
Taming Undefined Behavior in LLVM

Juneyoung Lee
Yoonseung Kim
Youngju Song
Chung-Kil Hur

Seoul National University, Korea
{juneyoung.lee, yoonseung.kim,

youngju.song, gil.hur}@sf.snu.ac.kr

Sanjoy Das
Azul Systems, USA
sanjoy@azul.com

David Majnemer
Google, USA

majnemer@google.com

John Regehr
University of Utah, USA

regehr@cs.utah.edu

Nuno P. Lopes
Microsoft Research, UK
nlopes@microsoft.com

Abstract
A central concern for an optimizing compiler is the design of
its intermediate representation (IR) for code. The IR should
make it easy to perform transformations, and should also
afford efficient and precise static analysis.

In this paper we study an aspect of IR design that has re-
ceived little attention: the role of undefined behavior. The IR
for every optimizing compiler we have looked at, including
GCC, LLVM, Intel’s, and Microsoft’s, supports one or more
forms of undefined behavior (UB), not only to reflect the
semantics of UB-heavy programming languages such as C
and C++, but also to model inherently unsafe low-level oper-
ations such as memory stores and to avoid over-constraining
IR semantics to the point that desirable transformations be-
come illegal. The current semantics of LLVM’s IR fails to
justify some cases of loop unswitching, global value number-
ing, and other important “textbook” optimizations, causing
long-standing bugs.

We present solutions to the problems we have identified
in LLVM’s IR and show that most optimizations currently in
LLVM remain sound, and that some desirable new transfor-
mations become permissible. Our solutions do not degrade
compile time or performance of generated code.

CCS Concepts •Theory of computation → Semantics
and reasoning; •Software and its engineering → Com-
pilers; Semantics

Keywords compilers, undefined behavior, intermediate rep-
resentations

c© 2017 ACM.

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive
Version of Record was published in PLDI ’17, June 19-24, 2017, Barcelona, Spain.

DOI: http://dx.doi.org/10.1145/3062341.3062343

1. Introduction
Some programming languages, intermediate representations,
and hardware platforms define a set of erroneous operations
that are untrapped and that may cause the system to behave
badly. These operations, called undefined behaviors, are the
result of design choices that can simplify the implementation
of a platform, whether it is implemented in hardware or soft-
ware. The burden of avoiding these behaviors is then placed
upon the platform’s users. Because undefined behaviors are
untrapped, they are insidious: the unpredictable behavior that
they trigger often only shows itself much later.

The AVR32 processor architecture document [2, p. 51]
provides an example of hardware-level undefined behavior:

If the region has a size of 8 KB, the 13 lowest bits in
the start address must be 0. Failing to do so will result
in UNDEFINED behaviour.

The hardware developers have no obligation to detect or
handle this condition. ARM and x86 processors (and, indeed,
most CPUs that we know of) also have undefined behaviors.

At the programming language level, Scheme R6RS [24,
p. 54] mentions that “The effect of passing an inappropri-
ate number of values to such a continuation is undefined.”
However, the best-known examples of undefined behaviors
in programming languages come from C and C++, which
have hundreds of them, ranging from simple local operations
(overflowing signed integer arithmetic) to global program
behaviors (race conditions and violations of type-based alias-
ing rules). Undefined behaviors facilitate optimizations by
permitting a compiler to assume that programs will only exe-
cute defined operations, and they also support error checking,
since a conforming compiler implementation can cause the
program to abort with a diagnostic when an undefined opera-
tion is executed.

Some intermediate representations (IRs), such as Java
bytecode, have been designed to minimize or eliminate
undefined behaviors. On the other hand, compilers often
support one or more forms of undefined behavior in their

IR: all of LLVM, GCC, the Intel C/C++ compiler, and the
Microsoft Visual C++ compiler do. At this level, undefined
behavior must walk a very thin line: the semantics of the IR
have to be tight enough that source-level programs can be
efficiently compiled to IR, while also being weak enough to
allow desirable IR-level optimizations to be performed and
to facilitate efficient mapping onto target instruction sets.

Undefined behavior (UB) in LLVM falls into two cate-
gories. First, “immediate UB” for serious errors, such as
dividing by zero or dereferencing an invalid pointer, that have
consequences such as a processor trap or RAM corruption.
Second, “deferred UB” for operations that produce unpre-
dictable values but are otherwise safe to execute. Deferred
UB is necessary to support speculative execution, such as
hoisting potentially undefined operations out of loops. De-
ferred UB in LLVM comes in two forms: an undef value
that models a register with indeterminate value, and poison,
a slightly more powerful form of UB that taints the dataflow
graph and triggers immediate UB if it reaches a side-effecting
operation.

The presence of two kinds of deferred UB, and in particu-
lar the interaction between them, has often been considered
to be unsatisfying, and has been a persistent source of discus-
sions and bugs. LLVM has long contained optimizations that
are inconsistent with the documented semantics and that are
inconsistent with each other. The LLVM community has dealt
with these issues by usually fixing a problem when it can be
demonstrated to lead to an end-to-end miscompilation: an
optimizer malfunction that leads to the wrong machine code
being emitted for some legal source program. The underlying,
long-standing problems—and, indeed, a few opportunities
for end-to-end miscompilations—remain unsolved.

To prevent miscompilation, to permit rigorous reasoning
about LLVM IR, and to support formal-methods-based tools
such as superoptimizers, translation validators, and program
verifiers, we have attempted to redefine the UB-related parts
of LLVM’s semantics in such a way that:

• Compiler developers can understand and work with the
semantics.
• Long-standing optimization bugs can be fixed.
• Few optimizations currently in LLVM need to be removed.
• Compilation time and execution time of generated code

are largely unaffected.
• The LLVM code base can be migrated to the new se-

mantics in a series of modest stages that cause very little
breakage.

This paper describes and evaluates our ongoing efforts.

2. Undefined Behavior in the IR
Undefined-behavior-related compiler optimizations are often
thought of as black magic, even by compiler developers. In

this section we introduce IR-level undefined behavior and
show examples where it enables useful optimizations.

2.1 Undefined Behavior 6= Unsafe Programming
Despite the very poor example set by C and C++, there is no
inherent connection between undefined behavior (UB) and
unsafe programming. Rather, UB simply reflects a refusal
to systematically trap program errors at one particular level
of the system: the responsibility for avoiding these errors
is delegated to a higher level of abstraction. For example,
of course, many safe programming languages have been
compiled to machine code, the unsafety of which in no way
compromises the high-level guarantees made by the language
implementation. Swift and Rust are compiled to LLVM IR;
some of their safety guarantees are enforced by dynamic
checks in the emitted code, other guarantees are made through
type checking and have no representation at the LLVM level.
Even C can be used safely if some tool in the development
environment ensures—either statically or dynamically—that
it will not execute UB.

The essence of undefined behavior is the freedom to avoid
a forced coupling between error checks and unsafe operations.
The checks, once decoupled, can be optimized, for example
by being hoisted out of loops or eliminated outright. The
remaining unsafe operations can be—in a well-designed IR—
mapped onto basic processor operations with little or no
overhead. As a concrete example, consider this Swift code:

func add(a : Int, b : Int)->Int {
return (a & 0xffff) + (b & 0xffff)

}

Although a Swift implementation must trap on integer over-
flow, the compiler observes that overflow is impossible and
emits this LLVM IR:

define i64 @add(i64 %a, i64 %b) {
%0 = and i64 %a, 65535
%1 = and i64 %b, 65535
%2 = add nuw nsw i64 %0, %1
ret i64 %2

}

Not only has the checked addition operation been lowered
to an unchecked one, but in addition the add instruction has
been marked with LLVM’s nsw and nuw attributes, indicating
that both signed and unsigned overflow are undefined. In
isolation these attributes provide no benefit, but they may
enable additional optimizations after this function is inlined.
When the Swift benchmark suite1 is compiled to LLVM,
about one in eight addition instructions has an attribute
indicating that integer overflow is undefined.

