
Tamper Resistance Mechanisms for Secure Embedded Systems

Srivaths Ravi, Anand Raghunathan and Srimat Chakradhar
NEC Laboratories America, Princeton, NJ 08540
fsravi,anand,chakg@nec-labs.com

Abstract
Security is a concern in the design of a wide range of embedded sys-
tems. Extensive research has been devoted to the development of
cryptographic algorithms that provide the theoretical underpinnings
of information security. Functional security mechanisms, such as se-
curity protocols, suitably employ these mathematical primitives in
order to achieve the desired security objectives. However, functional
security mechanisms alone cannot ensure security, since most em-
bedded systems present attackers with an abundance of opportunities
to observe or interfere with their implementation, and hence to com-
promise their theoretical strength.

This paper surveys various tamper or attack techniques, and ex-
plains how they can be used to undermine or weaken security func-
tions in embedded systems. Tamper-resistant design refers to the pro-
cess of designing a system architecture and implementation that is
resistant to such attacks. We outline approaches that have been pro-
posed to design tamper-resistant embedded systems, with examples
drawn from recent commercial products.

1 Introduction
Digital computing and communications increasingly pervade our
lives, our economy, and our nations’ critical infrastructure. Almost
everything today is electronic, digital and on-line. Security and pro-
tection of digital assets is emerging as a discipline of utmost impor-
tance. This is especially true for embedded systems, which, due to
various constraints, present several unique security challenges [1, 2].

Embedded system security can be broken into a collection of more
specific concerns, such as confidentiality, integrity, and availability.
Confidentiality is about stopping unauthorized users from accessing
sensitive information stored in, or communicated by, the system. The
bulk of computer security research has centered around confidential-
ity, whose roots date as far back as ancient civilizations [3]. Data in-
tegrity ensures that data in the embedded system has not been deleted
or altered by someone without permission. Software integrity ensures
that the programs in the system have not been altered, whether by an
error, a malicious user, or a virus. To a large extent, confidentiality is
about unauthorized reading of data and programs, while integrity is
concerned with unauthorized writing. Availability refers to the em-
bedded system being accessible when needed, and without undue de-
lay, upon demand by an authorized entity. For example, availability
is about ensuring that denial of service attacks do not succeed.

Security has long been a concern in computing and communica-
tions systems, and substantial research effort has been devoted to ad-
dressing it. Cryptographic algorithms, including symmetric ciphers,
public-key ciphers, and hash functions, form a set of primitives that
can be used as building blocks to construct security mechanisms that
target specific objectives [4]. For example, network security proto-
cols, such as IPSec and SSL, combine these primitives in order to
achieve authentication between communicating entities, and ensure
the confidentiality and integrity of communicated data [5]. We refer
to these mechanisms as functional security mechanisms, since they
only specify what functions are to be performed, irrespective of how
these functions are implemented. For example, the specification of
a security protocol is usually independent of whether the encryption

algorithms are implemented in software running on an embedded pro-
cessor, or using custom hardware units, and whether the memory used
to store intermediate data during these computations is on the same
chip as the computing unit or on a separate chip.

The “separation of concerns” between functional security mecha-
nisms and their implementation has enabled (and is, arguably, nec-
essary for) rigorous theoretical analysis and design of cryptosystems
and security protocols. However, in the process, various assump-
tions are made about the implementation of functional security mech-
anisms. For example, it is typically assumed that the implementations
of cryptographic computations are ideal “black-boxes” whose inter-
nals can neither be observed nor interfered with by any malicious en-
tity. Aided by these assumptions, the level of security is widely quan-
tified in terms of the mathematical properties of the cryptographic
algorithms and their key lengths.

In practice, however, functional security mechanisms alone are far
from being complete security solutions [6, 7, 8, 9]. It is unrealistic
to assume that attackers will attempt to directly take on the computa-
tional complexity of breaking the cryptographic primitives employed
in security mechanisms. An interesting analogy can be drawn in this
regard between strong cryptographic algorithms and a highly secure
lock on the front door of a house [7]. Burglars attempting to break
into a house will rarely try all combinations necessary to pick such a
lock; they may break in through windows, break a doors at its hinges,
or rob owners of a key as they are trying to enter the house.

Similarly, almost all known security attacks on embedded sys-
tems target weaknesses in the implementation and deployment of
functional security mechanisms and their cryptographic algorithms.
These weaknesses can allow attackers to completely bypass, or sig-
nificantly weaken, the theoretical strength of security solutions. Such
implementation vulnerabilities abound in embedded systems, due to
the following reasons:

� Operation in untrusted environment: Many embedded sys-
tems have to guarantee secure operation even under the physi-
cal possession of untrusted owners. It is easier to design a se-
cure embedded system if we can rely on innate physical secu-
rity of the device, or assume that parts of the system cannot be
physically accessed by malicious entities. However, embedded
systems are sometimes required to work under complex trust
relationships, where one party wants to put a secure device in
the hands of another, with the assurance that the second party
cannot modify the innards of the secure device. For example, a
bank may want to keep some information on a smart card that is
in the hands of its customers, while ensuring that the customers
cannot tamper with the device or modify the information it con-
tains. Another common scenario with embedded systems that
are portable and have small form factors is loss or theft, which
could place the system in the hands of untrusted entities for a
significant period of time.

� Network induced vulnerability: An increasing number of em-
bedded systems have networking capabilities, which exposes
them to many sources of attack. It is no longer necessary to
have physical possession of the device in order to break its se-
curity mechanisms. Devices with wireless connectivity, or those
that connect to the Internet, are the most vulnerable.

1Proceedings of the 17th International Conference on VLSI Design (VLSID’04)

1063-9667/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: University of Florida. Downloaded on March 11, 2009 at 20:23 from IEEE Xplore. Restrictions apply.

� Downloaded software execution: The drive to provide richer
functionality and increased customizability to the end-users of
embedded systems often requires the ability to execute un-
trusted software (e.g., freeware or third-party software down-
loaded from the Internet) on them. Software programs (includ-
ing viruses, worms, and trojan horses) are by far the instruments
of choice in launching security attacks. The magnitude of this
problem will only worsen with the rapid increase in the software
content of embedded systems.

