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Tamoxifen metabolism predicts drug concentrations and outcome

in premenopausal patients with early breast cancer
P Saladores1,2,14, T Mürdter1,2,14, D Eccles3,4,14, B Chowbay5,6,7,14, NK Zgheib8,14, S Winter1,2, B Ganchev1,2, B Eccles3,4, S Gerty3,4, A Tfayli9,

JSL Lim5, YS Yap10, RCH Ng10, NS Wong10, R Dent10, MZ Habbal11, E Schaeffeler1,2, M Eichelbaum1,2, W Schroth1,2,15, M Schwab1,12,13,15

and H Brauch1,2,13,15

Tamoxifen is the standard-of-care treatment for estrogen receptor-positive premenopausal breast cancer. We examined tamoxifen

metabolism via blood metabolite concentrations and germline variations of CYP3A5, CYP2C9, CYP2C19 and CYP2D6 in 587

premenopausal patients (Asians, Middle Eastern Arabs, Caucasian-UK; median age 39 years) and clinical outcome in 306 patients.

N-desmethyltamoxifen (DM-Tam)/(Z)-endoxifen and CYP2D6 phenotype significantly correlated across ethnicities (R2: 53%,

Po10� 77). CYP2C19 and CYP2C9 correlated with norendoxifen and (Z)-4-hydroxytamoxifen concentrations, respectively (Po0.001).

DM-Tam was influenced by body mass index (Po0.001). Improved distant relapse-free survival (DRFS) was associated with

decreasing DM-Tam/(Z)-endoxifen (P¼ 0.036) and increasing CYP2D6 activity score (hazard ratio (HR)¼ 0.62; 95% confidence

interval (CI), 0.43–0.91; P¼ 0.013). Low (o14 nM) compared with high (435 nM) endoxifen concentrations were associated with

shorter DRFS (univariate P¼ 0.03; multivariate HR¼ 1.94; 95% CI, 1.04–4.14; P¼ 0.064). Our data indicate that endoxifen formation

in premenopausal women depends on CYP2D6 irrespective of ethnicity. Low endoxifen concentration/formation and decreased

CYP2D6 activity predict shorter DRFS.

The Pharmacogenomics Journal (2015) 15, 84–94; doi:10.1038/tpj.2014.34; published online 5 August 2014

INTRODUCTION

The standard-of-care for estrogen receptor (ER)-positive breast
cancer patients who are functionally premenopausal is a 5-year
treatment with the selective ER modulator tamoxifen1 as aromatase
inhibitors are of limited use due to the strong hypothalamic–
pituitary control of estrogen levels.2 Tamoxifen for 5 years substan-
tially lowers the yearly relapse rates and mortality in primary breast
cancer.3 Data from the Adjuvant Tamoxifen, Longer Against Shorter
trial and the Adjuvant Tamoxifen Treatment offers more trial
indicate further benefit by maintaining tamoxifen treatment for 10
years with 25% mortality reduction relative to 5 years.4,5 Despite
this success, about 50% of patients do not benefit from tamoxifen
and frequent adverse drug reactions (ADR) including hot flashes,
vasomotor and gynecologic symptoms as well as depression and
diminished sexual functioning prevent particularly young women
from staying on the drug.6,7 Toward a personalized strategy of
premenopausal breast cancer treatment, the possible association
between serum concentration of the active tamoxifen metabolite
endoxifen and the occurrence of side effects has been addressed;7,8

yet, the potential of such an approach regarding treatment out-
come in young women is unclear.

Tamoxifen, which acts at the ER, requires conversion into active
metabolites (Z)-4-hydroxytamoxifen and (Z)-endoxifen that have
up to 100-fold higher ER affinity than the parent drug.9–11 The
cytochrome P450 enzyme CYP2D6 has a major role in the
formation of endoxifen12 in postmenopausal women.13–15 CYP2D6
is highly polymorphic with more than 100 genetic variants (http://
www.imm.ki.se/cypalleles/cyp2d6.htm) contributing to the high
interindividual variability of enzyme activity. Impaired metabolism
by CYP2D6 can be accurately predicted by loss- and reduced-
function alleles resulting in the poor metabolizer (PM) and
intermediate metabolizer (IM) phenotypes. Likewise, functional
and duplicated CYP2D6 alleles correlate with extensive (EM) and
ultra rapid (UM) metabolizer phenotypes, respectively.16 There are
significant interethnic differences of CYP2D6 allele frequencies
across geographic regions and populations leading to a shift of
metabolizer phenotype prevalence with higher frequencies of IMs
in Asians and UMs in Arabic/North African countries as compared
with populations of European descent.17

Clinical outcome of adjuvant tamoxifen in postmenopausal
patients is influenced by their CYP2D6 metabolizer phenotype
which can be predicted by genetic testing18–20 using germline
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rather than tumor DNA.21,22 However, the current debate on the
validity of the postmenopausal data and the lack of CYP2D6
association with clinical outcome in some of these studies21–28

point to the need of combined pharmacokinetic and pharma-
cogenetic analyses particularly in the case of testing the hypothe-
sis in another patient group, i.e. premenopausal patients. Recently,
lower endoxifen concentrations were shown to be associated with
poor clinical outcome in a mixed cohort of pre- and postmen-
opausal patients.14 Notably, the in vitro pharmacological modeling
of endoxifen concentrations for the treatment of ER positive
breast cancer showed the essential requirement of endoxifen to
block breast cancer cell growth in the presence of high estrogen
concentrations equivalent to premenopausal patients.29,30

Therefore, it is reasonable to hypothesize that variable endo-
xifen formation contributes to tamoxifen efficacy in premeno-
pausal patients. Here, we present combined pharmacokinetic and
pharmacogenetic analyses in purely premenopausal breast cancer
patient cohorts of different ethnic origin to evaluate (i) the factors
that influence active tamoxifen metabolite concentrations with
a particular emphasis on CYP2D6 and (ii) whether tamoxifen
metabolite concentrations and/or genetic variants of drug-
metabolizing enzymes (DME) are suitable biomarkers for the
prediction of clinical outcome.

