
Vol. 23 ECCB 2006, pages e30–e35

doi:10.1093/bioinformatics/btl309BIOINFORMATICS

Tandem repeats over the edit distance
Dina Sokol1,�, Gary Benson2 and Justin Tojeira1
1Department of Computer and Information Science, Brooklyn College of the City University of New York,
Brooklyn, NY, USA and 2Departments of Biology and Computer Science, Boston University,
Boston, USA

ABSTRACT

Motivation: A tandem repeat in DNA is a sequence of two or more

contiguous, approximate copies of a pattern of nucleotides. Tandem

repeats occur in the genomes of both eukaryotic and prokaryotic

organisms. They are important in numerous fields including disease

diagnosis, mapping studies, human identity testing (DNA fingerprint-

ing), sequence homology and population studies. Although tandem

repeats have been used by biologists for many years, there are few

tools available for performing an exhaustive search for all tandem

repeats in a given sequence.

Results: In this paper we describe an efficient algorithm for finding

all tandem repeats within a sequence, under the edit distance

measure. The contributions of this paper are two-fold: theoretical and

practical. We present a precise definition for tandem repeats over the

edit distance and an efficient, deterministic algorithm for finding these

repeats.

Availability: The algorithm has been implemented in C++, and the

software is available upon request and can be used at http://www.

sci.brooklyn.cuny.edu/~sokol/trepeats. The use of this tool will assist

biologists in discovering new ways that tandem repeats affect both the

structure and function of DNA and protein molecules.

Contact: sokol@sci.brooklyn.cuny.edu

1 INTRODUCTION

A tandem repeat, or tandem array, in DNA, is a sequence of two or

more contiguous, approximate copies of a pattern of nucleotides.

Tandem repeats appear in biological sequences with a wide variety.

They are important in numerous fields including disease diagnosis,

mapping studies, human identity testing (DNA fingerprinting),

sequence homology and population studies.

Most genomes have a high content of repetitive DNA. Repeated

sequences make up 50% of the human genome (Collins et al., 2003).
The repeats in the human genome are important as genetic

markers (Kannan and Myers, 1996), and they are also responsible

for a number of inherited diseases involving the central nervous

system. For example, in a normal FMR-1 gene, the triplet CGG

is tandemly repeated 6 to 54 times, while in patients with Fragile X

Syndrome the pattern occurs >200 times. Kennedy disease and

Myotonic Dystrophy are two other diseases that have been

associated with triplet repeats (Frazier et al., 2003). In addition,

tandem repeats are used in population studies (Uform and Wayne,

1993), conservation biology (The International Human Genome

Mapping Consortium, 2001) and in conjunction with multiple

sequence alignments (Benson, 1997; Kolpakov and Kucherov,

2001).

Many of the repeats appear in non-coding regions of DNA.

Although useful for identity testing, these regions were thought

to carry no function. Recently, however, it has been shown that

repeats in the genome of a rodent provide code for its sociobeha-

vioral traits (Jeffreys, 1993). Scientists currently believe that the

non-coding tandem repeats do affect the function of the DNA in

ways yet unknown.

Although tandem repeats have been used by biologists for many

years, there are few tools available for performing an exhaustive

search for all tandem repeats in a given sequence, while allowing for

mutations. Due to the recent sequencing of the human genome by

the Human Genome Project (Groult et al., 2003; Fu et al., 1992), it is
now possible to analyze the sequence of the human genome and

create a listing of all tandem repeats in the genome. Detecting all

tandem repeats in protein sequences is an important goal as well

(Kitada et al., 1996).
In this paper we describe an efficient algorithm for finding all

tandem repeats within a sequence. We have already implemented

the algorithm in C++, and a website for the program is under

construction. Our program automates the task of listing all repeats

that occur in a biological sequence. It is our hope that with the use of

our program, biologists will discover new ways that tandem repeats

affect both the structure and function of DNA and protein

molecules.

The contributions of this paper are 2-fold. The theoretical con-

tributions consist of an extension of the algorithm of Landau and

Schmidt (Landau et al., 1998) to locate evolutive tandem repeats

over the edit distance and a more careful analysis of the algorithm

eliminating the need for suffix trees. The practical contribution is

an efficient program for finding tandem repeats that will become

available on the web for all to use.

1.1 Problem definition

We define tandem repeats over the edit distance using the model of

evolutive tandem repeats (Groult et al., 2004; Hammock and

Young, 2005). The model assumes that each copy of the repeat,

from left to right, is derived from the previous copy through zero or

more mutations. Thus, each copy in the repeat is similar to its

predecessor and successor copy.