In this particular example the nsw and nuw attributes are
redundant since an optimization pass could re-derive the fact
that the add cannot overflow. However, in general these at-
tributes and others like them add real value by avoiding the

1 https://swift.org/blog/swift-benchmark-suite/

for (int i = 0; i < n; ++i) {
a[i] = x + 1;

}

init:

br %head

head:
%i = phi [0, %init], [%i1, %body]
%c = icmp slt %i, %n
br %c, %body, %exit

body:
%x1 = add nsw %x, 1
%ptr = getelementptr %a, %i
store %x1, %ptr
%i1 = add nsw %i, 1
br %head

Figure 1. C code and its corresponding LLVM IR. We want
to hoist the invariant addition out of the loop. The nsw
attribute means the add is undefined for signed overflow.

need for potentially expensive static analyses to rediscover
known program facts. Also, some facts cannot be rediscov-
ered later, even in principle, since information is lost at some
compilation steps.

2.2 Enabling Speculative Execution
The C code in Figure 1 executes undefined behavior if x is
INT_MAX and n > 0, because in this case the signed addition
x + 1 overflows. A straightforward translation of the C code
into LLVM IR, also shown in Figure 1, has the same domain
of definedness as the original code: the nsw modifier to the
add instruction indicates that it is defined only when signed
overflow does not occur.

We would like to optimize the loop by hoisting the in-
variant expression x + 1. If integer overflow triggered im-
mediate undefined behavior, this transformation would be
illegal because it makes the domain of definedness smaller:
the code would execute UB when x was INT_MAX, even if
n was zero. LLVM works around this problem by adding
the concept of deferred undefined behavior: the undefined
addition is allowed, but the resulting value cannot be relied
upon. It is easy to see that after hoisting the add, the code
remains safe in the n = 0 case, because x1 is not used. While
deferred UB is useful, it is not appropriate in all situations.
For example, division by zero can trigger a processor trap
and an out-of-bounds store can corrupt RAM. These opera-
tions, and a few others in LLVM IR, are immediate undefined
behaviors and programs must not execute them.

2.3 Undefined Value
We need a semantics for deferred undefined behavior. A
reasonable choice is to specify that an undefined value
represents any value of the given type. A number of compiler
IRs support this abstraction; in LLVM it is called undef.2

Undef is useful because it lets the compiler avoid materi-
alizing an arbitrary constant in situations—such as the one
shown in Figure 2—where the exact value does not matter. In
this example, assume that cond2 implies cond in some non-
trivial way such that the compiler cannot see it. Thus, there
is no need to initialize variable x at its point of declaration
since it is only passed to g after being assigned a value from
f’s return value. If the IR lacked an undef value, the compiler
would have to use an arbitrary constant, perhaps zero, to ini-
tialize x on the branch that skips the first if statement. This,
however, increases the code size by one instruction and two
bytes on x86 and x86-64. Little optimizations like this can
add up across a large program.

LLVM uses undef in a few other situations. First, to rep-
resent the values of padding in structures, arrays, and bit
fields. Second, operations such as shifting a 32-bit value by
33 places evaluate to undef. LLVM’s shift operators result in
deferred UB for shift-past-bitwidth because different proces-
sors produce different results for this condition; mandating
any particular behavior would require some platforms to in-
troduce potentially expensive code.

2.4 Beyond Undef
In C and C++, we can assume that the expressions a + b > a
and b > 0 always yield the same value because signed over-
flow is undefined (assuming a and b are of a signed type like
int). If the original expression is translated to this LLVM
IR:

%add = add %a, %b
%cmp = icmp sgt %add, %a

the optimization to:

%cmp = icmp sgt %b, 0

becomes illegal since the add instruction wraps around on
overflow. Moreover, this problem cannot be fixed by defining
a version of add that returns undef when there is a signed
integer overflow.

To see the inadequacy of undef, let a = INT_MAX and
b = 1. The addition overflows and the expression simplifies
to undef > INT_MAX, which is always false since there is no
value of integer type that is larger than INT_MAX. However,
the desired optimized expression, b > 0, simplifies to 1 > 0,
which is true. Thus, the optimization is illegal: it would
change the semantics of the program.

To justify this transformation, LLVM has a second kind of
deferred undefined behavior, the poison value. The original
expression is compiled to this code instead:

2 http://nondot.org/sabre/LLVMNotes/UndefinedValue.txt

int x;
if (cond)

x = f();

if (cond2)
g(x);

(a)

entry:
br %cond, %ctrue, %cont

ctrue:
%xf = call @f()
br %cont

cont:
%x = phi [%xf, %ctrue], [undef, %entry]
br %cond2, %c2true, %exit

c2true:
call @g(%x)

(b)

; test cond
testb %dil, %dil
je ctrue
; return value goes in %eax
callq f

ctrue:
; test cond2
testb %bl, %bl
je exit
; whatever is in %eax
; gets passed to g()
movl %eax, %edi
callq g

(c)

Figure 2. If cond2 implies cond, the C code in (a) does not perform UB by accessing x before it is assigned a value. (b) is
Clang’s translation into LLVM IR and (c) is the eventual x86-64.

for (int i = 0; i <= n; ++i) {
a[i] = 42;

}

entry:
br %head

head:
%i = phi [0, %entry], [%i1, %body]
%c = icmp sle %i, %n
br %c, %body, %exit

body:
%iext = sext %i to i64
%ptr = getelementptr %a, %iext
store 42, %ptr
%i1 = add nsw %i, 1
br %head

Figure 3. C code and corresponding LLVM IR on x86-64.
We want to eliminate the sext instruction in the loop body.

%add = add nsw %a, %b
%cmp = icmp sgt %add, %a

The nsw (no signed wrap) attribute on the add instruction
indicates that it returns a poison value on signed overflow.
Poison values, unlike undef, are not restricted to being a value
of a given type. Most instructions including icmp return
poison if any of their inputs is poison. Thus, poison is a
stronger form of UB than undef. In the previous example with
nsw, the result of the comparison becomes poison whenever
the addition overflows and thus the optimization is justified.

Figure 3 shows another example motivating the poison
value. The getelementptr instruction (GEP for short) per-

forms pointer arithmetic. The GEP there is computing a+i∗4,
assuming that a is an array of 4-byte integers.

The sign-extend operation sext in the loop body handles
the mismatch in bitwidth between the 32-bit induction vari-
able and the 64-bit pointer size. It is the low-level equivalent
of casting an int to long in C. Therefore, the GEP in the pro-
gram is actually computing a+ sext(i) ∗ 4. We would like
to optimize away the sext instruction since sign extension,
unlike zero extension, is usually not free at runtime.

If we convert the loop induction variable i into long we
can remove the sign extension within the loop body (at the
expense of adding a sign extend of n to the entry basic
block). This transformation improves performance by up to
39%, depending on the microarchitecture, since we save one
instruction per iteration (cltq — sign extend eax into rax).

The transformation is only valid if pointer arithmetic
overflow is undefined. If it is defined to wrap around, the
transformation is not semantics-preserving, since a sequence
of values of a signed 32-bit counter is different from a signed
64-bit counter’s. Therefore, we would be changing the set of
stored locations in case of overflow.

For a compiler to perform the aforementioned transfor-
mation, it needs to prove that either the induction variable
does not overflow, or if it does it is a signed operation and
therefore it does not matter. As we have seen before, signed
integer overflow cannot be immediate UB since that would
prevent hoisting math out of loops. If signed integer overflow
returns undef, the resulting semantics are too weak to jus-
tify the desired optimization: on overflow we would obtain
sext(undef) for %iext, which has all the most-significant
bits equal to either zero or one. Therefore, the maximum
value %i1 could take would be INT_MAX and thus the com-
parison at %c would always be true if %n = INT_MAX. On the
other hand, the comparison with 64-bit integers would return
false instead.