PATIENTS AND METHODS

Patients and study design

Three ethnic groups of prospectively recruited hormone receptor-positive
premenopausal breast cancer patients with adjuvant tamoxifen treatment
were investigated (Figure 1). Of these, 164 Asian patients in part previously

described31 (136 Chinese, 14 Malays and 14 Indians) have been provided
by the Division of Medical Sciences, Humphrey Oei Institute of Cancer
Research, Singapore. Another 78 consecutively recruited patients (2009–
2011) in part previously described32 have been provided by the
Hematology-Oncology Division, Internal Medicine, American University of
Beirut, Lebanon (Leb). Furthermore, 345 patients were selected from the
Prospective study of Outcomes in Sporadic versus Hereditary breast cancer
(POSH) cohort, an observational cohort study comprised mainly of
Caucasian patients (2956 patients recruited between 2001 and 2007) by
the Cancer Sciences Academic Unit and University of Southampton Clinical
Trials Unit, University of Southampton, UK.33,34 Selection of patients for our
current study was based on the availability of tamoxifen steady-state
serum and germline DNA. Patients taking CYP2D6 inhibitors were excluded
from the Singapore cohort and comprised only seven patients who
received weak CYP2D6 inhibitors, venlafaxine, escitalopram or clomipra-
mine in the Lebanon cohort. For the POSH cohort, data on co-medication
was not available. In total, 587 premenopausal patients were investigated
for the quantitation of tamoxifen metabolites and genotyping. Figure 1
shows the patient inclusion scheme to explain the underlying rationale for
the survival analyses, which was performed in the POSH cohort but not in
the Singapore and Lebanon cohorts due to incomplete follow-up and
delayed study entry of their patients, respectively (Figure 1).
Steady-state blood samples of patients treated with tamoxifen (20mg

per day) were collected on-site within the first year of treatment and
immediately stored at � 20 1C. Study approvals were obtained from the
National Cancer Centre Ethics Review Committee (Singapore), American
University of Beirut Institutional Review Board (Lebanon) and South and
West MultiCentre Research Ethics Committee (MREC 00/6/69; POSH). All
patients provided informed consent.

Measurement of tamoxifen and metabolites

Tamoxifen and its metabolites DM-Tam, (Z)-4-hydroxytamoxifen ((Z)-4-OH-Tam),
(Z)-endoxifen, N-desmethyltamoxifen (DM-Tam), N,N-Didesmethyltamoxifen

Figure 1. Study flow diagram of premenopausal study. co-med, co-medication; HR, hormone receptor; Leb, Lebanon; POSH, Prospective study
of Outcomes in Sporadic versus Hereditary breast cancer; Sing, Singapore; Tam, tamoxifen.
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(DDM-Tam) and (Z)-norendoxifen ((Z)-4-OH-DDM-Tam; Supplementary
Figure 1) were measured by liquid chromatography tandem mass
spectrometry in the multiple reaction monitoring mode on a 6460 triple
quadrupole mass spectrometer (Agilent Technologies, Waldbronn,
Germany) as described previously.13 All analyses refer to the active
(Z)-isomers of the tamoxifen metabolites which were separated from their
respective inactive (E)-isomers.35

DNA isolation and genotyping

DNA samples were genotyped for CYP2D6 alleles associated with null
(PM: *3, *4, *5 and *6) and reduced (IM: *9, *10 and *41) CYP2D6 function
by matrix-assisted, laser desorption/ionization, mass spectrometry.18,31

CYP2D6 gene duplication (UM) was determined via TaqMan Copy Number
Assay (Applied Biosystems, Foster City, CA, USA). Absence of variant alleles
or gene duplications was assigned to normal CYP2D6 function (EM).
Individuals with ambiguous genotypes were verified by AmpliChip P450
assay (Roche Molecular Diagnostics, Mannheim, Germany), which revealed
additional CYP2D6 alleles *14, *15 and *17. For genotype interpretation, we
applied a CYP2D6 activity score36 to predict PM, IM, EM and UM
phenotypes: PM/PM (0), PM/IM (0.5), IM/IM (0.75), PM/EM (1), IM/EM (1.5),
EM/EM (2) and EM/UM (3). In survival analyses, CYP2D6 activity scores were
classified into three phenotype classes: PM (0), hetEM/IM (0.5–1.5) and EM
and UM (2 to 3). Genetic testing was also performed for CYP2C9 (*2, *3),
CYP2C19 (*2,*3,*17) and CYP3A5*3, known to be involved in tamoxifen
metabolism using TaqMan or Sequenom mass array genotyping.13

Study aims, power calculation and statistical analyses

Primary aim of this study was to determine factors that influence active
tamoxifen metabolite concentrations with special emphasis on CYP2D6-
catalyzed metabolite endoxifen. Thus, we performed a power calculation
assuming a 50% decrease or increase of square root transformed
endoxifen or log-transformed metabolic ratio (MR) DM-Tam/endoxifen
per one unit of CYP2D6 activity score as a relevant gene-dose effect.13,37