Let ed(s1, s2) denote the minimum edit distance between two

strings, s1 and s2.

DEFINITION 1. A string R is a k-edit repeat if it can be partitioned
into consecutive substrings, R ¼ r1, r2, . . . , r‘, such thatPn�1

i¼1 edðri‚riþ1Þ � k. The last copy of the repeat does not have
to be complete, and therefore ed (r‘�1, r‘) refers to the edit distance
between a prefix of r‘�1 and r‘.

A k-edit repeat is an evolutive tandem repeat in which there are at

most k insertions, deletions and mismatches, overall, between all

consecutive copies of the repeat. For example, the string R ¼
caagct j cagct j ccgct is a 2-edit repeat. A k-edit repeat is maximal�To whom correspondence should be addressed.

e30 � The Author 2006. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org

http://www

if it cannot be extended to the right or left. Maximal repeats can be

overlapping, as shown in the following example.

EXAMPLE. Repeat of length 14 with 2 errors:

157 CA-CAGG 162

163 CACCGGG 169

170 C 170

Repeat of length 18 with 2 errors:

166 CGGGCTGC- 173

174 CGGCCTGCA 182

183 C 183

In this paper, we address the k-edit Repeat Problem, defined as

follows. Given a string, S, and an integer k, find all maximal k-edit
repeats in S. From the theoretical viewpoint, we provide an efficient

algorithm that locates all maximal k-edit repeats in a string. We

implemented this algorithm and found that our program locates

many repeats that are similar one to another. Hence, we incorpor-

ated several heuristics in our program, to make the output more

succinct and useful. The heuristics are described in Section 2.3. The

result is a concise listing of the k-edit repeats occurring in the input

sequence.

1.2 Related work

The early work on finding tandem repeats in strings dealt with

simple repeats, i.e. repeats that contained exactly two parts. Kannan

andMeyers (Katti et al., 2000), Benson (Benson, 1995) and Schmidt

(Spong and Hellborg, 2002) present algorithms for finding simple

repeats using the weighted edit distance.

The true goal of biologists, which turns out to be a much more

difficult problem, is to find all maximal repeats in a string. A

maximal repeat within a string is a repeat that contains two or

more consecutive copies, and it cannot be extended further to

the left or to the right. Each part of the repeat is called a period.

When considering maximal repeats without errors, all periods

(except possibly the last one) have equal length. For example, in

the string aatgtgtgt the string tgtgtgt is a maximal repeat with

3.5 periods.

More recently, the concentration has been on searching for max-

imal repeats with errors. In this case, however, the definition is not

obvious. Given a repeat with several periods, what does it mean

for the parts to be ‘similar?’ Benson (Benson, 1999) requires that a

consensus string must exist which is similar to all periods of the

repeat. Using this approach, it is difficult to provide a deterministic

algorithm to find tandem repeats. Hence, Tandem Repeats Finder

(TRF), developed by Benson1 uses a collection of statistical criteria

in combination with k-tuple matches to detect statistically signific-

ant tandem repeats. Similar criteria are used byWexler et al. (2004).
The goal of this paper is to provide a rigorous definition of

tandem repeats and to provide a deterministic algorithm to detect

all repeats that satisfy the definition. All of the algorithms that use

this approach build upon the Hamming distance, which measures

the number of mismatching characters between two strings, main-

taining the property that each period of a repeat has the same length.

In (Groult et al., 2004; Hammock and Young, 2005), evolutive

tandem repeats are defined over the Hamming distance as follows. A

string is an evolutive tandem repeat if it can be broken up into

substrings r1. . .r‘ such that the Hamming distance between ri and
ri+1 is smaller than a given threshold, for 1 � i < ‘. The definition

also allows for a small gap between copies of the repeat. The

algorithm presented in (Hammock and Young, 2005) has worst-

case quadratic runtime.

Kolpakov and Kucherov (Kolpakov et al., 2003, http://www.
loria.fr/mreps/) present two different definitions. The first definition

sums the mismatches between all neighboring copies of the repeat.

Formally, a repeat r[1..n] is called a k-repetition if the Hamming

distance between r½1::n � p� and r½pþ 1::n� is �k. The second

definition allows k mismatches between each pair of consecutive

copies, and this is called a k-run, and is similar to the evolutive

tandem repeats over the Hamming distance. The algorithm of (Kol-

pakov et al., 2003, http://www.loria.fr/mreps/) has O(nk log k) time.

The algorithm has been implemented in the mreps software

(Landau).

