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Abstract—Wireless sensor networks (WSNs) are highly 

sensible to data integrity attacks, which have an important 

impact on a number of relevant deployments and services. This 

paper introduces a tolerance approach to fight against data 

modification attacks in WSNs, which is based on a missing data 

imputation scheme. The proposal relies on two principal 

contributions: (1) a multivariate statistical technique where the 

dynamics of the sensor measurements for the monitored area are 

captured through the use of dynamic PCA (DPCA), and (2) a 

variable routing strategy that improves the recovering 

performance by spreading the effects of the data tampering 

attack. On the other hand, a complementary multivariate 

statistical anomaly detection module is implemented to 

determine the occurrence of data tampering attacks and trigger 

the subsequent reaction procedure to recover the affected data. 

As shown by the results obtained, the proposed tolerance 

approach improves the robustness of a WSN against data 

tampering attacks, and so its survivability and normal operation 

over time. 
 
Index Terms—missing data imputation, anomaly detection, 

Multivariate analysis, response/tolerance schemes, survivability, 

wireless sensor networks 

 

I. INTRODUCTION 

Sensor networks are composed of a number of sensing 

elements deployed to monitor some physical variables for 

a given area [1]. Although this kind of networks can be 

structured, a common trend is the use of wireless links in 

what it is called a wireless sensor network, or WSN. 

Whatever the case, there usually exists a central unit (CU) 

to gather and analyze the data generated by the sensors 

for the covered area. In a WSN, the data collected by the 

sensors can be transmitted directly to the CU (e.g., 

through GPS connections), but it is more usual to 

transmit such information by means of the so-called 

multi-hop routing strategies, where sensor devices 

operate not only as measuring nodes but also as relaying 

nodes to raise origin-destination connectivity. Multi-hop 

routing is more efficient in terms of energy consumption, 

which is desirable to reduce the WSN maintenance. 

Given the wide adoption of WSNs for several relevant 

applications (military actions, crisis management and 

disaster recovery, medical, industry, etc.) [2], 

implementing security mechanisms to strengthen the 
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services provided must be encouraged. For that, it is 

important to be aware of the existence of several inherent 

threats in WSNs [3]: packet dropping, route poisoning, 

identity spoofing, etc. In this context, the so-called data 

tampering, environmental tampering or tampering attack 

[3] [4], which affect data integrity, can lead to disastrous 

consequences. For instance, take the case of fire 
monitoring, which the application is considered in the 

present paper. Due to a malicious tampering attack, the 

fire may not be detected until it is too late to put it out. 

This way, a potential pyromaniac who wants to start a fire 
inside a monitored area  only  needs to physically alter 

the measurement provided by one or more sensors to 

deviate the attention of the fire brigade. The true fire, 
which is located at a different area, would progress 

without resistance. 

In consequence, the deployment of efficient security 

schemes to reduce risks and threats are necessary. This 

can be tackled by providing proper mechanisms to obtain 

or estimate the compromised data, which will contribute 

to improve the survivability of the network, understood as 

“the ability of a system to fulfill its mission, in a timely 
manner, in the presence of attacks, failures or accidents” 

[5]. 

With this principal aim, the present work proposes the 

application of multivariate analysis techniques to recover 

WSN environments from data tampering attacks. For that, 

we first introduce the use of principal component analysis 
(PCA) [6] [7] to monitor and detect anomalies in the 

system behavior over time. After that, PCA-based 

trimmed scores regression (TSR-PCA) [8] [9] is 

introduced to subsequently recover tampered data. In 

order to improve the recovering performance of the 

tolerance approach, a dynamic version of PCA (dynamic 

PCA, or DPCA) is considered. DPCA incorporates the 

temporal information that is the auto-correlation and 

lagged cross-correlations of the sensor measurements, 

into the behavioral model of the WSN.  Additionally, we 

show how the specific routing strategy chosen for multi-

hop retransmissions has a relevant influence on the 
impact of data integrity attacks on the WSN performance. 

Some scenarios are analyzed to evidence the 

consequences on the number of sensors affected 

depending on both, the routing algorithm used and the 

location of the specific sensor attacked. A number of 
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variable routing strategies are studied and proposed to 

spread the effect of an attack event over time. This 

minimizes the consequences of the attack and thus 

improves the recovery performance. 

The main contributions of the present paper are as 

follows: 

 The development of a dynamic variant of a 

multivariate statistical-based reaction scheme to 

recover tampered data in WSNs. The recovery 

system is complemented with a multivariate 

statistical-based anomaly detection module that 

determines the occurrence of attack events 

against the target system and triggers the 

necessary alarm to execute the recovery 

procedure [10]. 
 The use and evaluation of variable routing 

schemes to spread the consequences of the attack 

over time and thus improve the recovery results. 