On the basis of the s.d. of the plasma concentrations in the three cohorts
(excluding poorly/non-compliant patients), we computed that the sample
size in the smallest cohort (n¼ 77, Leb) would already provide 92.9%
power in the analyses. Secondary aim was to test whether tamoxifen
metabolite concentrations and/or genetic variants of DME can reliably
predict clinical outcome in premenopausal patients. As there is no such
data published in a purely premenopausal clinical setting, we consider this
an exploratory investigation.
SPSS (version 20, Chicago, IL) and R-3.01 including libraries coin-1.0–22,

MASS-7.3–27, mfp-1.4.9, party-1.0–8 and survival-2.37–4 (www.r.projec-
t.org) were used for statistical analyses. Clinical characteristics and DME
genotypes were compared between study cohorts by Kruskal–Wallis and
w
2-tests. Tamoxifen concentrations across all patients displayed two splits
operationally used to define non-compliance (p40 nM) and poor
compliance (40–150 nM). Frequencies of CYP2D6 phenotypes between
these groups were compared by w

2-tests. All following analyses excluded
poorly/non-compliant patients.
Correlations of square root transformed endoxifen concentrations or

log-transformed MR DM-Tam/endoxifen and CYP2D6 activity score were
examined by linear models with stratification for ethnicity.
Survival analyses were strictly confined to the POSH cohort because of

delayed study entry following breast cancer diagnosis and incomplete
follow-up in the Lebanon and Singapore cohorts, respectively. The
endpoint was distant relapse-free survival (DRFS) defined as the time
from diagnosis to the earliest occurrence of distant metastasis or death
from any cause. First, we tested which clinical characteristics, tamoxifen
metabolites or CYP genotypes were associated with DRFS using univariate
Cox regression and general asymptotic independence tests. Step-wise
model selection (R-library mfp) revealed nodal status and chemotherapy
use to be included as covariates in subsequent multivariate Cox regression.
Conditional inference trees (P-value cutoff 0.15) and receiver operating
characteristic analyses on DRFS were applied to identify cutoffs for MR DM-
Tam/endoxifen and endoxifen concentration. For endoxifen, there was
neither a split nor a significant association in multivariate Cox regression,
hence we explored non-monotonic effects by dividing the POSH
population into quarters. Associations between DRFS and classified
endoxifen concentrations, MR DM-Tam/endoxifen or CYP2D6 phenotypes
were investigated by Kaplan–Meier analyses and multivariate Cox
regression adjusted for nodal status and chemotherapy use. All Cox
models were stratified for ethnicity. All statistical tests were two-sided and
statistical significance was defined as Po0.05.

RESULTS

Patient characteristics and cytochrome P450 genotypes

The median age of diagnosis was 39.1 years (range 22–59 years)
(Table 1). Follow-up, age, body mass index (BMI), ethnicity, tumor
size and proportion of patients treated with chemotherapy
differed among cohorts. Genotypes were successfully obtained
from 583 patients for CYP2D6 (99%) and in 97–99% for CYP3A5,
CYP2C9 and CYP2C19. Genotypes met Hardy–Weinberg Equili-
brium with few exceptions of minor deviations (Table 2). Notably,
UM frequency in the POSH cohort was lower than expected38

likely due to sample size.

Tamoxifen metabolite profiling, compliance and CYP2D6 activity

There was a strong interindividual variability for tamoxifen and the
five metabolites in each ethnic group (Figure 2). According to two
tamoxifen concentration splits, we defined non-compliant
(p40 nM), poorly compliant (40–150 nM) and compliant
(4150 nM) patients (Figure 2, dashed lines). Twenty-four POSH
patients were non-compliant (7%) in their first-year serum sample,
10 patients were poorly compliant (2.9%). Of the other two
cohorts, two patients were below 40 nM, whereas three patients
were below 150 nM. There were no differences in CYP2D6
phenotype frequencies between poorly/non-compliant patients
and the remaining patients, therefore subsequent genotype-
phenotype correlations were not biased by excluding poorly/non-
compliant patients (data not shown).
The compliant patients from each cohort are shown according

to genotype-predicted CYP2D6 activity scores (Table 3). There was
a strong gene-dose effect for an association between the CYP2D6
activity score and endoxifen concentrations (Po10� 40) in all
ethnic cohorts (Figure 3a). The contribution of CYP2D6 to the
interindividual variability of endoxifen formation via DM-Tam, as
deduced from MR DM-Tam/(Z)-endoxifen, was 46% (Singapore,
Po10� 17), 55% (Lebanon, Po10� 9) and 55% (POSH, Po10� 46),
respectively (Figure 3b). Altogether, 53% of the interindividual
variability of endoxifen formation from DM-Tam was attributed to
CYP2D6 (Figure 3c; R2¼ 0.53; Po10� 77).

Other factors influencing tamoxifen metabolism

The formation of norendoxifen from DDM-Tam precursor and (Z)-
4-OH-Tam converted from tamoxifen was decreased in patient
carriers of CYP2C19*2 and/or *3 (Figure 4a, Po0.001) and
CYP2C9*2 and/or*3 alleles (Figure 4b), Po0.001, respectively.
Lower levels of DM-Tam were observed in patients with a BMI
higher than 30, both in Caucasians and non-Caucasians (Figure 4c,
Po0.001). Notably, DM-Tam formation did not depend on the
CYP3A5*3 reduced-function allele. Multivariate regression analyses
across all cohorts showed that the combined genetic (CYP2C9,
CYP2C19, CYP3A5) and non-genetic factors (age, BMI) contributed
to only 2.8% of DM-Tam/endoxifen ratio as compared with 53% by
CYP2D6.

