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Abstract—Most security mechanisms proposed to date unques-
tioningly place trust in microprocessor hardware. This trust,
however, is misplaced and dangerous because microprocessors
are vulnerable to insider attacks that can catastrophically com-
promise security, integrity and privacy of computer systems. In
this paper, we describe several methods to strengthen the funda-
mental assumption about trust in microprocessors. By employing
practical, lightweight attack detectors within a microprocessor,
we show that it is possible to protect against malicious logic
embedded in microprocessor hardware.

We propose and evaluate two area-efficient hardware methods
— TRUSTNET and DATAWATCH — that detect attacks on
microprocessor hardware by knowledgeable, malicious insiders.
Our mechanisms leverage the fact that multiple components
within a microprocessor (e.g., fetch, decode pipeline stage etc.)
must necessarily coordinate and communicate to execute even
simple instructions, and that any attack on a microprocessor
must cause erroneous communications between microarchitec-
tural subcomponents used to build a processor. A key aspect of
our solution is that TRUSTNET and DATAWATCH are themselves
highly resilient to corruption. We demonstrate that under realistic
assumptions, our solutions can protect pipelines and on-chip
cache hierarchies at negligible area cost and with no performance
impact. Combining TRUSTNET and DATAWATCH with prior
work on fault detection has the potential to provide complete
coverage against a large class of microprocessor attacks.1

Index Terms—hardware security, backdoors, microprocessors,
security based on causal structure and division of work.

I. INTRODUCTION

One of the key challenges in trustworthy computing is

establishing trust in the microprocessors that underlie all

modern IT. The root of trust in all software systems rests

on microprocessors because all software is executed by a

microprocessor. If the microprocessor cannot be trusted, no

security guarantees can be provided by the system. Providing

trust in microprocessors, however, is becoming increasingly

difficult because of economic, technological and social fac-

tors. Increasing use of third-party “soft” intellectual property

components, the global scope of the chip design process,

increasing processor design complexity and integration, the

growing size of processor design teams and the dependence

on a relatively small number of designers for a sub-component,

all make hardware highly susceptible to malicious design.

1Appears in Proceedings of the 31st IEEE Symposium on Security &

Privacy (Oakland), May 2010
Free to distribute for educational use. Copyright restrictions may apply

otherwise.

A sufficiently motivated adversary could introduce backdoors

during hardware design. For instance, a hardware designer, by

changing only a few lines of Verilog code, can easily modify

an on-chip memory system to send data items it receives to

a shadow address in addition to the original address. Such

backdoors can be used in attacking confidentiality e.g., by

exfiltrating sensitive information, integrity e.g., by disabling

security checks such as memory protection, and availability

e.g., by shutting down the component based on a timer or an

external signal. Some recent high-profile attacks have been at-

tributed to untrustworthy microprocessors [10]; hardware trust

issues have been a concern for a while now in several domains,

including in military and public safety equipment [67], and this

issue has attracted media attention lately [45].

Because hardware components (including backdoors) are

architecturally positioned at the lowest layer of a computa-

tional device, it is very difficult to detect attacks launched or

assisted by those components: it is theoretically impossible2

to do so at a higher layer e.g., at the operating system or

application, and there is little functionality available in current

processors and motherboards to detect such misbehavior. The

state of practice is to ensure that hardware comes from a

trusted source and is maintained by trusted personnel — a

virtual impossibility given the current design and manufac-

turing realities. In fact, our inability to catch accidental bugs

with traditional design and verification procedures, even in

high-volume processors [59], makes it unlikely that hidden

backdoors will be caught using the same procedures, as this

is an even more challenging task.3

In this paper we investigate how microprocessor trust can

be strengthened when manufactured via an untrusted design

flow. Figure 1 shows the standard steps used to manufacture

microprocessors. This paper focuses on one of the initial

production steps, which is the coding phase of hardware design

(register transfer level, or RTL). Any backdoor introduced

during the initial phase becomes progressively more difficult

to catch as it percolates through optimizations and tools in the

2It should be noted, however, that in practice it may be possible to detect
discrepancies in the state of the system, such as cache misses. Such detection
cannot be guaranteed, and it largely depends on both external artifacts
used for the detection (e.g., a reference time source) and on sub-optimal
implementation of the backdoor.

3The International Technology Roadmap for Semiconductors notes that the
number of bugs escaping traditional audit procedures will increase from five
to nine per 100,000 lines of code in the coming years [2].
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Fig. 1. Microprocessor design flow and scope of this paper.

later phases. Prior work on detecting attacks on hardware by

malicious foundries [12][17][16][24][40][53][67] assumes as

a starting point the availability of a trusted RTL model, called

a golden netlist. Our work aims to provide this trusted, golden

netlist.

The traditional approach to building trustworthy systems

from untrustworthy components is to redundantly perform a

computation on several untrustworthy components and use

voting to detect faulty behavior. For example, N processors

designed by different designers can run the same instructions,

and the most popular output can be accepted. This solution,

however, is not viable for microprocessors because it increases

the initial design cost significantly by increasing the size of

the design team and verification complexity of the design.

This solution also increases the recurring operational costs by

decreasing performance and increasing power consumption.

In this paper, we describe a novel method for building a

trustworthy microprocessor (at low cost) from untrusted parts,

without the duplication required by the N version model.

Our technique exploits the standard division of work be-

tween different sub-components (or units) within a micropro-

cessor, universally available in microprocessor designs. We

do this by recognizing simple relationships that must hold

between on-chip units. The underlying observation that drives

our technique is that the execution of any instruction in a

microprocessor consists of a series of separate but tightly

coupled microarchitectural events. For example, a memory

instruction, in addition to using a cache unit needs to use the

fetch, decode and register units. We take advantage of this

cooperation in order to detect tampering by noticing that if

one unit misbehaves, the entire chain of events is altered.

We explain our technique with an analogy: say, Alice, Bob

and Chris are involved in a fund raiser. Alice is the Chief

Financial Officer, Chris is a donor, and Bob is a malicious

accountant. Let us say Chris makes a donation of $100 towards

the fund-raiser and makes the payment to Bob. Let us also

say Alice follows all probable donors on Twitter so that she

can send a thank you note as soon as donors post tweets

on their charitable deeds. Chris tweets: “Donated $100 to

charity.” Malicious Bob swipes $10 off and reports to Alice

that Chris only donated $90. Of course, Alice catches Bob

because she can predict Bob’s output based on Bob’s input

from Chris. Applying this analogy to our microprocessor, a

malicious cache unit cannot send two outputs when in fact

only one memory write instruction has been decoded. Any

unit that observes the output of the instruction decoder and

output of the cache will be able to tell that tampering has

happened along the way.

Our method relies on the fact that cooperating units are

not simultaneously lying — a reasonable assumption because

high-level design engineers on a microprocessor project are

typically responsible for only one or few processor units but

not all [26, 46]. Using these relationships, our system, called

TRUSTNET, is able to provide resilience against attacks to any

one unit, even if that unit is a part of TRUSTNET itself. Further,

TRUSTNET does not require that any specific unit is trusted. A

second system, called DATAWATCH, watches select data on the

chip in order to protect against attacks that alter data values

without directly changing the number of outputs. Continuing

on the previous analogy, this would be a case where Bob,

the evil accountant, passed on the full $100, but passed on

Canadian dollars instead of American dollars, keeping the

difference for himself. When DATAWATCH is active, Chris’

tweet would contain the fact that he donated American dollars,

tipping off Alice about Bob’s crime.

In this paper, we evaluate the resiliency of TRUSTNET

and DATAWATCH against a set of attacks implementable in

RTL during the initial processor design steps. We show that

TRUSTNET and DATAWATCH protect the pipeline and cache

memory systems for a microprocessor closely matching the

Sun Microsystems’ OpenSPARC T2 processor against a large

class of attacks at the cost of negligible storage (less than 2 KB

per core) and no performance loss. Additionally, TRUSTNET

and DATAWATCH, in concert with pre-existing solutions (partial

duplication [25]), can provide coverage against many known

hardware design level backdoors.