� Complex design process: In order to meet stringent design
turn-around time and cost constraints, complex embedded sys-
tems are being assembled using components from multiple
sources spread across corporate boundaries. The responsibility
for ensuring system security typically falls upon the manufac-
turer of the end product that is sold, or upon the entity that pro-
vides services based on the end product. However, it may not
be possible to pre-validate each system component to ensure se-
curity. Furthermore, even if each part of a system is secure in
itself, it is known that the composition of parts may expose new
vulnerabilities [10]. Due to the lack of suitable design method-
ologies, modeling and optimization of security during embed-
ded system design is already a poorly understood art [11]; the
above factors only serve to exacerbate this problem.

Designing systems that are absolutely tamper-proof is often not
possible, primarily due to two reasons: (1) prohibitive costs incurred
in putting together a device that can withstand innumerable, often
unknown, attacks, and (2) relentless and rapid improvements in tech-
nology constantly, which increase the reach and capability of attack-
ers. In response to this reality, the practical approach is to implement
tamper-resistant embedded systems, which translates to tamper-proof
for almost all practical purposes.

In summary, achieving high levels of security requires strong func-
tional security mechanisms that are embodied in tamper-resistant im-
plementations. The design of tamper-resistant implementations re-
quires a strong awareness of the potential implementation weaknesses
that can become security flaws, and careful consideration of security
during all aspects of the architecture, hardware, and software design
processes. In this paper, we first outline the major attack techniques
that can threaten the security of an embedded system. Then, we
present various countermeasures for the prevention of, detection of,
and recovery from, attacks, and discuss their effectiveness in enhanc-
ing embedded system security.

2 Attacks on Secure Embedded Sys-
tems

Figure 1 shows a broad classification of attacks on embedded sys-
tems. At the top level, attacks are classified into three main categories
based on their functional objectives.

� Privacy attacks: The objective of these attacks is to gain knowl-
edge of sensitive information stored, communicated, or manip-
ulated within an embedded system.

� Integrity attacks: These attacks attempt to change data or code
associated with an embedded system.

� Availability attacks: These attacks disrupt the normal function-
ing of the system by mis-appropriating system resources so that
they are unavailable for normal operation.

A second level of classification of attacks on embedded systems is
based on the agents or means used to launch the attacks. These agents
are typically grouped into three main categories as shown in Figure 1:

� Software attacks, which refer to attacks launched through soft-
ware agents such as viruses, trojan horses, worms, etc.

Embedded System Embedded System
AttacksAttacks

Software Software
AttacksAttacks

Physical Physical
AttacksAttacks

Privacy AttacksIntegrity Attacks Availability Attacks

Eavesdropping

Microprobing

Virus

Trojan Horse

SideSide--Channel Channel
AttacksAttacks

Electromagnetic
Analysis

Timing Analysis

Fault Injection

Power Analysis

F
un

ct
io

na
l

F
un

ct
io

na
l

C
la

ss
if

ic
at

io
n

C
la

ss
if

ic
at

io
n

A
ge

nt
A

ge
nt

-- b
as

ed
ba

se
d

C
la

ss
if

ic
at

io
n

C
la

ss
if

ic
at

io
n

Embedded System Embedded System
AttacksAttacks

Software Software
AttacksAttacks

Physical Physical
AttacksAttacks

Privacy AttacksIntegrity Attacks Availability Attacks

Eavesdropping

Microprobing

Virus

Trojan Horse

SideSide--Channel Channel
AttacksAttacks

Electromagnetic
Analysis

Timing Analysis

Fault Injection

Power Analysis

F
un

ct
io

na
l

F
un

ct
io

na
l

C
la

ss
if

ic
at

io
n

C
la

ss
if

ic
at

io
n

A
ge

nt
A

ge
nt

-- b
as

ed
ba

se
d

C
la

ss
if

ic
at

io
n

C
la

ss
if

ic
at

io
n

Figure 1: Taxonomy of attacks on embedded systems

� Physical or Invasive attacks, which refer to attacks that require
physical intrusion into the system at some level (chip, board, or
system level).

� Side-channel attacks, which refer to attacks that are based on
observing properties of the system while it performs crypto-
graphic operations, e.g., execution time, power consumption,
or behavior in the presence of faults.

The agents used to launch attacks may either be passive in the
sense that they do not interfere in any manner with system execution
(e.g., merely probe or observe certain properties), or may actively
interfere with the target system’s operation. Integrity and availabil-
ity attacks require interference with the system in some manner, and
hence can be launched only through active agents.

It bears mentioning that, although we have classified attacks into
various categories for the sake of understanding. In practice, attackers
often use a combination of various techniques to achieve their objec-
tives. For example, physical attacks may be used as a pre-cursor to
side-channel attacks (removing a chip’s packaging before observing
the values on global wires within the chip). Our classification is also
by no means exhaustive, nor is it intended to be — the ingenuity of
attackers who invariably come up with new schemes to break security
is arguably the greatest challenge to tamper-resistant design.

2.1 Software Attacks
Software attacks represent a major threat to embedded systems that
are capable of downloading and executing application code. Com-
pared to physical and side-channel attacks, software attacks typically
require infrastructure that is substantially cheaper and easily avail-
able to most hackers, making them a serious immediate challenge
to secure embedded system design. These attacks are implemented
through malicious agents such as viruses, worms, trojan horses, etc.,
and can compromise the security of a system from all standpoints –
integrity, privacy, and availability.

Malicious software agents mount software attacks by exploiting
weaknesses in the end-system architecture [12, 13, 14, 15, 16]. They
typically arise due to shortcomings in the software, which can be
termed as either vulnerabilities or exposures [12]. A vulnerability
allows the attacker to gain direct access to the end-system, while an
exposure is an entry point that an attacker may indirectly exploit to
gain access.