Tamoxifen metabolites and clinical outcome

POSH outcome analysis (N¼ 306) was performed excluding
hormone receptor-negative and poorly/non-compliant patients.
There was no association between endoxifen concentrations and
DRFS given the lack of a significant trend (Table 4, Figure 5a).
However, following Madlensky et al.,14 when we classified patients
into percentiles, we observed that patients with low endoxifen
concentrations (o14.15 nM) had higher risk for distant relapse or
death compared with those with high concentrations (435 nM,
P¼ 0.03, Figure 5a), and showed a trend by multivariate Cox
regression analysis of an increased hazard ratio (HR) of 1.94; 95%
confidence interval (CI) 0.96–3.93; P¼ 0.064 (Table 4). We next
explored the MR DM-Tam/endoxifen and observed an increased
HR with increasing MR (decreasing endoxifen formation rate)
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Table 1. Clinical characteristics of premenopausal patients

Singapore (n¼ 164) Lebanon (n¼ 78) POSH (n¼ 345) Overall (n¼ 587) P-valuea

No. of patients % No. of patients % No. of patients % No. of patients %

Follow-up, years o0.001
Median 4.0 4.1 6.4 5.5
Range 1.3–14.2 1.9–8.5 1.2–11.6 1.2–14.2

Age at diagnosis, years o0.001
Median 47.0 43.0 37.5 39.1
Range 30.0–59.0 24.0–51.0 22.0–41.0 22.0–59.0

BMI o0.001
p30 153 93.3 62 79.5 272 78.8 487 82.9
430 10 6.1 16 20.5 65 18.8 91 15.5
Unknown 1 0.6 8 2.3 9 1.5

Ethnicity o0.001
Caucasian 320 92.8 320 54.5
Asian 164 100 5 1.4 169 28.8
African 15 4.3 15 2.6
Middle Eastern 78 100 78 13.3
Unknown 5 1.4 5 0.9

Tumor size (cm) 0.004
p2 95 57.9 30 38.5 174 50.4 299 50.9
2–5 58 35.4 35 44.9 142 41.2 235 40.0
45 11 6.7 13 16.7 20 5.8 44 7.5
Unknown 9 2.6 9 1.5

Nodal status 0.08
Negative 92 56.1 40 51.3 159 46.1 291 49.6
Positive 69 42.1 38 48.7 184 53.3 291 49.6
Unknown 3 1.8 2 0.6 5 0.9

Grading 0.21
G1 14 17.9 38 11.0 52 8.9
G2 35 44.9 178 51.6 213 36.3
G3 27 34.6 125 36.2 152 25.9
Unknown 164 100 2 2.6 4 1.2 170 29.0

Hormone receptor status 0.472
(ER or PR) Positive 164 100 78 100 340 98.6 582 99.1
(ER and PR) Negative 3 0.9 3 0.5
Unknown 2 0.6 2 0.3

HER2 status 0.252
Positive 43 26.2 18 23.1 66 19.1 127 21.6
Negative 112 68.3 60 76.9 158 45.8 330 56.2
Unknown 9 5.5 121 35.1 130 22.1

Chemotherapy 0.001
Yes 143 87.2 69 88.5 261 75.7 473 80.6
No 21 12.8 9 11.5 84 24.3 114 19.4

CYP2D6 phenotypes o0.001
PM/PM 4 5.1 30 8.7 34 5.8
hetEM/IM 129 78.7 37 47.4 205 59.4 371 63.2
EM/UM 33 20.1 37 47.4 110 31.9 180 30.7
Unknown 2 1.2 2 0.3

Abbreviations: BMI, body mass index; EM, extensive metabolizer; ER, estrogen receptor; HER2, human epidermal growth factor receptor 2; het, heterozygous; PM, poor metabolizer; POSH, Prospective study of

Outcomes in Sporadic versus Hereditary breast cancer; PR, progesterone receptor; IM, intermediate metabolizer; UM, ultra rapid metabolizer. aRefers to test for differences between the three cohorts.
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Table 2. Observed frequencies of DME gene variants

Genotype frequency Minor allele frequency

Allele Variant rs number Function Genotypes Sing (n¼ 164) Leb (n¼ 78) POSH (n¼ 345) Total (n¼ 587) Sing Leb POSH Total

CYP2D6
*3 2549delA rs35742686 Abrogated A/A 1.00 1.00 0.97 0.98 0 0 0.02w 0.01

A/del 0 0 0.03 0.02
del/del 0 0 0.003 0.002

*4 g1846 G4A rs3892097 Abrogated G/G 0.99 0.76 0.63 0.75 0.003 0.141 0.21 0.15
G/A 0.01 0.21 0.31 0.21
A/A 0 0.04 0.06 0.04

*5 Chromosomal deletion Abrogated wt/wt 0.87 0.94 0.93 0.91 0.067 0.032 0.035 0.04
wt/del 0.13 0.06 0.07 0.09
del/del 0 0 0 0

*6 1707delT rs5030655 Abrogated T/T 1.00 0.97 0.97 0.98 0 0.013 0.02 0.01
T/del 0.00 0.03 0.03 0.02
del/del 0 0 0 0

*9 2615_2617delAAG rs5030656 Reduced AAG/AAG 1.00 1.00 0.94 0.97 0 0 0.03w 0.02
AAG/del 0 0 0.05 0.03
del/del 0 0 0.01 0.003