In summary, the primary contributions of this paper are:

• We present a taxonomy describing the attack space for

microprocessor designs. The key observation that forms the

basis of this taxonomy is that a microprocessor attack can only

change the number of instructions or corrupt instructions.

• We present a novel, general solution that exploits the division

of work and causal structure of events inherent in micropro-

cessors for detecting a large class of attacks created during

the initial stages of microprocessor design by knowledgeable,

venal, malicious insiders. To the best of our knowledge, we are

the first to propose using violation of co-operation invariants

in a microprocessors to detect malicious attacks.

The rest of the paper is organized as follows: Section II

describes related work. Section III describes the threat model,

assumptions of our study and a taxonomy of attacks. In

Section IV we describe our solution. Section V presents

2
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Fig. 2. Proposed work in the context of broader work on hardware
threats. Prior countermeasures against hardware threats rely on a trusted
microprocessor which this work aims to provide.

evaluation. We conclude and present directions for future

research in Section VI.

II. RELATED WORK

Microprocessors are one part of a large ecosystem of

hardware parts that forms the trusted computing base. There

has been a significant amount of work over the past several

decades on protecting different aspects of the ecosystem (Fig-

ure 2). In this section, we discuss threats and countermeasures

against all classes of hardware, not just microprocessors.

So far hardware, collectively the processor, memory, Net-

work Interface Cards, and other peripheral and communication

devices, has been primarily susceptible to two types of attacks:

(1) non-invasive side-channel attacks and (2) invasive attacks

through external untrusted interfaces/devices. We define an

attack as any human action that intentionally causes hardware

to deviate from its expected functionality.

Physical side-channel attacks compromise systems by cap-

turing information about program execution by analyzing em-

anations such as electromagnetic radiation [31, 33, 42, 47, 53]

or acoustic signals [15, 44, 60] which occur naturally as

a byproduct of computation. These attacks are an instance

of covert channels [39] and were initially used to launch

attacks against cryptographic algorithms and artifacts (such

as “tamper-proof” smartcards [43][37]) but general-purpose

processors are also pregnable to such attacks. There have

been several attacks that exploit weaknesses in caches [5,

8, 19, 21, 48, 49, 50, 51, 51, 52] and branch predic-

tion [6, 7, 9]. Some countermeasures against these threats

include self-destructing keys [32, 35, 62, 72] and new circuit

styles that consume the same operational power irrespective

of input values [27, 38, 58, 64, 65] and microarchitectural

techniques [11, 22, 63, 66, 69].

Invasive untrusted device attacks typically are carried out

by knowledgeable insiders who have physical access to the

device. These insiders may be able to change the configuration

of the hardware causing system malfunction. Examples of such

attacks include changing the boot ROM, RAM, Disk or more

generally external devices to boot a compromised OS with

backdoors or stealing cryptographic keys using unprotected

JTAG ports [13][56]. A countermeasure is to store data in

encrypted form in untrusted (hardware) entities. Since the ‘80s

there has been significant work in this area [61]. Secure co-

processors [28, 35] and Trusted Platform Modules [4] have

been used to secure the boot process. More recently, enabled

by VLSI advances, researchers have proposed continuous pro-

tection of programs and on-chip methods for communication

with memory and I/O integration [29, 40].

A new threat that has recently seen a flurry of activity is

intentional backdoors in hardware. As hardware development

closely resembles software development both in its global

scope and liberal use of third party IP, there is growing interest

and concern in hardware backdoors and their applications to

cyber offense and defense. Broadly speaking, work in this area

can fall into one of three categories: threats and countermea-

sures against malicious designers, threats and countermeasures

against malicious design automation tools, and threats and

countermeasures against malicious foundries. There has been

some work on detecting backdoors inserted by malicious

foundries that typically rely on side-channel information such

as power for detection [12, 16, 17, 24, 41, 54, 57, 70].

There has been no work on providing countermeasures against

malicious designers, which this work aims to address.

There have been a few unconfirmed incidents of design-level

hardware attacks [10] and some work in academia on creating

hardware backdoors. Shamir et al. [20] demonstrate how to

exploit bugs in the hardware implementation of instructions.

King et al. [36] propose a malicious circuit that can be

embedded inside a general-purpose CPU and can be leveraged

by attack software executing on the same system to launch

a variety of attacks. They demonstrate a number of such

hybrid software/hardware attacks, which operate at a much

higher abstraction level than would generally be possible with

a hardware-only attack. Although they do not discuss any

protection or detection techniques, their work is particularly

illuminating in demonstrating the feasibility and ease of cre-

ating such attacks through concrete constructs.

III. THREAT MODEL

A malicious hardware designer has to be strategic in cre-

ating backdoors because processor development, especially

commercial development, is a carefully controlled process.

Broadly speaking, the attacker has to follow two steps: first,

design a backdoor for an attack, and second, build a trigger for

the attack. Just like regular design, the attacker has to handle

trade-offs regarding degrees of deception, time to completion,

verification complexity, and programmability. In this section

we discuss these tradeoffs for attack triggers (Section III-B)

and attack backdoors (Section III-C). However, we begin our

discussion by detailing assumptions in our threat model.

A. Assumptions

• Assumption #1: Division of Work Typically, a microproces-

sor team is organized into sub-teams, and each sub-team is

responsible for a portion of the design (e.g., fetch unit or load-

store unit). Microprocessor design is a highly cooperative and

structured activity with tens to hundreds of participants [14].

The latest Intel Atom Processor, for instance, is reported to

3



have had 205 “Functional Unit Blocks” [3]; a design of a

recent System-on-Chip product from ST Microelectronics is

reported to have required over 200 engineers hierarchically

organized into eight units [1]. We assume that any sub-unit

team in a design can be adversarial but that not more than one

of the sub-units can be simultaneously compromised. While

adversarial nation-states could possibly buy out complete

teams to create undetectable malicious designs, it is more

likely that attackers will be a small number of “bad apples.”

• Assumption #2: Access The focus of this work is to detect

the handiwork of malicious microprocessor designers, which

includes chip architects, microarchitects, RTL engineers and

verifiers, and circuit designers. These workers have approved

access to the design, privilege to change the design, and an

intricate knowledge of the microprocessor design process and

its workings. A malicious designer will be able to provision

for the backdoor either during the specification phase, e.g.,

by allocating “reserved bits” for unnecessary functions, or

by changing the RTL. We assume this will be unnoticed

during the implementation phase and after the code reviews

are complete. Our assumption that code audits will not be

able to catch all backdoors is justified because audits are not

successful at catching all inadvertent, non-malicious design

bugs.

• Assumption #3: Extent of Changes The malicious designer

is able to insert a backdoor: (i) using only low tens of bits

of storage (latches/flops etc.) (ii) with a very small number

of logic gates and (iii) without cycle level re-pipelining. This

assumption does not restrict the types of attacks allowed. How-

ever, we assume the attacker is clever enough to implement

the changes in this way. This assumption ensures that the ma-

licious designer can slip in the hardware backdoor unnoticed

past traditional audit methods with very high probability.

• Assumption #4: Triggers Although an unintentional bug can

have the same consequences as a malicious backdoor, a critical

difference is that unlike a bug, a backdoor may not be always

active. If the backdoor is always active, there is a high chance

of detection during random, unit-level design testing. To avoid

detection, the malicious designer is likely to carefully control

when the backdoor is triggered.

• Assumption #5: ROMs We assume that ROMs written

during the microprocessor design phase contain correct data. In

particular, we assume that microcoded information is correct.

The reason for this assumption is that the data in ROMs is

statically determined and not altered by the processor’s state.

For this reason, we consider this security issue to be better

solved statically than at runtime.

B. Attack Triggers

An RTL level attacker can use two general strategies for

triggering an attack: a time-based trigger or a data-based

trigger. From the RTL perspective, input data and the passage

of time are the only factors determining the state of the

microprocessor (any attack using environmental factors would

be a side-channel attack; we are concerned with attacks

using digital input signals), so these two strategies or some

combination of them are the only ones possible.

