -0.05% -12.4% Abarbanell and Bushee (1998)

37 % change in sales - % change in inventory 1998 1988 0.14% 42.1% Abarbanell and Bushee (1998)

38 % change in sales - % change in A/R 1998 1988 0.14% 43.5% Abarbanell and Bushee (1998)

39 % change in sales - % change in SG&A 1998 1988 0.09% 19.6% Abarbanell and Bushee (1998)

40 Effective Tax Rate 1998 1988 -0.04% -9.1% Abarbanell and Bushee (1998)

41 Labor Force Efficiency 1998 1988 -0.03% -8.5% Abarbanell and Bushee (1998)

42 Ohlson’s O-score 1998 1995 0.05% 9.3% Dichev (1998)

43 Altman’s Z-score 1998 1995 0.20% 22.1% Dichev (1998)

44 Industry adjusted % change in capital expenditures 1998 1988 0.10% 20.5% Abarbanell and Bushee (1998)

45 Number of earnings increases 1999 1992 0.01% 2.8% Barth et al. (1999)

46 Industry momentum 1999 1995 0.01% 1.4% Moskowitz and Grinblatt (1999)

47 Financial statements score 2000 1996 0.08% 18.4% Piotroski (2000)

48 Industry-adjusted book to market 2000 1998 0.22% 38.0% Asness et al. (2000)

49 Industry-adjusted cash flow to price ratio 2000 1998 0.26% 52.1% Asness et al. (2000)

50 Industry-adjusted change in employees 2000 1998 -0.01% -1.5% Asness et al. (2000)

51 Industry-adjusted size 2000 1998 0.36% 36.3% Asness et al. (2000)

52 Dollar trading volume 2001 1995 0.38% 35.8% Chordia et al. (2001)

53 Volatility of liquidity (dollar trading volume) 2001 1995 0.20% 38.8% Chordia et al. (2001)

54 Volatility of liquidity (share turnover) 2001 1995 0.02% 2.1% Chordia et al. (2001)

55 Advertising Expense-to-market 2001 1995 -0.13% -15.6% Chan et al. (2001)

56 R&D Expense-to-market 2001 1995 0.34% 36.2% Chan et al. (2001)

57 R&D-to-sales 2001 1995 0.06% 5.5% Chan et al. (2001)

58 Kaplan-Zingales Index 2001 1997 0.22% 25.3% Lamont et al. (2001)

59 Change in inventory 2002 1997 0.18% 40.7% Thomas and Zhang (2002)

60 Change in tax expense 2002 1997 0.09% 18.0% Thomas and Zhang (2002)

61 Illiquidity 2002 1997 0.34% 28.6% Amihud (2002)

62 Liquidity 2003 2000 0.38% 38.6% Pástor and Stambaugh (2003b)

63 Idiosyncratic return volatility 2003 1997 0.07% 5.1% Ali et al. (2003)

64 Growth in long term net operating assets 2003 1993 0.22% 51.8% Fairfield et al. (2003)

65 Order backlog 2003 1999 0.05% 5.7% Rajgopal et al. (2003)

66 Changes in Long-term Net Operating Assets 2003 1993 0.24% 56.0% Fairfield et al. (2003)

67 Cash flow to price ratio 2004 1997 0.27% 31.7% Desai et al. (2004)

68 R&D increase 2004 2001 0.06% 11.1% Eberhart et al. (2004)

69 Corporate investment 2004 1995 0.13% 36.4% Titman et al. (2004)

70 Earnings volatility 2004 2001 0.10% 10.7% Francis et al. (2004)
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ID Description Year.pub Year.end Avg.Ret. Annual S.R. Reference

71 Abnormal Corporate Investment 2004 1995 0.13% 31.2% Titman et al. (2004)

72 Net Operating Assets 2004 2002 0.31% 66.6% Hirshleifer et al. (2004)

73 Changes in Net Operating Assets 2004 2002 0.14% 41.6% Hirshleifer et al. (2004)

74 Tax income to book income 2004 2000 0.14% 28.3% Lev and Nissim (2004)

75 Price delay 2005 2001 0.07% 16.8% Hou and Moskowitz (2005)

76 # Years since first Compustat coverage 2005 2001 0.01% 1.1% Jiang et al. (2005)