*10 g100 C4T rs1065852 Reduced C/C 0.31 0.99 0.97 0.79 0.488p 0.006 0.02 0.15
C/T 0.40 0.01 0.03 0.13
T/T 0.29 0 0 0.08

*41 g2988 G4A rs28371725 Reduced G/G 0.93 0.72 0.79 0.82 0.037 0.154 0.11 0.1
G/A 0.06 0.26 0.19 0.16
A/A 0.01 0.03 0.01 0.01

*XN Duplication Increased 2 copies 0.99 0.87 0.99 0.98 0.007z 0.128z 0.003z 0.02z

42 copies 0.01 0.13 0.002 0.02
CYP2C19
*2 681 G4A rs4244285 Abrogated G/G 0.48 0.79 0.75 0.67 0.326 0.116 0.145 0.19

G/A 0.40 0.18 0.23 0.27
A/A 0.13 0.03 0.02 0.05

*3 636 G4A rs4986893 Abrogated G/G 0.90 0.90 0.052 nd nd 0.05
G/A 0.09 0.09
A/A 0.01 0.01

*17 � 806 C4T rs12248560 Increased C/C 0.92 0.62 0.67 0.74 0.04 0.216 0.2# 0.15
C/T 0.08 0.32 0.26 0.22
T/T 0.00 0.05 0.07 0.04

CYP2C9
*2 c430 C4T rs1799853 Reduced C/C 1.00 0.83 0.75 0.83 0 0.087 0.14 0.09

C/T 0.00 0.17 0.23 0.15
T/T 0.00 0.00 0.02 0.01

*3 c1075 A4C rs1057910 Reduced A/A 0.91 0.88 0.85 0.87 0.046 0.06 0.08 0.07
A/C 0.08 0.12 0.14 0.13
C/C 0.01 0.00 0.003 0.002

CYP3A5
*3 6986 A4G rs776746 Markedly reduced A/A 0.10 0.01 0.02 0.05 0.72 0.91 0.91F 0.85

A/G 0.36 0.15 0.14 0.21
G/G 0.54 0.83 0.84 0.75

Abbreviations: c, cDNA; del, deletion; DME, drug-metabolizing enzymes; g, gDNA; Leb, Lebanon; nd, not determined; POSH, Prospective study of Outcomes in Sporadic versus Hereditary breast cancer; Sing,

Singapore; w, wildtype; wt, wildtype referring to major, that is, functional alleles. Note-Nucleotide positions refer to numbering according to the ATG start codon. CYP2D6*14, *15 and *17 alleles were detected

by AmpliChip quality control only and were not included in the table. *XN, refers to duplication of EM alleles resulting in UM phenotype. zRefers to prevalence of UM phenotype based on multiple copies of

functional alleles. Genotype frequencies that deviate from HWE have the following P values: wP¼ 0.02; pP¼ 0.045; #P¼ 0.006; FP¼ 0.003.
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Figure 2. Metabolic profiling for tamoxifen (Tam) and five measured metabolites, N-desmethyltamoxifen (DM-Tam), N,N-didesmethyltamoxifen
(DDM-Tam), (Z)-endoxifen, 4-hydroxytamoxifen [(Z)-4-OH-DDM-Tam] and norendoxifen [(Z)-4-OH-DDMT-Tam] in study cohorts from Singapore
(Sing, N¼ 164), Lebanon (Leb, N¼ 78) and Prospective study of Outcomes in Sporadic versus Hereditary breast cancer (POSH, N¼ 345).
Metabolite concentrations are presented as boxplots with whiskers defined by the 5th and 95th percentiles and extreme values outside the
whiskers. The two dashed lines for Tam delineate putative non-compliant (p40 nM) and poorly compliant (40–150 nM) patients as defined from
Tam plasma concentrations. Patients with Tam concentrations o150 nM were excluded from further analyses.

Table 3. CYP2D6 activity scores of compliant patients

Singapore (n¼ 160) Lebanon (n¼ 77) POSH (n¼ 311) Overall (n¼ 548)

CYP2D6 activity scores No. of patients % No. of patients % No. of patients % No. of patients %

0.0 0 4 5.2 25 8.0 29 5.3
0.5 12 7.5 4 5.2 28 9.0 44 8.0
0.75 52 32.5 2 2.6 7 2.25 61 11.1
1.0 13 8.1 15 19.5 95 30.5 123 22.4
1.5 48 30.0 15 19.5 53 17.0 116 21.2
2.0 32 20.0 27 35.1 102 32.8 161 29.4
3.0 1 0.6 10 13.0 1 0.3 12 2.2
Unknown 2 1.2 2 0.4

Abbreviation: POSH, Prospective study of Outcomes in Sporadic versus Hereditary breast cancer.

Figure 3. Steady-state plasma concentrations of endoxifen and metabolic ratio DM-Tam/(Z)-endoxifen in premenopausal breast cancer
patients according to genotype-based CYP2D6 activity score: (a) Endoxifen concentrations in Singapore (upper panel, N¼ 160, R2¼ 0.38;
Po10� 12), Lebanon (middle panel, N¼ 77, R2¼ 0.34; Po10� 4) and POSH (lower panel, N¼ 306, R2¼ 0.33; Po10� 21) cohorts. (b) Metabolic
ratios of DMT/(Z)-endoxifen in Singapore (upper panel, R2¼ 0.46; Po10� 17), Lebanon (middle panel, R2¼ 0.55; Po10� 9) and POSH (lower
panel, R2¼ 0.55; Po10� 46) cohorts. (c) Metabolic ratio DM-Tam/(Z)-endoxifen across all cohorts (N¼ 548, R2¼ 0.53; Po10� 77). Data are
presented as boxplots with whiskers defined by 5th and 95th percentiles and extreme values outside the whiskers. DM-Tam,
N-desmethyltamoxifen. **Po10� 3; ***Po10� 5; ****Po10� 10. POSH, Prospective study of Outcomes in Sporadic versus Hereditary breast
cancer.

