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Abstract: Tamm plasmon provides a new avenue in plasmonics of interface states in planar 

multilayer structures due to its strong light matter interaction. This article reviews the research 

and development in Tamm plasmon polariton excited at the interface of a metal and a 

distributed Bragg reflector. Tamm plasmon offers an easy planar solution compared to 

patterned surface plasmon devices with huge field enhancement at the interface and does not 

require of any phase matching method for its excitation. The ease of depositing multilayer thin 

film stacks, direct optical excitation, and high-Q modes make Tamm plasmons an attractive 

field of research with potential practical applications. The basic properties of the Tamm 

plasmon modes including its dispersion, effect of different plasmon active metals, coupling 

with other resonant modes and their polarisation splitting, and tunability of Tamm plasmon 

coupled hybrid modes under externally applied stimuli have been discussed. The application 

of Tamm plasmon modes in lasers, hot electron photodetectors, perfect absorbers, thermal 

emitters, light emitting devices, and sensors have also been discussed in detail. This review 

covers all the major advancements in this field over the last fifteen years with special emphasis 

on the application part.  
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1. Introduction 

Surface electromagnetic waves are the electromagnetic modes excited at the interface of two 

different materials, which decays evanescently from the interface. During last few decades, 

many surface electromagnetic states have been discovered and investigated for understanding 

their physics. These include modes due to Zenneck wave, Dyakonov state, surface plasmon 

wave, optical Tamm state, and topological edge state [1-3]. Zenneck wave is simply a plane 

wave solution to Maxwell's equations polarized perpendicular to the interface that separates 

free space from a half space with a finite conductivity. The amplitude of this wave decays 

exponentially in the directions both parallel and perpendicular to the boundary with differing 

decay constants [4]. Dyakonov surface state forms at the interface between an isotropic and an 

uniaxial birefringent medium [5]. In recent times, topological photonic states are gaining 

research interest which is reviewed in reference [6]. There are also reports of surface states 

excited between linear and nonlinear media [7, 8]. Among all types of surface states, surface 

plasmon polariton (SPP) is the most diversely studied surface electromagnetic modes that is 

excited at the metal-dielectric interface [9]. Fundamentally, SPPs arise due to the coupling of 

coherent oscillation of conduction electrons on the metal surface with the electromagnetic 

fields inside the dielectric medium. These modes can only exist in transverse magnetic (TM) 

polarisation with its wave vector lying outside the light cone of the dielectric. Hence various 

wave vector matching techniques utilizing elements like prisms, gratings, highly focussed 

beams through microscopes [10] and integration with conventional photonic elements [11] are 

required for SPP excitation. The Kretschmann excitation scheme [12] and dispersion curve of 

SPPs are given in Fig. 1(a) and (b), respectively. This scheme utilizes a glass prism to excite 

SPPs in the air-metal interface. From the dispersion curve, it can be seen that propagation of 

light in air cannot excite the surface plasmons as the dispersion curve of the surface plasmons 

(metal-air and metal-prism interfaces) do not intersect at any point and lie to the right of the air 

light line in the Fig. 1 (b). This implies that directly incident light in air has insufficient 

momentum to excite the surface plasmons for any incidence angle. Light propagating in glass 

medium and incident on the interface has a higher momentum due to the refractive index (~1.5) 

of glass. This results in a decrease in gradient of the glass prims light line, intersecting the 

metal-air interface surface plasmon dispersion curve. The metal-air SPP can thus be excited at 

that particular light frequency incident from the glass prism side. It also should be noted that 

the SPP at the metal-prism interface cannot be excited as it is outside the glass prism light line. 

There are different types of SPPs such as gap, spoof, magneto plasmons and Berreman modes 
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that have been reviewed elsewhere [13], which are useful in sensors, filters, absorbers, 

photovoltaic devices, and many more photonic applications [14-16]. 

 

Fig. 1: Surface plasmon polariton (SPP) and Tamm plasmon polariton (TPP) configurations with their dispersion 
curves: (a) Excitation of SPPs at a metal/dielectric interface under Kretschmann geometry. (b) Dispersion curves 
of SPP for metal-air and metal-prism interfaces along with air and prism light lines. (c) Conventional TPP exciting 
structure containing a metal and a distributed Bragg reflector (DBR). (d) Dispersion curves of TPP for transverse 
magnetic (TM) and transverse electric (TE) polarised light. 

In recent years, a special type of electromagnetic surface state known as Tamm plasmon 

polariton (TPP) was theoretically proposed in 2007 [17] and experimentally observed in 2008 

[18]. The TPP mode is formed at the interface between a metal with ε < 0 and a one dimensional 

photonic crystal (1DPC) or a distributed Bragg reflector (DBR) in multilayer planar geometry 

as shown in Fig. 1(c). It is an optical analog of the so called Tamm electronic states found on 

atomic layers closest to the surface of a material [19]. The TPP mode can be experimentally 

observed as a narrow or broad resonance peak or dip in the transmission or reflection spectrum 

of a sample at wavelengths within the band gap of the 1DPC. The transmission at the Tamm 

mode becomes perfect when the electric fields in both metal and the DBR are evanescent. Fig. 

1(d) shows the dispersion curve of the Tamm plasmon mode and it lies inside the light cone 

unlike the surface plasmon polariton [17]. It means the TPP modes are polarisation 

independent, and can be optically excited without any additional phase matching techniques 

like grating or prism coupling. The TPP mode can be narrowed by using large number of 

periods in the planar structure and can be used for investigating strong coupling regime. Tamm 

plasmons exhibit better light matter interactions assisted by strong field confinement at the 

interface. There has been evidences of Tamm states being transformed into bound states in 
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continuum (BIC) in metal-DBR heterostructures when light is incident at Brewster’s angle. 

Pankin et al. [20] experimentally demonstrated the BIC states for the first time by inserting an 

anisotropic defect layer like liquid crystal (LC) between a 1DPC and a metal. Such structures 

exhibit Friedrich-Wintgen BICs [21] due to destructive interference of TE and TM 

polarisations. Wu et al. [22] have demonstrated that the Q-factor of quasi-BIC can be tuned by 

the LC optical axis rotation in a wide range and the quasi-BIC resonance is extremely sensitive 

to the temperature due to the narrow nematic temperature range of the LC. Bikbaev et al. [23] 

have shown the transformation of Tamm state into BIC under certain conditions in all dielectric 

nanostructure comprising Si grating on a DBR. The transformation of TPP to BIC has open up 

a new avenue of research in the field of nanophotonics. 

In the early days of its discovery, TPPs attracted attention of research community 

especially for controlling and enhancement of spontaneous emissions by using microcavity, 

quantum dots, quantum wells (QWs), and 2D materials [24-26]. These studies have shown 

modulation of spontaneous emission, strong coupling, hybrid plasmon and exciton coupling 

with QWs and 2D materials. The ease of depositing the multilayer stacks, direct optical 

excitation using both TE and TM light, and high-Q modes give Tamm plasmons a potential for 

interesting practical applications [27]. This review report aims at providing a brief account of 

TPPs starting from its origin with a small theoretical discussion to explain its characteristic 

features. We have also discussed its coupling to different fundamental excitations, tunability, 

polarization splitting, and finally provided an overview of its potential applications.  

2. Tamm plasmon polariton 

Propagation of electrons in crystalline solids are defined by Bloch wave functions obeying 

Born-von Karman periodic boundary conditions [28]. The electronic states under perfectly 

periodic potential of lattice exhibit energy bands where no electronic energies are allowed. But 

in practice, no absolute periodic systems are available in nature as the periodicity terminates at 

the surface of all crystals. The solution of Schrodinger’s equation for such truncated potentials 

results in two types of eigen solutions; one possessing the pure Bloch character inside the 

crystal showing energy bands called bulk electronic states and other leads to surface states 

confined at crystal surface possessing imaginary wave vector perpendicular to the surface 

called surface electronic states or Tamm states [29]. These states decay into both the vacuum 

and the bulk crystal with localization at the crystal surface, and appear in the energy gaps of 

the bulk electronic states. Interestingly, in the optical domain, optical Tamm states (OTS) arise 

at the interface between two photonic crystal (PC) hetero-structures in the region of 
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overlapping photonic band gaps [30]. PC consists of materials with periodic variation in 

dielectric constant, which can shape and mould the flow of light inside the PC [31]. The PC is 

analogous to electronic semiconductor [32] and it generates a range of forbidden wavelength 

regions called photonic band gaps [33] like electrons suffer in periodic potential of atomic 

lattice in a semiconductor. The periodicity of the PC can be in one, two or three dimensions. 

Among these, 1DPCs are the most frequently used as they are easy to fabricate and design, an 

example being a DBR [34]. OTSs are confined at the interface between both the periodic 

structures and the waves die out exponentially perpendicular to the interface. When one of the 

periodic structures is replaced by a plasmonic material that exhibit negative real permittivity 

like metals, the localized electromagnetic modes couple to the electrons in the metal forming 

the TPP mode. It is easily identified as narrow resonances in the reflectance and/or 

transmittance spectrum. The TPP mode possess parabolic dispersion with an effective mass of 

order of 10-5 of a free electron mass and the TE-TM polarisation splitting of the TPPs increases 

quadratically with the in-plane wave vector [17] as shown in Fig. 1(d). The coupling of light 

to excite TPPs mainly depends upon the 1DPC parameters, metallic layer properties, and angle 

of incidence. Critical coupling occurs when the reflection minima becomes exactly zero for an 

optimized photonic hetero-structure [35]. Tamm plasmons exhibit better light matter 

interaction assisted by strong field confinement at the interface. So, in the early days of its 

discovery, TPPs attracted attention of the research community especially for controlling and 

enhancement of spontaneous emissions by using microcavities [36], metallic disk [37], 

quantum dots [38], quantum wells [39], and nanostructures [40]. Tamm plasmon based 

structures have been considered as a feasible architecture for developing room temperature 

polariton lasers [41]. The polariton lasers are highly monochromatic as well as coherent and 

are based upon the principle of spontaneous emission from the Bose-Einstein condensates of 

exciton-polariton systems [42]. The hybrid exciton-polariton system is discussed later in detail.  