The buffer overflow problem is a common loophole in operat-
ing systems and application software, which can be exploited during
software attacks [17]. The problem can arise whenever buffers are
present with poor bound checks. Buffer bounds may be violated due
to incorrect loop bounds, format string attacks, etc. Buffer overflows

2Proceedings of the 17th International Conference on VLSI Design (VLSID’04)

1063-9667/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: University of Florida. Downloaded on March 11, 2009 at 20:23 from IEEE Xplore. Restrictions apply.

effects can include overwriting stack memory, heaps, and function
pointers. The attacker can use buffer overflows to overwrite program
addresses stored nearby. This may allow the attacker to transfer con-
trol to malicious code, which when executed can have undesirable
effects.

A good high-level introduction to the challenges involved in writ-
ing secure code can be found in [18].

2.2 Physical and Side-channel attacks
Various physical and side-channel attacks can be launched against an
embedded system. Historically, many of these attacks have been or-
chestrated in the context of low-end embedded systems such as smart-
cards [19, 20, 21, 22, 23]. However, with these attacks increasingly
becoming sophisticated and shown to be deployable against many
electronic systems, they are considered a significant challenge to the
process of designing secure embedded systems.

Physical Attacks

For an embedded system on a circuit board, physical attacks can
be launched by using probes to eavesdrop on inter-component com-
munications. However, for a system-on-chip, sophisticated micro-
probing techniques become necessary [19, 20]. The first step in such
attacks is de-packaging. De-packaging involves removal of the chip
package by dissolving the resin covering the silicon using fuming
acid. The next step involves layout reconstruction using a systematic
combination of microscopy and invasive removal of covering layers.
During layout reconstruction, the internals of the chip can be inferred
at various granularities. While higher-level architectural structures
within the chip such as data and address buses, memory and pro-
cessor boundaries, etc., can be extracted with little effort, detailed
views of lower-level structures such as the instruction decoder and
ALU in a processor, ROM cells, etc., can also be obtained. Finally,
techniques such as manual microprobing or e-beam microscopy are
typically used to observe the values on the buses and interfaces of the
components in a de-packaged chip.

Physical attacks at the chip level are relatively har to use because of
their expensive infrastructure requirements (relative to other attacks).
However, they can be performed once and then used as precursors
to the design of successful non-invasive attacks. For example, layout
reconstruction is needed before performing electromagnetic radiation
monitoring around selected chip areas. Likewise, the knowledge of
ROM contents, such as cryptographic routines and control data, can
provide an attacker with information that can assist in the design of a
suitable non-invasive attack.

Power Analysis Attacks

The power consumption of any hardware circuit (cryptographic
ASICs or processors running cryptographic software) is a function of
the switching activity at the wires inside it. Since the switching activ-
ity (and hence, power consumption) is data dependent, it is not sur-
prising that the key used in a cryptographic algorithm can be inferred
from the power consumption statistics gathered over a wide range of
input data. These attacks are called power analysis attacks and have
been shown to be very effective in breaking embedded systems such
as smartcards. Power analysis attacks are categorized into two main
classes: Simple Power Analysis (SPA) attacks and Differential Power
Analysis (DPA) attacks.

SPA attacks rely on the observation that in some systems, the
power profile of cryptographic computations can be directly used to
reveal cryptographic information [24]. For example, Figure 2 shows
the power consumption profile for an ASIC implementing the DES
algorithm. From the profile, one can easily identify the 16 rounds
of the DES algorithm. While SPA attacks have been useful in de-
termining higher granularity information such as the cryptographic
algorithm used, the cryptographic operations being performed, etc.,

0 5e-05 0.0001 0.00015

Time (seconds)

P
o

w
er

 (
W

at
ts

)

0

0.0001

0.0002

0 5e-05 0.0001 0.00015

Time (seconds)

P
o

w
er

 (
W

at
ts

)

0

0.0001

0.0002

Figure 2: The power consumption profile of a custom hardware im-
plementation of the DES algorithm

they require reasonably high resolution to reveal the cryptographic
key directly. In practice, SPA attacks have been found be useful in
augmenting or simplifying brute-force attacks. For example, it has
been shown in [25] that the brute-force search space for a SW DES
implementation on an 8-bit processor with 7 Bytes of key data can be
reduced to 240 keys from 256 keys with the help of SPA.

DPA attacks [26] employ statistical analysis to infer the crypto-
graphic key from power consumption data. These attacks use the no-
tion of differential traces (difference between traces) to overcome the
disadvantages of measurement error and noise associated with SPA
techniques. DPA has been shown to be highly robust and effective in
extracting keys from several embedded systems, not limited to smart-
cards [26]. Recent approaches such as [25] enhance the effectiveness
of DPA attacks by providing techniques that improve the signal-to-
noise ratio. While the initial DPA attacks [25, 26, 27] targeted DES
implementations, DPA has also been used to break public-key cryp-
tosystems [28].

Timing Attacks

Timing attacks [29, 30, 31] exploit the observation that the exe-
cution times of cryptographic computations are data-dependent, and,
hence, can be used to infer the cryptographic key. The variations
in execution time can arise from implementation- or architecture-
specific properties, such as:

� Instruction Execution Time Variations: Software implementa-
tions of cryptographic computations (such as the modular ex-
ponentiation operation) often invoke the processor’s multiply
and divide instructions. Since these instructions take a variable
number of cycles based on the data inputs in many processors,
execution time statistics of the cryptographic algorithm can be
collected and analyzed for a wide range of data in order to break
the key.

� Performance optimizations: The use of performance optimiza-
tions in a cryptosystem may introduce execution paths in its im-
plementation that are more sensitive to data statistics than oth-
erwise. For example, timing attacks against implementations
of the RSA algorithm that use the Chinese Remainder Theorem
(CRT) can expose the factors of the modulus, which, in turn,
can be used to easily compute the decryption key.

Fault Injection Attacks

Fault injection attacks rely on varying the external parameters and
environmental conditions of a system such as the supply voltage,
clock, temperature, radiation, etc., to induce faults in its components.
The injected faults can be transient or permanent, and can compro-
mise the security of a system in several ways:

3Proceedings of the 17th International Conference on VLSI Design (VLSID’04)

1063-9667/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: University of Florida. Downloaded on March 11, 2009 at 20:23 from IEEE Xplore. Restrictions apply.