The result of adopting these proposals, variable multi-

hop routing strategies and dynamic PCA, is the 

enhancement of the recovery performance with respect to 

that obtained employing static multi-hop routing 

strategies and static PCA modeling [10]. 

The rest of the paper is organized as follows. Section II 

presents some relevant works related to the subject under 

study. Section III discusses the fundamentals of the 

multivariate analysis techniques used in the present work, 

both for monitoring and detection purposes and for 

missing data recovery. Section IV discusses the 

arrangement of the data collected in a WSN for standard 

(static) PCA and for dynamic PCA. Section V introduces 

variable routing strategies, as they will be subsequently 

studied to improve missing data recovery. After that, 

Section VI describes the general framework considered 

for testing our tolerance proposal, and the results obtained 

in terms of anomaly detection and missing data recovery 

are presented and discussed. Moreover, a discussion 

about the consequences of choosing different types of 

variable routing strategies is also presented in this section.  

Finally, Section VII summarizes the principal conclusions 

and remarks on this work as well as new future research 

directions. 

II. RELATED WORK 

For network survivability [5] at least two principal 

security mechanisms must be deployed: attack detection 

(recognition) and response (recovery). Regarding the 

detection of non-legitimate network events, several 

solutions have been proposed in the literature. Among 

others, statistical-based, rule-based and data mining-

related techniques can be found [11] to determine 

unauthorized events in monitored environments. 

Those non-legitimate events which are detected need 

to be subsequently solved to guarantee the continuity of 

the network and the affected services. For that, response 

mechanisms must be devised and provided. In this 

context, missing data imputation techniques are used as 

response techniques. For example, the authors in [12] 

propose an anomaly detection scheme and missing data 

imputation algorithm based on neural networks to 

improve the performance of the classification process 

performed by the neural network. The network is first 

partitioned into clusters, and then the missing data 

imputation algorithm selects the nearest neighbor or the 

most repeated value of the neighborhood to estimate the 

missing value for the target sensor. If there are no 

neighbors, the predicted value is the last one obtained 

from the corresponding sensor. In reference [13], the 

authors provide a data mining-based technique addressing 

the missing data imputation problem in mobile sensor 

networks. They divide the monitored mobile sensor area 

into sub-areas. In each of them there exists a virtual static 

sensor which monitors the real mobile sensor readings by 

computing the mean of the corresponding real sensor 

measurements. Through the relationships among the 

virtual static sensors, their proposal exploits the spatial 

and temporal correlation to predict missing data from the 

real sensors. Another study in reference [14], addresses a 

robust method to recover missing data using two 

temporal predictors and one spatial. The algorithm selects 

the best predictor by assessing each one when there are 

missing data, thus showing how sampling rate and packet 

loss affect recovery accuracy. 

A missing data recovery proposal using sparsity-spatial 

interpolation with a fixed discrete cosine transform (DCT) 

basis is addressed in [15]. An improvement of the 

previous work is proposed in [16] through the use of a 

sparsity-based missing data recovery method. By using 

and over-complete dictionary conformed by 2D DCT 

basis and past frames, their approach estimates a given 

missing data frame as a linear combination obtained from 

the dictionary by solving the   norm optimization 

problem, thus accounting for the temporal data 

correlation. Using dynamic Bayesian networks, the 

authors in [17] develop a novel anomaly detection and 

missing data imputation technique by exploiting the 

spatial and temporal correlation existing between samples. 

They are capable of distinguishing if an anomaly is taking 

place by comparing a normality sensor model (data 

calibration-based model) and the actual sensor value. The 

imputation or recovery method is then addressed by 

inferring the most likely sensor value from both the 

current and immediate past values. 

The use of multivariate techniques has been widely 

adopted in the scientific literature by the research 

community, but their application to WSNs is still limited. 

These methodologies fit well in this kind of environments, 

because multivariate techniques can model the high 

temporal and spatial correlation among sensors. 

The limited number of multivariate analysis proposals 

for WSNs are mainly devised for intrusion or anomaly 

detection purposes. As an example, a PCA-based 

detection system for routing attacks is proposed in [18]. 

The network is partitioned into groups with a monitor per 
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group with two PCA models: one for its own traffic and 

one for global traffic, which is obtained by exchanging its 

local PCA model with other monitors. Authors conclude 

that a PCA global distributed modeling achieves better 

detection performance than the centralized modeling for 

sinkhole attacks. Another PCA-based anomaly detection 

system is also proposed in [19]. Two phases are involved 

in this system: data modeling and anomaly detection. The 

first one is intended to improve the PCA modeling 

against outliers and inconsistent data. The anomaly 

detection procedure is carried out by comparing the 

calibration data and the new incoming data using the 

Mahalanobis distance. 