If overflow is defined to return poison, an induction
variable overflow would result in %iext = sext(poison),
which is equal to poison, which would make the comparison
at %c equal to poison as well. Therefore, this semantics
justifies induction variable widening.

3. Inconsistencies in LLVM
In this section we present several examples of problems with
the current LLVM IR semantics.

3.1 Duplicate SSA uses
In some CPU micro-architectures, addition is cheaper than
multiplication. It may therefore be beneficial to rewrite 2× x
as x+ x. In LLVM IR we want to rewrite:

%y = mul %x, 2

as:

%y = add %x, %x

Algebraically, these two expressions are equivalent. How-
ever, consider the case where %x is undef. In the original code,
the result can be any even number, while in the transformed
code the result can be any number. Therefore, the transforma-
tion is wrong because we have increased the set of possible
outcomes.

This problem happens because each use of undef in LLVM
can yield a different result. Therefore, it is not correct in
general to increase the number of uses of a given SSA register
in an expression tree, unless it can be proved to not hold the
undef value. Even so, LLVM incorrectly performs similar
transformations.

There are, however, multiple advantages to defining undef
as yielding a possibly different value on each use. For exam-
ple, it helps reduce register pressure since we do not need
to hold the value of an undef in a register to give the same
value to all uses. Secondly, peephole optimizations can easily
assume that an undef takes whatever value is convenient to
do a particular transformation, which they could not easily do
if undef had to remain consistent over multiple uses. Another
advantage is to allow duplication of memory loads given that
loads from uninitialized memory yield undef. If undef was
defined to return a consistent value for all uses, a duplicated
load could potentially return a different value if loading from
uninitialized memory, which would be incorrect.

3.2 Hoisting operations past control-flow
Consider this example:

if (k != 0) {
while (c) {

use(1 / k);
}

}

Since 1/k is loop invariant, LLVM would like to hoist it
out of the loop. Hoisting the division seems safe because the

top-level if-statement ensures that division by zero will not
happen. This gives:

if (k != 0) {
int t = 1 / k;
while (c) {

use(t);
}

}

Now consider the case where k is undef. Since each use of
undef can yield a different result, we can have the top-level if-
condition being true and still divide by zero, when this could
not have happened in the original program if the execution
never reached the division (e.g., if c was false). Thus, this
transformation is unsound. LLVM used to do it, but stopped
after it was shown to lead to end-to-end miscompilation.3

3.3 Global Value Numbering vs. Loop Unswitching
When c2 is loop-invariant, LLVM’s loop unswitching opti-
mization transforms code of this form:

while (c) {
if (c2) { foo }
else { bar }

}

to:

if (c2) {
while (c) { foo }

} else {
while (c) { bar }

}

This transformation assumes that branching on poison is
not UB, but is rather a non-deterministic choice. Otherwise, if
c2 was poison, then loop unswitching would be introducing
UB if c was always false (i.e., if the loop never executed).

The goal of global value numbering (GVN) is to find
equivalent expressions and then pick a representative one
and remove the remaining (redundant) computations. For
example, in the following code, variables t, w, and y all hold
the same value within the “then” block:

t = x + 1;
if (t == y) {

w = x + 1;
foo(w);

}

Therefore, GVN can pick y as the representative value and
transform the code into:

t = x + 1;
if (t == y) {

foo(y);
}

3 http://llvm.org/PR21412

However, if y is a poison value and w is not, we have
changed the code from using a regular value as function
argument to passing a poison value to foo. If GVN followed
loop unswitching’s interpretation of branch-on-poison (non-
deterministic branch), the transformation would be unsound.
However, if we decide instead that branch-on-poison is UB,
then GVN is fine, since the comparison “t == y” would be
poison and therefore the original program would be already
executing UB. This, however, contradicts the assumption
made by loop unswitching. In other words, loop unswitching
and GVN require different semantics for branch on poison
in LLVM IR in order to be correct. By assuming different
semantics, they perform conflicting optimizations, enabling
end-to-end miscompilations.4

3.4 Select and Poison
LLVM’s ternary select instruction, like the ?: operator in
C/C++, uses a Boolean to choose between its arguments.
Either choice for how select deals with poison—producing
poison if its not-selected argument is poison, or not—could
be used as the basis for a correct optimizer. However, LLVM’s
optimization passes have not consistently implemented either
choice. The LLVM Language Reference Manual5 implies
that if either argument to a select is poison, the output is
poison.

The SimplifyCFG pass tries to convert control flow into
select instructions:

br %cond, %true, %false
true:

br %merge
false:

br %merge
merge:

%x = phi [%a, %true], [%b, %false]

Gets transformed into:

br %merge
merge:

%x = select %cond, %a, %b

For this transformation to be correct, select on poison
cannot be UB if branching on poison is not. Moreover, it can
only be poison when the chosen value at runtime is poison
(in order to match the behavior of phi).

LLVM also performs the reverse transformation, usually
late in the pipeline and for target ISAs where it is preferable
to branch rather than do a conditional move. For this trans-
formation to be correct, branch on poison can only be UB
if select on a poison condition is also UB. Since we want
both transformations to be feasible, we can conclude that the
behavior of branching on poison and select with a poison
condition has to be equivalent.

4 http://llvm.org/PR27506 and http://llvm.org/PR31652
5 http://llvm.org/docs/LangRef.html

If select on a poison condition is UB, it makes it very
hard for the compiler to introduce select instructions in
replacement of arithmetic. E.g., the following transformation
that replaces an unsigned division with a comparison would
be invalid (which ought to be valid for any constant C < 0):

%r = udiv %a, C

to:

%c = icmp ult %a, C
%r = select %c, 0, 1

This transformation is desirable since it removes a poten-
tially expensive operation like division. However, if select on
poison is UB, the transformed program would execute UB
if %a was poison, while the original program would not. As
we have seen previously, if select (and therefore branch) on
poison is not UB, GVN is unsound, but that is incompatible
with the transformation above.

Finally, it is often desirable to view select as arithmetic, al-
lowing transformations like: %x = select %c, true, %b
to %x = or %c, %b. This property of equivalence with arith-
metic, however, requires making the return value poison if any
of the arguments is poison, which breaks soundness for the
phi/branch to select transformation (SimplifyCFG in LLVM)
above.

There is a tension between the different semantics that
select can take and which optimizations can be made sound.
Currently, different parts of LLVM implement different se-
mantics for select, which originates end-to-end miscompila-
tions. 6

Finally, it is very easy to make mistakes when both
undef and poison are involved. LLVM currently performs
the following substitution:

%v = select %c, %x, undef

to:

%v = %x

This is wrong because %x could be poison, and poison is
stronger than undef.7

3.5 Summary
In this section we showed that undefined behavior, which
was added to LLVM’s IR to justify certain desirable transfor-
mations, is exceptionally tricky and has lead to conflicting
assumptions among compiler developers. These conflicts are
reflected in the code base.8 Although the LLVM developers
almost always fix overt problems that can be demonstrated to
lead to end-to-end miscompilations, the latent problems we
have shown here are long-standing and have so far resisted
attempts to fix them (any fix that makes too many existing

6 http://llvm.org/PR31632
7 http://llvm.org/PR31633
8 e.g., http://llvm.org/PR31181 and http://llvm.org/PR32176

optimizations illegal is unacceptable). In the next section
we introduce a modified semantics for UB in LLVM that we
believe fixes all known problems and is otherwise acceptable.