� Availability Attacks: Faults can be injected to disrupt the normal
functioning of the system. For example, the bus in an embedded
system on chip can be made unavailable for performing inter-
component communications through permanent faults that set
the bus lines to a constant value.

� Integrity attacks: These attacks can be used to corrupt the se-
cure or non-secure code or data stored in components such as
memories.

� Privacy attacks: An interesting example of the use of fault in-
jection attacks to reveal cryptographic keys involves RSA im-
plementations that use the Chinese Remainder Theorem (CRT)
optimization [32]. The optimization, intended to enhance the
performance of the modular exponentiation operation in RSA,
in fact, increases its vulnerability against fault injection attacks.
It has been shown in [32] that the RSA modulus can be factored
very easily if faults can be introduced to affect the outputs of
one of the sub-exponentiations being performed.

� Pre-cursor attacks: Fault injection techniques are also useful
as a pre-cursor to software attacks. For example, it has been
shown in [33] that simple memory faults induced by heat can
be exploited by an untrusted program running on a processor to
assume complete control of its execution environment.

Electromagnetic Analysis Attacks

Electromagnetic analysis attacks (EMA) have been well docu-
mented since the eighties, when it was shown in [34] that electro-
magnetic radiation from a video display unit can be used to recon-
struct its screen contents. Since then, these attacks have only grown
in sophistication [35]. The basic premise of many of these attacks is
that they attempt to measure the electromagnetic radiation emitted by
a device to reveal sensitive information. Successful deployment of
these attacks against a single chip would require intimate knowledge
of its layout, so as to isolate the region around which electromagnetic
radiation measurements must be performed. Like power analysis at-
tacks, two classes of EMA attacks, namely, simple EMA (SEMA)
and differential EMA (DEMA) attacks have been proposed [36, 37].

3 Tamper Resistant Design: Counter-
ing Security Attacks

In this section, we survey tamper-resistant design techniques that
have been proposed to strengthen embedded systems against the vari-
ous attacks described in the previous section. In order to better under-
stand and compare approaches to tamper-resistant design, we decom-
pose the objective of tamper resistance into more specific, narrower
objectives, as shown in Figure 3.

Detection
latency Recovery

latency

Time

Attack
prevention

Attack
detection

Attack
recovery

Attack Tamper
evidence

Detection
latency Recovery

latency

Time

Attack
prevention

Attack
detection

Attack
recovery

Attack Tamper
evidence

Figure 3: Specific objectives of tamper-resistant design approaches

� Attack prevention techniques make it more difficult to initiate
an attack on the embedded system. These techniques can in-
clude physical protection mechanisms (e.g., packaging), hard-
ware design (e.g., circuit implementations whose timing and

power characteristics are data independent), and software de-
sign (e.g., software authentication before execution).

� In the event that an attack is launched despite any employed
prevention techniques, attack detection techniques attempt to
detect the attack as soon as possible. The elapsed time interval
between the launch of an attack and its detection (the detection
latency) represents a period of vulnerability, and needs to be
kept as low as possible. An example of attack detection is the
run-time detection of illegal memory accesses to secure data
from an untrusted software application.

� Once an attack is detected, the embedded system needs to take
appropriate action. Attack recovery refers to techniques used to
ensure that the attack is countered, and that the system returns
to secure operation. Attack recovery techniques could include
locking up the system and rendering it useless for further op-
eration, zeroing out sensitive data in memory, or displaying a
security warning and rebooting the system. The design of at-
tack recovery schemes involves tradeoffs between the level of
security and the inconvenience caused to users in the usage of
the system after an attack.

� In some cases, it may be desirable to preserve an irrefutable,
persistent record of the attack in the embedded system, for in-
spection at a later time. Tamper evident design techniques tar-
get this objective. Analogies of physical tamper evident design
mechanisms abound: seals that have to be broken, wires that
have to be cut, or coatings that have to be removed. In all cases,
tamper evidence requires a mechanism that cannot be reversed
by malicious entities.

In the rest of this section, we describe design techniques to counter
each of the specific categories of attacks described earlier. Classifi-
cation of these design techniques into attack prevention, detection,
recovery, and tamper evidence is left as an exercise to the reader.

3.1 Countermeasures for Software Attacks
Countermeasures for software attacks are typically designed with one
or more of the following considerations:

� Ensure privacy and integrity of sensitive code and data during
every stage of software execution in an embedded system.

� Determine with certainty that it is safe from a security stand-
point to execute a given program.

� Remove security loopholes in software that make the system
vulnerable to such attacks.

Most system-level countermeasures attempt to, at least, address the
first considerations listed above. A common feature of these counter-
measures involves regulating the accesses of various software compo-
nents (operating system, downloaded code, etc.) to different portions
of the system (registers, memory regions, security co-processors,
etc.) during different stages of execution (boot process, normal exe-
cution, interrupt mode, etc.), through a combination of hardware and
software changes. Since an effective countermeasure must allow the
system to provide guarantees about the security of the system starting
from the powered-on state, most measures define notions of trust or
trust boundaries (also referred to as security perimeters) across the
various hardware and software resources. This allows the system to
detect infringements of trust boundaries (such as illegal accesses to
memory regions) and enforce recovery mechanisms (such as zero-
ing processor registers and memory regions). Thus, a trust boundary
provides a natural and convenient foundation for the system to make
judicious decisions about its security (or compromise, thereof).

In the rest of this section, we will focus on understanding indi-
vidual countermeasures that typically make up a software tamper-
resistance strategy – hardware additions, secure bootstrapping, se-

4Proceedings of the 17th International Conference on VLSI Design (VLSID’04)

1063-9667/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: University of Florida. Downloaded on March 11, 2009 at 20:23 from IEEE Xplore. Restrictions apply.

cure OS features, software integrity and safety checks, and methods
for finding and fixing security loopholes in software.

Hardware Support

A common approach to implementing tamper-resistance involves
the use of a separate secure co-processor module [38, 39, 40], which
is dedicated to processing all sensitive information in the system.
Any sensitive information that needs to be send out of the secure
co-processor is encrypted.