• Trigger #1: Cheat Codes (CC) A malicious designer can

use a sequence of uncommon bits, embedded in either the

instruction or data stream to unlock/lock the backdoor. For

instance, a store instruction to a specific address and a certain

value (one pairing in a 2128 space for a 64-bit microprocessor)

can be used as a key to unlock a backdoor. Since the search

space is so large, the chance that this trigger is hit by random

verification is negligible. King et al. describe a variant of

this attack in which a sequence of instructions in a program

unlocks a trigger. The CC method gives an attacker a very high

degree of control on the backdoor but may require a reasonably

sophisticated state machine to unlock the backdoor. Further, it

requires execution of software that may not be possible due

to access restrictions. This is due to the fact that in order to

ensure the ‘magic’ instruction(s) is issued, the attacker must

execute a program containing that instruction(s). If the attacker

cannot obtain access privileges, then this will not be possible.

• Trigger #2: Ticking Timebomb (TT) An attacker can build

a circuit to turn on the backdoor after the machine has been

powered on for a certain number of cycles. The TT method is

very simple to implement in terms of hardware; for instance, a

simple 40-bit counter that increments once per processor clock

cycle can be used to open a backdoor after roughly 18 minutes

of uptime at 1 GHz. Unlike the CC method, TT triggers do not

require any special software to open the backdoor. However,

like CC triggers, TT triggers can easily escape detection during

design validation because random tests are typically not longer

than millions of cycles.

C. Backdoor Types

While the space of possible attacks is limited only by the

attacker’s creativity and access to the design, attacks can be

broadly classified into two categories, based on their runtime

characteristics. We observe that an attacker can either create

a hardware backdoor to do more (or less) work than the

uncompromised design would, or he/she can create a backdoor

to do the same amount of work (but work that is different

from that of an uncompromised unit). By work, we mean

the microarchitectural sub-operations or communications that

must be carried out for the execution of an instruction. This

is a complete, binary classification.

• Emitter Backdoors (EB) An emitter backdoor in a mi-

croarchitectural unit explicitly sends a different number of

microarchitectural communication than an uncompromised

unit. An example of an emitter backdoor in a memory unit

is one that sends out loads or stores to a shadow address.

When this type of attack is triggered, each memory instruction,

upon accessing the cache subunit, sends out two or more

microarchitectural transactions to downstream memory units

in the hierarchy. Similar attacks can also be orchestrated for

southbridge (I/O control hub) components, such as DMA

and VGA controllers, or other third party IP, to exfiltrate

4



confidential data to unauthorized locations.

• Corrupter Backdoors (CB) In this type of attack, the

attacker changes the results of a microarchitectural operation

without directly changing the number of microarchitectural

transactions. We consider two types of corrupter backdoors

— control corrupters and data corrupters.

A control corrupter backdoor alters the type or semantics

of an instruction in flight in a way that changes the number of

microarchitectural transactions somewhere else on-chip (e.g.,

at a later cycle). These attacks are similar to emitter attacks,

except that instead of simply issuing an extra instruction, they

use some part of a legitimate instruction in order to change

the number of transactions happening on-chip. For example,

if a decode unit translates a no op instruction into a store

instruction, this will indirectly cause the cache unit to do

more work than it would in an untampered microprocessor.

However, this change will not manifest itself until a later cycle.

This is different from an emitter attack because the decode

unit does not insert any new transactions directly; it decodes

exactly the same number of instructions in the tampered and

untampered case, but the value it outputs in the tampered case

causes the cache unit to do more work a few cycles later.

Data corrupter backdoors alter only the data being used in

microarchitectural transactions, without in any way altering

the number of events happening on-chip during the life of the

instruction. Examples of this could include changing the value

being written to a register file or changing the address on a

store request. For instance, an instruction might be maliciously

decoded to turn an addition into a subtraction, causing the

ALU to produce a difference value instead of a sum value. 4

• Emitter vs. Corrupter Trade-offs From the attacker’s point

of view, emitter attacks are easy to implement. Emitter attacks,

such as shadow loads, have very low area and logic require-

ments. They also have the nice property (for the attacker)

that a user may not see any symptoms of hardware emitters

when using applications. This is because they can preserve

the original instruction stream. Often in prior work the term

‘backdoor’ actually means ‘emitter backdoor.’

Corrupter attacks, on the other hand, are more complicated

to design and harder to hide from the user. In fact, a control

corrupter attack requires strictly more logic than a similar

emitter attack because rather then simply sending a trigger, it

must hide the trigger within a live instruction (which involves

extra multiplexing or something equivalent). In these attacks,

rather than simply emitting bogus signals, the user’s own

instructions are altered to invoke the attack. Since the user’s

instructions are being altered, the attacker must have some

knowledge of the binaries being run to change the data without

tipping off the user. If the execution of the backdoor caused

the user’s program to crash, this would violate the secrecy of

4Data corrupter backdoors can be used to change program flow, for example
by changing a value in a register, thus changing the result of a future ‘branch-
if-equal’ instruction. However, each individual instruction will still do the
same amount of work as it should. The extra work will not occur until
the corrupt instruction has been committed. Thus each instruction considered
individually will appear to be doing the correct amount of work.

the attack. Corrupter attacks also scale poorly with datapath

sizes, since they require decoding of user instructions. In the

case of multi-stage decoders, the backdoor itself may require

latches and execute over multiple cycles.

To summarize, the “biggest bang for the buck” for the

attacker is from ticking-timebomb-emitter attacks. They can

be implemented with very little logic, are not dependent on

software or instruction sequences, and can run to completion

unnoticed by users. In the following section, however, we

discuss strategies for defending against all types of backdoors

and triggers.

IV. PRINCIPLES FOR MICROPROCESSOR PROTECTION

We propose as a solution to the untrusted designer prob-

lem an on-chip monitoring system that recognizes malicious

behavior at runtime, regardless of the trigger or unit. Differ-

ent attacks require different defenses. As such, we present

our solution in four flavors. We first describe low overhead

solutions for emitter and control corrupter protection, called

TRUSTNET and DATAWATCH. We then describe how a form

of partial duplication, which we call ‘smart duplication’ can

be used against some data corrupters. For data corrupters not

protected by any of the above mechanisms, we recommend

full duplication. For this initial study, we discuss our solutions

in the context of simple microprocessors that do not re-order

instructions.

A. Emitter Backdoor Protection

Emitter backdoors by definition cause more (or less) mi-

croarchitectural transactions to occur in the corrupted unit

than the instruction specifies. We designed the TRUSTNET

monitoring system to watch the microarchitectural transactions

in each unit and catch this class of attacks. Conceptually,

the system detects violations of deterministic communication

invariants between on-chip units, which are violated by emitter

backdoors.

Toward this end, we designed the prediction/reaction mon-

itor triangle, depicted in Figure 3. A triangle consists of

three different on-chip units - a predictor, a reactor, and a

target (monitored unit in Figure 3). The predictor unit sends

messages to the monitor, predicting events that should come

out of the target unit. If the reactor does not receive a predicted
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Fig. 3. Overview of the TRUSTNET and DATAWATCH monitoring
scheme.
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event, or if the reactor receives an event that was never

predicted, then the monitor throws an alarm.

The target unit is any unit on-chip. For one example, using

Figure 4 as reference, consider the decode unit (IDU) as a

target. The predictor unit can be any unit that sees events

before they reach the decode unit, for example the fetch unit

(IFU). The fetch unit sees every instruction before it reaches

the decode unit. The reactor unit can be any unit that sees

events after they pass through the target. For example, it

can be the execution unit (EXU), because that unit always

receives information about instructions after they pass through

the decode unit. The monitor itself can reside anywhere on-

chip. The IFU knows each cycle whether or not it has fetched a

new instruction. The EXU knows at each cycle whether or not

a valid instruction is advancing through the pipeline. Having

these two sources of knowledge corroborate prevents the

IDU from ever inserting bogus instructions into the pipeline.

Nothing extra has to be computed, since this knowledge is

already represented by signals in the respective units.

A vital aspect of this design is that the target unit never com-

municates with the monitor. Therefore, even if the designer of

unit X knows the design of the monitor (which is likely), the

designer is unable to corrupt the monitor of X. For this reason,

it is important that the monitor of X should not be physically

part of unit X.