Practically, there will always be decays associated with the TPP modes. The decays are 

attributed to non-negligible collisional loss in metals, radiative loss through the DBR due to 

limited number of periods, and roughness of the interface sustaining the TPPs. In addition, 

metallic layers are associated with scattering loss due to grain boundaries and defects because 

of crystalline nature of the metallic film. Different metallic layers offer different rate of losses 

which plays a key role in the reflectance spectra [43]. Most often, silver is used to excite TPPs 

for its loss characteristics in visible-NIR region. It has been reported that silver has 4.7 and 84 

times higher Q-factor of Tamm plasmon resonance than gold and aluminium in visible region, 

respectively [44]. Similarly, the radiative loss is decreased by increasing the number of periods 
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in the DBR. Quality factor and lifetime are used to quantify decay of the TPP resonance in a 

photonic hetero-structure. Lifetime of the TPP is found to exhibit strong polarisation and 

angular dependence. The life time of TPPs (in the order of 10s of femtoseconds) are several 

times smaller compared to the lifetime of SPPs [45]. This short lifetime makes TPP a strong 

candidate for applications in all-optical switches and modulators. Apart from planar multilayer 

structures, Tamm modes can be confined in various directions by nano-patterning the metallic 

layers. Due to the patterning the Tamm modes become sensitive to the external stimulus which 

is difficult to realize in planar structures. Buchev et al. [46] have generated 3D confined Tamm 

modes in a meta-structure containing 550 nm large silver nano-disks in square arrays on a DBR 

containing 11 pairs of niobium pentoxide and silicon dioxide. Confined Tamm states are more 

tunable and possess high Q factor compared to conventional planar TP structures due to 

reduced metallic losses. In such patterned structures, the continuous parabolic dispersion nature 

of the Tamm modes exhibit energy bands [47]. Hence, patterning the metallic layer provides 

extra degrees of freedom to control the dispersion as well as the electromagnetic field 

confinement in three dimensions. Qiao et al. [48] have experimentally demonstrated Tamm 

plasmon topological superlattices (TTS) by using specific double layered metasurfaces on a 

PC. By controlling the topology of the metasurface they observed coupling between TTSs to 

generate super-modes lying inside the photonic band gap of the PC. However, their existence 

require the unit cells to be inversion symmetric with metallic and PC bearing opposite Zak 

phases [49]. Keene and Durach have proposed hyperbolic Tamm plasmons that exist at the 

interface between a uniaxial metamaterial and a metal [50]. Rudakova et al. [51] have 

numerically studied the existence chiral OTS at the interface of a chiral material like cholesteric 

liquid crystal (CLC) and multilayer anisotropic mirror followed by a metasurface. They have 

established that the use of the metasurface can reduce the required number of layers in the 

multilayer anisotropic mirror at a certain Q-value. Lin et al. [52] have observed chiral TPP at 

the interface of a CLC and a metasurface acting as a half wave plate for polarization and phase 

matching. Such chiral Tamm structures are sensitive to the configuration of the metasurface, 

external temperature and orientation of the LC. In present case, we mainly focus on the TPP 

generated in planar multilayer structures. 

3. Dispersion and resonant frequency  

In-plane dispersion of the TPP mode can be easily derived by solving Maxwell equations in 

the metal layer [53]. The tangential components of the electric field at the metal layer interface 

can be expressed as  
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where q2 =(ωnm/c)2+k2, ω is the angular frequency of light, c is speed of light, nm is the complex 

refractive index of the metal layer, and k is the wave propagation vector. The transfer matrix 

for a DBR (made of alternate layers of A and B) can be expressed as  
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Now the dispersion of TE and TM localized TPP modes can be derived by matching the field 

vectors in equation (1) and (2) with the eigen-vectors of the transfer matrix shown in equation 

(3). The eigen-vectors with eigen-values less than unity e-Qd are chosen as they describe the 

evanescent wave corresponding to the TPP mode. The derived dispersion equations for the TPP 

in TE and TM polarisations can be expressed as 
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The equations (3) and (4) are used to calculate the dispersion curves (Fig. 1(d)) of a Tamm 

plasmon photonic structure for TE and TM polarised light.  

The resonant dip in the reflectivity spectrum is the signature of TPP mode in the 

structure. The condition for TP resonance must satisfy the following condition [54]  

12 iknd
DBRM err            (6)  

This equation can be understood as the conditions for constructive round-trip for light inside 

the cavity formed by the first layer A sandwiched between the metal Ag and the rest of the 

DBR as shown in Fig. 2(a). The DBR is made up of 8 pairs of A (high index) and B (low index) 

layers of refractive index 2.07 and 1.45, respectively. The thicknesses of A, B, and Ag are 140 

nm, 200 nm, and 25 nm, respectively. The complex refractive index (nm) of silver layer is 

calculated using Drude’s model [54].  
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Fig. 2: (a) Schematic of metal/DBR structure for excitation of TPP. The top plot of (b) is the reflectivity spectrum 
of the structure showing Tamm plasmon polariton as a resonant dip obtained using TMM and FDTD method. The 
bottom plot of (b) presents the argument of reflection co-efficient of Ag, DBR and their combined structure. (c) 
Electric field intensity profile of the TPP mode obtained using FDTD method along with the refractive index 
profile (black solid line) of the structure. 

where ε∞ (=5) and ωp (=8.95 eV) are the infinite frequency dielectric constant and plasma 

frequency of the metal layer, respectively. The reflectivity spectrum of the structures are 

calculated using transfer matrix method (TMM) [55] and Finite-difference time-domain 

(FDTD) [56] method. The top panel of Fig. 2(b) shows the high reflection band of the DBR 

centred at 1160 nm and a sharp resonant reflectivity dip at 1224 nm corresponding to the TP 

mode. The lower panel of Fig. 2(b) plots the arguments of the reflectivity spectrum for metal, 

DBR and their combined structure. The phase factor (e2iknd) is the phase shift for the cavity 

round trip in the layer adjacent to the metal layer. The DBR shows a linear phase shift in the 

band gap region whereas the phase shift due to the metal is nearly constant of about –π. The 

sum of all phases must be zero i.e. Arg(rMrDBRe2iknd)=0 at the TP resonance wavelength. This 

zero-crossing is observed around wavelength of 1224 nm. It exactly matches to the reflectivity 

minimum of the structure shown in the top panel. It confirms that the resonance observed in 

the reflectivity spectrum of Fig. 2 (b) is due to the excitation of TPP at the Ag/DBR interface. 

The approximate value of resonant frequency of a TP mode which lies close to the Bragg 

frequency (ω0) can be expressed by the following equation [17] 
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For the structure shown in Fig. 2(a), the value of Bragg energy is ℏω0=1.06 eV; and the 

observed TP mode has energy ℏωTP=1.01 eV. Equation (8) predicts the TP resonant frequency 

of ℏωTP ≈ 1.02 eV. The field profile and index profile data for the same photonic hetero-

structure has been displayed in Fig. 2(c) which clearly shows that the field is strongly localised 

in the region near to the metal-DBR interface compared to the entire photonic hetero-structure 

which is the reason why any perturbation above metallic layers have very small impact on the 

TP mode. The TP resonance mode depends on the plasma frequency of metal, Bragg frequency, 

and refractive index contrast of the DBR. These parameters are generally used to tune TPP 

based devices. In other words, Tamm states are sensitive to any changes in the PC properties 

like periodicity, refractive index, layer order, insertion of new layers or changing the thickness 

of the layer adjacent to the metal. The conventional TP structures can be easily modified by 

introducing spacer layers, quantum wells, quantum dots and mono-layers, but they are difficult 

to tune over a wide range of wavelengths. As metal layer is very much important for Tamm 

plasmon excitation, the impact of different plasmon active metals on the properties of TPP 

mode are discussed in following section.    

4. Effect of different plasmon active metals 

The existence and Q-factor of the Tamm resonance modes depends upon the type of plasmon 

active metallic layer, thickness of the metallic layer and angle of incidence of light. Several 

studies on the effect of different metals on the Tamm plasmon modes [57-59] have been 

reported. To understand the effect of different plasmon active metals on the sensitivity of TPP 

resonance, a TP structure made of metal/SiO2/DBR has been designed and numerically 

investigated using TMM. The DBR is made of five periodic bilayers of TiO2 and SiO2 of 

thicknesses 58 nm and 85 nm, respectively and the thickness of the metallic layer is fixed at 40 

nm. The dispersion free refractive index values of TiO2 and SiO2 are assumed to be 2.36 and 

1.47, respectively. The refractive index data of the metals Ag, Al, Au, and Cu are taken from 

the reference [60], while that of Cr is taken from the reference [61]. Fig. 3 (a) and (b) represents 

the reflectance spectrum of the TP structure for various metals with identical film thickness by 

injecting light normally from the air-metal and substrate-DBR side, respectively. The figure 

clearly exhibits a dip within the photonic bandgap which corresponds to the excitation of TPP 

mode. There is no optical reciprocity in reflectivity spectrum for the TP structures as observed  
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Fig. 3: Reflectivity spectra of Tamm plasmon structures (Metal/SiO2/DBR) made of different metals when the 
light is incident normally from (a) air-metal interface side, and (b) substrate-DBR interface side, respectively. The 
structure consists of a SiO2 spacer layer placed between metal and a DBR composed of 5 pairs of TiO2 and SiO2, 
respectively. (c) Wavelength resolved electric field distribution throughout Metal/SiO2/(TiO2/SiO2)5 structures 
(refractive index profile shown on the top of this plot) made of different metals for the light incident from air-
metal interface side. 

in Fig. 3. This is due to the nonreciprocal electromagnetic field distributions of the TP mode in 

the structures depending on the incident light direction whether from the metal side or the DBR 

side [62]. For light incident from metal side (DBR side) in a given TP structure, if the intensity 

of electromagnetic field localized near the interface between the metal and the DBR is much 

larger as compared to that of the light incident from the DBR side (metal side), then the 

absorbance of the structure will be higher at the TP mode wavelength resulting sharper dip in 

the reflectivity spectrum as compared to that of the DBR side (metal side). It can be observed 

that no significant TP mode is excited for Cr and Al when light is incident from the metal side 

where as there is weak TPP excitation when light is incident from DBR side. This happens due 

to the significant reflection/absorption of the light in the Cr and Al layers resulting poorly 

localized electric field intensity at the metal/DBR interface for light incident from the metal 

side. The use of Cr as an active plasmonic layer [63] is reported to exhibit broadband Tamm 

plasmon polariton. However, the TPP modes are well excited in Ag, Au and Cu irrespective of 

the direction of incidence. The TPP peaks of Au and Cu almost matches due to similar 

frequency dependent optical properties of both the metals. Weak impedance matching between 
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the incident light and TPP in the metal/SiO2/DBR geometry is clearly observed form the 

relatively broad and lesser dip reflectivity spectrum in case of Cr and Al (as compared to Ag, 

Au, and Cu). The condition for absolute reflectivity minimum requires an exact match of 

amplitude and phase between the forward and backward propagating beams at the metal/DBR 

interface [64]. Among all, the Ag based structure exhibits highest Q-factor TP resonance as 

compared to other metals. Moreover, Ag is primarily chosen for the visible region application 

owing to its low absorption co-efficient and absence of inter-band transitions in the visible 

band [65]. It may be noted that the width of the TPP resonance can be controlled by changing 

the metal layer.  