4. Proposed Semantics
In Section 2 we showed that undef and poison enable useful
optimizations that programmers might expect. In Section 3,
however, we showed that undef and poison, as currently de-
fined, are inconsistent with other desirable transformations
(or combinations of transformations) and that they interact
poorly with each other. Our proposal—arrived at after many it-
erations and much discussion, and currently under discussion
with the broader LLVM community—is to tame undefined
behavior in LLVM as follows:

• Remove undef and use poison instead.
• Introduce a new instruction:

%y = freeze %x

freeze is a nop unless its input is poison, in which case
it non-deterministically chooses an arbitrary value of the
type. All uses of a given freeze return the same value, but
different freezes of a value may return different constants.
• All operations over poison unconditionally return poison

except phi, select, and freeze.
• Branching on poison is immediate UB.

Our experience is that the presence of two kinds of de-
ferred undefined behavior is simply too difficult for develop-
ers to reason about: one of them had to go. We define phi
and select to conditionally return poison, and branching on
poison to be UB, because these decisions reduce the number
of freeze instructions that would otherwise be needed.

Defining branching on poison to be UB further enables
analyses to assume that predicates used on branches hold
within the target basic block, which would not be possible if
we had defined branching on poison to be a non-deterministic
choice. For example, for code like if (x > 0) { /* foo
*/ }, we want to allow analyses to assume that x is positive
within the “then” block (and not positive in the “else” block).

A risk of using freeze is that it disables subsequent
optimizations that take advantage of poison. Our observation
is that many of these optimizations were illegal anyway, and
that it is better to disable them explicitly rather than implicitly.
Also, as we show later, we usually do not need to introduce
many freeze instructions. We experimentally show that freeze
does not unduly impact performance.

4.1 Syntax
Figure 4 gives the partial syntax of LLVM IR statements.
LLVM IR is typed, but we omit operand types for brevity (in
this section and throughout the paper) when these are implicit
or non-essential. The IR includes standard unary/binary
arithmetic instructions, load/store operations, a phi node,

stmt : : = reg = inst | br op, label , label | store op, op
inst : : = binop attr op, op | conv op | bitcast op |

select op, op, op | icmp cond , op, op |
phi ty , [op, label] . . . , [op, label] | freeze op |
getelementptr op, . . . , op | load op |
extractelement op, constant |
insertelement op, op, constant

cond : : = eq | ne | ugt | uge | slt | sle
ty : : = isz | ty∗ | <sz × isz> | <sz × ty∗>

binop : : = add | udiv | sdiv | shl | and | or
attr : : = nsw | nuw | exact
op : : = reg | constant | poison

conv : : = zext | sext | trunc

Figure 4. Partial syntax of LLVM IR statements. Types
include arbitrary bitwidth integers, pointers ty∗, and vectors
< elems × ty > that have a statically-known number of
elements elems .

a comparison operator, multiple type casting instructions,
conditional branching, instructions to access and modify
vectors, etc. We also include the new freeze instruction and
the new poison value, while removing the old undef value.

4.2 Semantics
We first define the semantic domains as follows.

Num(sz) : : = { i | 0 ≤ i < 2sz }
Jisz K : : = Num(sz)] {poison }
Jty∗K : : = Num(32)] {poison }
J〈sz×ty〉K : : = {0, . . . , sz − 1} → JtyK
Mem ::= Num(32) 9 J〈8×i1〉K
Name : := { %x, %y, . . . }
Reg : := Name→ { (ty , v) | v ∈ JtyK }

Here JtyK denotes the set of values of type ty , which are either
poison or fully defined for base types, and are element-wise
defined for vector types. The memory Mem is bitwise defined
since it has no associated type. Specifically, Mem partially
maps a 32-bit address to a bitwise defined byte (we assume,
with no loss of generality, that pointers are 32 bits). The
register file Reg maps a name to a type and a value of that
type.

We define two meta operations: conversion between values
of types and low-level bit representation. These operations
are used later for defining semantics of instructions.

ty↓ ∈ JtyK→ J〈bitwidth(ty)×i1〉K
ty↑ ∈ J〈bitwidth(ty)×i1〉K→ JtyK

isz↓(v) or ty∗↓(v) =
{
λ_.poison if v=poison
(std) otherwise

〈sz×ty〉↓(v) = ty↓(v[0])++ . . . ++ ty↓(v[sz − 1])

isz↑(b) or ty∗↑(b) =
{
poison if ∃i. b[i]=poison
(std) otherwise

〈sz×ty〉↑(b) = 〈ty↑(b0), . . . , ty↑(bsz−1)〉
where b = b0 ++ . . .++ bsz−1

For base types, ty↓ transforms poison into the bitvector of
all poison bits, and defined values into their standard low-
level representation. For vector types, ty↓ transforms values
element-wise, where ++ denotes the bitvector concatenation.
Conversely, for base types, ty↑ transforms bitwise representa-
tions with at least one poison bit into poison, and transforms
fully defined ones in the standard way. For vector types, ty↑
transforms bitwise representations element-wise.

Now we give semantics to selected instructions in Figure 5.
It shows how each instruction updates the register file R ∈
Reg and the memory M ∈ Mem, denoted R,M ↪→ R′,M ′.
The value JopKR of operand op over R is given by:

JrKR = R(r) // register
JCKR = C // constant

JpoisonKR = poison // poison

The load operation Load(M,p, sz) successfully returns the
loaded bit representation only if p is a non-poison address
pointing to a valid block of bitwidth at least sz in the memory
M . The store operation Store(M,p, b) successfully stores
the bit representation b in the memory M and returns the
updated memory only if p is a non-poison address pointing
to a valid block of bitwidth at least bitwidth(b).

The rules shown in Figure 5 follow the standard opera-
tional semantics notation. For example, the first rule says that
the instruction r = freeze isz op, if the operand value JopKR
is poison, updates the destination register r with an arbitrary
value v (i.e., updates the register file R to R[r 7→ v]) leav-
ing the memory M unchanged; and if JopKR is a non-poison
value v, it updates the register r with the operand value v.

5. Illustrating the New Semantics
In this section we show how the proposed semantics enable
optimizations that cannot be performed soundly today in
LLVM. We also show how to encode certain C/C++ idioms
in LLVM IR for which changes are required in the front-end
(Clang), as well as optimizations that need tweaks to remain
sound.

5.1 Loop Unswitching
We showed previously that GVN and loop unswitching could
not be used together. With the new semantics, GVN becomes
sound, since we chose to trigger UB in case of branch on
poison value. Loop unswitching, however, requires a simple
change to become correct. When a branch is hoisted out of a
loop, the condition needs to be frozen. E.g.,

while (c) {
if (c2) { foo }
else { bar }

}

is transformed into:

if (freeze(c2)) {
while (c) { foo }

} else {
while (c) { bar }

}

By using the freeze instruction, we avoid introducing
UB in case c2 is poison and force a non-deterministic choice
between the two loops instead. This is a refinement of the
original code, which would trigger UB if c2 was poison and
the loop executed at least once.

Freeze can be avoided if the branch on c2 is placed in the
loop pre-header (since then the loop is guaranteed to execute
at least once). The compiler further needs to prove that the
branch on c2 is always reachable (i.e., that all function calls
before the “if (c2)” statement always return).

5.2 Reverse Predication
In some CPU architectures it is beneficial to compile a
select instruction into a set of branches rather than a
conditional move. We support this transformation using
freeze:

%x = select %c, %a, %b

can be transformed to:

%c2 = freeze %c
br %c2, %true, %false

true:
br %merge

false:
br %merge

merge:
%x = phi [%a, %true], [%b, %false]

Freeze ensures that no UB is triggered if %c is poison.
We believe, however, that this kind of transformation may
be delayed to lower-level IRs where poison usually does not
exist.

5.3 Bit Fields
C and C++ have bit fields in structures. These fields are often
packed together to form a single word-sized field (depending
on the ABI). Since in our semantics loads of uninitialized
data yield poison, and bit-field store operations also require a
load (even the first store), extra care is needed to ensure that
a store to a bit field does not always yield poison.