Many embedded system architectures rely on designating and
maintaining selected areas of its memory subsystem (volatile or non-
volatile, off-chip or on-chip) as secure storage locations. Physical
isolation is often used to restrict the access of secure memory areas
to trusted system components. When this is not possible, a memory
protection mechanism adopted in many embedded SOCs involves the
use of bus monitoring hardware that can distinguish between legal
and illegal accesses to these locations. For example, the CrypoCell
security solution from Discretix [41] features BusWatcher, which per-
forms this function. Ensuring privacy and integrity in the memory
hierarchy of a processor is the focus of [42], which employs a hard-
ware secure context manager, new instructions, and hash and encryp-
tion units within the processor. The work in [43] describes a model
of execute only memory (XOM), and architectural techniques to im-
plement it, using hardware enhancements such as custom instructions
and additional fields in cache lines, together with a software virtual
machine monitor. Similar ideas were also described earlier in [44].

Recently announced commercial initiatives such as ARM’s Trust-
Zone [45], Microsoft’s Palladium or NGSCB [46, 47], and Intel’s La-
Grande [48], etc. feature various hardware enhancements for security.
Later in this paper, we will examine the hardware enhancements for
security proposed in ARM’s TrustZone technology (see Section 3.3).

Secure Bootstrapping

One of the early works that explores the notion of a trust boundary
is the AEGIS architecture [49] that examines the problem of securing
the boot process in the IBM PC architecture. AEGIS provides a hi-
erarchical solution to the problem by exploiting the layered nature of
the boot process. Starting from power on, the system can move to the
next layer in the boot process if and only if a sequence of integrity
checks have been successfully performed on the current layer (and
all layers below it). The integrity checks involve computing the hash
value of a boot process component and comparing it with a securely
stored value. Thus, a trust boundary is progressively expanded prior
to handing off the system controls to the operating system in a secure
manner.

Operating System (OS) Enhancements

Most security schemes rely on OS modifications in order to pro-
vide protection to sensitive code and/or data. For example, Mi-
crosoft’s NGSCB initiative advocates a secure Nexus mode for Win-
dows that (a) provides strong process isolation, and (b) performs
process-level attestation. Process isolation ensures that private re-
sources of one process can be protected from another process, while
attestation ensures that code can be authenticated before establish-
ing communication channels between processes and devices. Other
OS enhancements for security could include modifications to con-
text switching, exception handling, inter-process communication,
and memory management. It is important to note that many of
these operating system changes would require (or are in response
to) architecture-level modifications (such as memory management
system changes) for security [50]. Emerging OS architectures such
as [51] claim to offer good flexibility and better isolation than existing
solutions under various application scenarios.

Other features offered by a secure OS include the usage of cryp-
tographic file systems (CFSs) to provide secure storage [52, 53]. A
CFS operates on the principle that trusted components of the sys-

tem should encrypt information immediately before sending data to
untrusted components. Therefore, a CFS moves the encryption and
decryption services from the user level into the operating system it-
self, thereby protecting sensitive information from application-level
vulnerabilities (assuming that the OS is secure).

Software Authentication and Validation

Secure execution of known software in a system requires that it
is validated before execution. One of the most common techniques
used to validate the integrity of a known piece of software involves
computing a hash or checksum of the code (or its critical sections)
and verifying it against a pre-computed golden value. More recent
techniques such as oblivious hashing [54] also hash the execution
trace of a piece of code, thereby verifying its run-time behavior.

In order to run untrusted application code, it is prudent to use tech-
niques that can provide sandboxes (restricted environments for code)
for execution. This is a feature of many virtual machines includ-
ing the Java Virtual Machine (JVM). Software mechanisms such as
proof-carrying code [55] require an untrusted code supplier to bundle
safety proofs with the program executables, so that the system can
ascertain that the code will not violate its security policies. This tech-
nique is useful, for example, in determining whether a piece of code
can be allowed to execute in the kernel’s address space. In such a
case, the system would require proof that the program will maintain
the consistency of the kernel’s data structures. This approach requires
the compiler to be enhanced for generating such proofs.

Program sheperding [56] is another approach that prevents execu-
tion of malicious code by monitoring all control transfers in a pro-
gram and checking that a given security policy is not violated. Code
origin checks, restricted control transfers, and guaranteed sandbox-
ing are used to prevent program vulnerabilities, overwrites of stored
program addresses, and execution of malicious code. This technique
can be implemented to operate on generic executables by altering
run-time execution environments.

Since many of the known reasons for software attacks stem from
vulnerabilities in trusted software, software verification engines are
becoming increasingly important for detecting errors that make a
system prone to attacks. For example, extended static checking,
which is useful for finding errors in source code during compile time,
has been used to identify security flaws in many programs [57, 58].
Formal verification techniques such as model checking have also
been successfully applied to verify implementations of security pro-
tocols [59, 60].

3.2 Countermeasures for Physical and Side-
channel Attacks

Packaging technologies, physical security for sensitive information
through the use of cryptoprocessors, environmental attack protec-
tion measures, careful design of the HW/SW implementation to make
properties such as timing and power insensitive to the input data, etc.,
are common ways of countering physical and side-channel attacks.
These countermeasures are discussed below.

Physical Attack Protection

Several advanced packaging and attack response techniques have
been recommended by the Federal Information Processing Standard
(FIPS 140-2) [61]. For example, the standard specifies four increas-
ing levels of physical (as well as other) security requirements that can
be satisfied by a secure system. Security Level 1 requires minimum
physical protection, Level 2 requires the addition of tamper-evident
mechanisms such as a seal or enclosure, while Level 3 specifies
stronger detection and response mechanisms. Finally, Level 4 man-
dates environmental failure protection and testing (EFP and EFT).
Thus, increasingly high levels of security can be provided albeit at

5Proceedings of the 17th International Conference on VLSI Design (VLSID’04)

1063-9667/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: University of Florida. Downloaded on March 11, 2009 at 20:23 from IEEE Xplore. Restrictions apply.

higher chip costs.
An example of a cryptographic module that provides very high lev-

els of physical security is IBM’s 4758 PCI cryptographic adapter [39,
40] (FIPS 140-1 Level 4). The device includes internal tamper cir-
cuitry to detect physical penetrations as well as sensor circuitry to
detect and respond to temperature and voltage attacks.