The behaviour of TP mode for different metals can be well understood by analysing the 

electric field distribution of the resonant mode in the structure. The wavelength resolved 

electric field distribution for different metal based TP structures are plotted in Fig. 3(c). It 

shows that the electric field is localised within the SiO2 layer close to the metal layer. The 

metallic layer and the DBR act as two reflecting mirrors, which makes the whole structure 

similar to a Fabry-Perot cavity resulting the resonance at the SiO2 layer. Such amplification of 

the electric field generates high Q-factor resonant modes. The electric field intensity is much 

higher and strongly localized for the Ag/SiO2/DBR structure while it is least and weakly 

localized for the Cr/SiO2/DBR structure. It indicates that the full width half maximum 

(FWHM) of the TP mode will be narrower and its reflectivity minimum will be deeper for the 

Ag based structure among all the TP structures. It means the Ag based TP structure will exhibit 

highest Q-factor which can be clearly seen in the Fig. 3 (a) and (b), respectively. It will be 

useful for high sensitivity and large detection accuracy sensing applications. The response of 

TP mode in Metal/SiO2/DBR structure for two most widely used metals Ag and Au are 

presented in Fig. 4 with varying angle of incidence (AOI) for TE and TM polarised light. With 

increase in the AOI, the TP mode in both the structures undergoes blue shift for both the 

polarisations of light. The shift of the TP mode with increasing AOI is more for TE polarised 

light as compared to that of TM polarised light for both the structures. The Q-factor of the TP 

mode in Ag/SiO2/DBR structure increases and decreases with increasing angle of incidence 

(AOI) for TE and TM polarised light, respectively as seen in Fig. 4 (a) and (b). For Au based 

TP structure, the FWHM of the TP mode increases with increase in AOI for both the 

polarisations of light as seen in Fig. 4 (c) and (d). From above study it can be concluded that 

Ag is the best choice for excitation of TPPs among the noble metals. Apart from the noble 

metals, a number of materials that exhibit very low dielectric constants can also be used to 

generate TPPs. Recently, TPPs are observed in structure made of materials like transition metal 
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nitrides [66], topological insulators [67], hyperbolic metamaterials [68], graphene [69], black 

phosphorous [70], and epsilon-near-zero materials [71]. Metal nitrides like TiN has been 

considered as plasmon active material for generating high Q Tamm plasmon resonances from 

visible to IR region. Kumar [72] has studied the behaviour of Tamm modes at the interface 

between TiN and a 1DPC. Yang et al. [73] experimentally found that the thermal emissivity 

and threshold temperature of TiN based TPP structure is higher compared to TiN based metal-

insulator-metal (MIM) structure. 

 
Fig. 4: Reflectivity spectra of Ag/SiO2/DBR and Au/SiO2/DBR Tamm plasmon structures for (a, c) TE and (b, d) 
TM polarised light incident at different angles of incidence.  

TPP has unique ability to undergo direct optical excitation by both TE- and TM-

polarized light without the aid of prisms or gratings. Here, the effect of metal thickness on 

excitation of the TPP mode and other resonant modes in a prism coupled TP structure has been 

illustrated in Fig. 5. A hybrid photonic structure made of a 1DPC and a SiO2 layer with a silver 

layer placed on its top is shown in Fig. 5 (a). The 1DPC structure is made of six periodic 

bilayers of (TiO2/SiO2). The thickness values of TiO2 and SiO2 layers are 58 nm and 85 nm, 

respectively. The dispersion free refractive index values of TiO2 and SiO2 are 2.36 and 1.47, 

respectively. The structure shown in Fig. 5(a) has been used to investigate the effect of metal 

(Ag) layer thickness on the TPP mode and its coupling with SPP and/or cavity mode excited 

by TE and TM polarised light. For the excitation of coupled TPP-SPP mode, a total internal 
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reflection configuration of spectrometer with a 45o prism coupler has been used. The calculated 

reflectivity contour of the prism coupled hybrid structure as a function of silver thickness and 

wavelength of light at normal incidence (θ=0o) is plotted in Fig. 5(b). It shows that the TPP 

mode is very weakly excited for Ag layer thickness below 50 nm and the mode undergoes blue 

shift with increasing silver thickness up to 50 nm. The TPP mode does not sustain for very thin 

film of thickness below 15 nm. The mode originates due to the electric field confinement by 

the metal because of its negative dielectric constant. The effective dielectric permittivity of 

metal-air system will not be negative enough for very thin metal layer to confine the electric 

field. But with increasing Ag thickness, the effective dielectric permittivity of the metal-air 

system will be dominated by the metal film, thus supporting the TPP mode [58]. The Q-factor 

of the TPP mode and its energy remain constant for Ag thickness more than 50 nm. For high 

Q-factor TPP mode, the Ag layer of more than 60 nm thick is preferred [59]. The reflectivity 

of the light corresponding to the TPP mode (wavelength of ~538 nm) has been computed as a 

function of Ag thickness and angle of incidence of both TE and TM polarised light to reveal 

the co-existence of TPP and SPP modes simultaneously in the hybrid structure. The reflectivity 

of the structure as a function of Ag thickness and angle of incidence of an excitation wavelength 

of 538 nm is plotted in Fig. 5(c). It can be seen that there exist SPP mode at the Ag-air interface 

for a certain Ag thickness range of 20-70 nm for the structure excited by TM polarised light. 

The resonant angle of the SPP mode and its band width decrease with increasing Ag thickness. 

The strong resonance angle of the SPP mode is around 44.5o which is larger than the total 

internal reflection angle of the glass-air interface (41.2o). As the Ag thickness increases the 

SPP mode becomes less and less prominent due to high propagation loss and finally disappears. 

Cavity mode with resonant angle of around 37.5o is noticed for the structure excited by TM 

polarised light which implies that there is transmission of light through the structure at these 

incidence angles. The band width of the cavity mode is larger than those of SPP. The cavity 

mode disappears with the increase of the Ag film thickness due to the large reflectivity of the 

thick Ag film. No such SPP or cavity modes are observed for TE polarised light. It confirms 

that TPP mode can be excited by both polarised states while the SPP mode can only be excited 

by the TM polarised light. Fig. 5 clearly demonstrates the relation between Ag film thickness 

and the confined optical modes existing in the hybrid structure. 
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Fig. 5: (a) Schematic of prism coupled hybrid photonic structure that supports TPP and SPP modes. (b) 
Wavelength and Ag thickness resolved reflectance contour. (c) Reflectivity contour as a function of Ag thickness 
and angle of incidence of light having an excitation wavelength of 538 nm. 

5. Coupling of Tamm plasmon with other resonant modes  

Coupling of Tamm plasmon polariton with other resonant modes can be utilized to tune the 

resonances. The TPP mode has been coupled with surface plasmon polaritons or magnetic 

plasmon polaritons for enhancing electric field or magnetic field [69], cavity modes for 

narrowband thermal emission [74], semiconductor exciton in polaritonic devices [75], and 

defect modes for induced transparency [76]. The coupling of two or more resonant modes 

generate “hybrid” modes, which are observed as a series of non-overlapping dips or peaks in 

the reflection or transmission spectra as shown in Fig. 6. The hybrid modes show Rabi-like 

splitting in the strong coupling regime. The splitting modes can be used for developing self-

referenced refractive index sensors. Fig. 6 illustrates an overall demonstration of the coupling 

of Tamm plasmon modes to various resonant modes along with their regime of strong coupling. 

Schematic of the multilayer hetero-structure resulting coupled TPP-cavity modes is shown in 

Fig. 6(a). The multilayer configuration for the structure is Ag/S/(HfO2/SiO2)5/C/(HfO2/SiO2)5. 

Both HfO2 and SiO2 layers are assumed as lossless and dispersion free dielectrics with 
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refractive index values 1.96 and 1.47, respectively. Both spacer (S) and cavity (C) layers are 

made of SiO2. Here, the spacer layer thickness (ds) can be adjusted to control the coupling 

between the TPP and the cavity modes as shown in Fig. 6(b). The figure has curved dotted and 

solid lines in the contour plot, which represent the bare cavity mode (ωcavity), bare TP mode 

(ωTP), and their coupled modes (ωU and ωL) as a function of ds, respectively. The bare TP mode 

undergoes redshift with increasing ds, while the bare cavity mode has a fixed energy value of 

~2.486 eV and it does not change with ds. The coupled TP-cavity hybrid modes (ωU and ωL) 

strongly deviate from their bare modes in the strong coupling region (130 nm ≤ ds ≤ 150 nm). 

Beyond this region, the behaviour of the hybrid modes with ds is similar to that of the bare 

modes. The anticrossing of the modes is observed for ds=141 nm at the energy of ~ 2.48 eV, 

which is their common bare resonant mode energy. It indicates the strong coupling of the 

modes. The energy separation between the two hybrid modes ωU and ωL is 125 meV exactly at 

the anticrossing region, known as Rabi-like splitting energy (ΩR). The strong coupling between 

the TPP and cavity modes is further confirmed by the splitting energy value as it is larger than 

the linewidth of their bare modes [77]. Coupled oscillator model can be used to better explain 

the coupling between resonant modes. Here, the cavity mode and the TPP mode are considered 

as two oscillators coupled in a hybrid structure. The energy eigenvalues (ω) of the coupled 

oscillators system has been obtained by solving the a 2x2 matrix as described elsewhere [78]. 

The two solutions can be expressed as follows: 

   2 2
s s

1
( ) ( ) ( ) 4

2U s cavity TP cavity TP cTd d d            
              (10) 
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s s
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2L s cavity TP cavity TP cTd d d            
                         (11) 

where ΩcT is the coupling strength between the cavity and TP modes. The TP mode is tuned by 

varying the spacer layer thickness ds close to the Ag layer. It means that the value of ωTP is a 

function of ds i.e. ωTP (ds). Equation (10) and (11) have been used to fit the curves of hybrid 

modes ωU and ωL as shown in Fig. 6 (b). The fitted curves are exactly matching to the 

numerically estimated hybrid resonance positions in the reflectivity contour. It validates the 

effectiveness of coupled oscillator model to explain the behaviour of coupled modes. Fig. 6 (c) 

shows the reflectivity spectra for different values of ds which helps to understand the coupling 

of modes. It can be clearly seen that the hybrid modes are coupled with unequal weight of the 

TP mode and the cavity mode for ds=180 nm, 160 nm, 120 nm, and 100 nm, which is evident 

from their different linewidth and reflectivity dip minima in the reflectivity curves. It indicates 
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that the modes are weakly coupled. In case of ds=140 nm, the coupled modes are formed with 

equal weight of both their bare modes indicating strongly coupled system, which is evident 

from their identical amplitude and linewidth of the resonant dips in the reflectivity spectrum. 

It infers that a coupled system can be designed as weak or strong by tuning the ds value. Here, 

the spacer layer acts as a modulator for tuning hybrid resonances in the coupled system.  