Recall the assumption from Section III that only one sub-

team is corrupt, and so an attacker cannot corrupt two in-

dependent units on-chip. This assumption guarantees that our

system is secure against the attack space. Consider the monitor

set up to watch some unit X. There are four items in play -

the predictor of X, which we will call P; the reactor to X,

which we will call R; X itself; and the monitor of X, which

we will call M. The attacker must choose one and only one

of these items to corrupt. In order to cause a confidentiality

or integrity attack in X, the attacker would have to choose to

corrupt X itself. However, in that case P, R, and M are all

untampered with, and the attack is caught at runtime by the

P-R-M monitor. The attacker could instead tamper with P or R

(but not both), but in either case that attack would be caught

at runtime, since P and R would disagree with each other.

The last choice is to corrupt M to cause an availability attack.

However, since M contains only one (or a few) logic gates, it is

too small to contain a cheat code or ticking time bomb. M has

so few states (usually none) and input bits (usually two) that

it can easily be verified statically by exhaustive enumeration.

B. Control Corrupter Backdoor Protection

Recall that control corrupters change the semantics of an in-

struction in flight. The same predictor/reactor scheme, used to

catch emitter attacks, works to detect control corrupter attacks,

since these attacks either cause reactions (microarchitectural

transactions) that are not predicted or prevent transactions that

are predicted. To this end, we present DATAWATCH, the natural

extension of TRUSTNET. DATAWATCH uses the same triangle

scheme as TRUSTNET. However, instead of transmitting indi-

vidual bits to monitors, signatures (e.g., hashes, parity bits,

TABLE I
COMPARISON OF TRUSTNET, DATAWATCH, AND SMART

DUPLICATION FOR SIMPLE, IN-ORDER MICROPROCESSORS

Attribute TRUSTNET DATAWATCH Smart Duplic.

Data Corrupter
Detection

No No Yes

Control Corrupter
Detection

No Yes Yes

Emitter Detection Yes Yes Yes
False Positives No No No
Stalls Processor No No Possibly
Area Cost Negligible Low Moderate
On-Chip Traffic Increases
Off-chip memory No effect
Backdoor source Can be identified

slices) are passed to monitors that check for equivalence. For

example, in the case of the decoder, a two bit signature is

enough to define whether an instruction involves a load, a

store, both, or neither (two bits for four cases). An equality

check on the signatures from the predictor and the reactor

is enough to confirm an on-chip invariant, namely that the

number of each type of regular memory operation that enters

the IDU equals the number of each type of memory operation

that exit the IDU. This prevents, for instance, an attack that

exfiltrates data by converting no ops into store instructions.

Data corrupter attacks change only the data that is sent in

on-chip communications. These backdoors are fundamentally

different from the types previously discussed because the

amounts and types of communications between units during

the execution of an instruction is identical to that of a correctly

functioning chip. The monitor triangle, while very efficient for

recognizing amounts and types of transactions, does not work

well for this case, because data corrupter attacks cannot be rec-

ognized without duplicating some of the computational logic

that has been corrupted. For example, if the EXU (execution

unit) produces an incorrect sum, the fact that the sum is wrong

cannot be known without duplicating (or otherwise performing

the job of) the ALU (arithmetic/logic unit).

However, this type of attack has some similarities with

transient errors that can occur in microprocessors. Signif-

icant work has been done toward transient error detec-

tion [25][55][71][23] and fault tolerance, and we draw on

the principles of some of this prior work. It is sufficient in

many cases to duplicate select computational logic in order to

protect the RTL design, since standard memory structures (e.g.,

RAMs) are not susceptible to RTL level attacks. We propose

that this type of minimal duplication, which we call ‘smart

duplication,’ can be used in a case-by-case way to protect

any units (e.g., memory control unit) that are not covered by

the DATAWATCH system or any units that may be considered

vulnerable to data corrupter attacks. This partial duplication

allows for protection against data corrupter attacks. However,

it does this at the possible cost of processor stalls and extra

area, and as explained previously(Sec. III-C), in most domains

data corrupter attacks would likely be considered infeasible

due to the requisite of knowing the binaries that will be run

in the future during the RTL design phase. Therefore, this
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Fig. 4. Units and communication in the hypothetical inorder processor used
in this study.

technique may only be useful in a few select domains or not

at all.

Table I summarizes some of the attributes of the offered

solutions. None of the proposed solutions have a problem

with false positives (false alarms) because they use invariants

that can be easily determined statically in non-speculative,

in-order microprocessors. Extending this solution to designs

with advanced speculative techniques, such as prefetching,

may make false positive avoidance non-trivial. False negatives

(missed attacks) are only a problem if multiple signals in

the DATAWATCH technique are hashed to save space, because

two different values may hash to the same key, thus tricking

the equality checker. However, hashing is an implementation

option, which we chose to avoid because the space requirement

of the baseline DATAWATCH system is fairly low.

C. A Case Study

To demonstrate the principles of the TRUSTNET and

DATAWATCH techniques we describe how they can be applied

to a hypothetical non-speculative, in-order microprocessor.

The in-order microprocessor used in this study closely mod-

els the cores and cache hierarchy of the OpenSPARC T2

microprocessor with the exception of the cross bar network

between core and memory system, the thread switching unit,

and the chip system units such as the clock and test units.

For this study, the units in the processor core are partitioned

as described in the OpenSPARC T2 documentation and we

used the open source RTL code to identify the predictors

and reactors for each unit. The following are the TRUSTNET

monitoring triangles we implemented, categorized by the unit

being monitored:

• #1 IDU: The primary responsibility of the IDU is to decode

instructions. Predicted by the IFU and reacted to by the EXU,

the IDU monitor confirms each cycle that a valid instruction

comes out of the IDU if and only if a valid instruction entered

the IDU. This monitor detects any attack wherein the IDU

inserts spurious instructions into the stream. In the case of

branch and jump instructions, which do not go all the way

through the pipeline, the information travels far enough for the

EXU to know that a branch or jump is occurring. This monitor

can be extended to support a speculative microprocessor if the

monitor can reliably identify speculative instructions.

• #2 IFU: The primary responsibility of the IFU is to fetch

instructions. Predicted by the I-Cache and reacted to by the

IDU, this monitor confirms each cycle that a valid instruction

comes out of the IFU if and only if an instruction was fetched

from the I-Cache. This invariant catches any attack wherein

the IFU sneaks instructions into the stream that did not come

from the I-Cache. The monitor operates on the level of single

instructions as opposed to whole cache lines. While the whole

line is loaded into the I-Cache from the L2, the I-Cache knows

when individual instructions are being fetched into the IFU.

• #3 LSU: The load-store unit (LSU) handles memory refer-

ences between the SPARC core, the L1 data cache and the L2

cache. Predicted by the IDU and reacted to by the D-Cache,

this monitor confirms each cycle that a memory action (load

or store) is requested if and only if a memory instruction was

fed into the LSU. This catches shadow load or shadow store

attacks in the LSU. Our microprocessor uses write merging,

which could have been a problem, since several incoming

write requests are merged into a single outgoing write request.

However, there is still a signal each cycle stating whether or

not a load/store is being initiated, so even if several writes are

merged over several cycles, there is still a signal each cycle

for the monitoring system.

• #4 I-Cache: Predicted by the IFU and reacted to by

the unified L2 Cache, this confirms each cycle that an L2

instruction load request is received in the L2 Cache if and only

if that load corresponds to a fetch that missed in the I-Cache.

The IFU can predict this because it receives an ‘invalid’ signal

from the I-Cache on a miss. An I-Cache miss immediately

triggers an L2 request and stalls the IFU, so there is no issue

with cache line size. The IFU buffers this prediction until the

reaction is received from the L2 Cache. This catches shadow

instruction loads in the I-Cache.

• #5 D-Cache: Predicted by the LSU and reacted to by the

L2 Cache, this is the same as the monitor #4 but watches data

requests instead of instruction requests.

• #6 L2 Cache: Predicted by the I-Cache and reacted to by

MMU, this is the same as monitor #4 but is one level higher

in the cache hierarchy.