On a different matter, several routing strategies are 

studied and proposed in the literature aimed at improving 

alternative aspects: load balance, confidentiality, etc. This 

way, a number of specific routing algorithms for ad hoc 

networks such as AODV, DSR, LSR coexist. However, 

to the best of our knowledge, no studies are available 

where the relationship between the underlying routing 

algorithm and the effect of attacks such data tampering 

attacks is analyzed. 

In this context, the contribution of the present paper is 

twofold: (a) the use of multivariate techniques where the 

system dynamics are incorporated to the model, and (b) 

the use of variable routing strategies, where time-varying 

next hop nodes are considered to establish the origin-

destination routes. 

III. MULTIVARIATE STATISTICAL ANALYSIS AND 

MISSING DATA RECOVERY 

Most natural and man-made processes are multivariate 

systems, as their adequate characterization requires the 

joint use of several variables. For instance, weather 

forecasting depends on wind, atmosphere pressure and 

temperature, among many other factors.  

Data description and modeling, discrimination and 

classification, or regression and prediction [20] are the 

usual fields for applying multivariate techniques. In the 

following sections, the fundamentals of multivariate 

statistical analysis in the context of this work are 

provided, both for monitoring and detection and for data 

recovery. 

A. Principal Component Analysis (PCA) 

The main goal of principal component analysis, or 

PCA, is data compression. PCA identifies a number of 

linear combinations of the original variables, the so-

called principal components (PCs), which contain most 

of the relevant information (variability) in a data set X. 

This is a change of variables from the original variables 

in the X space to the PCs subspace. If X is a data matrix 

with J variables, PCA reduces its dimension from J 

variables to  PCs by finding the A‐dimensional latent 

subspace of most variability captured. 

PCA follows the next equation:             (1) 

where  is the J×A loading matrix,  is the I×A 

score matrix and  is the I×J residual matrix. The 

maximum variance directions are obtained from the 

eigenvectors of , and they are ordered as the 

columns of  by explained variance. The rows of  

are the projections of the original I observations in the 

new latent subspace.  is the matrix that contains the 

residual error, and it plays a crucial role in anomaly 

detection. The score or projection on the PCA subspace 

of a new observation is obtained as follows:              (2) 

The number of PCs in a model A, can be selected using 

several methods, including cross-validation [21]. The 

authors in [22] conclude that the element-wise k-fold (ekf) 

algorithm is a valid choice for PCA cross-validation 

when the model is used for missing data imputation, as in 

the present work. 

B. Dynamic PCA 

The loadings in PCA capture the relationships among 

the data variables. In traditional PCA, only static 

relationships are captured. To address this limitation, 

dynamic PCA (DPCA) was proposed by Ku et al. [23] in 

order to incorporate time inter-dependencies into the 

model. Modeling data dynamics is of relevance in 

different practical applications and engineering 

disciplines such as automatic control and system 

modeling [24]. 

DPCA performs PCA by extending the original  data 

matrix with the addition of the same variables lagged in 

time. The new matrix Xd, augmented with d lags, 

contains in each row the observations from sampling time 

 to sampling time k. This means that the number of 

variables in Xd grows with d, following: 

 (3) 

where  is the -

dimensional observation vector (one observation per 

sensor) at sampling time k, d the time lag and I the total 

number of observations per sensor or variable. The new 

matrix obtained Xd is -dimensional. 

This way, applying PCA to the extended matrix, the 

dynamic relationships in the data are captured by the 

model. 

The choice of the lag  can be performed using the 

multiple methods available in the literature to investigate 

the dynamics of time-series data. This includes the use of 

auto-correlation and partial auto-correlation plots [25]. 

C. PCA-based Monitoring and Anomaly Detection 

System 

To recover the original data after a tampering attack, it 

is necessary to detect the attack and identify the tampered 

measurements. We carry out this by implementing an 
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anomaly detection system based on multivariate analysis, 

which alerts a human supervisor when an anomaly occurs. 

This supervisor is in charge of discerning between “mere” 
measurement anomalies and actual tampering attacks. If 

an attack is determined, a subsequent recovery process is 

launched to restore the original sensor values affected by 

the attack. 

In this line, one of the most extended applications of 

PCA is process monitoring and anomaly detection and 

diagnosis. During monitoring, Q and T
2
 [26] statistics are 

commonly used. Q compresses the residuals in each 

observation and T
2
 compresses the scores. With the 

statistics computed from the calibration data under 

normal conditions, control limits can be established with 

a certain confidence level. New data are subsequently 

monitored using these limits. 