 

Fig. 6: (a) Schematic of a photonic hetero-structure Ag/spacer/1DPC/cavity/1DPC giving coupled TPP-cavity 
modes, (b) contour plot of reflectivity of the structure as a function of spacer layer thickness (ds) and energy, and 
(c) reflectivity curves for different values of ds [54]. (d) Schematic of TPP-exciton coupled system with an 
embedded WSe2 monolayer and (e) its inverted photoluminescence spectra for various in-plane momenta showing 
splitting of coupled Tamm plasmon-exciton polariton modes [75]. (f) Ellipsometric parameter Ψ spectra of TPP-
SPP hybrid mode excited in a 1DPC/SiO2/Ag structure shown in the inset for different angle of incidence 
(θincidence), and (g) contour of Ψ as a function of wavelength and θincidence, where the white dashed line corresponds 
to the photonic band gap edges [79] . All the figures are adapted with permission. 

The coupled hybrid modes provide a feasible platform for many integrated photonic 

applications like biosensors, emitters, filters, absorbers, and photodetectors [80-82]. The 

coupled TPP-cavity modes can be tuned very easily by varying the geometrical parameters and 

polarisation of the light [54]. Fig. 6(d) illustrates a compact photonic device exhibiting room 

temperature Tamm plasmon coupling to a valley exciton of WSe2 monolayer embedded in it 

[75].  The exciton has resonance energy of 1.650 eV with a line width of 37.5 meV. The WSe2 

monolayer is placed close to the metallic layer so that the Tamm plasmons formed can 

effectively couple to the excitonic mode. Experimentally observed photoluminescence 

spectrum is shown in Fig. 6(e) at various in-plane momenta. The modes evince strong coupling 

between them with a Rabi splitting of 23.5 meV. Similarly, TPP-SPP hybrid photonic states 

are formed when the TPP and SPP are simultaneously excited in a photonic hetero-structure as 
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shown in Fig. 6(f) which requires TM polarised light for SPP excitation [83]. The mode 

hybridization results in energy exchange between the interacting modes so that the dispersion 

of the new resonant modes is modified compared to the non-interacting isolated states. This 

can be observed in the momentum or angle resolved reflection-transmission spectra as shown 

in Fig. 6 (g), It shows a Rabi-like splitting between the hybrid modes in the strong coupling 

regime [84].  The coupling strength between SPP and TPP modes can be estimated using 

coupled oscillator model [79] and is given by  

22 )(
4

1
TPPSPPRg           (12)  

In the strong coupling regime g > (ϒSPP + ϒTPP)/4, where g is the coupling strength, ΩR is the 

Rabi splitting between the modes, ωTPP/SPP is the resonance frequency of TPP/SPP mode, 

ϒTPP/SPP is line width of TPP/SPP mode.  

 

Fig. 7: (a) Schematic of a graphene based coupled modes structure, and its (b) absorption spectra and (c) Rabi-
like splitting energy (ΩR) with varying periodicity (N) of the DBR [69]. (d) Geometric configuration of a hybrid 
TPP-cavity modes structure, and its (e) reflectivity spectra and(f) ΩR with varying N [54]. All the figures are 
adapted with permission. 
 

It is found that the coupling of hybrid modes depends upon the periodicity of a DBR in 

a TPP configuration. Fig. 7(a) depicts a device configuration exciting graphene Tamm plasmon 

polariton at the graphene-DBR interface and silver Tamm plasmon polariton at the silver-DBR 

interface [69]. The change in coupling of these two modes with varying DBR periodicity can 

be clearly seen from Fig. 7(b) and (c). When the graphene layer placed next to metallic layer, 

it changes the conductivity of the metal layer which modifies coupling strength between the 
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modes [79]. Another schematic of a device exhibiting coupled TPP-microcavity modes [54] is 

shown in Fig. 7(d) whose coupled mode behaviour with varying DBR periodicity is also 

presented in Fig.7(e) and (f). The study shows that the behaviour of modes coupling with DBR 

periodicity will remain same even though the device configurations are different i.e. the Rabi-

like splitting energy between the modes decreases with increasing periodicity and the modes 

gets narrower which can be attributed to the reduced radiation loss through the DBR. The value 

of ΩR in the strong coupling region can be calculated using the following equation [54]: 

0
2 1 1 (1 )

2
1 (1 2 )

N

R cT
 

  

   
           

            (13) 

where η=nHfO2/nSiO2 is the refractive index contrast, and N is the periodicity or number of unit 

cells in a 1DPC.  From equation (13), one can clearly see that the value of ΩR does not depend 

on the properties of the metal layer. Equation (13) has been used to compute the values of ΩR 

with varying N and it is plotted in Fig. 7 (f). The computed curve is closely matching with that 

of the values estimated numerically using transfer matrix method. The value of Rabi-like 

splitting energy ΩR is large (~125 meV) for the lower value of N =5.  The resonant electric 

field of the TP mode easily propagates through the 1DPC made of lower N value, and 

efficiently interacts with the cavity mode resulting in a large value of ΩR. The strong coupling 

between the cavity mode and the TP mode leads to an exchange of energy between the cavity 

layer and metallic silver interface. Consequently, enhanced light-matter interaction occurs in 

either of the cavity and spacer layers. 

Recently, coupled TPP-guided mode resonance [85], Tamm state-plasmonic defect 

mode [86], TPP- magnetic plasmon [87], and TPP-topological photonic state [77] have been 

studied to observe the generated multiple hybrid photonic states useful for different photonic 

applications. Tamm coupled fluorescence emission offers an interesting area of research [88-

90].  In a study, directional control of fluorescence emission by use of single nano-aperture on 

a metallic film deposited on a DBR has been experimentally observed. The fluorescence 

emission coupled to Tamm plasmon at metal-DBR interface is observed to be emitted with an 

angular width of 12.4o from the sample surface [90]. Coupled Tamm plasmon-exciton 

polaritonic states are often exploited for realisation of enhanced spontaneous emission and 

compact polariton lasers [91]. The primary reason for enhancement of spontaneous emission 

is the high confinement of field near to the interface leading to better light matter interaction. 

Not only coupled TP structures assist to enhance spontaneous emission but also it is easy to 

control the emission pattern by modifying the metallic layer of the planar metal-PC structures 
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[92]. Advance studies include the coupling of Tamm plasmons with 2D excitons for compact 

photonic devices [93]. Strong coupling between TP and exciton modes of QWs was found to 

produce intense emission of polaritonic modes useful for polariton lasers [36, 39]. It is reported 

that TPs can be used mediate to couple quantum dot emission to SPs due to its deeper 

penetration into the DBR [94].  

 

Fig. 8: (a) Sketch of a structure containing two Bragg reflectors enclosing an organic cavity layer and a silver 
layer that generates hybrid modes of organic microcavity photon and Tamm plasmon polariton, (b) measured 
angle resolved emission spectra of the hybrid modes along with the theoretical data (black solid and red solid line) 
for TE and TM polarized light, and (c) parabolic splitting between TE- and TM-modes of the shifted cavity 
resonance and Tamm plasmon-polariton with varying angle of incidence [95]. (d) Schematics of a hybrid mode 
structure containing strong oscillator layer made of (e) DPAVBi molecules, (f) calculated (dashed line) and 
measured (circles) reflectivity spectra of the structure having 60 nm thick DPAVBi layer for TE (left) and TM 
(right) polarized light, and (g) experimentally (circle), analytically (dashed line), and numerically (solid line) 
obtained polarization splitting of the hybrid modes [96]. All the figures are adapted with permission. 

6. Polarization splitting of Tamm plasmon coupled resonant modes 

Angle and polarization resolved reflectivity spectra of a coupled resonant modes provide detail 

information on interactions between modes [97]. Polarization splitting, which is the energy 

difference between TE and TM polarised light excited resonant mode, can be determined from 

the measured angular reflection/emission spectrum.  It is also called as TE-TM splitting. In 

optical micro-cavities, the TE-TM splitting enables the observation of interesting phenomena 
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including the optical spin Hall effect, magnetic monopole-like half solitons, spinor condensate 

with half-quantum circulation, and possibly topological insulators [98]. In case of optical spin 

hall effect, the spin polarization of the polaritons scattered clockwise and anticlockwise have 

different signs, which is possible due to the strong TE-TM splitting and finite life time of the 

exciton polariton in micro-cavities [99]. Strong coupling between TPPs and other excitons 

leads to coupled resonant modes and their polarization dependency can be explored for 

optoelectronic device applications [95]. A photonic nanostructure device has been shown in 

Fig. 8(a) comprising an organic cavity and a Ag layer sandwiched between two DBRs [95]. 

The structure leads to coupled Tamm plasmon states (TS1 and TS2). The angle resolved 

reflection spectra of the coupled modes for both TE and TM polarised light are shown in Fig. 

8(b). The resonant coupled modes get blueshift with increasing incident angle of light. It 

happens due to the resonance condition δ=2πndcosθ/λ, where d is the virtual cavity thickness. 

As per this equation, the resonant mode energy has to increase to keep a fixed phase shift (δ) 

with increasing incident angle (θ). The linewidth and resonant dip of both the modes are 

constant over a wider range of incident angle, which makes it suitable for developing tunable 

dual-narrow-band filters. The coupled modes exhibit parabolic polarisation splitting of more 

than 40 meV confirmed from the analytical dispersion curves. Fig. 8(c) verifies the quadratic 

splitting of the distinct modes and the angular behaviour of the splitting in the strong coupling 

regime can be well described by the sin2θ dependency predicted by the polarization splitting 

model [100]. The lower energy Tamm plasmon state TS2 exhibits large TE-TM splitting as 

compared to that of the higher energy state TS1, which can be attributed to the plasmonic nature 

of the TM mode [101]. There is also a report indicating opposite sign of polarisation splitting 

in organic microcavity-Tamm structures in the regime of ultra-strong coupling [96]. The 

structure shown in Fig. 8(d) is used for ultra-strong coupling of Tamm plasmons and exciton 

of DPAVBi (4,4′-Bis[4-(di-ptolylamino) styryl]biphenyl) whose chemical structure is shown 

in Fig. 8(e). The analytical, numerical and experimental data of angle resolved emission 

spectrum are shown in Fig. 8(f) for a DPAVBi layer thickness of 60 nm. The value of TE-TM 

polarisation splitting is more than 180 meV for both upper (UP) and lower polariton (LP) 

branches as shown in Fig. 8(g), which is much larger to the earlier reported results. Panzarini 

et al. [102] have reported the maximum TE-TM splitting of ~1.7 meV for InGaAs quantum 

wells in a GaAs cavity. Lodden and Homes [103] have demonstrated a significant polarization 

splitting of less than 30 meV in an organic semiconductor microcavity under both optical and 

electrical exciton. Camposeo et al. [104] have reported the maximum TE-TM splitting of 35 

meV for J-aggregate of cyanine dyes as active layer in an organic microcavity. Hayashi et al. 
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[101] have shown a maximum TE-TM splitting of ~150 meV in a metal-insulator-metal 

microcavities with a PVA layer doped with J-aggregates of TDBC molecules as an active layer. 