Tamoxifen metabolism and premenopausal breast cancer outcome

P Saladores et al

89

& 2015 Macmillan Publishers Limited The Pharmacogenomics Journal (2015), 84 – 94



in multivariate Cox regression: HRper 1 unit¼ 1.007; 95% CI
1.000–1.014; P¼ 0.036 (Table 4). Because the per unit effect of
this HR is rather small on a linear scale, we applied two cutoff
values demonstrating worse (MR4115), moderate (MR 31–115)

and better DRFS (MRo31) by Kaplan–Meier analysis (Log-rank
P¼ 0.001; Figure 5b). This was confirmed in multivariate Cox
regression with an increased HR for patients with MR4115 (low
endoxifen formation rate) compared with patients with MRo31

Figure 4. Impact of CYP2C19, CYP2C9 and body mass index on tamoxifen metabolite ratios: (a) Metabolic ratio (MR) DDM-Tam/norendoxifen
according to the loss-of-function alleles CYP2C19*2/*3 predicting EM, hetEM (heterozygous *2 or *3) and PM (homozygous *2 or *3). (b) MR
tamoxifen/(Z)-4-OH-TAM according to CYP2C9 *2/*3 reduced activity alleles defining hetEM (heterozygous *2 or *3) and PM (homozygous *2 or
*3) versus EM with normal activity (absence of *2 or *3). (c) MR tamoxifen/DM-Tam stratified by BMI (p30 or 430) in all patients, Caucasians
and non-Caucasians. Data are presented as boxplots with whiskers defined by 5th and 95th percentiles and extreme values outside the
whiskers. BMI, body mass index; DDM-Tam, DiDesmethyltamoxifen; DM-Tam, Desmethyltamoxifen; EM, extensive metabolizer; hetEM,
heterozygous EM; PM, poor metabolizer; (Z)-4-OH-TAM, (Z)-4-hydroxytamoxifen.

Table 4. Cox proportional hazard models of DRFS for (Z)-endoxifen plasma levels, MR DM-Tam/(Z)-endoxifen or CYP2D6 activity score/phenotype

Quantitative analyses Categorical analyses

HR (per unit)a 95% CI Wald P Factor HR 95% CI Wald P

(Z)-Endoxifen (nM) (Z)-Endoxifen (nM) 435 1 (Reference)
Unadjusted 0.989 0.973–1.004 0.142 24.7–35 1.61 0.76–3.38 0.210
Adjusted 0.992 0.977–1.007 0.291 14.15–24.7 1.45 0.69–3.06 0.329

o14.15 1.94 0.96–3.93 0.064
Nodal status Negative 1 (Reference)

Positive 2.09 1.11–3.92 0.022
Chemotherapy No 1 (Reference) 0.243

Yes 1.65 0.71–3.83

MR DM-Tam/(Z)-
Endoxifen

MR DM-Tam/(Z)-
Endoxifen

o31 1 (Reference)

Unadjusted 1.008 1.001–1.015 0.025 31–115 1.43 0.86–2.37 0.167
Adjusted 1.007 1.000–1.014 0.036 4115 3.82 1.47–9.89 0.006

Nodal status Negative 1 (Reference)
Positive 2.09 1.12–3.89 0.021

Chemotherapy No 1 (Reference)
Yes 1.62 0.70–3.74 0.260

CYP2D6 activity score CYP2D6 phenotype class EM/UM 1 (Reference)
Unadjusted 0.611 0.425–0.88 0.008 hetEM/IM 1.55 0.88–2.72 0.132
Adjusted 0.623 0.429–0.905 0.013 PM 1.98 0.82–4.79 0.128

Nodal status Negative 1 (Reference)
Positive 2.15 1.14–4.04 0.018

Chemotherapy No 1 (Reference)
Yes 1.60 0.69–3.73 0.277

Abbreviations: CI, confidence interval; DRFS, distant recurrence-free survival; HR, hazard ratio; MR DM-Tam/(Z)-endoxifen, metabolic ratio

N-desmethyltamoxifen/(Z)-endoxifen; TAM, tamoxifen. Node status was binary coded with factor levels negative vs positive; chemotherapy was binary

coded with levels no (no chemotherapy given) and yes (chemotherapy given); CYP2D6 and tamoxifen metabolite predictor variables were coded categorically.

Models were corrected for nodal status and chemotherapy and stratified for ethnicity. aFor univariate analysis, HR refers to an increase by one unit (1 nM) of

steady-state endoxifen plasma concentration, increase of the dimensionless MR DM-Tam/(Z)-endoxifen ranging between 8 (highest) and 176 (lowest)

endoxifen formation rates and an increase by one unit of CYP2D6 phenotype score ranging from 0 (PM) to 3 (UM).
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(high endoxifen formation rate): HR¼ 3.82; 95% CI 1.47–9.89;
P¼ 0.006 (Table 4).
Importantly, none of the remaining metabolites including

tamoxifen and DM-Tam showed an association between plasma
concentrations and clinical outcome (Supplementary Figure 2).