• #7 L2 Cache: Predicted by the D-Cache and reacted to by

the MMU, this is the same as monitor #5 but is one level

higher in the cache hierarchy.

• #8 D-Cache: Predicted by the LSU and reacted to by the

L2 Cache, this is the same as monitor #5 but watches writes

instead of reads. It is necessary that two separate monitors

watch reads and writes; if a single monitor counted only

the total number of reads and writes, then an attacker could

convert a write into a read unnoticed. This would cause old

data to be loaded into the cache and prevent the new value

from being written.

• #9 L2 Cache: Predicted by the D-Cache and I-Cache and

reacted to by the MMU, this confirms that line accesses in

the MMU correspond to line accesses issued by the level 1

caches. This monitor prevents shadow loads/stores executed

by the L2 Cache.
The following are the DATAWATCH monitoring triangles we

implemented, categorized by the unit being monitored:

• #10 IFU: Predicted by the IDU and reacted to by the I-
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Fig. 5. TRUSTNET Monitor Microachitecture.

Cache, this confirms each cycle that if the I-Cache receives

a valid PC value it is the same as the value computed in the

IFU. This required some duplication of PC logic but did not

require any extra storage. This prevents attacks wherein the

IFU maliciously changes the control flow.

• #11 Data TLB: Predicted by the checker data TLB and

reacted to by the LSU, this confirms each cycle that the outputs

of the data TLB match the outputs of the checker data TLB.

This prevents data TLB attacks, such as permissions violations

or page mis-translation. This is on the borderline of what we

would start to call ‘smart duplication’ because the ‘signatures’

are so large. However, we included this is our DATAWATCH

implementation and simulation.

• #12 Instruction TLB: Predicted by the checker instruction

TLB and reacted to by the IFU, this is the same as monitor

#11 but for the instruction TLB rather than the data TLB.

• #13 IDU: Predicted by the IFU and reacted to by the

LSU, this confirms that the number of instructions decoded

into memory operations matches the number of memory

instructions fetched. For our microprocessor, this required that

the IFU looked at a few bits of the instruction. The monitoring

occurs at a one cycle lag, so the timing on the critical path is

unaffected. The IFU stores a few of the bits from the fetched

instruction in flip-flops until the next cycle, when a prediction

can be made with a few logical gates. For our case study, this

is the only type of control corrupter decoder attack we address.

The reason for this is that in our simple microprocessor, the

only types of signals the decoder can cause are loads in stores

(if, for example, the decoder changed an add to a subtract,

this would be a data corrupter, because it would not alter the

number of transactions in the execution unit, just the value of

the output). In more complex microprocessors, decode units

may be responsible for more types of transactions and might

require additional monitoring triangles. When customizing a

DATAWATCH system to fit a particular design, it is important up

front to identify what types of signals each unit is responsible

for.

D. Microarchitecture and Optimizations

The microarchitecture of the predictor and monitor units are

depicted in Figure 5. The predictor unit consists of (i) event

buffers for delaying the issue of tokens to the monitor and (ii)

token issue logic to determine when buffered events can be

released from the event buffers. The predictor unit requires a

small buffer because it is possible for multiple predictions to

happen before a reaction happens, and these predictions must

be remembered for that duration. These buffers can be sized

a priori to avoid overflows. The monitor itself simply checks

if events appear on the predictor and reactor inputs during the

same cycle.

1) TRUSTNET Optimization: When designing the TRUST-

NET system to catch emitter backdoors, we considered it to be

important that the monitors fit simply into the pipeline without

any complex timing or buffering issues.

Since predictions and reactions must arrive at the monitor

during the same cycle, timing must be controlled in the face of

non-determinism, which arises in all microprocessors due to

cache misses, etc. We handled this differently in the case of

the memory hierarchy and in the case of the pipeline. The

pipeline offers a natural lock-step manner for coordinating

events. If a reaction stage is N pipeline steps down from

a prediction stage, then the prediction stage has a size N

buffer that advances only when that stage of the pipeline

advances. Since the monitoring network advances in lock-step

with pipelined events, timing is not a problem. For example, if

the third pipeline stage wants to send a prediction to a monitor

that lies in the fifth pipeline stage, this will take two pipeline

advancements (no need for forwarding). If the third stage stalls

for any reason, the prediction also stalls and gets buffered.

When the data from the third stage reaches the fifth stage,

the prediction token will also arrive. Of course, the prediction

token should not pass through the fourth stage but should

instead remain in the prediction buffer, with a bit denoting

that it is semantically in the fourth stage.

In the case of the cache hierarchy, on the other hand, it

is necessary to know which predictions correspond to which

reactions, because it is possible for memory requests to be

handled out of order. This requires time-stamping of packets,

for example with a one byte local time signature copied from

an 8-bit modular counter.

2) DATAWATCHOptimization: A naı́ve solution for catching

control corrupter backdoors in TLBs (translation lookaside

buffers) is to simply have two (or more) designers design the

same TLB and compare their outputs each cycle. Since TLBs

tend to be power-hungry, highly associative structures, dupli-

cation is not a good idea. Instead of complete duplication, we

propose a new TLB microarchitecture that provides significant

protection without the costs associated with duplication. The

TLBs contain page translation and permissions information not

available elsewhere on chip. A TLB consists of a CAM that

translates a virtual page into a physical page, which is then

stored in a table (RAM) with the corresponding permissions

information for that physical page.
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The basic idea of our method is to create a “checker” direct-

mapped structure that has the same functionality as a TLB, the

motivation being that a direct-mapped structure uses a fraction

of the power of an associative one. The TLBs in our case study

are fully associative. We added functionality to the CAMs to

output the line number of the output. This allowed us to build a

checker TLB that uses these line numbers. Essentially, instead

of having one CAM and a direct-mapped RAM (as is normal),

we have one CAM and two direct-mapped RAMs that operate

in parallel. The CAM provides matching entries to both RAMs

in parallel. One of those RAMs communicates with the rest of

the chip while the other RAM only gives outputs to a monitor

(equality verifier). The equality check occurs at a one cycle

latency, so the values are buffered for that cycle.

Naturally, the CAM could be tampered with so that it sends

incorrect line numbers to the checker TLB. This would cause

the equality check to fail because data from one line of the

original TLB’s RAM will be compared to data from a different

line of the second RAM, causing an alarm to be thrown.

Therefore, our checker TLB turns a potential confidentiality

or integrity attack into at worst an availability attack. We note

that this availability attack would also be easy to catch at

verification time because the passing of the line number is

simple, combinatorial logic that can be checked by exhaustive

enumeration.

While this duplication is much more expensive than the

simpler monitor used for emitter backdoor protection, it is

much less expensive than complete duplication and offers

strong protection for a highly vulnerable unit.

E. Applications of Prior Solutions

As we mentioned briefly in the introduction, the problem

of building trusted systems from untrustworthy components

is a classic problem that has received some attention in the

systems community. A common solution used to amplify trust

in corruptible processes is to use the N -version model of

computation. The basic idea is to have N entities perform

the same computation and compare the N outputs to check

for untrustworthy behavior. In this section, we expand on the

different ways in which this concept can be applied to micro-

processors and discuss the advantanges and disadvantages.

To deal with untrusted designers in the context of mi-

croprocessors, one option is to have N designers create N

versions of each unit within a processor, which would all

be run continuously to check for untrustworthy behavior.

Alternately, one could run a program on N different systems

that implement the same ISA but are manufactured by different

vendors, say, boards that have x86 processors from AMD,

Intel and Centaur. The latter suffers from high power overhead

while the former suffers from both high design cost per

chip and high runtime costs. Another solution that avoids

only the runtime cost is to statically and formally check the

design units from N designers for equivalence. This approach

increases the design cost and does not scale to large designs

or designs that are vastly different. According to the 2007

ITRS roadmap, only 13.8% of a normal microprocessor design

specification is formalized for verifiability [2]. All common

solutions to this problem appear unsatisfactory in the context

of microprocessors.