Q and T
2
 statistics for a specific observation can be 

computed using the following equations: 

  

  

 

  

 

 

 

The details of the usage and performance of a PCA-

based anomaly detection system can be found in [10]. 

There, control limits for the  and  statistics are 

defined such that the occurrence of an anomaly is 

concluded when the limits are exceeded for three 

consecutive sampling times. Considering that the control 

limits are commonly chosen so that  of the 

observations gathered in the calibration stage fall below 

the limits, this means that the theoretical probability for 

false positives is . When an anomaly 

is detected, contribution plots [27] help the supervisor to 

elucidate the potential causes. If an attack is determined, 

a subsequent recovery process is launched. Although 

human intervention can be seen as a shortcoming of the 

proposed approach, the relevance of timely fire detection 

suggests such an intervention in a practical system. In a 

similar line, it is also usual to find this configuration in 

industrial process monitoring [27]. Although automatic 

supervision is also possible [10], this aspect does not 

constitute the core of the present work as we focus our 

attention in the subsequent stage of recovering tampered 

data. 

D. Missing data Recovery Through Multivariate 

Statistical Methodologies 

There are several methods to estimate missing data 

with PCA. These methods can be classified into two 

groups: regression and non-regression-based methods, the 

former ones exhibiting better performance [8]. Among 

the regression-based techniques, the trimmed scores 

regression (TSR) presents a good trade-off between 

simplicity and estimation performance [9]. 

The TSR method estimates the value of the scores 

from the trimmed scores, i.e., the scores obtained by 

filling the missing values with zeros. For data centered 

before PCA, this is equivalent to using the average value 

of a variable to give an initial estimation of its missing 

values. 

Without loss of generality, let us assume an incomplete 

observation xinc with available measurements on the first 

k variables and where the values of the remaining 

variables are missing. The trimmed scores of xinc are 

calculated in PCA as follows: 

 (6) 

where 

 

 

(7) 

 (8) 

 

 

 

 

 

 

 

 (9) 

The complete score matrix  can be regressed on the 

trimmed scores , such that 

 (10) 

where the matrix of regression coefficients  may be 

computed from least squares, as the inversion of 

 is typically nicely conditioned. If it is not, 

biased methods such as partial least squares (PLS) [28] 

[29] can be used to estimate . Afterwards,  is used to 

improve the score estimation as follows: 

 (11) 

Finally, the score  can be used to estimate the 

incomplete observation, including its missing elements: 

 (12) 

TSR is more efficient as the inter-variable correlation 

in the original data set increases, since the variables with 

missing data for a given observation are computed from 

available values in the others. 

and where  is the loading corresponding to the -th 

variable in the -th PC. Only the available variables in 

 and their corresponding loadings are thus used to 

compute the trimmed scores. 

(4)

(5)

where  represents the score of the -th observation on 

the -th PC,  and  stand for the mean and standard 

deviation of the scores of that PC in the calibration data, 

respectively, and  represents the residual value 

corresponding to the -th observation and the -th 

variable. TSR makes use of the complete calibration data  and 

the trimmed scores to improve the estimation of the 

scores from incomplete observations. Let us call  the 

sub-matrix of  with the available variables in . The 

matrix of trimmed scores corresponding to the calibration 

data can be computed as follows: 
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IV. DATA ARRANGEMENT FOR SYSTEM MODELING 

Once the fundamentals of multivariate statistical 

analysis are presented, this fourth section is mainly 

devoted to discuss how the incoming sensor data in 

WSNs are arranged to derive the intended PCA-based 

model for data recovery. This is a relevant matter since 

the data arrangement procedure can have a significant 

impact in the performance of a multivariate model [30]. 

In the first sub-section, we introduce the arrangement 

in traditional (static) PCA. Afterwards, the model is 

extended to the so-called DPCA through the addition of 

temporal lags in the sensor measurements, incorporating 

the system dynamics to the model. 

E. Static PCA Modeling 

The static PCA model is calibrated from the data 

gathered from the WSN and arranged in matrix form as 

shown in Fig. 1. The data corresponding to each single 

sensor are arranged as a column, and the data 

corresponding to each single sampling time are arranged 

as a row. Thus, the matrix of data X from which PCA is 

calibrated contains J variables, with J the number of 

sensors in the WSN, and I observations, with I the 

number of sampling times for each sensor. Thus, in this 

case, the corresponding model refers to a matrix  of 

dimension . 

 

Figure 1.   Traditional static PCA-based arrangement for the calibration 

data, conformed by  observations of  variables. , with 

 stands for measurement of sensor . 

It is important to note that the actual location of a 

sensor in the data arrangement does not have any 

influence in terms of model calibration or data recovery 

performance. 