CYP2D6 genotype and clinical outcome

Cox modeling revealed a significant linear association between
CYP2D6 activity score and outcome (DRFS), both in univariate
(P¼ 0.008) and multivariate models (HRper 1 CYP2D6 score unit¼ 0.62;
95% CI 0.43–0.91; P¼ 0.013; Table 4). When grouping activity
scores into the phenotype classes EM/UM, hetEM/IM and PM,
Kaplan–Meier analysis indicated that PM patients have worse
DRFS compared to EM subjects (Figure 5c; log-rank test P¼ 0.042).
When adjusted for nodal status and chemotherapy use, the
association was no longer significant (HRPM vs EM¼ 1.98; 95% CI
0.82–4.79; P¼ 0.13; Table 4).

DISCUSSION

This is the first study that investigated a purely premenopausal
breast cancer population for interindividual variability of tamox-
ifen metabolism and its influence on clinical outcome. In contrast
to postmenopausal patients,13,18–20,37 little is known regarding the
clinical relevance of variable tamoxifen metabolism for drug
response in premenopausal patients. Although postmenopausal
patients may receive aromatase inhibitor treatment as an alterna-
tive to tamoxifen, a personalized approach in the premenopausal
setting must confront the lack of available alternatives and
address the dilemma of young women stopping tamoxifen
prematurely due to ADRs. Emerging data report a link between
steady-state endoxifen concentrations and ADRs;7,8 however, the
two retrospective studies reporting an association between
endoxifen blood concentrations and clinical outcome do not
reflect the premenopausal setting. Notably, Madlensky et al.14

provided the first clinical outcome data for endoxifen; however,
their study lacked premenopausal subgroup analysis. Similarly, a
small exploratory study performed with 48 oophorectomized
women is not reminiscent of the premenopausal setting.39

Our comprehensive approach with premenopausal women
accounts for potential determinants of tamoxifen response,
including tamoxifen metabolites, CYP2D6 phenotypes and drug
compliance. Notably, compliance is a serious issue as non-

compliance pertains to up to 50% of patients by year five of the
recommended tamoxifen treatment and has been associated with
poor survival.40–43 In our study, tamoxifen compliance assessment
via blood concentrations was limited to the first year of treatment
and the poor/non-compliance rate of 10% (POSH) was lower than
expected.41,44 Although first-year compliance may not be
predictive for compliance for the full 5-year treatment duration,
this has been accounted for by excluding all poorly/non-compliant
patients from subsequent analyses. Regardless of the true com-
pliance rate known to us we suggest, that outcome stratification
based on CYP2D6 metabolism would be perhaps even better in a
fully compliant population. We observed a clear CYP2D6 gene-
dose effect for plasma endoxifen and endoxifen formation from
DM-Tam. This strong effect was independent of age, BMI or non-
CYP2D6 DME polymorphisms, which together contributed less
than 3% of the observed variability in endoxifen formation. The
CYP2D6 effect is similar to that observed in postmenopausal
patients and holds true across ethnic groups (Asians, Europeans
and Middle Eastern Arabs) independent of the differences in
CYP2D6 allele frequencies.45 Our data clearly show that endoxifen
formation follows the same principle in pre- and postmenopausal
women driven by CYP2D6. Yet, its contribution to formation is
estimated at approximately 53% suggesting that other factors
contribute to the bioavailability of endoxifen. Additional findings
of a correlation between impaired CYP2C9 activity and decreased
4-OH-Tam formation, as well as CYP2C19 loss-of-function and
decreased formation of the anti-estrogen norendoxifen, corro-
borate previous in vitro observations and point to additional
relevant metabolic pathways involved in the formation of
antiestrogens.46,47 Moreover, a potential non-genetic influence
on tamoxifen metabolism by adipose tissue acting as sequestering
‘compartment’ for lipophilic tamoxifen metabolites is supported
by the observed association between BMI and decreased DM-Tam
concentrations.
To understand the clinical relevance of tamoxifen metabolism in

premenopausal patients, we conducted an outcome analysis
(POSH) after excluding all patients with incomplete follow-up and/
or delayed study entry (Singapore, Lebanon). The association of
endoxifen concentrations with clinical outcome was inconclusive;
yet, when we grouped endoxifen levels into distinct classes,
patients with low concentrations (o14.1 nM) were at increased risk
of distant relapse or death compared with patients with high
endoxifen (435nM; Figure 5a). Importantly, the low endoxifen
class contained 88% of all PMs (24 of 27 patients) thereby support-

Figure 5. Kaplan–Meier analyses for an association between (Z)-endoxifen concentrations, metabolic ratio (MR) Desmethyltamoxifen (DM-
Tam)/(Z)-endoxifen or CYP2D6 phenotype score and distant relapse-free survival (DRFS) in the POSH cohort. Kaplan–Meier analyses for DRFS
and the three predictor variables classified into groups. (a) Steady-state endoxifen concentrations split into four equally-sized patient groups
(o14.1, 14.1–24.7, 24.7–35 and 435 nM), (b) MR DM-Tam/(Z)-endoxifen classified by conditional inference trees into three splits (o31, 31–115
and 4115), (c) CYP2D6 phenotypes grouped into EM (plus UM), hetEM and PM. Corresponding Mantel–Cox log-rank tests are stratified for
ethnicity. EM, extensive metabolizer; hetEM/IM, heterozygous EM/IM; IM, intermediate metabolizer; PM, poor metabolizer; POSH, Prospective
study of Outcomes in Sporadic versus Hereditary breast cancer; UM, ultra rapid metabolizer.
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ing the notion of a link between deficient CYP2D6 phenotype,
reduced endoxifen concentration, and impaired clinical efficacy of
tamoxifen. Our data are in line with those of Madlensky et al.14