Another option is to use static verification to identify

backdoors. There has been extensive prior work on static

verification of RTL level designs [68][18][34]. Static verifi-

cation involves confirming functional equivalence between a

behavioral level golden model (e.g., a C program) and the

RTL level design under test. The difficulty lies in the fact

that the input space for a microprocessor grows exponentially

with the number of input interfaces and the internal state size,

which makes the functional domain catastrophically large.

Exhaustive comparison is unrealistic, so the state of the art is

to use probabilistic approaches that attempt to obtain reason-

able coverage, such as equivalence checking [30][68], model

checking [30], and theorem proving [30]. These approaches

can work for small units, particularly ones with little or

no state, such as ALUs. Unfortunately, static verification is

increasingly becoming the bottleneck in the microprocessor

design process [30] and is becoming less reliable [2].

A fundamental weakness of static verification techniques

when it comes to backdoor detection is that they attempt to

use a stationary weapon to hit a moving target. Static methods

choose specific targets for comparison or invariants to confirm

about small portions of the design. Since it is reasonable to

assume that a malicious insider would have full knowledge of

the static verification technique being used, he or she would

most likely design the backdoor to avoid the space covered by

these techniques. For example, he or she would likely make

sure not to violate any of the theorems being verified and to

avoid regions being formally checked for equivalence.

V. EVALUATION

The goals of our evaluation were to: (1) study the accuracy

and coverage provided by TRUSTNET and DATAWATCH, (2)

measure the increases in on-chip network congestion from

DATAWATCH running on real programs and (3) measure the

area overheads of both mechanisms. We do not discuss per-

formance since the proposed mechanisms do not stall the

pipeline, memory system, or any other on-chip unit, and

security packets travel on a dedicated network.

A. Applicability

This section addresses the general applicability and limita-

tions of our solution, including related aspects and potential

extensions.

• Scope of our solution Our implementation of TRUSTNET

and DATAWATCH was designed for a simple, in-order micro-

processor. While the methodology is applicable to any in-order

microprocessor, this exact implementation only works for the

microprocessor in our case study. In order to fit TRUSTNET

and DATAWATCH to other designs, it is necessary to analyze the

units at a high level and determine what the natural predictors

and reactors are. In future work, we hope to develop a tool

that automates this process.

• Level of our solution Our solution is at the RTL level and
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thus can only catch attacks that operate on the RTL level. Post-

RTL, circuit level attacks, such as tampering with the voltage

thresholds on certain transistors, would not be caught by our

system. Our solution covers the cores and the cache hierarchy

of the OpenSPARC T2 microprocessor but does not cover

debug/test logic or miscellanies, such as clock distribution.

Additionally, side-channel attacks are also not covered.

• Multiple attackers The solution we implemented works only

under the assumption that at most one of the design teams

is corrupt. Our design is a triangle (complete graph of size

three). If we remove the assumption that only one of the design

subteams is corrupt and allow for n different subteams to be

corrupt and fully coordinated, then the solution must be come

more complicated.

In order for a TRUSTNET system to catch n coordinated

attackers, it is necessary to form a complete graph of size

n + 2. The premise of the system is that two honest units

must communicate with each other to compare information

and detect discrepancies. If there are at most n+1 nodes and n

have been tampered with, then at most one of them is honest,

and the one honest node receives only invalid information.

Therefore, the size of the graph must be at least n + 2 so

that there are at least two honest nodes. If the graph is not

complete, i.e. it is missing an edge, then it is possible that

the missing edge connects the only two honest nodes. In that

case, the two honest nodes receive only invalid information.

Therefore, the graph must be complete. Since complete graphs

contain
n(n+1)

2 bidirectional edges, the TRUSTNET solution,

when extended to n attackers for a microprocessor with u

units, has a fundamental communication overhead of n(n +
1)u ∝ n

2
u.

The conclusion is that even though TRUSTNET and

DATAWATCH are generalizable for multiple, coordinated at-

tacking subteams, they do not scale well. We present this

generalized scheme only for completeness.

• Alarms The decision of how to handle an alarm is domain

specific and not a fundamental aspect of our monitoring

system. However, we present initial suggestive thoughts on

what might be done with an alarm. In our experimental

implementation, the alarm was simply recorded and not used

for any corrective actions.

The simplest response to an alarm is to kill the defective

processor, which turns a confidentiality or integrity attack into

an availability attack. In highly secure domains, this may

be desirable to guarantee no exfiltration of sensitive data.

Additionally, in a heterogeneous processor (diversity) setting,

it may be desirable to kill the defective core. We also note that

using the TRUSTNET and DATAWATCH infrastructure has the

potential to greatly simplify the task of making microproces-

sors tamper corrective. If an alarm is sounded, the problem can

be corrected by rolling back to the last committed instruction.

Additionally, the instruction that was in flight in the corrupted

unit can be flagged as a cheat code and logged for future

execution. This approach would be analogous to a honeypot.

• Extensions to General Microprocessors There are several

TABLE II
EXPERIMENTAL INFRASTRUCTURE

Instruction Set Sun SPARC
Microarchitecture

Instruction sup-
ply

16KB, 8-way 1R/1W L1 I cache, 64-entry FA
I-TLB (both 2-cycle access, 52 cycles on TLB
miss), No branch prediction, stall until branch
resolution.

Execution Single issue, 1 INT ALU, T2 SPARC register
windows.

Data supply 8KB, 4-way L1 D cache 1RW, 128-entry FA
DTLB (both 3 cycle access, 53 cycles on TLB
miss, write-back policy), unified 4 MB, 16-way
L2 cache, 1 RW (both 12 cycle access, write-
back policy), Unlimited main memory at 250
cycle access latency.

Pipeline Stages Fetch, Cache, Pick, Decode, Execute, Read,
Bypass, Writeback.

Benchmarks bzip2, gcc, mcf, gobmk, hmmer, test inputs,
base compiler optimizations, SPARC compiler

ways to generalize the TRUSTNET and DATAWATCH architec-

ture, and each way poses challenges for future work. The

multi-threaded case is a relatively simple generalization that

can be implemented by making the packets n-wide for an

n-threaded core. Assuming one thread is not supposed to

alter the microarchitectural transactions of another thread, the

n-wide packet can function semantically as n independent

monitors. The out-of-order case is more complicated as it

requires our mechanisms to be extended to handle reorder-

ing of in-flight predictor/reactor tokens. Handling speculative

techniques would also require extensions, though we believe

that the principles of our system can be applied to work in this

case without any false alarms by identifying what the lifetime

of an instruction is (whether it is prefetched, speculated or

committed) and monitoring it for that lifetime. There are other

advanced features of modern microprocessors, and each may

warrant its own attention in future work. For example, some

microprocessors have a privileged or supervisor state that is

separate from the permissions governed by the TLB. Such

additions would open the door for control corrupter attacks

and would warrant additional monitoring triangles.

B. Evaluation Methodology

We demonstrate our design on a simplified model of Sun

Microsystems’ OpenSPARC T2 microarchitecture. We chose

this architecture and instantiation because it is the only

“industrial-strength” hardware design that is also available as

open source. While our experiments and analysis were per-

formed on our simulated core, based on the OpenSPARC T2

microprocessor design, we use nothing unique to that design,

and we believe our techniques can in principle be applied to

any microprocessor that has memory hierarchy and pipelines.

In our case study, we used the RTL hardware implementation

(1) to construct well-formed, meaningful attacks to test the

resiliency of the system and (2) to systematically determine

the number of on-chip units that can be covered by our design.

In addition, to measure congestion, similar to many computer

architecture studies, we use a cycle-accurate simulator that

exactly models one core of our microprocessor. The details
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of our simulation infrastructure are summarized in Table II.

We implemented all the TRUSTNET and DATAWATCH monitor

triangles discussed in this paper (Tables III, IV) including the

partially duplicated TLBs.

C. Attack Space Coverage

To determine how good TRUSTNET and DATAWATCH are at

protecting against attacks on microprocessors, we first need

to measure the microprocessor attack/vulnerability space. To

measure the attack/vulnerability space, we observe that an

on-chip unit is only vulnerable to backdoors in-so-far as its

interfaces are threatened. What goes on inside the unit doesn’t

matter so long as everything that goes in and out of it is correct.