F. Dynamic PCA Modeling 

The traditional static PCA modeling does not consider 

the temporal inter-dependence among the system 

variables. However, the dynamic nature is inherent in 

WSNs, as the sensors are gathering information 

continuously. Therefore, dynamics should be considered 

by the model to improve the system representation. 

 

Figure 2.   Dynamic PCA-based arrangement  from the original static PCA data matrix  conformed by  variables and  

observations,  being the number of original variables,  the number of original observations and  the time lag considered. As in Fig. 1, , with 

 stands for measurement of sensor . 

Fig. 2 depicts the data arrangement for DPCA from the 

according to the description provided in Section III-B. In 

this case, the corresponding model is fitted from matrix 

Xd whose dimension depends on the temporal lags used. 

d

 is , 

with  the number of observations,  the number of the 

system variables and  the time lag. 

V. VARIABLE ROUTING STRATEGIES FOR MULTI-HOP 

TRANSMISSIONS 

A main concern in WSN deployments is energy 

consumption. Low energy consumption is desired in 

order to reduce sensors maintenance. For this, a multi-

hop routing scheme can be used so that the range of 

wireless communications is reduced as much as possible 

while the overall connectivity is maintained. Most of the 

existing routing algorithms are static, that is, the same 

routes from origin to destination are used throughout the 

WSN operation time, provided that the network 

conditions are sustained over time [31]. 

As previously discussed, DPCA incorporates system 

dynamics into the model. The auto-correlation and lagged 

cross-correlation information included is used to improve 

the recovery performance of the response scheme. 

However, if static routing strategies are used for re-

transmissions, the measurements affected by a given 

tampered attack are always those corresponding to the 

same sensors, that is, those that forward their 

measurements through the tampered sensor. In this case, 

the auto-correlation and lagged cross-correlation 

information included in the model becomes useless for 

data imputation when the tampering affects a high 

number of consecutive time measurements. 

If a variable routing is used instead, (e.g., random next-

hop selection) the measurements of the sensors will be 

sent to the CU through different routes. Thus, the sensors 

affected by a tampering attack vary with time. As a 

consequence, the effect of the attack is spread and the 

auto-correlation information is preserved. 

Three variable routing schemes will be considered in 

this work. They differ in the rule to decide which of the  
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closest nodes to the current one in the route towards the 

CU is chosen as the next hop: 

 Random routing (RR): random selection of the 

next node, so that each one of the next available 

 nodes has the same probability to be selected  

( ). 

 Differential random routing (DRR): random 

selection among the next  nodes which 

were not selected in the previous sampling time. 

 Switching‐based routing (SR): select the next 

node following a deterministic pattern intended 

to vary the routes in time as much as possible. 

In all the discussed routing strategies the negative 

effect of a failure or an attack is spread over different 

sensors over time, which will preserve correlation 

information and thus the recovery results are expected to 

be improved. 

VI. EXPERIMENTAL FRAMEWORK 

As a proof of concept, our study is focused on a WSN 

for firefighting in a forestry area. The main reason for this 

choice is the social and economical relevance of this kind 

of environments. In what follows, both the specific 

simulation scenario considered to validate our proposals 

and the experimental results obtained are discussed. 

Moreover, some further discussions about the 

consequences of using different routing strategies are 

established. 

A. Simulation Scenario 

A simulator based on Matlab 2009b to obtain the 

temperature evolution of a forestry area has been 

developed for experimental purposes. It is based on 

reference [32], where temperatures at specific locations 

are computed as a function of the distance to a number of 

temperature focuses. Both normal temperature focuses 

and fire focuses are modeled using a 2D gaussian 

distribution. Fig. 3 shows the simulation scenario, where 

Fig. 3(a) corresponds to the distribution of the sensors in 

the area. Two types of temperature maps are also 

presented. Derived from normal conditions, Fig. 3(b) 

shows three normal temperature (in ) sources 

representing the hottest areas, which may be valleys 

among cooler zones representing mountains. Fig. 3(c) 

illustrates a fire situation where the fire has a central 

focus and has burnt out over more than half of the total 

area. 

 
(a) 

 
(b) 

 
(c) 

Figure 3.   Simulation scenario: (a) Sensor locations, (b) Temperature map under normal conditions, (c) Temperature map with a fire focus. 

We assume a 1000 m 1000 m square area of forestry 

where 81 (9 9) sensors are regularly distributed, i.e., 

each sensor is located 100 m away from its neighbors 

(Fig. 3(a)). The dimension of the scenario and the number 

of sensors are inspired by a real system provided by the 

Libelium company 

(http://www.libelium.com/wireless_sensor_networks_to_

detec_forest_fires/). A regular topology is assumed for 

the sake of simplicity. Nevertheless, the extension to a 

non-regular topology is straightforward by using distance 

metrics among sensors [10] except for the 

implementation of some dynamic routing schemes, as it 

will be discussed afterwards. 