Oda et al. [105] have reported the maximum polarization splitting of ~200 meV for strong 

exciton-photon coupling in a metal mirror microcavity with oriented PIC J-aggregates as an 

active layer. The reported data suggests that the polarization splitting can be exploited for 

manipulating, shaping and guiding propagation and confinement of coupled Tamm plasmon 

resonant modes for realizing Tamm plasmon based optoelectronic devices [106].  

7. Tunable Tamm plasmon 

Tamm plasmon mode excited at the interface between a metal and a DBR does not get affected 

by any perturbation in the external environment, but it can be tuned by changing properties of 

active layers. Tunable TP modes has plenty of applications including spatial filters, broad range 

optical sensors, and solar power harvesting [107]. Most common approach to get tunable TP 

mode is by changing the thickness of layer and number of periods in DBR, varying thickness 

of metal layer, etching microstructure on the metal films, inserting 2D materials in the DBR, 

and gradient thick metal layer [35, 108-110]. Active tunability of TP mode by applying external 

electric field, magnetic field, temperature, and pressure have been demonstrated by several 

researchers in recent years. Chen et al. [110] have tuned resonant wavelength, band width, and 

Q-factor of the coupled Tamm plasmon-cavity modes by varying spacer thickness, fermi 

energy of graphene, Bragg grating period, and Bragg wavelength. The surface conductivity of 

the graphene layer depends on its fermi energy which can be controlled by applying electric 

field or heat [111]. It is exploited for tunable Tamm plasmon mode. Li et al. [112] have 

theoretically demonstrated tunable reflectivity dip modulation from 38% to 99% by applying 

an electric field in a TPP structure with a monolayer graphene. Mode hybridization of Tamm 

plasmons has been preferred to design actively tunable TP devices. Such tunability can be 

achieved by inserting a liquid crystal (LC) layer in a conventional TP structure [113, 114]. 

Buchnev et al. [46] have dynamically tuned a Tamm structure by applying voltage to a LC 

above a metasurface. The inclusion of the LC turns the hybrid modes sensitive to heat, electric 

field and polarization of the incident light. The mode depends upon the applied electric field 

because of the Frederiks transition in the LC [115]. Fig. 9(a) shows a Tamm plasmon device 

in which a LC 4-pentyl-40-cyanobiphenyl (5CB) is inserted between two PCs whose cross-

sectional scanning electron microscope (SEM) image is shown in Fig. 9(b) [113]. The modes 

changes significantly for TM polarization with the applied voltage after the Frederik threshold 

voltage of 0.74V which can be seen in the measured reflectance spectrum plotted in Fig. 9(c). 
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No change occurs for the TE polarized light because the external electric field is applied along 

the direction of propagation. The molecular ordering of the LC molecules decreases with 

increase in temperature which leads to decrease in extraordinary refractive index and increase 

in ordinary refractive index of the LC. As a result, the micro-cavity mode undergoes blue shift 

and red shift, respectively for TM and TE polarized light. Measured and calculated reflectance 

spectra with temperature for TM polarization is plotted in Fig. 9(d) showing the anti-crossing 

between the TPP-MC hybrid modes. The shift in the hybrid modes happens due to the change 

in refractive index of the liquid crystal after nematic-isotropic phase transition at 33.4oC. 

Another LC assisted actively tunable TP device is shown in Fig. 9(e) [114]. The reflectance 

spectra of the device plotted in Fig. 9(f), (g) and (h) reveal the tunability of Tamm mode by 

varying the angle of incidence to 0o, 45o, and 90o, respectively due to the birefringence 

property of the LC layer. LC based tunable Tamm plasmon devices are widely demonstrated 

due to their large birefringence and easy controllability via external stimuli [116-118]. 

 

Fig. 9: (a) Schematic of the liquid crystal (LC) micro-cavity Tamm structure, (b) electron microscope image of 
the 1DPC made of periodic layers of SiO2 and Si3N4, (c) reflection contour as a function of externally applied 
electric potential and wavelength of light at 21.80C, and (d) calculated (left) and measured (right) temperature 
dependent reflectance spectra for TM-polarized light incident at an angle of 40. The red dashed line and black 
dashed line correspond to the position of the bare TPP and bare micro-cavity modes, respectively whereas the 
magenta dashed line corresponds to the results from coupled oscillator model [113]. (e) Sketch of TPP structure 
made of a LC layer sandwiched between a 1DPC made of TiO2/SiO2 periodic layers and Au coated glass substrate, 



23 | P a g e  
 

and its reflectance spectra measured at incident angle of (f) 0o, (g) 45o, and (h) 90o, respectively for the LC layer 
switching between the nematic and isotropic phases [114]. (i) SEM image of a structure consisting of a 
bottom(Al0.2Ga0.8As/AlAs)20DBR mirror and atop layer of Al0.2Ga0.8As embedded with eight GaAs quantum 
wells, (j) electric field intensity and refractive index profile inside the structure with its reflectivity spectrum 
shown in the inset plot, (k) momentum resolved reflectivity spectra of the structure at different indicated voltages, 
and (l) variation of hybrid modes (lower and upper polariton) with applied voltage exhibiting Rabi-like splitting 
are plotted along with the bare TP mode and the bare exciton mode [119]. All the figures are adapted with 
permission.  

Electro-optical tuning is another convenient and reversible methods used for tuning of 

the modes. Grossmann et al. [36] have demonstrated electro-optical tuning of Tamm modes in 

an air-gap DBR micro-cavity structure possessing quantum well excitons. The strong coupling 

between exciton-Tamm plasmon modes is actively tuned by electrical biasing. In another study 

containing gold micro disks, the hybrid exciton-polariton modes show red-shift under external 

electrical field [119] whose cross-sectional SEM image is shown in Fig. 9(i) and corresponding 

field profile and reflectance spectrum is given in Fig. 9(j). The fields are highly amplified in 

the QW reasons leading to strong coupling between the modes. The voltage dependent 

dispersion is calculated from the momentum resolved reflectance shown in Fig. 9(k). With the 

increase in voltage, the emission shifts red while the dispersion curvature of both the upper and 

lower branch flattens induced by the quantum confined Stark effect. Under electrical biasing a 

Rabi splitting of (9.2 ± 0.2) meV is observed between the modes plotted in Fig. 9(l). The Rabi 

energy is useful for calculation of oscillator strength per unit area of the QW. It is evident that 

the hybrid system can change from highly excitonic to highly polaritonic state under electrical 

tuning as observed in Fig. 9(l). Bikbaev et al. [120] have proposed a Tamm structure containing 

metagrating and a conductive oxide ITO to dynamically control the amplitude and phase of the 

reflected light under electrical biasing. The TP resonance undergoes blue shift with increase in 

applied voltage due to decreasing dielectric permittivity of the ITO layer. Dong et al. [121] 

have theoretically demonstrated non-reciprocal TPPs at the interface of a magneto-photonic 

crystal (MPC) and a conducting metallic oxide. They observed spectral splitting of the TPP 

modes by front and back illumination which validates the non-reciprocity arising due to 

violation of periodicity and time-reversal symmetry in the structure. He et al. [122] have 

reported nonreciprocal resonant transmission/reflection, which originates from direct 

excitation of nonreciprocal TPPs at the interface between a 1DPC and a magneto-optical metal 

film by applying an external magnetic field. The magneto-optical thin film based TP structure 

will be useful for designing optical nonreciprocal devices such as optical diodes. Wu et al. 

[123] have observed strong nonreciprocal radiation at 300 angle of incidence in a MPC atop 

silver layer in which the MPC consists of periodic layers of InAs and a spacer layer with 

relative permittivity of 2. TPPs possess many interesting characteristics in the magnetic domain 
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which require more theoretical and experimental investigation. Buller et al. [124] have studied 

the formation of Tamm plasmon/exciton-polariton hybrid states and their modulation by 

applying surface acoustic waves in a structure made of a gold layer on top of a DBR consisting 

of AlxGa1-xAs layers. The modulation occurs due to the change of the exciton band gap energy 

and change of layer thickness because of induced strain fields by the surface acoustic waves. 

Active modulation of Tamm plasmon modes is a very hot topic and requires numerous efforts 

for cost effective, reversible and durable Tamm devices for their application in various fields. 

8. Applications of Tamm plasmon 

Tamm plasmons are being considered for innovative applications in perfect absorbers, 

nanoscale lasers, filters, bistable switches, sensors, thermal emitters, solar photovoltaic cells, 

photodetectors, photocatalysis, and many other applications. This section presents brief 

summary of the progress made in some of the applications. 

8. 1. Perfect absorbers 

There has been increasing interest in making photonic nanostructures for perfect absorption at 

designated wavelengths with potential applications in solar cells, lasers, integrated photonics 

etc. Gong et al. [125] designed a near perfect absorber exploiting Tamm modes in a 1D 

photonic crystal made of alternate layers of TiO2 and SiO2 in a 2D metal–dielectric-metal 

waveguide. Thin metallic layer near the PC excited the Tamm modes to exhibit near perfect 

absorption (99.1%) whose peak is tunable from telecom wavelengths (1550 nm) to visible (590 

nm) by changing the geometrical parameters of the structure. Liu et al. [126] have theoretically 

and experimentally demonstrated single and multi-band near perfect absorber by using simple 

metal and a 1D PC based structure. Perfect absorbers for visible region are observed in a simple 

photonic heterostructures composed of a truncated all-dielectric photonic crystal and thick 

metal film [127] whose schematic is shown in Fig. 10(a). For absorption purpose, small 

thickness of the metal layer is detrimental. The numerical simulation reveals that absorption 

more than 99% is possible for silver thickness of more than 150 nm with an eight period DBR 

structure. The influence of different period numbers (N) on the absorption of the structure are 

investigated.  The measured absorption spectra of the structures and their SEM images are 

shown in Fig. 10 (b), (c) and (d) for N=7, 8 and 10, respectively. The three structures exhibit 

near perfect absorption of 92.3%, 90.1%, and 90.6% at wavelengths of 675 nm, 604 nm, and 

489 nm, respectively. Lu et al. [128] demonstrated high absorption of 80% at telecom 

wavelengths for both TE and TM light excitations on introduction of a monolayer graphene 
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between a DBR and a thin metal layer. In a similar design, a monolayer MoS2 has been 

introduced between a dielectric Bragg grating and a metal film. The resulting Tamm mode in 

the photonic structure enhanced the light absorption by 96% in the visible region [129]. Han et 

al. [130] demonstrated graphene based tunable mid IR absorber structure exploiting coupling 

of Tamm plasmon polariton and surface plasmon polariton. Their structure comprises of DBR, 

air layer, SiC, and Graphene ribbons. Interaction of Graphene localized SPP and TPP modes 

lead to dual mode IR absorption above 99%. Confinement of Tamm modes lead to high 

absorption in 2D graphene layers which otherwise absorb only 2.3% incident light. There are 

many reports on graphene assisted Tamm plasmon based tunable absorbers form visible to 

infrared region of the electromagnetic spectrum [85, 131-133].  