who reported an distant recurrence rate for patients with
low endoxifen concentrations (5.9 ngml� 1, 15.8 nM) in a patient
cohort comprising pre- and postmenopausal patients. In contrast
to endoxifen alone, using MR DM-Tam/endoxifen as a surrogate
for CYP2D6 endoxifen formation demonstrated a strong
association between high MR (low endoxifen concentrations) and
an increased risk for recurrence or death, thereby substan-
tiating the clinical relevance of the CYP2D6-mediated pathway
for tamoxifen response. Together these data support the
antagonistic potency of active metabolites at the ER, rather than
the inhibition of ER by abundant tamoxifen and major metabolites
through receptor saturation48,49 in premenopausal patients. This is
further substantiated by the lack of an outcome association
with variable concentrations of tamoxifen and DM-Tam
(Supplementary Figure 2). Notably, our in vivo data confirm the
in vitro prediction by Maximov et al.29,30 who demonstrated that
endoxifen, rather than ER low-affinity tamoxifen metabo-
lites, matters in blocking breast cancer cell replication in the
presence of estrogen concentrations equivalent to premenopausal
patients.
Our observation that CYP2D6 PM or low activity score patients

had less favorable outcome compared with EM or high activity
score patients supports the relevance of the CYP2D6 genotype for
the prediction of tamoxifen outcome in premenopausal women, a
hypothesis that has been originally postulated for the postmeno-
pausal setting.18–20,50 This association was considerably stronger
when using activity scores as compared with classifying into three
CYP2D6 phenotype groups (Table 4) supporting a gene-dose
effect. Unlike in postmenopausal breast cancer where chemother-
apy has been suggested to abrogate the CYP2D6 tamoxifen
outcome effect,51 our data do not support this notion despite the
large majority of POSH patients having received chemotherapy as
it is the standard in the premenopausal setting. Combination
chemotherapy produces chemical oophorectomy in the majority
of premenopausal women over the age of 4052 resulting in lower
circulating estradiol levels compared with premenopausal patients
taking tamoxifen alone;53 however, the ovarian function of most
POSH patients may have remained intact as inferred from their
median age of 37.5 years. Another confounding factor in
pharmacogenetic studies is the deviation from Hardy–Weinberg
Equilibrium, which has been observed in the POSH cohort for
CYP2D6*3 and *9, likely due to rare frequency or population
admixture. Borderline deviation from Hardy–Weinberg Equilibrium
was observed for CYP2D6*10 in the Singapore cohort, which could
be attributed to the *36-*10 genotype (not analyzed)54 and/or
population admixture (17% Malays/Indians vs 83% Chinese).
Because genotyping was done from germline DNA, Hardy–
Weinberg Equilibrium deviation is not considered a confounder
in our outcome analysis.
A limitation of this study is its moderate sample size, given that

more than 800 patients would be required to detect a CYP2D6-
related clinical effect in postmenopausal women with sufficient
power.22 This low power might explain the lack of significance
with CYP2D6 phenotype in multivariate Cox analysis (P¼ 0.13).
However, breast cancer in young women is less frequent than in
postmenopausal women, resulting in smaller available cohorts
with simultaneous collection of serum, genomic DNA and detailed
follow-up per patient. We therefore restricted our outcome
analyses to the 306 compliant patients for whom, both pharma-
cogenetic and pharmacokinetic data were available. This design
differs from a previous preliminary dataset with more patients but
without control for compliance.55 It may be argued that this
design may give rise to a selection bias; however, we believe that
strict inclusion criteria including first-year compliance, serum
availability for pharmacokinetic measurements and a reasonable

follow-up time are integral to CYP2D6-related outcome analysis.
Notwithstanding, our study presents the largest analyses of
purely premenopausal patients for which pharmacokinetic and
pharmacogenetic outcome associations have been described. No
information on co-medication was available for the POSH cohort, a
reason why we cannot comment on their possible influence on
the results. In the Singapore and Lebanon cohorts, pharma-
cokinetic analyses were likely not influenced because no patient
received moderate/strong CYP2D6 inhibitors. Collectively, our
data for the association of tamoxifen outcome with endoxifen
formation/concentrations in premenopausal patients must be
considered exploratory therefore, its potential clinical relevance
awaits confirmation by independent studies.
Our data support the notion that tamoxifen efficacy in premen-

opausal breast cancer patients is influenced by CYP2D6-mediated
metabolism. If replicated, therapeutic drug level monitoring at
steady-state could identify patients with high endoxifen levels or
low DM-Tam/endoxifen ratio expected to have a lower risk of
recurrence and who should therefore be encouraged to adhere to
tamoxifen. On the basis of current research and developments
toward improving therapeutic levels of endoxifen, patients with
impaired/deficient CYP2D6 and suboptimal therapeutic endoxifen
concentrations could be considered for the following: (i) increase
of the standard tamoxifen dose as previously suggested for
postmenopausal women,15,56,57 (ii) standard tamoxifen dose
supplemented with endoxifen, a possibility currently explored
by in silico modeling of CYP2D6 phenotype guided dosing
schemes,58 (iii) treatment with (Z)-endoxifen hydrochloride of
which first-in-man studies have already been published59 and
further clinical trials are underway (www.clinicaltrials.gov:
NCT01327781, NCT01273168) and (iv) aromatase inhibitor
combined with ovarian suppression,60 as currently investigated
in the Tamoxifen and EXemestane (TEXT) and Suppression of
Ovarian Function Trial (SOFT) trials.61
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