Every sensor acquires the ambient temperature for 

predefined sampling times and sends the measurements 
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towards the CU. A multi-hop routing scheme is assumed 

in the simulation. Nodes in the leftmost column of the 

topology measure the temperature and send the 

measurements towards the right. Nodes in the 

intermediate seven columns of the topology also send 

their measurements towards the right. Additionally, they 

forward the measurements collected by other sensors at 

their left. Finally, the nodes in the rightmost column of 

the topology forward all the collected information to the 

CU. The simplest routing scheme following the previous 

description is a linear (left-to-right) routing scheme, as in 

the MFCA routing protocol [1]. Fig. 4 shows an example 

of how this routing algorithm works and the effect of a 

tampering attack compromising a node at the rightmost 

column and affecting all the information routed through it. 

The simulation tool is first employed to generate a data 

set (hereafter, CAL data set) used to calibrate the PCA 

models for both anomaly detection and data recovery. 

The CAL data matrix  contains  observations 

of  variables (the temperatures obtained by each 

sensor) under normal temperature conditions, i.e., without 

fire influence. A situation in which a fire focus evolves 

over time is then simulated (hereafter, FIR data set). The 

FIR data set is used to simulate the tampering attacks and 

to compute the estimation error of the recovery system. 

To simulate the attacks, the worst case is always 

considered.  

 

Figure 4.   A malicious relay node compromises the sensing values 

gathered by the other sensors that are routed through the former one 

employing linear left-to-right static routing. 

 

Figure 5.   A malicious relay node compromises the sensing values 

gathered by the other sensors that are routed through the former one 

employing variable and probabilistic (e.g., with a random next node 

selection pattern) left-to-right routing. 

This corresponds to the case in which one relay node 

in the rightmost column is tampered. The tampering of 

such a node affects all the measurements forwarded by 

the node. For illustration purposes, the nodes affected by 

a worst-case tampering attack in a WSN using the left-to-

right static and dynamic routing schemes are showed in 

Fig. 4 and Fig. 5, respectively. 

The variable routing strategies introduced in Section V 

are analyzed here for a number of nodes . RR and 

DRR strategies as well as three variants of the SR 

strategy, referred to as SRI, SRII and SRIII, are evaluated. 

 

Figure 6.   First switching-based routing strategy (SRI): from leftmost 

node to rightmost routing four nodes are re-used at consecutive 

sampling times  and . 

 
 

Figure 7.   Second switching-based routing strategy (SRII): from 

leftmost node to rightmost routing only two nodes are re-used at 

consecutive sampling times  and . 

SRI defines a pattern where each row of sensors switch 

between forwarding towards the next upper right or the 

next lower right neighbor node. As shown in Fig. 6, this 

simple pattern does not achieve a high degree of 

variability in the routes, since half of the nodes in a route 

also coincide in the same route after switching. In SRII a 

more complex pattern is defined for each three rows of 

the network. This scheme reduces the number of node 

coincidences in alternative routings (see Fig. 7). The third 

variant of SR, SRIII, introduces an initial random route 

selection at the beginning for only the first sampling time. 

Then, each node switches continuously and 

independently among the remaining three alternative next 

nodes. It should be noted that the SRI and SRII schemes 

require some sort of synchronization among the nodes, 

while SRIII can be naturally implemented initializing the 

nodes in slightly different times. 

B. Anomaly Detection Results 

Through the comparison of the PCA model obtained 

from calibration to the new observations under 

monitoring (i.e., the test data set), anomalies in the 

environmental behavior can be detected. The Matlab 
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PLS-toolbox [33] is used to illustrate how the monitoring 

process is carried out by employing the monitoring 

graphics such as those presented in Figs. 8 and 9. These 

figures depict the fire evolution (inverted triangles) in the 

FIR data set. Almost from the beginning of the fire, the 

observations surpass the established limits for normal 

conditions, calculated from the CAL data set (dark 

circles). Thus, the fire is timely detected with the 

monitoring system. 

Fig. 8 corresponds to the case where only a fire 

situation is taking place. Instead, in Fig. 9 a tampering 

attack is performed during the fire evolution, which is 

intended to disrupt the operations of the fire brigade. 

 

Figure 8.   Monitoring graphic under fire influence: initial calibration 

data (dark circles) and control limits (vertical and horizontal dashed 

lines), from which anomalies are detected (inverted triangles). 

contribution plot detailing an anomalous observation (top left) 

corresponding to the fire evolution is also depicted. 