Therefore we propose to lower the following C code:

mystruct.myfield = foo;

into:

%val = load %mystruct
%val2 = freeze %val

(r = freeze isz op)

JopKR = poison v ∈ Num(sz)

R,M ↪→ R[r 7→ v],M

JopKR = v 6= poison

R,M ↪→ R[r 7→ v],M

(r = freeze ty op) for ty = 〈n×isz 〉
JopKR = 〈v0, . . . , vn−1〉[

∀i. (vi = poison ∧ v′i ∈ Num(sz))
∨ (vi = v′i 6= poison)

]
R,M ↪→ R[r 7→ 〈v′0, . . . , v′n−1〉],M

(r = phi ty [op1, L1], . . . , [opn, Ln])

JopiKR = vi

R,M ↪→ R[r 7→ vi],M
(coming from Li)

(r = select op, ty op1, op2)

JopKR = poison

R,M ↪→ R[r 7→ poison],M

JopKR = 1 Jop1KR = v1

R,M ↪→ R[r 7→ v1],M

JopKR = 0 Jop2KR = v2

R,M ↪→ R[r 7→ v2],M

(r = and isz op1, op2)

Jop1KR = poison

R,M ↪→ R[r 7→ poison],M

Jop2KR = poison

R,M ↪→ R[r 7→ poison],M

Jop1KR = v1 6= poison Jop2KR = v2 6= poison

R,M ↪→ R[r 7→ v1 & v2],M

(r = add nsw isz op1, op2)

Jop1KR = poison

R,M ↪→ R[r 7→ poison],M

Jop2KR = poison

R,M ↪→ R[r 7→ poison],M

Jop1KR = v1 Jop2KR = v2 v1 + v2 overflows (signed)

R,M ↪→ R[r 7→ poison],M

Jop1KR = v1 Jop2KR = v2 v1 + v2 no signed overflow

R,M ↪→ R[r 7→ v1 + v2],M

(r = bitcast ty1 op to ty2)

JopKR = v

R,M ↪→ R[r 7→ ty2↑(ty1↓(v))],M

(r = load ty , ty∗ op)
Load(M, JopKR, bitwidth(ty)) fails

R,M ↪→ UB
Load(M, JopKR, bitwidth(ty)) = v

R,M ↪→ R[r 7→ ty↑(v)],M

(store ty op1, ty∗ op)
Store(M, JopKR, ty↓(Jop1KR)) fails

R,M ↪→ UB
Store(M, JopKR, ty↓(Jop1KR)) = M ′

R,M ↪→ R,M ′

Figure 5. Semantics of selected instructions

%val3 = ...combine %val2 and %foo...
store %val3, %mystruct

We need to freeze the loaded value, since it might be the
first store to the bit field and therefore it might be uninitialized.
If the stored value foo is poison, this bit field store operation
contaminates the adjacent fields when it is combined through
bit masking operations. This is fine, however, since if foo
is poison then UB must have already occurred in the source
program and so we can taint the remaining fields.

An alternative way of lowering bit fields is to use vectors
or use the structure type. These are superior alternatives, since
they allow perfect store-forwarding (no freezes), but currently
they are both not well supported by LLVM’s backend. E.g.,
with vectors:

%val = load <32 x i1> %mystruct
%val2 = insertelement %foo, %val, ...
store %val2, %mystruct

Here we assume the word size is 32 bits, and therefore
we ask LLVM to load a vector of 32 bits instead of loading
a whole word. Since our semantics for vectors define that
poison is determined per element, a poison bit field cannot
contaminate adjacent fields.

5.4 Load Combining and Widening
Sometimes it is profitable to combine or widen loads to align
with the word size of a given CPU. However, if the compiler
chooses to widen, say, a 16-bit load into a 32-bit load, then
care must be taken because the remaining 16 bits may be
poison or uninitialized and they should not poison the value
the program was originally loading. To solve the problem, we
also resort to vector loads, e.g.,

%a = load i16, %ptr

can be transformed to:

%tmp = load <2 x i16>, %ptr
%a = extractelement %tmp, 0

As for bit fields, vector loads make it explicit to the
compiler that we are loading unrelated values, even though
at assembly level it is the still the same load of 32 bits.

5.5 Pitfall 1: Freeze duplication
Duplicating freeze instructions is not allowed, since each
freeze instruction may return a different value if the input is
poison. For example, this blocks loop sinking optimization
(dual of loop invariant code motion). Loop sinking is benefi-
cial if, e.g., a loop is rarely executed. For example, it is not
sound to perform the following transformation:

x = a / b;
y = freeze(x);
while (...) {

use(y)
}

to:

while (...) {
x = a / b;
y = freeze(x);
use(y)

}

5.6 Pitfall 2: Semantics of static analyses
Static analyses in LLVM usually return a value that holds only
if all of the analyzed values are not poison. For example, if
we run the isKnownToBeAPowerOfTwo analysis on value
“%x = shl 1, %y”, we get a statement that %x will be
always a power of two. However, if %y is poison, then %x
will also be poison, and therefore it could take any value,
including a non-power-of-two value.

Many LLVM analyses are not sound over-approximations
with respect to poison. The main reason is that if poison was
taken into account then most analyses would return the worst
result (top) most of the time, rendering them useless.

This semantics is generally fine when the result of the
analyses are used for expression rewriting, since the original
and transformed expressions will yield poison when any of
the inputs is poison. However, this is not true when dealing
with code movement past control-flow. For example, we
would like to hoist the division out of the following loop
(assuming a is loop invariant):

while (c) {
b = 1 / a;

}

If the isKnownToBeAPowerOfTwo analysis states that a
is always a power of two, we are tempted to conclude that
hoisting the division is safe since a cannot possibly be zero.
However, a may be poison, and therefore hoisting the division
would introduce UB if the loop did not execute.

In summary, there is a trade-off for the semantics of
static analysis regarding how they treat poison. LLVM is
considering extending APIs of relevant analyses to return up-
to results with respect to poison, i.e., the result of an analysis
is sound if a set of values is non-poison. Then it is up to the
client of the analysis to ensure this is the case if it wants to
use the result of the analysis in a way that requires the value
to be non-poison (e.g., to hoist instructions that may trigger
UB past control-flow).

6. Implementation
We prototyped our new semantics in LLVM 4.0 RC4.9 We
made the following modifications to LLVM, changing a total
of 578 lines of code:

• Added a new freeze instruction to the IR and to Selec-
tionDAG (SDAG), and added appropriate translation from
IR’s freeze into SDAG’s freeze and then to MachineIn-
struction (MI).
• Fixed loop unswitching to freeze the hoisted condition (as

described in Section 5.1).
• Fixed several unsound InstCombine (peephole) transfor-

mations handling select instructions (e.g., the problems
outlined in Section 3.4).
• Added simple transformations to InstCombine to op-

timize spurious uses of freeze, such as transforming
freeze(freeze(x)) to freeze(x) and freeze(const)
to const.

We made a single change to Clang, modifying just one
line of code: we changed the lowering of bit field stores to
freeze the loaded value (as described in Section 5.3).

Lowering freeze LLVM IR goes through two other interme-
diate languages before assembly is finally generated. Firstly,
LLVM IR is lowered into Selection DAG (SDAG) form,
which still represents code in a graph like LLVM IR but
where operations may already be target dependent. Secondly,
SDAG is lowered into MachineInstruction (MI) through stan-
dard instruction selection algorithms, followed by register
allocation.

We introduced a freeze operation in SDAG, so a freeze in
LLVM IR maps directly into a freeze in SDAG. Additionally,
we had to teach type legalization (SDAG level) to handle
freeze instructions with operands of illegal type (for the given
target ISA). For instruction selection (i.e., when going from
SDAG to MI), we convert poison values into pinned undef
registers, and freeze operations into register copies. At MI
level there is no poison, but instead there are undef registers,
which may yield a different value for each use like LLVM
IR’s undef value. Since taking a copy from an undef register
effectively freezes undefinedness (i.e., all uses of the copy
observe the same value), we can lower freeze into a register
copy.