Bus encryption

A good countermeasure against bus probing attacks involves
the use of processors that encrypt all information sent on global
buses [62, 63]. Such processors ensure that only encrypted code/data
values remain in the open (memory, address and data buses, etc.),
which are then decrypted within the processor on-the-fly. The proces-
sor is also required to encrypt any value before it is released outside
its I/O boundary. While such processors tend to achieve high levels
of security, they also entail significant performance overheads. In ad-
dition, practical implementations have been found to be vulnerable
to specialized forms of side-channel attacks, necessitating additional
countermeasures [64].

Side-channel Attack Protection Measures

Various countermeasures against side-channel attacks have been
proposed to remove the symptoms that make an embedded system
vulnerable to monitoring and analysis of side-channel information
such as power, timing, and electromagnetic radiation. Randomization
is frequently used as an effective measure against any side-channel
attack that requires the attacker to know exactly when a certain oper-
ation is performed. For example, the use of a randomized clock sig-
nal is suggested as an effective means to introduce non-determinism
in smartcard processors [19]. This countermeasure also requires the
introduction of random switching activity during the idle cycles as-
sociated with a random clock to prevent reconstruction of the clock
signal.

Several mechanisms have been proposed to counter individual
side-channel attacks. Techniques to counter power analysis at-
tacks [25, 26] include data masking to hide sensitive information, use
of reduced signal amplitudes, and introduction of noise into power
measurement data. These mechanisms provide tamper resistance by
increasing the number of samples needed for a successful power anal-
ysis attack to an infeasibly large number. Aggressive shielding tech-
niques as well as methods that break the locality of chip layout (that
is, allow for components in a chip to be spread across the entire
chip surface) are effective in defeating electromagnetic analysis at-
tacks [36]. Transient fault attacks on cryptographic hardware can be
prevented by using concurrent error detection methods [65], while
sensors that monitor environmental changes can be effective in de-
tecting various fault injection attacks and launching appropriate re-
covery mechanisms [66].

Application
Secure

Application

Access to
trusted code

base

Access to
trusted code

base

MONITORMONITOR

securesecure
kernel kernel

trusted code trusted code
basebase

secure domain
Denied

Application
Secure

Application

Access to
trusted code

base

Access to
trusted code

base

MONITORMONITOR

securesecure
kernel kernel

trusted code trusted code
basebase

secure domain
Denied

Figure 4: Providing security against malicious software attacks in
ARM TrustZone [45]

3.3 Case Study: ARM TrustZone

The TrustZone security technology [45] from ARM provides a com-
mercial example of how countermeasures against software attacks
(and limited physical attack protection) are implemented for an em-
bedded system-on-chip. The primary objective of TrustZone is to
establish a clear separation of access to sensitive information and
other HW/SW portions of an ARM-based system-on-chip architec-
ture. This is achieved by evolving a secure domain using a “trusted
code base” that resides in a secure area of the processor. The trusted
code base is responsible for regulating the security of the entire sys-
tem, starting from the system boot sequence. In addition, the trusted
code is responsible for all security tasks that involve manipulation of
keys.

AMBA BUS

E
xt

. M
em

C
o

n
tr

o
lle

r

Boot
ROM

SDRAM

FLASH

ROM
Key

Storage

ARM
CPU

Caches

TCM

ETB

ETM

Secure
Interrupt

Normal
Interrupt

LCD
Control

Decoder
I/F

AHB
Decoder

On-chip
SRAM

Secure Shared Normal
Security

States

SYSTEM BOUNDARY

AMBA BUS

E
xt

. M
em

C
o

n
tr

o
lle

r

Boot
ROM

SDRAM

FLASH

ROM
Key

Storage

ARM
CPU

Caches

TCM

ETB

ETM

ARM
CPU

Caches

TCM

ETB

ETM

Secure
Interrupt

Normal
Interrupt

LCD
Control

Decoder
I/F

AHB
Decoder

On-chip
SRAM

Secure Shared Normal
Security

States

SYSTEM BOUNDARY

Figure 5: Components of an embedded system-on-chip architecture
demarcated into secure and non-secure areas [45]

The trusted code base is protected by implementing a separate se-
cure domain as shown in Figure 4. Non-secure applications are de-
nied access to the trusted code base, while trusted applications are
identified before they are provided access. This demarcation is en-
forced by the addition of a security tag called “S-bit” throughout the
architecture. The S-bit defines the security operation state of the sys-
tem and is used to denote parts of the system (ARM core, memory
system, selected peripherals, etc.), which are secure. Access to the
S-bit is through a separate processor operating mode called monitor
mode, which itself can be accessed through a limited and pre-defined
set of entry points. The monitor mode is responsible for controlling
the S-bit, verifying that data and instruction accesses made by an ap-
plication are permitted as well as ensuring a secure transition between
secure and non-secure states.

The use of TrustZone to secure a typical embedded SOC is shown
in Figure 5, wherein the security perimeter of the system extends be-
yond the processor core to the memory hierarchy and peripherals.
The overall SOC architecture is divided into secure and non-secure
regions. For example, the boot code is stored securely in the on-chip
boot ROM since modifications to the boot process would render any
security scheme ineffective. The memory is segmented into secure
and non-secure areas. The S-bit and the monitor mode are used to
ensure that secure data is not leaked to the non-secure area. Excep-
tion handling is also partitioned into normal and secure areas. Since
interrupts can be used to freeze the processor when it is processing
sensitive information, the monitor mode is used to process critical
interrupts.

In summary, the TrustZone technology provides an architecture-
level security solution to enforce a trusted code base, enable certifi-
cation of trusted software independent of the operating system (OS),
and provide protection against malicious software attacks.

6Proceedings of the 17th International Conference on VLSI Design (VLSID’04)

1063-9667/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: University of Florida. Downloaded on March 11, 2009 at 20:23 from IEEE Xplore. Restrictions apply.