 
Fig. 10: (a) Schematic (TiO2/SiO2)N/Ag Tamm plasmon structure as a perfect absorber, and measured absorption 
spectra of the (TiO2/SiO2)N/Ag structures with their cross-sectional SEM images (inset plot) for (b) N=7, (c) N=8, 
and (d) N=10, respectively [127]. (e) Cross-sectional SEM image of ITO/(Nb2O5/SiO2)6 heterostructure based 
non-reciprocal Tamm absorber, (f) measured absorption map in the heterostructure as function of wavelength and 
angle of incidence for TM polarised light, and comparison plots between simulated and measured absorption 
spectra at (g) ±100  and (h) ±400 angle of incidence [71]. All the figures are adapted with permission. 
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SEM image of an angle insensitive Tamm absorber using epsilon near zero (ENZ) 

material [71] is shown in Fig. 10 (e). Doped indium-tin-oxide (ITO) of thickness 60 nm as ENZ 

material is used to replace metal as shown in the SEM image. The 1DPC is composed of Nb2O5 

and SiO2 of thicknesses 150 nm and 215 nm, respectively. The real part of the permittivity of 

ITO is close to zero (εITO
’=0.0037) at λ≈1170 nm. It is a signature of an ENZ material, and 

leads to absorption peak at λ≈1170 nm for TM polarised light in ITO thin film. The absorption 

of the Tamm structure as a function of wavelength and angle of incidence for TM polarised 

light is shown in Fig. 10(f). The positive angle, in this case, corresponds to the clockwise angle 

of incidence when light is incident from the substrate side and negative angle corresponds to 

the anticlockwise obtained angle of incidence when the light is incident from the air side.  The 

non-reciprocity behaviour of absorption is clearly visible in Fig. 10 (g) and (h) when TM 

polarised light is incident at ±100 and ±400 respectively. Large nonreciprocal absorption around 

the ENZ position i.e. λ≈1170 nm is observed. The intensity of the absorption for different angle 

of incidence is found slightly different, but the nonreciprocal nature always exists because of 

the ENZ effect. Substantial absorption can be observed in Fig. 10 (h) when the light is incident 

from the substrate side or ITO side at 400 which can be explained as the cumulative effect of 

confinement of the Tamm plasmon and the boundary condition induced localization at the ENZ 

interface. Xue et al. [134] designed a wide-angle spectrally selective absorber with 98% 

absorption over a wide range of incidence angles up to 80o, where the dispersion-less TPP 

mode is excited in a structure made of 1D hyperbolic metamaterials on metal substrate. An 

angle insensitive broadband absorber is designed by Wu et al. [135] with absorbance of more 

than 85% from 1612 to 2335 nm. The device is based on Tamm plasmon excitation between 

Cr metal and a 1DPC containing hyperbolic metamaterials with a wide angle absorption from 

0 to 70o. Lu et al. [136] have simulated and experimentally demonstrated a wide-angle perfect 

absorber in a heterostructures made of a metal layer and a 1DPC composed of layered 

hyperbolic metamaterials and dielectrics. The absorption peak with TPP shows value of 91% 

in the angle range of 0 to 450. Li et al. [109] has designed a metal-photonic crystal structure 

that is tunable over telecom range (1510–1690 nm) exploiting Tamm plasmons. Their 

optimized structure has shown absorbance of 99.99%. Bikbaev et al. [137] have theoretically 

demonstrated a narrowband perfect absorber exploiting TPP localized at the interface between 

a 1DPC and a nanocomposite with near-zero effective permittivity. Recently, Kim et al. [138] 

have proposed a TP structure made of single material whose refractive index is tailored through 

porosity and prepared using glancing angle deposition technique. The single material TP 

structure shows near-unity absorption of ~99% with Q-factor of ~45 at λ=700 nm. It is evident 
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that TPPs have been extensively studied to realize wide angle, tunable, narrowband/broadband, 

and multichannel absorbers useful for various nan-photonic devices [139-141].  

8. 2. Tamm Lasers  

Plasmonic lasers offer the advantage of mode size below the diffraction limit with lasing under 

extreme conditions [142, 143]. Unlike conventional lasers with resonant cavity layer, the 

Tamm plasmon mode itself provides the role of resonant cavity and the control of which leads 

to easy tailoring of lasing devices and their emission properties in the nanoscale. Symonds et 

al. [144] reported experimental demonstration of lasing in metal dielectric quantum well 

structure exploiting Tamm plasmons which opens the possibility of integrated micro-laser 

based devices. Their device was made of a DBR formed by 40 pairs of AlAs/Ga0.95Al0.05 with 

a 45 nm silver layer on top for exciting the Tamm mode with lasing wavelength around 857 

nm at 77 K.  The same group demonstrated lasing in confined Tamm Plasmon structures [145] 

consisting of metallic microdisks of varying diameters deposited on a bi-dimensional DBR 

shown in Fig. 11(a). Thirty pairs of AlAs/AlGaAs comprised the active DBR with lasing 

wavelength at 855 nm at 77K. The emission dispersion of the device with varying pump powers 

(28 µW to 81 µW) for 4µm diameter Ag microdisks is shown in Fig. 11(b). With the increasing 

pump power, the strong interaction between confined TPP and exciton modes decreases and 

the fundamental confined Tamm mode emission becomes more and more intense. At high 

pump powers the emission is profound in the angular aperture of 140. Fig. 11(c) depicts the 

increase in emission intensity of the fundamental Tamm mode with varying pump power 

integrated over the whole numerical aperture. Spectral tuning of the Tamm mode has been 

obtained by thickness gradient of the layers. The decrease of the lateral size of the structure has 

led to decrease in lasing threshold. Lheureux et al. [146] reported polarization control of the 

confined Tamm lasers from spatially confined locations. Anisotropic three-dimensional 

confinement of Tamm modes at the interface of active DBR and silver film facilitated polarized 

emission with degree of polarization >90%, whereas patterning of top metallic layer with 

micro-rectangles provided the spatial confinement of lasing. Gubaydullin et al. [92] 

demonstrated enhancement of spontaneous emission in metal/semiconductor Tamm plasmon 

structures at room temperature. The DBR comprised of 30 pairs of GaAs/Al0.95GaAs with three 

monolayers of InAs as quantum dots for active area with top silver layer to excite the Tamm 

mode. Toanen et al. [41] reported a super Tamm structure based on AlGaAs/AlAs DBR with 

a SiO2 layer inserted between the DBR and the silver coating with room temperature lasing. 

Compared to a conventional Tamm laser, the introduction of low index SiO2 layer and adjusting 
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the thickness of last DBR layer help in narrowing spectral emission and decreasing loss that 

facilitates room temperature lasing. Recently, Xu et al. [147] have designed and fabricated a 

TPP based UV laser using ZnO as an active layer between metal and DBR using the strong 

field confinement property of Tamm plasmons. This ZnO TPP laser is a cost effective and 

easy-to-fabricate device with a relatively large sample area. However, challenges remain in 

Tamm lasers to overcome the losses further, decrease of lasing threshold and room temperature 

lasing with temporal, spatial, spectral confinement of Tamm lasing mode in 3D for practical, 

useful laser devices. 

8. 3. Hot-electron photodetectors 

Traditionally used semiconductor photodetectors are limited by the band gap of the 

semiconductors. According to Shockley-Queisser limit the conversion efficiency of single 

junction semiconductors lies approximately to 33%. In recent years, plasmonic structures have 

been explored for efficient photodetection mechanism [148-150]. Upon photon absorption, the 

energy is transferred to the electrons in the metal, generates non-thermal electrons with 

energies well above the Fermi level called as hot electrons [151]. In order to achieve high 

efficiency hot electron generation and collection, significant light absorption in the metal is 

necessary through coupling of incident light into surface plasmons. Generally, two structures 

such as Metal-Insulator-Metal (MIM) structure and Metal-Semiconductor (MS) Schottky 

junction [152] are used to generate and collect hot carriers in metals. In both cases, the incident 

light is largely absorbed in one metallic nanostructure contact to excite surface plasmons below 

the semiconductor band gap. The absorption either leads to direct generation of hot electrons 

or to surface plasmons. These carriers will diffuse and a fraction of them will pass the dielectric 

or semiconductor interface. A net current will flow based on the absorption profile within metal 

layer (layers) and on the voltage established by the energy barrier for hot electrons to travel 

from one metal to the other metal (semiconductor) [153]. These hot electrons can be used for 

photodetection in metal/semiconductor or metal/insulator systems [154-156]. SPs generate hot 

electrons in metals in a sub-wavelength region more effectively due to strong field localization 

compared to the direct light illumination [157]. Hence using plasmonics, the hot electron 

photodetection mechanism can be improved to facilitate room temperature below band gap 

operations [148-150]. But there is a requirement of specially designed sub-wavelength 

structures for SP based detectors which involves costly and complicated fabrication procedures 

[158]. Therefore, TPs are used as an alternative easy and planar solution by implying better 

light trapping abilities, higher absorption, and cost effectiveness. In a TPP structure the metal 
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part is replaced by M-I-M structure for photodetector applications. The hot electrons are 

produced at the metal-DBR interface through the non-radiative decay of TP resonance. The 

hot-electrons then reach the metal/semiconductor interface and ultimately collected at the 

cathode metal layer. It is worth noting that for such systems the electrons flow in both the 

directions of the metal layer which determines the net photocurrent generated by the device. 

Hence there is a need of asymmetric absorption in the top and bottom metal layers because 

more the asymmetry better is the photoresponse. 