Optimizations We had to implement a few optimizations to
recover some performance regressions we observed in early
prototypes. These regressions were due to LLVM optimizers
not recognizing the new freeze instruction and conservatively
giving up. For example, on x86 it is usually preferable to
lower a branch on an and/or operation into a pair of jumps
rather than do the and/or operation and then do a single jump.
This transformation got blocked if the branch was done on

9 Code available from https://github.com/snu-sf/{llvm-freeze,
clang-freeze}/tree/pldi

a frozen and/or operation. We modified CodeGenPrepare (a
phase right before lowering IR to SDAG) to support freeze.

For x86, a comparison used only by a conditional branch
is usually moved so that it is placed right before the branch,
since it is often preferable to repeat the comparison (if needed)
than save the result to reuse later. Since freeze instructions
cannot be sunk into loops, this transformation is blocked
if the branch is over a frozen comparison. We changed
CodeGenPrepare to transform “freeze(icmp %x, const)”
to “icmp(freeze %x), const” when deemed profitable.
Note that we cannot do this transformation early in the
pipeline since it would break some static analyses (like scalar
evolution)—the transformed expression is a refinement of the
original one.

We changed the inliner to recognize freeze instructions
as zero cost, even if they may not always be free. With this
change, we avoid changing the behavior of the inliner as
much as possible.

Testing the prototype To test the correctness of the proto-
type, we used the LLVM and Clang test suites. We also used
opt-fuzz10 to exhaustively generate all LLVM functions with
three instructions (over 2-bit integer arithmetic) and then we
used Alive [17] to validate both individual passes (InstCom-
bine, GVN, Reassociation, and SCCP) and the collection of
passes implied by the -O2 compiler flag. This way we in-
crease confidence that Alive and LLVM agree on the seman-
tics of the IR. This technique was also very useful during the
development of the semantics since it enabled us to quickly
try out different solutions and check which optimizations
would be invalid.

Opportunities for improvement Our prototype leaves room
for improvement. For example, we discussed in Section 3.2
that hoisting divisions out of loops is currently disabled in
LLVM. We did not attempt to reactivate this optimization.

Some optimizations need to be made freeze-aware. At
present they will conservatively fail to optimize since they do
not recognize the new instruction. For example, GVN does
not yet know how to fold equivalent freeze instructions. We
consulted with a GVN expert and we were told it is possible
to extend the algorithm to support freeze instructions, with
the caveat that for GVN to be sound for freeze it has to replace
all uses of a given freeze instruction if it wants to replace one
of the uses.

Another possible avenue for improvement is to take ad-
vantage of the optimization pipeline order. Right now LLVM
transformations have to assume the worst-case scenario: they
may be run in any order and for an arbitrary number of times.
However, the pipeline is usually mostly fixed for a given
file (i.e., optimizations do not usually schedule other opti-
mizations to be run afterward). Therefore, it makes sense to
take advantage of this fixed order. In particular, we could
determine when no more inter-procedural analyses and trans-

10 https://github.com/regehr/opt-fuzz

formations will be run, and change the semantics of function
arguments and global variables to be non-poison (since we
cannot observe if they are). In this way, we could reduce the
number of freeze instructions.

The lowering of freeze into assembly is currently sub-
optimal. Our prototype reserves a register for each poison
value within a function (during its live range only). However,
in certain architectures it is possible to either reuse an already
pinned register that does not change within the function (such
as EBP or ESP on x86) or use a constant register (such as R0
on ARM that is usually zero). This strategy would allow us to
save up to one register per poison value and therefore reduce
register pressure.

Limitations of the prototype Our prototype has a few limi-
tations that make it unsound in theory, even though we did
not detect any end-to-end miscompilations. These limitations
do not reflect fundamental problems with our proposed se-
mantics, but they require more extensive changes to LLVM
than we have performed so far. Also, bear in mind that LLVM
was already unsound before our changes, but in ways that are
harder to fix.

InstCombine performs a few transformations taking a se-
lect instruction and producing arithmetic operations. For ex-
ample, “select %c, true, %x” is transformed into “or
%c, %x”. This transformation is incorrect if %c may be poi-
son. A safe version requires freezing %c for the or operation.
Alternatively, we could just remove these transformations,
but that would likely require improvements to other parts of
the compiler to make them recognize the idiom to produce
efficient code (since at the moment the backend and other
optimizations may not be expecting this non-canonical code).

Another limitation is related to vectors. We have shown
that widening can be done safely by using vector operations.
However, LLVM does not yet handle vectors as first-class
values, which frequently results in generation of sub-optimal
code when vectors are used. Therefore, we did not fix any
widening done by LLVM (e.g., in GVN, in Clang’s lowering
of bit-fields, or in Clang’s lowering of certain parameters that
require widening by some ABIs).

7. Performance Evaluation
This section evaluates the performance of our prototype in
terms of compile time and size and speed of generated code.

7.1 Experimental Setup
Environment We used two machines with different micro-
architectures for evaluation. Machine 1 had an Intel Core i7
870 CPU at 2.93 GHz, and Machine 2 had an Intel Core i5
6600 CPU at 3.30 GHz. Both machines had 8 GB of RAM
and were running Ubuntu 16.04. To get consistent results,
we disabled HyperThreading, SpeedStep, Turbo Boost, and
address space layout randomization (ASLR). We used the

cpuset tool11 to grant exclusive hardware resources to the
benchmark process. Machines were disconnected from the
network while running the benchmarks.

Benchmarks We used three benchmarks: SPEC CPU 2006,
LLVM Nightly Test (LNT), and five large single-file pro-
grams ranging from 7k to 754k lines of code each.12 SPEC
CPU consists of 12 integer-only (CINT) and seven floating-
point (CFP) benchmarks (we only consider C/C++ bench-
marks). LNT consists of 281 benchmarks with about 1.5
million lines of code in total.

Measurements We measured running time and peak mem-
ory consumption of the compiler, running time of compiled
programs, and generated object file size.

To estimate compilation and running time, we ran each
benchmark three times (except LNT, which we ran five times
to cope with shorter running times) and took the median value.
To estimate peak memory consumption, we used the ps tool
and recorded the rss and vsz columns every 0.02 seconds.
To measure object file size, we recorded the size of .o files
and the number of IR instructions in LLVM bitcode files. All
programs were compiled with -O3 and the comparison was
done between our prototype and the version of LLVM/Clang
from which we forked.

7.2 Results
Compile time On both machines, compile time was largely
unaffected by our changes. Most benchmarks were in the
range of ±1%. There were a few exceptions with small
files, such as the “Shootout nestedloop” benchmark, where
compilation time increased by 19% to 29 ms. The reason was
that an optimization (jump threading) did not kick in because
of not knowing about freeze, which then caused a different
set of optimizations to fire in the rest of the pipeline.

Memory consumption For most benchmarks, peak memory
consumption was unchanged, and we observed a maximum
increase of 2% for bzip2, gzip, and oggenc.

Object code size We observed changes in the range of
±0.5%. Freeze instructions represented about 0.04%–0.06%
of the total number of IR instructions. The gcc benchmark,
however, had 3,993 freeze instructions (0.29% of total), since
it contains a large number of bit-field operations.

Run time Change in performance for SPEC CPU 2006 is
shown in Figure 6. The results are in the range of ±1.6%,
with slightly different results on the two machines.