4 Conclusions
In this paper, we examined the various ways in which embedded sys-
tems can be attacked by malicious agents. For these scenarios, we
also saw how a wide array of countermeasures have been developed
by researchers to provide tamper resistance in embedded systems. We
believe that a clear understanding of attacks as well as the trade-offs
associated with deploying tamper resistance mechanisms will enable
a system architect to develop a truly secure embedded system.
Acknowledgements: The authors thank Divya Arora (Princeton Uni-
versity) and Vijay Raghunathan (University of California, Los Ange-
les) for their useful inputs and suggestions.

References
[1] S. Ravi, A. Raghunathan, and S. Chakradhar, “Embedding Security in Wireless

Embedded Systems,” in Proc. Int. Conf. VLSI Design, pp. 269–270, Jan. 2003.
[2] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady, “Security in Embedded

Systems: Design Challenges,” 2004.
[3] The code book: The science of secrecy from ancient Egypt to quantum cryptogra-

phy. Anchor Books, 2000.
[4] B. Schneier, Applied Cryptography: Protocols, Algorithms and Source Code in C.

John Wiley and Sons, 1996.
[5] W. Stallings, Cryptography and Network Security: Principles and Practice. Pren-

tice Hall, 1998.
[6] R. Anderson, “Why cryptosystems fail,” Communications of the ACM, vol. 37,

pp. 32–40, Nov. 1994.
[7] B. Schneier, Security pitfalls in cryptography. (http://www.schneier.

com/essay-pitfalls.html).
[8] B. Schneier, “Cryptographic Design Vulnerabilities,” IEEE Computer, vol. 31,

pp. 29–33, Sept. 1998.
[9] Security engineering: A guide to building dependable distributed systems. John

Wiley & Sons, 2001.
[10] J. Kelsey, B. Schneier, and D. Wagner, “Protocol interactions and the chosen pro-

tocol attack,” in Proc. Int. Wkshp. on Security Protocols, pp. 91–104, Apr. 1997.
[11] C. Salter, O. S. Saydjari, B. Schneier, and J. Wallner, “Towards a Secure System

Engineering Methodology,” in Proc. New Security Paradigms Wkshp., pp. 2–10,
Sept. 1998.

[12] Common Vulnerabilities and Exposures. (cve.mitre.org/).
[13] Latest Virus Threats. Symantec Corporation (http://www.symantec.com/

avcenter/vinfodb.html).
[14] Virus Information. Computer Security Resource Center, National Institute of Stan-

dards and Technology (http://csrc.nist.gov/virus/).
[15] Vulnerability notes database. CERT coordination center (http://www.kb.

cert.org/vuls/).
[16] A. K. Ghosh and T. M. Swaminatha, “Software security and privacy risks in mobile

e-commerce,” Communications of the ACM, vol. 44, pp. 51–57, february 2001.
[17] E. Chien and P. Szor, Blended attack exploits, vulnerabilities, and buffer-

overflow techniques in computer viruses. Symantec White Paper (http:/
/securityresponse.symantec.com/avcenter/whitepapers.
html).

[18] M. Howard and D. LeBlanc, Writing Secure Code. Microsoft Press, 2002.
[19] O. Kommerling and M. G. Kuhn, “Design principles for tamper-resistant smartcard

processors,” in Proc. USENIX Wkshp. on Smartcard Technology (Smartcard ’99),
pp. 9–20, May 1999.

[20] Smart Card Handbook. John Wiley and Sons.
[21] E. Hess, N. Janssen, B. Meyer, and T. Schutze, “Information Leakage Attacks

Against Smart Card Implementations of Cryptographic Algorithms and Counter-
measures,” in Proc. EUROSMART Security Conference, pp. 55–64, June 2000.

[22] J. J. Quisquater and D. Samyde, “Side channel cryptanalysis,” in Proc. of the SECI,
pp. 179–184, 2002.

[23] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Side Channel Cryptanalysis of
Product Ciphers,” in Proc. ESORICS’98, pp. 97–110, Sept. 1998.

[24] P. Kocher, J. Jaffe, and B. Jun, Introduction to differential power analysis
and related attacks. (http://www.cryptography.com/resources/
whitepapers/).

[25] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Examining Smart-Card Secu-
rity under the Threat of Power Analysis Attacks,” IEEE Trans. Comput., vol. 51,
pp. 541–552, May 2002.

[26] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” Advances in Cryptol-
ogy – CRYPTO’99, Springer-Verlag Lecture Notes in Computer Science, vol. 1666,
pp. 388–397, 1999.

[27] L. Goubin and J. Patarin, “DES and differential power analysis,” in Proc. Crypto-
graphic Hardware and Embedded Systems, pp. 158–172, 1999.

[28] T. S. Messerges, E. A. Dabbish, and R. H. Sloan, “Power analysis attacks of mod-
ular exponentiation in smartcards,” in Proc. Cryptographic Hardware and Embed-
ded Systems (CHES), pp. 144–157, 1999.

[29] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems,” Advances in Cryptology – CRYPTO’96, Springer-Verlag Lec-
ture Notes in Computer Science, vol. 1109, pp. 104–113, 1996.

[30] J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestre, J.-J. Quisquater, and J.-L. Willems,
“A practical implementation of the timing attack,” in Proc. Third Working Conf.
Smart Card Research and Advanced Applications, pp. 167–182, Sept. 1998.

[31] D. Brumley and D. Boneh, “Remote Timing Attacks Are Practical ,” in Proc. 12th
USENIX Security Symp., pp. 1–14, Aug. 2003.

[32] D. Boneh, R. DeMillo, and R. Lipton, “On the importance of checking crypto-
graphic protocols for faults,” in Proc. of Eurocrypt’97, pp. 37–51, 1997.

[33] S. Govindavajhala and A. W. Appel, “Using Memory Errors to Attack a Virtual
Machine,” in Proc. IEEE Symposium on Security and Privacy, pp. 154–165, May
2003.

[34] W. van Eck, “Electromagnetic radiation from video display units: An eavesdrop-
ping risk?,” Computers and Security, vol. 4, no. 4, pp. 269–286, 1985.

[35] M. G. Kuhn and R. Anderson, “Soft Tempest: Hidden Data Transmission Using
Electromagnetic Emanations,” in Proc. Int. Wkshp. on Information Hiding (IH ’98),
pp. 124–142, Apr. 1998.