 

Figure 9.   Monitoring graphic under fire influence and data tampering: 

initial calibration data (dark circles) and control limits (vertical and 

horizontal dashed lines), from which anomalies are detected (inverted 

triangles).  contribution plot detailing an anomalous observation (top 

left) corresponding to the joint influence of fire and data tampering 

attack is also depicted. 

At this point, it is important to note that the monitoring 

system can not distinguish between anomalies due to 

actual fire events and anomalies due to tampering attacks 

or sensor malfunctions. To discern between both 

situations, human intervention is recommended. Such an 

intervention is common for this kind of PCA-based 

monitoring systems [27], while it is not a limitation of our 

central recovery related proposal. This way, when an 

alarm is triggered the system computes the  and/or  

contribution plot for the corresponding observation. From 

the visualization of the contribution plot, the human 

supervisor is in charge of diagnosing the potential causes 

for the alarm. Fig. 10(a) shows the detail of the  

contribution in one of the anomalous observations found 

in Fig. 8, while Fig. 10(b) shows the pattern obtained 

under attack for an anomalous observation in Fig. 9. In 

the monitoring system, tampering attacks are shown as 

sharp artifacts which shape depends on the routing 

scheme used and which are clearly different to the 

smooth contribution of a true fire. 

 
(a) 

 
(b) 

Figure 10.    contribution plots: (a) profile generated from the fire 

situation without any malicious presence; (b) profile generated from the 

fire situation and with the presence of the rightmost malicious node 

affecting to all the sensor measurements routed through it. The dashed 

circle highlights the artifact due to the attack occurred. 

From the knowledge of the routing scheme followed in 

the WSN, the shape of common artifacts caused by 

tampering attacks can be predicted. Thus an automatic 

solution is possible. The authors in [10] propose a 

window-filter-based approach that is applied to the 

previous obtained contribution plots in order to perform 

automatic detection. This filter highlights specific 

artifacts. It should be noted that when unpredictable 

origin-destination routes are established, such as in RR 

and DRR strategies, the artifacts for attacks are also 

unknown and the detection procedure becomes a more 

challenging task. 

Whatever the detection method used to determine the 

occurrence of attack or malfunction situations, either 

manual or automatic, a missing data recovery process is 

afterwards executed to solve the situation and recover the 

affected data. This process, which is the focus of the 

present paper, is evaluated below. 
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C. Missing Data Recovery Results 

Once an attack alarm is generated, a response 

mechanism should be performed to mitigate the 

consequences of the threat and achieve the system 

survivability in terms of the continuity of the services 

provided. In the present work, the anomalous values 

detected as tampered data are treated as missing values 

and estimated using missing data recovery techniques. 

Authors in [10] consider static and deterministic 

routing algorithms, including the linear routing of Fig. 4, 

together with PCA modeling. These schemes are used by 

the recovery system described in Section III-D. We try to 

improve these results through two means: incorporating 

time correlations into the model for the target system, and 

employing variable routing strategies as explained in 

Section V and VI-A. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 11.   Missing data imputation recovery results for each of the variable routing strategies and for time lags  to  (with  

meaning that no time lag is considered): (a) RR, (b) DRR, (c) SRI, (d) SRII and (e) SRIII. 
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To evaluate the performance of the new data recovery 

approach, the mean square error (MSE) of estimation of 

tampered data recovery is computed for 10 consecutive 

observations (from 5th to 14th) in the FIR data set, where 

the evolution of a fire is measured. Worst-case tampering 

attacks, to those nodes in the rightmost column of the 

WSN, are considered. The results are depicted in Fig. 11 

for each of the routing approaches considered and from 

 to  (  means that no time lag is used). 

The MSE evolution for the static routing strategy (Fig. 4) 

is also shown as a baseline for comparison. 

 

Figure 12.   MSE evolution for all considered variable routing strategies 

and for  

We can observe that in all the cases the recovery 

performance increases with the time lag, since more 

dynamic information is captured by the model. Therefore, 

the combination of DPCA with variable routing strategies 

is effective in terms of recovery performance. The routing 

strategies which present some degree of randomization 

(RR, DRR and SRIII) have a similar behavior when the 

number of lags in DPCA is changed. This also happens 

for purely deterministic routing (SRI and SRII). 

Deterministic routing outperforms probabilistic routing 

for a low number of lags, but as the number of lags grows, 

the opposite is found. Since a better performance is 

obtained for a high number of lags, we can conclude that 

probabilistic routing is a better solution in terms of 

recovery performance. This can be explained by the fact 

that probabilistic methods perform a more variable 

distribution of the sensors in the routes. In consequence, 

the recovery data procedure gets more valid (non-

tampered) temporal data. Fig. 12 presents the comparison 

of the MSE for  and the five routing strategies. In 

this figure, the superiority of probabilistic methods is 

clear. Also, SRII outperforms SRI as a consequence of 

the lower amount of re-used nodes in the path for 

consecutive sampling times in the former: if the same 

node is tampered at  and , the temporal correlation 

is lost for this sensor. For this reason, the higher the 

variability in the routing, the better recovery performance. 