Table-1: Summary of Tamm plasmon based hot electron photodetectors  

Configuration  Spectral range  Peak photoresponsivity  

Silica/Au/Zno/Au/(TiO2/Al2O3)8  [159] 700-900 nm 13.7 nA/mW 

Substrate/(Ge/SiO2)3/Ge/SiO2/ITO-ZnO-Ti/Au  [160] NIR 8.26 nA/mW 

Substrate/(TiO2/Al2O3)7/n-Si/TiN  [161] NIR 26 mA/W 

Substrate/(Si/SiO2)6/TiO2/Au/ TiO2/Au  [162] NIR 2 mA/W 

1DPC/Au/TiO2/1DPC  [163] 700-1100 21.87 mA/W 

Au/Si/Au/(TiO2/SiO2)6  [164] 1000-1400 16 mA/W 

Silica/Au/(MoS2/SiO2)4  [165] 700-1100 12.1 mA/W 

Substrate/Au/(Si/SiO2)7  [166] NIR ---- 

 Zhang et al. [159] have theoretically compared the grating coupled SP hot electron 

photodetector to a TP device consisting of a DBR above Au-ZnO-Au structure and found that 

the photo-responsivity of the TP photodetector is twice (13.7 nA/mW) than the SP based 

photodetector(6.5 A/mW). In its first experimental observation, a TP-based wavelength 

selective hot electron photodetector was prepared by depositing a metal-semiconductor-ITO 

layer over a DBR [160]. The structure consists of Au-(Ti-ZnO)-ITO structure over a 7 layer 

DBR shown in Fig. 11(d). The device shows a maximum photoresponse of 8.26 nA/mW when 

the Tamm mode is excited at 1581 nm for the structure. The electrical photo response at zero 

bias of the device plotted in in Fig. 11(e) shows the wavelength selectivity of the device. It can 

be seen that the photoresponse decreases by 80% by changing the wavelength of illumination 

from 1581 nm to 1529 nm. The absorption difference between the Au and ITO layer plotted in 

Fig. 11(e) follows the same wavelength dependence as the photo-responsivity which means 

that the photon absorption is proportional to the photocurrent realizing a wavelength selective 

photodetection. The time dependent photoresponse of the device is shown in Fig. 11(f) for the 

wavelengths of 1529, 1555, and 1581 nm for an exposure time of 10 s. It clearly shows that 

maximum photocurrent is generated when the Tamm mode is excited. Wang et al. [161] 

proposed a more sensitive broad band photodetector of photocurrent up to 26 mA/W at 1140 
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nm by using TiN as metallic layer in a photonic hetero-structure containing a n-doped Si as 

spacer layer and DBR made up of 7 pairs of Al2O3 and TiO2. Shao et al. [162] proposed a dual 

cavity based hot electron photodetector. This device provides double absorption efficiency 

compared to the single cavity based devices with tripled responsivity of nearly 2 mA/W at 950 

nm. Recently, Liang et al. [163] have designed ultra-narrowband hot electron photodetector 

based on coupled dual Tamm plasmons in a Glass/(SiO2/TiO2)20/Au/TiO2/Au/(TiO2/SiO2)13 

structure. The coupled dual TPs based photodetector with four Schottky junctions in parallel 

configurations shows responsivity of 21.87 mA/W at the wavelength of 800 nm, which is two 

times more than that of the conventional devices with two Schottky junctions in series 

configuration. Apart from these, many more works are reported on TP based photodetectors 

available in literature [164-167], whose photoresponsivity are listed in Table-1. 

 

Fig. 11: (a) Schematic of a structure for confined Tamm plasmon laser containing five upper AlGaAs layers as 
active regions, (b) emission contour as a function of wavelength and numerical aperture, and (c) normalized 
emission spectra for different pump powers [145]. (d) Schematic of a TPP based hot-electron photodetector, (e) 
photoresponse spectrum of the photodetector with inset plot showing its variation with power of light, and (f) 
time-dependent photoresponse of the hot-electron photodetector without bias [160]. (g) Schematic of TPP based 
thermal emitter, (h) reflectance spectra of the emitter at different angle of incidence with inset plot showing the 
cross-sectional image of the emitter along with the electric field distribution at 0o, and (i) emissivity spectra of the 
thermal emitter device at different temperatures [168]. (j) Schematic of a mesoporous multilayer Tamm plasmon 
refractive index sensor and its (k) cross-sectional SEM image showing the multilayer, (l) measured transmittance 
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spectra of the sensor exposed to air (red line) and after immersion in toluene (blue line), and (m) TP mode position 
as a function of solvent refractive index [169]. All the figures are adapted with permission. 

8. 4. Thermal emitters 

Various narrowband thermal emitters have been demonstrated based on the designs of photonic 

crystals, surface plasmon polaritons, gap-plasmon resonances, and Tamm plasmon polaritons 

[170]. Among these, the TPP can be thermally excited and out-coupled from a TP device, 

producing strong thermal radiation at the resonance wavelength, without the need for 

complicated nanostructures on the device. Moreover, SPR and gap-plasmon resonance based 

emitters are associated with certain draw backs with intensity and sharpness of resonance [170-

172]. TPs facilitate narrow band wavelength selective thermal emitters which are very useful 

in sensing applications [173]. The emission from conventional TP structures can be both from 

metal and DBR sides. But, the emission from the DBR side is more profound compared to the 

emission from the metal side in terms of emission peak, Q factor and background emission 

[173]. However, in recent studies more efficient emitters have been designed by considering 

the coupled Tamm plasmon devices. A narrow band mid IR thermal emitter has been studied 

by using coupling of micro-cavity mode in the DBR to the TP mode. The hybrid mode was 

found to show sharper emission band than the conventional TP structure [74]. Fig. 11(g) shows 

the schematic of a dual DBR ultra-narrow band tunable thermal emitter in the IR regime. The 

reflection and emission spectra of the hybrid TP device is displayed in Fig. 11 (h) and (i), 

respectively. It has been observed that the hybrid structure performs better compared to the 

conventional TP structures. Recently, aperiodic DBR based TP emitters have been studied for 

suppression of unwanted emission modes and ultra-high Q factors [174]. These devices also 

provide an extra degree of freedom in terms of spatial control. Wang et al. [175] have proposed 

a modified TP structure in which the last DBR-layer has three times more thickness than in a 

standard TP structure. The measured emission peak value of the modified TP device at 150oC 

is 0.94 with a background of 0.01 and a Q-factor of 48 at a wavelength of 5 µm.  The Q-factor 

of the device is twice as high as that of a standard TP structure. The emission wavelengths in 

the modified TP device has been tuned from 4.4-5.7 µm by adjusting the last DBR layer 

thickness, thus demonstrating a fine selection of the emission peak wavelength. An efficient 

TP based emitter has been designed and experimentally verified containing an aperiodic DBR 

and n-type doped cadmium oxide (CdO) as metallic layer where the DBR is designed by 

inverse algorithm based on stochastic gradient descent method [176]. This device is capable of 

exciting single and multiple resonances suitable for space communication and gas sensors. 
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8. 5. Sensors 

8. 5. 1. Temperature sensing 

Kumar et al. [177] have reported a temperature sensor based on Tamm plasmon mode. Their 

DBR consisted of stratified layers of Ta2O5 and SiO2 with thin silver film on top.  Change in 

reflectivity due to the Tamm mode excitation was measured as a function of temperature and a 

sensitivity of 7.8 x 10-4/0C is estimated for the device within a temperature range of 35-185 0C. 

Tsurimaki et al. [178] have exploited the singularity in phase at near-perfect absorption in a 

Tamm plasmon structure as a temperature sensor. The structure comprised of alternate layers 

of SiO2/Si3N4 on top of gold film deposited on silicon substrate. This structure exhibits near 

perfect absorption at 751 nm with reflectivity of 1x10-5 for p-polarized waves. Spectroscopic 

ellipsometric measurements were carried out at different temperatures to establish that phase-

singularity based measurement being the most sensitive to temperature variations compared to 

amplitude or reflectance peak shift methods. Maji et al. [179] have theoretically demonstrated 

Tamm plasmon based temperature sensors with sensitivity of 4.5x10-4/oC and 7.5x10-4/oC for 

TE and TM polarised light, respectively at angle of incidence of 50o. Ahmed et al. [180] 

proposed a high performance temperature sensor exploiting pyroelectric effect and Tamm 

modes. Their system consists of prism/Ag/(LiNbO3/SiO2) stack with Ag layer exciting the 

Tamm   resonances through the 1D photonic crystal. Thermal characteristics of LiNbO3, 

determines the position of these resonances depending on the temperature measurable in the 

range 300-700 K. Ultra-high temperature sensitivity of 1.1 nm/K has been demonstrated.  

8. 5. 2. Refractive index sensing 

Zhang et al. [181] have proposed a novel concept of refractive index sensing based on Tamm 

plasmons which enables to realize sensing over a wide measuring range with high sensitivity. 

Huang et al. [182] have proposed phase detection in spectroscopic ellipsometry for sensitive 

detection of refractive index, and estimated sensitivity of 2x 105/refractive index unit (RIU) for 

their optimized TP device. Kumar et al. [183] proposed hybrid self-referenced refractive index 

sensor. The sample (analyte) was sandwiched between two metal-DBRs with silver as 

plasmon-active metal and 8 bilayers of Ta2O5/SiO2 formed the DBR. The reflected spectrum 

of the structure shows two hybrid modes with symmetric and anti-symmetric field distributions 

about the center with the low-frequency symmetric mode being sensitive to changes in analyte 

layer. The anti-symmetric mode was used for self-referencing as it is insensitive to changes in 

analyte layer. Refractive index sensitivity in the range of 65 nm/RIU to 180nm/RIU has been 

demonstrated. It is expected that sharper TPP mode resonances may lead to better figure of 
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merit of these sensors compared to conventional interferometric or SPR based sensors. In a 

similar study, TiO2/Al2O3 based planar multilayer DBR with gold layer on the substrate to 

excite Tamm modes was used to demonstrate sensitive analyte detection [184]. Sensitivity of 

860 nm/RIU and a figure of merit (FOM) up to 391 was reported by optimal tuning of the 

Tamm mode. Zhang et al. [185] have proposed a fiber based refractive index sensor that 

exploits hybrid mode of TPP and SPP. Their system consists of a fiber core coated with 1D PC 

multilayers (pairs of TiO2/SiO2) with silver on outer layers. Sensitivity in the range of 1310-

1420 nm/RIU has been estimated with refractive index in the range 1.33-1.45 and figure of 

merit of the sensor in the range 62-168 /RIU.  Du et al. [186] have proposed electromagnetically 

induced transparency (EIT) like effect in Tamm multilayer structure. They introduced a defect 

layer in the TiO2/SiO2 DBR structure which resulted in a sharp peak in transmission, akin to 

EIT like effect. Ultra-sensitive performance of the sensor with 416 nm/RIU sensitivity and a 

figure of merit of 682/RIU has been reported. Zaky et al. [187] reported an ultra-sensitive gas 

sensor based on Tamm modes in the IR range. Their structure has comprised of gas cavity 

sandwiched 1D porous silicon photonic crystal and a silver coated prism. The optimized 

structure has achieved high sensitivity of 1.9×105 nm/RIU and a low detection limit of 1.4×10-

7 RIU.  Keshavarz and Alighanbari [188] have proposed refractive index sensor for terahertz 

domain using Tamm modes in a DBR with graphene layer. A sensitivity of 0.744 THz/RIU or 

equivalently, 175.5 μm/RIU, and a FOM of 10.33 /RIU was estimated at 1.132 THz.  

8. 5. 3. Chemical and bio analyte sensing 

Auguié et al. [169] were the early group to establish the application of Tamm modes for 

sensing applications. The schematic of the sensing structure shown in Fig. 11(j) consists of a 

mesoporous TiO2/SiO2 multilayer DBR with Au coating on the substrate for exciting the Tamm 

plasmon mode. The cross-sectional SEM image of the porous (TiO2/SiO2)4 DBR is shown in 

Fig. 11(k). The dispersion of the target molecules in the porous network of the nanostructured 

layers changes the effective refractive index of the medium, as a result the reflectivity spectrum 

of the sensing structure exhibiting TP mode shifts its resonant wavelength position as shown 

in Fig. 11(l). This shift is used for real time sensitive monitoring. The nanostructure is 

immersed in a series of alcohols and the shift of the peak is observed. The device shows linear 

response with changes in refractive index with a sensitivity of 55nm/RIU as shown in Fig. 