If all inputs and outputs are the same as in an uncorrupted

chip, then there is no problem, because there has been no

corruption or exfiltration of data. Therefore, to identify the

points of vulnerability, we record the interfaces between on-

chip units. The efficacy of our solution is then determined

by whether or not these interfaces are protected from attacks

using TRUSTNETand DATAWATCH.

Figure 6 (A,B,C,D) shows the distribution of shared in-

terfaces between units within the overall chip, the processor

core, the memory elements and system elements respectively,

in the RTL implementation of the OpenSPARC T2. Each

measurement in the grid represents the number of signals that

enter and leave a unit within the processor. All communication

is normalized to the unit that has the highest communication.

Very small bars (below 0.1) signify connections that are not

part of instruction processing, but rather contain miscellaneous

information, such as power settings, clock distribution, etc

(attacks on these may be possible at fabrication, e.g., mis-

clocking a certain unit, but would be diffcult at the RTL code

level). Most of these miscellaneous signals are not present in

our case study. Thus, the microprocessor in our case study is

somewhat simpler than a real OpenSPARC T2 and lacks some

of the less central features, such as power management and

floating point operations.

As can be seen from Tables III and IV, that describe known

emitter and corrupter monitors respectively, and Figure 6,

that describes all the interfaces, that all of the units in the

core that have significant communications (more than 0.1) are

monitored by TRUSTNET and DATAWATCH. For this study,

we used manual analysis to identify which signals on the

interfaces can be altered to cause emitter and control corrupter

attacks to verify that TRUSTNET and DATAWATCH can cover

these signals. Based on this analysis, most of the vulnerable in-

terfaces can be protected against the known attacks. However,

our manual analysis may have failed to exhaust all possible

attack scenarios; in future work, we hope to automate this

process to guarantee full coverage.

While TRUSTNET and DATAWATCH cover the processor

cores and the cache hierarchy against the emitter and control

corrupter attacks we identified, we did not cover the float-

ing point logic, memory controller units, crossbars and the

miscellaneous logic. We believe that formal verification can

be used to cover floating point logic as is already in vogue.

Similarly, we beleive that the crossbar in our case study is

simple enough to be amenable to formal verification. We are

not sure if our strategy can cover the miscellaneous logic such

as power management unit and the stream processing unit (we

have not had time to understand the implementation) but these

units have very little contact with other units on chip (less

than 0.1 normalized), and we believe it is unlikely that they

will significantly increase attack vulnerability. The difficulty

with covering the MCU with TRUSTNET is that the MCU

communicates with only the main memory and that there is

nothing on-chip that can serve as a reactor. The simplest way to

handle this special case would be to duplicate the MCU control

logic, which serves the same purpose as complete duplication

but without increasing memory bandwidth.

D. Attacks and Detection

Based on our study of the OpenSPARC T2 RTL, we con-

structed the emitter and control corrupter attacks described in

Table V and injected the attacks into our simulator to measure

the percentage of false negatives and false positives. We did

not implement the data corrupter attacks. These attacks, such

as the one which alters the address of an otherwise valid load,

are situations where some logic duplication may be required.

In this case, the address (or a hash of the address) could be

forwarded to make sure it has not been altered. However, this

was not done in our implementation, which protected only

against emitter and control corrupter attacks. As stated earlier,

we also did not take any corrective or rollback measures with

alarms; we only recorded them.

As was expected, all emitter and control corrupter attacks

were caught in all cases. This is very important because it

demonstrates that our system provides coverage for all of the

units we applied it to and for various types of attacks. We

also measured the overall accuracy of our solution with no

attacks, as measured by the percentage of the cycles in which

there are no false positives thrown. For all tests run, no false

positives occurred. It is vital that there are no false positives

and no false negatives because the latter would be a breach

of security and the former would cripple the system.

E. Traffic

Since TRUSTNET and DATAWATCH do not stall the pipeline

or otherwise increase computational cycles, the most relevant

cost of the system is the increase in on-chip network traffic.

This increase depends on the architecture, but it can be

bounded in general if we assume a cache hierarchy and one

or more pipelined computational units. The total amount of

traffic in the worst case is bounded above as per the following

equation:

traffic ≤ 2 ∗ (MemoryOps ∗ MemoryMonitors

+ Instructions ∗ PipelineMonitors)

The factor of two comes from the fact that each monitoring

event consists of two packets - a prediction and a reaction.

This is a loose upper bound, and we expect real programs

to produce far less than this much traffic. However, this upper
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TABLE III
DESCRIPTIONS OF THE EMITTER PROTECTION MONITORS FOR OUR IMPLEMENTATION

Monitored Unit Predictor Reactor Invariant Example of attack thwarted

IDU IFU EXU # of instructions in = # of instructions out IDU stalls the fetch unit and sends ma-
licious commands to the EXU

IFU I-Cache IDU # of instructions in = # of instructions out IFU sends spurious instructions to the
IDU

LSU IDU D-Cache # of Memory ops issued = # of Memory ops
performed

LSU performs shadow loads

I-Cache IFU L2 Cache # of requested L2 instructions = # of IFU requests
that miss

I-Cache returns spurious instructions to
IFU while waiting on the L2 Cache

L2 Cache I-Cache MMU # of requested instructions from memory = # of
I-Cache requests that miss in L2

L2 Cache returns spurious instructions
while waiting on main memory

D-Cache LSU L2 Cache # of requested L2 data = # of LSU requests that
miss

D-Cache returns fake data while waiting
on the L2 Cache

L2 Cache D-Cache MMU # of requested data from memory = # of D-Cache
requests that miss in L2

L2 Cache returns spurious data while
waiting on main memory

D-Cache LSU L2 Cache # of L2 cache lines written = # of LSU line writes
issued

D-Cache sends write to L2 cache un-
prompted

L2 Cache D-Cache MMU # of Memory lines written = # of D-Cache line
writes issued

L2 sends write to memory unprompted

Legend: IDU = decode unit, IFU = fetch unit, LSU = load/store unit, I-Cache = instruction cache, D-Cache = data cache, L2 Cache = unified L2 cache

TABLE IV
CORRUPTER PROTECTION MONITORS

Monitored Unit Predictor Reactor Invariant Example of attack
thwarted

Type of signature

IFU IDU I-Cache PC received = PC computed IFU branches incorrectly Eight bit signature
D-TLB Checker D-TLB LSU TLB output = checker TLB output TLB violates permissions Full permissions and

translation
I-TLB Checker I-TLB IFU TLB output = checker TLB output TLB violates permissions Full permissions and

translation
IDU IFU LSU Memory ops issued = memory ops per-

formed
Decoder causes shadow
load/store

Two bit signature

Legend: IFU = fetch unit, IDU = decode unit, TLB = translation lookaside buffer, LSU = load/store unit, I-Cache = instruction cache

bound demonstrates our design’s scalability. This linear scaling

with the IPC and the pipeline depth is optimal (up to constant

factors) given that we want to monitor every pipeline stage

and every instruction.

We experimentally measured how much monitoring network

traffic is generated by real programs with two questions in

mind: (1) Are there programs that create floods of traffic (near

the worst-case bound)? (2) Do high-level differences between

programs affect the amount of traffic caused by our monitors?

Our expectation was that the different programs would have

little impact on the amount of traffic produced by the monitors.

As Figure 7 shows, the differences between programs do not

significantly impact the EPC (events per cycle) of our system.

Figure 7 displays the number of communications per cycle

sent between TRUSTNET monitors during executions of SPEC

integer benchmarks. These numbers are deterministic because

the monitors behave deterministically and the instructions are

in order. The traffic generated is relatively low (always less

than 2 per cycle). It is also stable across the benchmarks

(between 1.1 and 1.2). This supports our belief that a single

model works for all programs and that program adaptive

features would be unnecessary. These numbers would be

higher for a program that, for example, consisted of only

store instructions or only branch instructions, but we do not

anticipate such behavior in real programs.

F. Area Estimates

In this section, we provide bounds on the general area cost

of TRUSTNET and DATAWATCH and estimate the cost of the

implementation in our case study. We use bytes of storage as

our metric because the computational logic required is trivial

(XORs, buffer logic, or equality check over a few bits).