For LNT benchmarks, only 26% had different IR after opti-
mization, and only 82% of those produced different assembly
(21% overall resulted in a different binary). Excluding noisy
tests, we observed a range of -3% to 2% performance change

11 https://github.com/lpechacek/cpuset.git
12 http://people.csail.mit.edu/smcc/projects/
single-file-programs/ and
https://sqlite.org/2016/sqlite-amalgamation-3140100.zip

on machine 1 and -3% to 1.5% on machine 2, except for
one case: “Stanford Queens.” This test showed a significant
speedup (6% on machine 1 and 8% on machine 2) because
the introduction of a single freeze instruction caused a change
in allocated registers (r13 vs r14). According to the Intel Op-
timization Reference Manual, the latency and throughput of
the LEA instruction is worse with certain registers.13

It is normal that run time results fluctuate a bit when a new
instruction is added to an IR, since some optimizations and
heuristics need to learn how to handle the new instruction.
We did only a fraction of the required work, but the results
are already reasonable, which shows that the semantics can
be deployed incrementally.

8. Related Work
We are not aware of any work directly studying the seman-
tics of undefined behavior of IRs. We instead survey work
related to orthogonal improvements and extensions to IRs, on
undefined behavior, and on formalization of IRs.

Compiler IRs Most of the past work on compiler IRs has
focused on extensions to improve efficiency and enable more
complex static analyses. However, most of this work has
ignored undefined behavior.

Static single assignment form (SSA [6]) is a functional
IR where each variable is assigned only once. This enables
(time and space) efficient implementations of sparse static
analyses. SSA is now used by most production compilers (for
imperative languages).

There have been multiple proposals to extend SSA, in-
cluding gated SSA [21] and static single information form
(SSI [1]), whose goal is to enable efficient path-sensitive anal-
yses. In memory SSA form [20, 25], memory is treated like
scalar variables and it is put in SSA form, such that load/store
instructions take memory as a parameter. This enables, for
example, simple identification of redundant loads and easy
movement of memory-related instructions.

More recently, Horn clauses have been proposed as a
compiler IR [10], following the trend of recent software
verification tools [11].

There have also been proposals to expose parallel con-
structs in IRs using multiple paradigms, such as π-threads [22],
INSPIRE [13], SPIRE [15], and Tapir [23].

Undefined Behavior Undefined behavior is not a topic
upon which there is widespread agreement either at the source
or IR levels [8, 9, 18]. Several tools have been developed in
the past few years to detect execution of undefined behavior
in programs, such as IOC [7] and STACK [26].

Hathhorn et al. [12] give a formalization of most undefined
behaviors in C. Kang et al. [14] give a formalization of

13 https://software.intel.com/sites/default/files/managed/
9e/bc/64-ia-32-architectures-optimization-manual.pdf,
§3.5.1.3 Using LEA

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

pe
rlb

en
ch

bz
ip
2

gc
c

m
cf

go
bm

k

hm
m

er

sj
en

g

lib
qu

an
tu

m

h2
64

re
f

om
ne

tp
p

as
ta

r

xa
la
nc

bm
k

C
h
a
n
g
e
 i
n
 P

e
rf

o
rm

a
n
c
e
 (

%
)

Machine 1
Machine 2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

m
ilc

na
m

d

de
al
II

so
pl
ex

po
vr

ay lb
m

sp
hi
nx

3

C
h
a
n
g
e
 i
n
 P

e
rf

o
rm

a
n
c
e
 (

%
)

Machine 1
Machine 2

Figure 6. Change in performance in % for SPEC CPU 2006: CINT on the left, CFP on the right. Positive values indicate that
performance improved, and negative values indicate that performance degraded.

C’s integer to pointer cast, which contains implementation-
defined and undefined behavior features.

Formalization of IRs Vellvm [27] is a formalization of
parts of the LLVM IR in Coq. It has limited support for
undef, and none for poison.

Alive [17] formalizes parts of the LLVM IR as part of its
SMT-based VCGen. Alive supports undef and poison values,
but has limited support for control-flow manipulating trans-
formations. Souper14 (a superoptimizer for LLVM) includes
limited support for undefined behavior.

CompCert [16] includes full formalization of multiple
three-address code-based IRs that are used throughout its
pipeline. There is also an extension to CompCert that includes
the formalization of an SSA-based IR [3].

Chakraborty and Vafeiadis [5] formalize the semantics of
parts of the concurrency-related instructions of LLVM IR.

9. Undefined Behavior in Other Compilers
Most compilers have a concept like LLVM’s undef, since it
is simple, innocent-looking, and has tangible benefits. There
are two common semantics for undef: one where each use of
undef may get a different value, as in LLVM and Microsoft
Phoenix; and another where all uses of undef get the same
value, as in Firm [4], the Microsoft Visual C++ compiler
(MSVC), and the Intel C/C++ Compiler (ICC).

GCC attempts to initialize uninitialized variables to zero,
or give them a consistent value otherwise.15 However, this
does not appear to be part of GCC’s semantics because
optimizations like SCCP can assume multiple values for the
same uninitialized variable.16

14 https://github.com/google/souper
15 https://github.com/gcc-mirror/gcc/blob/
ad7b10a21746a784e7e8edeb606cc99cf2853e21/gcc/init-regs.
c#L32
16 https://godbolt.org/g/r4PX4A

Firm additionally has the concept of a “Bad” value,17 the
use of which triggers UB. This semantics is stronger than
LLVM’s poison (where the use of poison is not necessarily
UB; arithmetic operations taking poison as input often just
yield poison).

Signed overflow UB is exploited by ICC,18 MSVC,19 and
GCC.20 As far as we know, these compilers do not have their
semantics formalized, but they appear to use concepts similar
to LLVM’s poison. At least MSVC seems to suffer from sim-
ilar problems as the ones we have outlined in this work for
LLVM. It is likely that MSVC could fix their IR in a way sim-
ilar to our solution. Similarly, Firm’s developers acknowledge
several bugs with their handling of “Bad” values; it is not
clear whether it is a fundamental problem with the semantics
of their IR or if these are implementation bugs.

CompCert [16] IR also has a deferred UB value called
undef, which is essentially the same as poison in LLVM.
Since branching on undef triggers UB in CompCert, certain
optimizations like loop unswitching are unsound and thus
not performed by CompCert. Mullen et al. [19] describe how
the undef value gets in the way of peephole optimizations in
CompCert.

In summary, most modern compiler IRs support reasoning
based on undefined behavior, but this reasoning has received
little up-front design work or formal attention.

10. Future Work
In this section we describe ongoing and future work to im-
prove the prototype we have built and the path for integration
in LLVM, as well as some of the research challenges that
remain.

17 http://pp.ipd.kit.edu/firm/Unknown_and_Undefined
18 https://godbolt.org/g/egCqqm
19 https://godbolt.org/g/ojfRVd
20 https://godbolt.org/g/gtEbXx

10.1 Implementation
We have submitted an initial set of patches to the LLVM
community to (1) introduce the freeze instruction, (2) make
it explicit in the documentation that branch on undef/poison
is UB, and (3) fix the identified bug in loop unswitching.
These patches are currently under review, and we expect
the process to take a few more months, since these changes
affect the core of the compiler, which is its IR. Following
acceptance of this first set of patches, we plan to work with
the LLVM community to replace the undef value with poison
in an incremental, but safe, fashion. We are also working
with other compiler vendors (Microsoft) to evaluate whether
a semantics similar to poison/freeze is adequate.

Further work is required to ensure a safe transition to a
world without undef. For example, there are several transfor-
mations in LLVM which are analogous to load widening, and
they can be similarly fixed with bitvector load/stores. For ex-
ample, small memcpy calls can be optimized into load/store
operations of 4 or 8-bytes integers, but this is incorrect under
the proposed semantics because existence of a poison bit in
an input array element may contaminate the entire loaded
value. Also, clang sometimes loads multiple fields of a struct
with a single load, which may even include padding bits.

Scalar evolution is an example of an analysis that must
learn how to deal with freeze. It computes, for example,
how many times a loop will run, and it is used by most
loop transformations. Scalar evolution is critical for the
performance of programs with loops but it currently fails
to analyze expressions involving freeze.