11(m). The device can be tuned for optimal spectral region of sensing by changing the porosity 

and thickness of the layers. Li et al. [189] reported a magneto-optic optical Tamm plasmon 

sensor comprising Ce-doped Y3Fe5O12 (CeYIG) thin film with silver layer deposited on a 
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prism. Layers of the sensing medium and Si constituted the DBR with CeYIG film excited the 

magneto-optic Tamm mode.  It was estimated that a figure of merit (FOM) of 1224.21/RIU for 

refractive index variation of gas from 1.0000 to 1.0006 can be obtained at 1064 nm excitation. 

Juneau-Fecteau et al. [190] have reported a porous silicon based Tamm sensor and 

demonstrated shift in resonance peaks with different concentrations of toluene/ethanol 

solutions. The novelty of their sensor is unlike different high-low index coatings used 

conventionally in DBR, crystalline silicon was periodically electrochemically anodized and the 

resultant porous silicon structure was transferred on a gold coated glass substrate. Sensitivity 

of 139 nm/RIU and a FOM of 4 was demonstrated using this porous silicon Tamm sensor. 

Zhang et al. [90] demonstrated fluorescence emission of TPP coupled nanoholes. The DBR 

comprised of Si3N4/SiO2 layers on glass with Ag coating on top. Experimental demonstration 

of TPP coupled fluorescence emission of dye filled nano-apertures was demonstrated paving 

way for sensitive detection of bio-analytes. Baleviˇcius [191] used total internal reflection 

ellipsometry (TIRE) for analysis of angular spectra of hybrid Tamm-surface plasmon modes 

and compared with the conventional SPR modes. It was concluded that p-polarized detection 

of hybrid plasmonic modes lead to enhanced detection sensitivity of the water-ethanol mixture 

solution. In a recent study, TIRE was used to study protein layer formation exploiting hybrid 

TPP-SPP interactions [192]. A summary of different TPP based sensors is given in Table-2 

indicating the spectral range of applications and respective sensitivity.  

Table-2: Summary of various sensors reported based on Tamm plasmon mode 

Type  Sensor configuration 
Spectral 
range 

Sensitivity 
Figure of merit   
(FOM) 

Thermal 
sensor 

BK7/(Ta2O5/SiO2)10/Ag   [177] 520-650 nm 
∆

∆
 7.8x10-4 /oC --------- 

Substrate/Au/(Si3N4/SiO2)7   [178] 700-780 nm 
 0.0057 nm/oC 

3.810-4 /oC 

 

 0.12 deg/0C 0.018 deg/(oCꞏnm) 

Prism/Ag/( LiNbO3/SiO2)5   [180] NIR  1.10 nm/K 0.012874 / K 

Refractive 
index 
sensor 

Glass/(SiO2/TiO2)8/Au   [182] 600-900 nm  2x10-5 o/RIU ---------- 

(Si/Air)4/Ag   [181] Visible  0.012 RI/nm ---------- 

Substrate/(SiO2/Ta2O5)8/Ag/ 
Analyte/Ag/(SiO2/ Ta2O5)8/   
Substrate   [193] 

Visible  65-180 nm/RIU 11-21 /RIU 

SiO2 substrate/Au/Analyte/        
(TiO2/ Al2O3)7   [184] 

IR  860 nm/RIU 391 /RIU 

Fused silica fibre 
core/(SiO2/TiO2)4/Ag   [185] 

NIR  550-1380 nm/RIU 62-136 /RIU 
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Ag/(TiO2/SiO2)5/Defect layer 
/(TiO2/SiO2)5   [186] 

NIR 416 nm/RIU 682 /RIU 

Prism/Ag/Gas/porous(Si1/Si2)8   

/Si   [187] 
NIR  1.9x105 nm/RIU 3.6105 /RIU 

Graphene/DBR   [188] IR  175.5 µm/RIU 10.33 /RIU 

Bio-sensor 

Glass/Au/porous(TiO2/SiO2)3 

/TiO2   [169] 
Visible  55 nm/RIU -------- 

Ag/CeYIG/DBR   [189] NIR ------------ 1224.21 /RIU 

Glass/Au/porous Si PC   [190] Visible-NIR  139 nm/RIU 4  /RIU 

Prism/(TiO2/SiO2)6/Au/BSA or 
GCSF receptor   [192] 

Visible-NIR ∆
 53.9 o/nm --------- 

 

Fig. 12: (a) Schematic of the structures exhibiting Tamm plasmon polariton (TPP) mode, micro-cavity (MC) 
resonance mode, and their coupled hybrid TPP-MC modes used for developing white top-emitting organic light-
emitting devices, (b) electroluminescence spectra of the TPP-MC device, and (c) simulated spectral radiant 
intensity for the TPP-MC device and conventional microcavity (C-MC) device with different viewing angles of 
0o, 30o, and 60o [194]. All the figures are adapted with permission. 
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8.6. Other applications 

In addition to the above mentioned applications, novel photonic structures are being 

designed for exploiting Tamm plasmons for various new applications in active & passive 

optoelectronics [195-197], resonant cavity LEDs [194], solar thermophotovoltaics [198], and 

organic solar cell [199-201]. For example, a simple and effective strategy using hybrid TPP-

MC modes as shown in Fig. 12 (a) has been executed for improving in both viewing 

characteristics and light couplings for white top-emitting organic light-emitting device 

(WTOLED) [194]. The structure shown in left top of this figure exhibits bare TPP mode, while 

the left bottom structure shows intrinsic MC resonance. The hybrid structure shown in the right 

side of the Fig. 12(a) generates two TPP-MC hybrid modes under the on-resonance condition 

i.e. with zero detuning wavelength. The light outcoupling efficiency of both the modes are 

equivalent. The wavelength band corresponding to the resonant modes match fairly well with 

the blue and orange emission regions. As a result, two complementary-colour-based 

WTOLEDs has been realized with improved viewing characteristics and electroluminescence 

(EL) efficiency. The viewing characteristics of the device has been examined by measuring the 

angular EL spectra of the TPP-MC coupled device as shown in Fig. 12 (b). It can be seen that 

the coupled modes in the TPP-MC device undergoes slight blue shift with increase in angle of 

viewing where as their intensity ratio shown in the inset plot of Fig. 12 (b) remains almost 

constant. The difference between the conventional microcavity (C-MC) and hybrid mode 

(TPP-MC) based devices can be clearly revealed from the calculated spectral radial intensity 

for the two devices at different viewing angles as shown in Fig. 12(c). The MC resonance in 

the C-MC device gets broadened and weakened with blue shift, while the two modes in the 

TPP-MC device are less affected with slight blue shift, and exhibit a nearly fixed ratio between 

the intensities of blue and orange peaks. It may be noted that the EL peak shifting range with 

increasing viewing angle is smaller as compared to that of the calculated spectral radiant 

intensity (outcoupling efficiency) in OLEDS.  It happens due to the invariant intrinsic emission 

spectrum from the emissive layer. From this study it is evident that the mode hybridization 

strategy in the proposed WTOLED leads to comparable viewing characteristics like the ITO-

based WOLED.  

Apart from this, enhanced field amplitude of Tamm plasmon at the metal/photonic crustal 

interface enables the researchers for the observation of non-linear optical effects. Lee et al. 

[202] have shown extremely large field enhancement factor as large as 3000 at the 

metal/photonic crystal interface resulting optical bistability at much lower light power 
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compared to the conventional SPP structures. Such structures can be useful for generating 

strong surface enhanced Raman scattering signals and developing low threshold light power 

operated optical switching devices.  Afinogenov et al. [203] have experimentally observed a 

TPP induced 170-fold enhancement in second harmonic generation (SHG) intensity in 

comparison with the SHG from the gold film. The SHG enhancement factor exhibits strong 

angular and polarisation dependence. Yuan et al. [204] have reported an ultralow threshold of 

~44 kW/cm2 optical bistability in a metal/Kerr nonlinear media which is resulted due to the 

field enhancement through the resonant transmission in the random layer media and TPPs. 

Vijisha et al. [205] have experimentally demonstrated the enhancement in the nonlinear optical 

absorption by a factor of nearly 6-fold and optical limiting properties of ZnP+ by using TPP 

formed at the interface between a thin gold film and a truncated all-polymer Bragg mirror. It is 

reported that the efficiency of the SHG can be enhanced by two orders of magnitude as 

compared with a bare metal film, while the overall intensity of the third-harmonic generation 

can be enhanced by almost five orders of magnitude in the phase matching conditions in the 

presence of TPPs [206]. These reports suggest that various nonlinear effects can be realized 

due to TPP induced strong field confinement.  

9. Conclusions 

In summary, this report gives a compact review of properties and applications Tamm 

plasmon polaritons. They possess polarization dependent parabolic dispersions lying inside the 

light cone. Apart from planar structure, nano-patterned metal surfaces are observed to generate 

3D confined Tamm plasmons. Recent studies have indicated the existence of TP modes even 

with non-noble metals. However, more research is needed to design and establish a stable TPP 

structure. A huge scope for further research also exist in metamaterial based TPP devices which 

can generate Tamm plasmon topological super- lattice. It has been observed that the patterned 

Tamm device can offer better tunability and higher Q factor than the planar structure. Actively 

tunable TP devices have been demonstrated which can be tuned by electric field, temperature 

and refractive index. Liquid crystals have emerged as one of the convenient options to design 

actively tunable Tamm devices. However, more experimental work needs to be done for 

demonstrating such devices. We have also discussed the control of spontaneous emission 

assisted by TPs. TPPs are considered to be suitable for compact room-temperature polariton 

lasers. A variety of laser systems have been discussed. The coupling of Tamm plasmons to 

various fundamental modes have also been explained in this article. The hybrid modes are 

found to depend on geometrical parameters, angle of incidence and polarization. There are 
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reports of using graphene layers to generate coupled modes in hybrid photonic structures. The 

coupling of TPs with various surface modes like SPP, microcavity mode, Bloch surface waves, 

and quantum well exciton, offers a vast arena of further research for experimental validation. 

It has been observed that the addition of monolayers like graphene or transition metal 

dichalcogenide enhance and impact the performance of TP devices. An overview for different 

applications of the Tamm plasmon based devices such as lasers, sensors, photodetectors, 

optical filters, absorbers, and light emitting devices have been presented in this article. In the 

coming years, the TPP based cost-effective devices will be helpful for the advancement of the 

energy, medical and industrial markets in numerous applications in our day to day life. In 

conclusion, it can be said that Tamm plasmon polaritons are an emerging as well as exciting 

topic in the field of plasmonics based research and device developments. 
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