77 Growth in common shareholder equity 2005 2001 0.15% 27.6% Richardson et al. (2005)

78 Growth in long-term debt 2005 2001 0.06% 13.3% Richardson et al. (2005)

79 Change in Current Operating Assets 2005 2001 0.19% 34.6% Richardson et al. (2005)

80 Change in Current Operating Liabilities 2005 2001 0.03% 6.3% Richardson et al. (2005)

81 Changes in Net Non-cash Working Capital 2005 2001 0.11% 25.2% Richardson et al. (2005)

82 Change in Non-current Operating Assets 2005 2001 0.21% 44.5% Richardson et al. (2005)

83 Change in Non-current Operating Liabilities 2005 2001 0.04% 9.6% Richardson et al. (2005)

84 Change in Net Non-current Operating Assets 2005 2001 0.23% 35.4% Richardson et al. (2005)

85 Change in Net Financial Assets 2005 2001 0.23% 59.0% Richardson et al. (2005)

86 Total accruals 2005 2001 0.19% 44.8% Richardson et al. (2005)

87 Change in Short- term Investments 2005 2001 -0.03% -8.3% Richardson et al. (2005)

88 Change in Financial Liabilities 2005 2001 0.18% 56.1% Richardson et al. (2005)

89 Change in Book Equity 2005 2001 0.17% 30.0% Richardson et al. (2005)

90 Financial statements performance 2005 2001 0.17% 37.1% Mohanram (2005)

91 Change in 6-month momentum 2006 2006 0.21% 29.8% Gettleman and Marks (2006)

92 Growth in capital expenditures 2006 1999 0.14% 30.4% Anderson and Garcia-Feijoo (2006)

93 Return volatility 2006 2000 -0.02% -1.7% Ang et al. (2006)

94 Zero trading days 2006 2003 -0.05% -4.4% Liu (2006)

95 Three-year Investment Growth 2006 1999 0.11% 23.6% Anderson and Garcia-Feijoo (2006)

96 Composite Equity Issuance 2006 2003 -0.01% -2.2% Daniel and Titman (2006)

97 Net equity finance 2006 2000 0.08% 9.7% Bradshaw et al. (2006)

98 Net debt finance 2006 2000 0.17% 48.3% Bradshaw et al. (2006)

99 Net external finance 2006 2000 0.22% 38.6% Bradshaw et al. (2006)

100 Revenue Surprises 2006 2003 0.05% 9.0% Jegadeesh and Livnat (2006)

101 Industry Concentration 2006 2001 0.03% 3.8% Hou and Robinson (2006)

102 Whited-Wu Index 2006 2001 -0.02% -2.6% Whited and Wu (2006)

103 Return on invested capital 2007 2005 0.18% 29.3% Brown and Rowe (2007)

104 Debt capacity/firm tangibility 2007 2000 0.05% 7.1% Almeida and Campello (2007)

105 Payout yield 2007 2003 0.16% 17.5% Boudoukh et al. (2007)

106 Net payout yield 2007 2003 0.16% 17.2% Boudoukh et al. (2007)

107 Net debt-to-price 2007 1950 0.02% 2.5% Penman et al. (2007)

108 Enterprise book-to-price 2007 2001 0.14% 14.7% Penman et al. (2007)

109 Change in shares outstanding 2008 1969 0.24% 36.1% Pontiff and Woodgate (2008)

110 Abnormal earnings announcement volume 2008 2006 -0.08% -17.0% Lerman et al. (2008)
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ID Description Year.pub Year.end Avg.Ret. Annual S.R. Reference