The area cost of our monitors comes from the fact that an

event must be stored by the monitoring system from the time

it reaches the predictor to the time it reaches the reactor. In

complex processors, this time can be variable. It is necessary

to have buffers large enough to store all events that are still

incomplete. This number depends on the architecture but is

Fig. 7. Events per cycle created by the TRUSTNET monitoring scheme
for SPEC benchmarks. An event is any communication between two on-chip
units. A prediction and a reaction count as two separate events.
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Fig. 6. An overview of the communications that occur in a real OpenSPARC T2 microprocessor. (A) displays a partition of the microprocessor into four
basic parts: ’System’ includes interfaces, clock generators, and other system level features. ’Memory’ cache banks, non-cacheable units, and other memory
structures. The core represents one processor core (there are eight cores in all). The crossbar coordinates communications between the cores and the cache
banks (which are partitioned on chip). (B), (C), and (D) show internal communications going on within the system, memory, and cores.

known a priori for a given microprocessor. Therefore:

BufferPackets ≤ MaxMemoryRequests

+ MaxInstructionsInPipeline

In the single-issue, in order case, each packet is a single

bit. Additionally, if there are N threads sharing a pipeline, the

data must be N bits wide instead of one, so that no thread-

swapping attacks are possible. So in general:

Area ≤ (MaxMemoryRequests

+ MaxInstructionsInPipeline) ∗ PacketSize

Specifically, TRUSTNET as described in Table III, employs

nine different triangles. It is sufficient to use a one byte

prediction buffer for each triangle at the input (although in

most cases less would suffice). Analysis of an OpenSPARC

T2 core shows that it is impossible for a one byte prediction

buffer (eight slots) to overflow. This makes a total of at most

nine bytes of storage. Using maximal scaling i.e., conservative

scaling with no microarchitectural optimizations, would re-

quire 9∗8 = 72 bytes to cover an eight-threaded OpenSPARC

T2 core. An OpenSPARC T2 chip, which contains eight

cores, would require eight copies of TRUSTNET for a total

of 72 ∗ 8 = 576 bytes of storage.

DATAWATCH, as described in Table IV, employs four addi-

tional triangles on top of TRUSTNET. The two triangles for

the pipeline use eight-wide prediction buffers of one byte

signatures, for a total of eight bytes each. If we create the two

triangles on all eight cores, that makes 2 ∗ 8 ∗ 8 = 128 total

bytes of storage. Including the duplicate direct-mapped TLBs

(both data and instruction) adds a total of 128 + 64 = 192
duplicated TLB entries. If we do this for each of the eight

cores and give each line a generous 9 bytes of storage, this

adds 8 ∗ 9 ∗ 192 = 13824 bytes of storage. Then DATAWATCH

uses a total of 128 + 13824 = 13952 bytes of storage on top

of TRUSTNET, for a total of 13952+576 = 14528 bytes, or a

little under 15 KB of storage (total for 8 cores and the cache

hierarchy).

VI. CONCLUSION

One of the long-standing classic problems in systems se-

curity is “How to build trustworthy systems from untrust-

worthy components?” In this paper we study and propose

a solution for a variant of the problem: “How to build

trustworthy microprocessors from untrustworthy components

built by untrusted designers?” Since all software and hardware

is under the control of microprocessors, establishing trust in

microprocessors is a critical requirement for establishing trust
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TABLE V
SOME HYPOTHETICAL ATTACKS ON AN INORDER MICROARCHITECTURE. THESE ATTACKS WERE CONCEIVED BY MANUAL ANALYSIS OF THE

OPENSPARC T2 RTL (INSPIRED BY [36]) AND IMPLEMENTED IN A SIMULATOR TO TEST OUR DESIGNS. THIS ARRAY OF ATTACKS THREATENS EVERY

PIPELINE STAGE AS WELL AS THE MEMORY SYSTEM. THESE ATTACKS CAN VIOLATE CONFIDENTIALITY, INTEGRITY, AND AVAILABILITY. ONLY THE

EMITTER AND CONTROL CORRUPTER ATTACKS WERE IMPLEMENTED IN OUR CASE STUDY. THE DATA CORRUPTER ATTACKS ARE DISCUSSED IN THIS

PAPER AND PROVIDED HERE FOR REFERENCE BUT WERE NOT IMPLEMENTED.

OpenSPARC
Unit

Attack Possible User Level Effect Backdoor Type Protection

IFU Fetch instruction from
wrong address

Fetch a malicious program instead of the one the OS intends. Control Corrupter #10

IFU Fetch extra instructions Fetch a malicious program in addition to the one the OS
intends

Emitter #2

IDU Emit spurious instructions Emit a spurious load or store to private information Emitter #1
IDU Transform no-op into load or

store
Allow inappropriate load or store Control Corrupter #13

ITLB Translate pages incorrectly Translate a valid load into a load from a malicious program Control Corrupter #12
ITLB Change or Ignore permis-

sions
Allow loading from pages without permissions Control Corrupter #12

IL1 Loads wrong instruction Fetch a malicious program instead of the one the OS intends Data Corrupter duplic
IL1 Loads extra instruction Fetch a malicious program in addition to the one the OS

intends
Emitter #4

EXU Incorrect operation ALU produces incorrect output; Widespread damage Data Corrupter verif. V-C
EXU Incorrect operation Compute wrong address Data Corrupter verif. V-C
LSU Loads/Stores extra data Load/store private information Emitter #3
DL1 Loads extra data Load private information Emitter #5#8
DL1 Loads from wrong location

in UL2
Load private information Data Corrupter duplic.

DL1 Stores extra data Exfiltrate private information Emitter #5#8
UL2 Loads extra data Load private information Emitter #6#7#9
UL2 Loads from wrong location

in RAM
Load private information Data Corrupter duplic.

UL2 Loads/Stores extra data Overwrite OS critical information Emitter #6#7#9
MC Loads/Stores extra data Overwrite OS critical information Emitter IV-A
DTLB Translates data location in-

correctly
Translate a valid load into a load of private information Control Corrupter #11

DTLB Change permissions Allow loading from pages without permissions Control Corrupter #11
DTLB Ignores permissions Allow loading from pages without permissions Control Corrupter #11

in computing bases.

We classified the set of possible RTL level design attacks

into three categories and explained the trade-offs between each

of the categories. We proposed as a solution to the untrusted

microprocessor designer problem TRUSTNET, a dynamic ver-

ification engine that continuously monitors communications

to detect violations of deterministic communication invariants

between on-chip units. TRUSTNET keeps track of microarchi-

tectural events required to execute an instruction and reports

a discrepancy when a microarchitectural unit does more or

less work than is expected. We also propose a more robust

system, DATAWATCH, which watches not only the amount of

events that happen but also the type of events that happen.

Within these two systems, each unit within a processor is

monitored by two other units, a predictor unit and reactor unit.

The predictor unit supplies inputs to the actor unit and reactor

unit receives outputs from the actor. By tracking predictions

and reactions, TRUSTNET and DATAWATCH detect malicious

modifications to a chip.

TRUSTNET and DATAWATCH are capable of detecting ma-

jor categories of microprocessor attacks without complete

replication (a classic textbook solution for such problems)

at low design complexity, for a small area investment, and

with no performance impact. Based on our evaluation of the

OpenSPARC T2 RTL, we determined that TRUSTNET takes

up less than 1 KB of storage to catch emitter attacks. We

also determined that DATAWATCH can protect the cores and

the cache hierarchy from known emitter and control corrupter

attacks at the cost of less than 2 KB of storage per processor

core. Lastly, we discussed how logic in the rest of the design

can be duplicated in order to provide more robust coverage

for high security domains at a fraction of the cost of complete

duplication (the current state of practice).

The ideas behind TRUSTNET viz. using the causal structure

of microarchitectural operations in concert with the division

of work between processor units, opens up exciting opportu-

nities to optimize over traditional techniques used to improve

reliability and availability of microprocessors. For instance,

TRUSTNET and DATAWATCH like infrastructure may be used

to detect transient faults and for dynamic verification without

traditional duplication or diversity based techniques.
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