10.2 Research Agenda
This paper leaves many unanswered questions for future work.
For example, it is not well understood what is the trade-off
between different semantics for deferred undefined behavior
(UB)—we proposed a fix, but there are other possibilities—
what is the real-life impact of exploiting UB exposed by
languages like C and C++ in terms of performance and from
where does most of the benefit comes from, or what is the
benefit of having UB in the IR for compilers targeting safe
languages.

Other constructs that modern compilers’ IRs have, such as
assumptions, barriers, implicit control-flow, etc, while they
seem correct, are easily miscompiled by innocent-looking
optimizations. Further research is needed to improve usability
and usefulness of these features.

Reassociation is a conceptually simple transformation that
rewrites polynomials in some canonical form. In doing so,
it usually has to remove overflow assumptions of subexpres-
sions (like nsw in LLVM) since reassociation may change
how and if subexpressions overflow. However, dropping the
nsw attribute from expressions inhibits later optimizations
(such as induction variable widening). At least LLVM and
MSVC have suffered from bugs because of reassociation not
dropping overflow assumptions on subexpression and a later

optimization took advantage of it, resulting in end-to-end
miscompilations. Further research is needed to determine
whether this phase ordering issue can be eliminated com-
pletely with better IR semantics.

In this work we have only covered the LLVM IR, which
is the IR used by LLVM’s middle-end optimizers. LLVM,
like other compilers, has other lower-level representations
(SelectionDAG and MachineInstruction) that are used in later
phases (e.g., for instruction selection). For example, Selec-
tionDAG has an undef value and developers are considering
whether introducing poison would be sound and useful. Fur-
ther research is needed in this area of low-level IRs.

Formalizing semantics of an IR to which a compiler ad-
heres opens many avenues for automation. Tools for trans-
lation validation or optimization verification, superoptimiza-
tion, synthesis of optimizations, and so on become now pos-
sible. We believe that many parts of a compiler should and
can now be developed with the help of automation.

11. Conclusion
Undefined behavior in a compiler IR, which is not neces-
sarily related to undefined behavior in any given source lan-
guage, gives optimizers the freedom to perform desirable
transformations. We have presented the first detailed look at
IR-level undefined behavior that we are aware of, and we
have described difficult, long-standing problems with the se-
mantics of undefined behavior in LLVM IR. These problems
are present to some extent in other modern optimizing com-
pilers. We developed and prototyped a modified semantics for
undefined behavior that meets our goals of justifying most of
the optimizations that LLVM currently performs, putting the
semantics of LLVM IR on firm ground, and not significantly
impacting either compile time or quality of generated code.

Acknowledgments
The authors acknowledge the lengthy discussions with and
feedback on previous drafts from Andy Ayers, Daniel Berlin,
Chandler Carruth, Hal Finkel, Eli Friedman, Dan Gohman,
Jeehoon Kang, Richard Smith, and Joseph Tremoulet. This
work was partially supported by the Samsung Research Fund-
ing Center of Samsung Electronics under Project Number
SRFC-IT1502-07 and by the US National Science Foundation
under award CNS-1218022.

References
[1] C. S. Ananian. The static single information form. Master’s

thesis, MIT, 1999.

[2] Atmel Inc. AVR32 architecture document, Apr. 2011. URL
http://www.atmel.com/images/doc32000.pdf.

[3] G. Barthe, D. Demange, and D. Pichardie. Formal verification
of an SSA-based middle-end for CompCert. ACM Trans.
Program. Lang. Syst., 36(1):4:1–4:35, Mar. 2014.

[4] M. Braun, S. Buchwald, and A. Zwinkau. Firm—a graph-based
intermediate representation. Technical Report 35, Karlsruhe

Institute of Technology, 2011. URL http://digbib.ubka.
uni-karlsruhe.de/volltexte/1000025470.

[5] S. Chakraborty and V. Vafeiadis. Formalizing the concurrency
semantics of an LLVM fragment. In CGO, 2017.

[6] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck. Efficiently computing static single assignment form
and the control dependence graph. ACM Trans. Program. Lang.
Syst., 13(4):451–490, Oct. 1991.

[7] W. Dietz, P. Li, J. Regehr, and V. Adve. Understanding integer
overflow in C/C++. In ICSE, 2012.

[8] V. D’Silva, M. Payer, and D. Song. The correctness-security
gap in compiler optimization. In SPW, 2015.

[9] M. A. Ertl. What every compiler writer should know about
programmers. In KPS, 2015.

[10] G. Gange, J. A. Navas, P. Schachte, H. Søndergaard, and P. J.
Stuckey. Horn clauses as an intermediate representation for
program analysis and transformation. Theory and Practice of
Logic Programming, 15(4-5):526–542, July 2015.

[11] S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Ry-
balchenko. Synthesizing software verifiers from proof rules.
In PLDI, 2012.

[12] C. Hathhorn, C. Ellison, and G. Roşu. Defining the undefined-
ness of C. In PLDI, 2015.

[13] H. Jordan, S. Pellegrini, P. Thoman, K. Kofler, and T. Fahringer.
INSPIRE: The Insieme parallel intermediate representation. In
PACT, 2013.

[14] J. Kang, C.-K. Hur, W. Mansky, D. Garbuzov, S. Zdancewic,
and V. Vafeiadis. A formal C memory model supporting
integer-pointer casts. In PLDI, 2015.

[15] D. Khaldi, P. Jouvelot, F. Irigoin, C. Ancourt, and B. Chapman.
LLVM parallel intermediate representation: design and evalu-
ation using OpenSHMEM communications. In Workshop on
the LLVM Compiler Infrastructure in HPC, 2015.

[16] X. Leroy. Formal verification of a realistic compiler. Commun.
ACM, 52(7):107–115, July 2009.

[17] N. P. Lopes, D. Menendez, S. Nagarakatte, and J. Regehr.
Provably correct peephole optimizations with Alive. In PLDI,
2015.

[18] K. Memarian, J. Matthiesen, J. Lingard, K. Nienhuis, D. Chis-
nall, R. N. M. Watson, and P. Sewell. Into the depths of C:
Elaborating the de facto standards. In PLDI, 2016.

[19] E. Mullen, D. Zuniga, Z. Tatlock, and D. Grossman. Verified
peephole optimizations for CompCert. In PLDI, 2016.

[20] D. Novillo. Memory SSA – a unified approach for sparsely rep-
resenting memory operations. In Proc. of the GCC Developers’
Summit, 2007.

[21] K. J. Ottenstein, R. A. Ballance, and A. B. MacCabe. The
program dependence web: A representation supporting control-
, data-, and demand-driven interpretation of imperative lan-
guages. In PLDI, 1990.

[22] F. Peschanski. Parallel computing with the pi-calculus. In
DAMP, 2011.

[23] T. B. Schardl, W. S. Moses, and C. E. Leiserson. Tapir:
Embedding fork-join parallelism into LLVM’s intermediate
representation. In LCPC, 2016.

[24] M. Sperber, R. K. Dybvig, M. Flatt, A. van Straaten, R. Kelsey,
W. Clinger, J. Rees, R. B. Findler, and J. Matthews. Revised6

report on the algorithmic language Scheme, Sept. 2007. URL
http://www.r6rs.org/final/r6rs.pdf.

[25] B. Steensgaard. Sparse functional stores for imperative pro-
grams. In ACM SIGPLAN Workshop on Intermediate Repre-
sentations, 1995.

[26] X. Wang, N. Zeldovich, M. F. Kaashoek, and A. Solar-Lezama.
Towards optimization-safe systems: analyzing the impact of
undefined behavior. In SOSP, 2013.

[27] J. Zhao, S. Nagarakatte, M. M. Martin, and S. Zdancewic.
Formalizing the LLVM intermediate representation for verified
program transformations. In POPL, 2012.