111 Earnings announcement return 2008 2004 0.02% 6.8% Brandt et al. (2008)

112 Seasonality 2008 2002 0.16% 17.3% Heston and Sadka (2008)

113 Changes in PPE and Inventory-to-assets 2008 2005 0.19% 42.0% Lyandres et al. (2008)

114 Investment Growth 2008 2003 0.17% 39.5% Xing (2008)

115 Composite Debt Issuance 2008 2005 0.08% 21.6% Lyandres et al. (2008)

116 Return on net operating assets 2008 2002 0.09% 8.6% Soliman (2008)

117 Profit margin 2008 2002 0.02% 4.4% Soliman (2008)

118 Asset turnover 2008 2002 0.06% 6.7% Soliman (2008)

119 Industry-adjusted change in asset turnover 2008 2002 0.14% 41.1% Soliman (2008)

120 Industry-adjusted change in profit margin 2008 2002 -0.01% -3.2% Soliman (2008)

121 Cash productivity 2009 2009 0.27% 37.6% Chandrashekar and Rao (2009)

122 Sin stocks 2009 2006 0.44% 41.6% Hong and Kacperczyk (2009)

123 Revenue surprise 2009 2005 0.12% 19.3% Kama (2009)

124 Cash flow volatility 2009 2008 0.20% 26.6% Huang (2009)

125 Absolute accruals 2010 2008 -0.05% -8.6% Bandyopadhyay et al. (2010)

126 Capital expenditures and inventory 2010 2006 0.19% 42.8% Chen and Zhang (2010)

127 Return on assets 2010 2005 -0.09% -13.9% Balakrishnan et al. (2010)

128 Accrual volatility 2010 2008 0.19% 26.6% Bandyopadhyay et al. (2010)

129 Industry-adjusted Real Estate Ratio 2010 2005 0.11% 17.3% Tuzel (2010)

130 Percent accruals 2011 2008 0.16% 35.0% Hafzalla et al. (2011)

131 Maximum daily return 2011 2005 0.00% -0.3% Bali et al. (2011)

132 Operating Leverage 2011 2008 0.20% 32.8% Novy-Marx (2011)

133 Inventory Growth 2011 2009 0.13% 30.1% Belo and Lin (2011)

134 Percent Operating Accruals 2011 2008 0.15% 28.9% Hafzalla et al. (2011)

135 Enterprise multiple 2011 2009 0.11% 17.6% Loughran and Wellman (2011)

136 Cash holdings 2012 2009 0.13% 15.3% Palazzo (2012)

137 HML Devil 2013 2011 0.23% 22.6% Asness and Frazzini (2013)

138 Gross profitability 2013 2010 0.15% 22.5% Novy-Marx (2013)

139 Organizational Capital 2013 2008 0.21% 31.9% Eisfeldt and Papanikolaou (2013)

140 Betting Against Beta 2014 2012 0.91% 92.8% Frazzini and Pedersen (2014)

141 Quality Minus Junk 2014 2012 0.43% 60.1% Asness et al. (2014)

142 Employee growth rate 2014 2010 0.08% 12.9% Belo et al. (2014)

143 Growth in advertising expense 2014 2010 0.07% 13.0% Lou (2014)

144 Book Asset Liquidity 2014 2006 0.09% 12.3% Ortiz-Molina and Phillips (2014)

145 Robust Minus Weak 2015 2013 0.34% 49.8% Fama and French (2015)

146 Conservative Minus Aggressive 2015 2013 0.26% 46.8% Fama and French (2015)

147 HXZ Investment 2015 2012 0.34% 64.7% Hou et al. (2015)

148 HXZ Profitability 2015 2012 0.57% 77.5% Hou et al. (2015)

149 Intermediary Investment 2016 2012 He et al. (2017)

150 Convertible debt indicator 2016 2012 0.11% 26.4% Valta (2016)
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Figure 1: Subsamples: Factor 1st Selection Rate

Note. The figure reports the control factor selection rates for the tests of Table 1 (i.e., the factors selected by the first

LASSO step of the double-selection procedure by cross-validation), across 200 random seeds shown in the heat maps

(corresponding to the 200 black dots). The figure shows, for each factor identified by the factor ID (on the X axis), in

what fraction of the 200 random seeds each factor is selected by cross-validation.
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Figure 2: Factors Introduced in 2012-2016: Robustness to Tuning Parameters (t-statistics)

Note. The figures provide heat maps for double-selection tests of factors introduced in 2012-2016, as in the first column

of Table 1, using a wide range of tuning parameters, for the first LASSO stage on the X axis and for the second stage

on the Y axis. The t-statistics for each factor in different models are shown on the heat maps. The dots are the results

of 200 time-series cross-validation estimations of the tuning parameter. The red “×” is the average of the 200 black

dots, which corresponds to the model used in Table 1.
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Figure 3: Factors Introduced in 2012-2016: Robustness to Tuning Parameters (# selected controls)

Note. The figures provide heat maps for double-selection tests of factors introduced in 2012-2016, as in the first column

of Table 1, using a wide range of tuning parameters, for the first LASSO stage on the X axis and for the second stage

on the Y axis. The numbers of controls selected for each factor are shown in the heat maps. The dots are the results

for 200 time-series cross-validation estimations of the tuning parameter. The red “×” is the average of the 200 black

dots, which corresponds to the model used in Table 1.

44


	main_91
	Introduction
	Methodology
	Model Setup
	Challenges with Standard Two-Pass Methods in High-Dimensional Settings
	Sparsity
	LASSO and Model Selection Mistakes
	Two-Pass Regression with Double-Selection LASSO
	Statistical Inference

	Empirical Analysis
	Data
	The Zoo of Factors
	Test Portfolios

	Evaluating New Factors
	The First LASSO
	The Second LASSO
	The Double-selection (DS) Estimator

	Evaluating Factors Recursively
	Robustness
	Robustness to the Choice of Tuning Parameters
	Robustness to Test Assets and Regularization Method


	Conclusion