Table I shows numerical results of the recovery 

procedure for the 10th sampling time under fire influence. 

The same conclusions aforementioned are obtained from 

the table. We can see how the recovery performance is 

enhanced in more than 60% in comparison with the static 

approach. 

TABLE I.  MSE RESULTS FROM EACH VARIABLE ROUTING STRATEGY 

AT SAMPLING TIME  

 MSE 

Algorithms d=0 d=1 d=2 d=3 d=4 

Static 2500 - - - - 

RR 3594.9 2135.7 1476.2 1127.9 883.2 

DRR 3708.2 2207.7 1514.3 1180.4 912.1 

SRI 2128.7 1727 1364.8 1191.7 983.2 

SRII 2116.3 1735 1330.8 1143.7 933.2 

SRIII 3576.8 2118 1472 1145.3 899.3 

 

We can conclude that the joint use of DPCA modeling 

and variable routing strategies provides better recovery 

performance than static PCA modeling and static routing. 

Also, probability based routing outperforms the 

deterministic switching schemes considered. However 

randomness introduces a certain degree of traffic 

unbalancing in the relay nodes, as it is shown in Fig. 13, 

which is a negative effect in terms of energy consumption. 

It should be noted that this is corrected with time. In 

summary, the traffic distribution and the number of re-

used nodes are highly relevant design requirements to 

devise variable routing algorithms for data recovery and 

energy consumption, which are critical aspects in WSNs. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 13.  Average number of sensors routed through each relay node 

at 10th sampling time: (a) SRI and SRII; (b) SRIII; (c) RR; (d) DRR. 

The traffic load balance observed in random algorithms tends to be 

similar to the switching-based case when averaging through longer time 

periods. 

D. Discussion on the Consequences of using Variable 

Routing Strategies 

Random and deterministic strategies have been 

assessed to yield variable routing patterns. The 

randomization of the route selection coupled with 

dynamic modeling improves the system recovery 

performance thanks to a better traffic distribution. This 

means that the number of sensors repeated in a route at 

different sampling times is lower. This improves the 

recovery performance, since one main source of 

information for the recovery of a lost measurement of a 

sensor is its previous measurement. A drawback of 

routing randomization is that some degree of traffic 

unbalance is introduced. Traffic balance has a relevant 

impact over the entire energy consumption, which is a 

critical aspect. On the other hand, an advantage of 

random routing is that it cannot be predicted by a 

malicious node/person. However, this is also a drawback 

since the control unit, which retrieves the WSN 

measurements, cannot infer the origin of a tampered or 

malformed packet. This complicates the application of 

the proposed recovery approach. 

Deterministic strategies yield worse outcomes in data 

recovery in combination with dynamic models. They 

have also additional drawbacks. Non-regular network 

topologies complicate the design of the varying routing 

pattern and some degree of time synchronization of the 

sensors may be needed to limit the unbalanced traffic. 

The most practical method considered was a 

deterministic switching scheme randomly initiated. This 

method can be easily extended to a non-regular network 

and deployed in practice. It shares the recovery 

performance of purely random approaches but with the 

advantage that a random generator is not needed in the 

nodes: random initialization is implicitly introduced for a 

non synchronized start up of the sensors. 

VII. CONCLUSIONS AND FUTURE WORK 

This work presents a tolerance approach to recover 

missing data due to tampering attacks or failures in 

sensors or communications. The work relies on 

multivariate statistical techniques to model the target 

environment where the system dynamics are incorporated 

into the model by using dynamic principal component 

analysis (DPCA). Additionally, several routing strategies 

are studied to analyze the effect of the tampering attacks 

on the overall network performance. From this study we 

conclude the convenience of implementing variable 

routing strategies in which the traffic distribution has a 

relevant impact over the recovery performance and 

energy consumption, critical aspects in WSNs. 

Despite the good results achieved when the proposal is 

deployed and evaluated in a simulation WSN scenario, 

some further research actions can be carried out to extend 

this work. More general non-regular topologies for the 

scenarios should be analyzed to generalize the application 

of the tolerance scheme introduced. Alternative routing 

strategies to those studied here might also be deployed 

and the results conveniently analyzed. Finally, and 

although it is out of the scope of our work, more specific 

and contrasted detection schemes can be incorporated to 

the global detection plus reaction system to improve the 

overall security and reliability of the proposed framework. 
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