[36] J. J. Quisquater and D. Samyde, “ElectroMagnetic Analysis (EMA): Measures and
Counter-Measures for Smart Cards,” Lecture Notes in Computer Science (Smart-
card Programming and Security), vol. 2140, pp. 200–210, 2001.

[37] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic analysis: Concrete re-
sults,” in Proc. Cryptographic Hardware and Embedded Systems, pp. 251–261,
2001.

[38] B. Yee, Using Secure Co-processors. PhD thesis, Carnegie Mellon University,
1994.

[39] Secure Coprocessing. IBM Inc. (http://www.research.ibm.com/scop/
).

[40] The IBM PCI Cryptographic Coprocessor. IBM Inc. (http://www-3.ibm.
com/security/cryptocards/).

[41] CryptocellTM . Discretix Technologies Ltd. (http://www.discretix.com).
[42] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas, “AEGIS: Archi-

tecture for Tamper-Evident and Tamper-Resistant Processing,” in Proc. Intl Conf.
Supercomputing (ICS ’03), pp. 160–171, June 2003.

[43] D. Lie, C. A. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. C. Mitchell, and
M. Horowitz, “Architectural support for copy and tamper resistant software,” in
Proc. ACM Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS), pp. 168–177, 2000.

[44] T. Gilmont, J. D. Legat, and J. J. Quisquater, “An Architecture of Security Manage-
ment Unit for Safe Hosting of Multiple Agents,” in Proc. Int. Wkshp. on Intelligent
Communications and Multimedia Terminals, pp. 79–82, Nov. 1998.

[45] R. York, A New Foundation for CPU Systems Security. ARM Limited (http://
www.arm.com/armtech/TrustZone?OpenDocument).

[46] Next-Generation Secure Computing Base (NGSCB). Microsoft Inc. (http://
www.microsoft.com/resources/ngscb/productinfo.mspx).

[47] P. N. Glaskowsky, Microsoft Details Secure PC Plans. Microprocessor Report,
In-stat/MDR, June 2003.

[48] LaGrande Technology for Safer Computing. Intel Inc. (http://www.intel.
com/technology/security).

[49] A. Arbaugh, D. J. Farber, and J. M. Smith, “A Secure and Reliable BootStrap
Architecture,” in Proc. of IEEE Symposium on Security and Privacy, pp. 65–71,
May 1997.

[50] D. Lie, C. A. Thekkath, and M. Horowitz, “Implementing an untrusted operat-
ing system on trusted hardware,” in Proc. ACM Symposium on Operating Systems
Principles, pp. 178–192, Oct. 2003.

[51] T. Garfinkel, M. Rosenblum, and D. Boneh, “Flexible OS Support and Applications
for Trusted Computing,” in Proc. 9th Wkshp Hot Topics in Operating Systems, May
2003.

[52] M. Blaze, “A Cryptographic File System for UNIX,” in Proc. ACM Conf. on Com-
puter and Communications Security, pp. 9–16, Nov. 1993.

[53] E. Goh, H. Shacham, N. Modadugu, and D. Boneh, “SiRiUS: Securing Remote Un-
trusted Storage,” in Proc. ISOC Network and Distributed Systems Security (NDSS)
Symp., pp. 131–145, 2003.

[54] Y. Chen, R. Venkatesan, M. Cary, S. Sinha, and M. H. Jakubowski, “Oblivious
hashing: A stealthy software integrity verification primitive,” in Proc. Int. Wkshp.
Information Hiding, pp. 400–414, Oct. 2002.

[55] G. C. Necula and P. Lee, “Proof-Carrying Code,” Tech. Rep. CMU-CS-96-165,
Carnegie Mellon University, Nov. 1996.

[56] V. Kiriansky, D. Bruening, and S. Amarasinghe, “Secure Execution via Program
Sheperding,” in Proc. 11th USENIX Security Symp., Aug. 2002.

[57] D. L. Detlefs, K. Leino, G. Nelson, and J. Saxe, “Extended static checking,” tech.
rep., Systems Research Center, Compaq Inc., 1998.

[58] B. Chess, “Improving computer security using extended static checking,” in Proc.
IEEE Symposium on Security and Privacy, pp. 148–161, May 2002.

[59] E. M. Clarke, S. Jha, and W. Marrero, “Using state space exploration and a natural
deduction style message derivation engine to verify security protocols,” in Proc.
IFIP Working Conf. on Programming Concepts and Methods, 1998.

[60] G. Lowe, “Towards a completeness result for model checking of security proto-
cols,” in Proc. 11th Computer Security Foundations Wkshp., 1998.

[61] Security Requirements for Cryptographic Modules (FIPS PUB 140-2). (http://
csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf).

[62] R. M. Best, Crypto Microprocessor for Executing Enciphered Programs. U.S.
patent 4,278,837, July 1981.

[63] M. Kuhn, The TrustNo 1 Cryptoprocessor Concept. CS555 Report, Purdue Univer-
sity (http://www.cl.cam.ac.uk/˜mgk25/), Apr. 1997.

[64] M. Kuhn, “Cipher Instruction Search Attack on the Bus-Encryption Security Mi-
crocontroller DS5002FP,” IEEE Trans. Comput., vol. 47, pp. 1153–1157, Oct.
1998.

[65] R. Karri, K. Wu, P. Mishra, and Y. Kim, “Concurrent Error Detection Schemes
for Fault-Based Side-Channel Cryptanalysis of Symmetric Block Ciphers,” IEEE
Trans. Computer-Aided Design, vol. 21, pp. 1509–1517, Dec. 2002.

[66] D. Samyde, S. Skorobogatov, R. Anderson, and J.-J. Quisquater, “On a new way
to read data from memory,” in Proc. First Intl. IEEE Security in Storage Wkshp,
pp. 65–69, Dec. 2002.

7Proceedings of the 17th International Conference on VLSI Design (VLSID’04)

1063-9667/04 $20.00 © 2004 IEEE

Authorized licensed use limited to: University of Florida. Downloaded on March 11, 2009 at 20:23 from IEEE Xplore. Restrictions apply.