Landau, Schmidt and Sokol (Landau et al., 2001) define a tandem
repeat to have k mismatches if the alignment constructed from its

periods has k nonuniform columns. Their algorithm runs in O(nka
log (n/k)) where n is the sequence, k is the error bound and a is the

maximum number of periods in any reported repeat. The algorithm

has been implemented and is available at (Landau and Vishkin,

1989 http://csweb.cs.haifa.ac.il/library/ and http://www.sci.

brooklyn.cuny.edu/~sokol/trepeats/).

The disadvantage of the Hamming distance is that it only

accounts for point mutations and does not allow insertions and

deletions. To model mutations more generally, it is preferable to

use the edit distance, defined by Levenshtein (Main and Lorentz,

1984) as the minimum number of insertions, deletions and substi-

tutions necessary to transform one string into the other. Ideally, we

would like to differentially weight mutations; substitutions are

typically scored more permissively than insertions and deletions.

In this paper, we weight all differences uniformly, i.e. we use an edit

distance scheme.

2 METHODS

In this section we describe the algorithm for finding k-edit repeats. We first

describe a straightforward solution, following which we describe three spee-

dups to achieve a time and space efficient algorithm. The speedups use

similar ideas to those in (Landau et al., 2001).

2.1 A straightforward solution

The classical method for calculating the edit distance between two strings

S¼ s1. . .sm and S0 ¼ s01. . .s
0
n is to construct an n · m dynamic programming

matrix, to initialize (row 0, column j) to j (column 0, row i) to i, and to fill it in

for i, j > 0 using the following formula.

edit_dist½i‚ j� ¼ MIN

edit_dist½i � 1‚ j� þ 1‚

edit_dist½i‚ j � 1� þ 1‚

edit_dist½i � 1‚ j � 1� þ 0 if si ¼ s0j‚

edit_dist½i � 1‚ j � 1� þ 1 if si 6¼ s0j

8>>>><
>>>>:

We define a p-restricted edit distance alignment as an edit distance alignment

between two strings that disallows p insertions into the first string (altern-

atively, p deletions in the second string). This definition is necessary, since

1The program and Tandem Repeats Database are available at http://

tandem.bu.edu/TRDB.html.

Tandem repeats over the edit distance

e31

http://www
http://www.loria.fr/mreps/
http://csweb.cs.haifa.ac.il/library/
http://www.sci
http://

we would like to align a prefix of a string with a proper suffix of the same

string. If insertions into the prefix are not restricted, then the string may

eventually ‘catch up’ with itself, aligning characters in the prefix with the

exact corresponding characters in the suffix.

In terms of the edit distance matrix, if we assume that the first input string

is to the left of the matrix, a p-restricted alignment corresponds to the regular

edit distance matrix, allowing only p � 1 diagonals to the left of the main

diagonal.

LEMMA1. A string R of length q is a k-edit repeat if and only if a
p-restricted edit distance alignment can be constructed between a
suffix of R, beginning at location p + 1, and a prefix of R, with �k
differences, for some p < q/2.

PROOF. The proof follows from the fact that we can obtain a k-edit repeat
from a 2-sequence alignment of the prefix and suffix, and alternatively, given

a k-edit repeat, the prefix/suffix can be derived from the alignment of the

repeat. Given a p-restricted alignment of a suffix/prefix of a string R, the

copies of the repeat can be derived from the alignment as follows. The first

copy consists of the first p characters of the prefix. The second copy consists

of all characters in the suffix that appear in the alignment against the first

p characters in the prefix. Each successive copy is calculated by using the

previous known copy in the prefix to demarcate the following copy in the

suffix.

If a string R is a k-edit repeat, the prefix/suffix alignment can be obtained

from the copy-to-copy alignments. The suffix can be taken as the start of the

second copy of the repeat. The prefix is the string Rminus the last copy of the

repeat. Each has length �q/2 since only one copy of the repeat is removed.

The prefix/suffix alignment can be constructed by aligning copy i in the

prefix with copy i + 1 in the suffix.

We can use lemma 1 to derive a straightforward algorithm for finding

all k-edit repeats within a string. The algorithm finds all substrings of the

string for which a 2-sequence alignment exists between a proper prefix

and a proper suffix of the substring. It then breaks up the 2-sequence

alignment into its copies using the method in the first part of the proof of

the lemma.

Simple Algorithm

Input: A string S, and an integer k.

Output: All k-edit repeats in S.

(1) Consider each index 1� i < n as the starting point of a potential repeat.

(2) Consider each index i < j � nþi
2
(to the right of location i) as the start of

the proper suffix of the repeat.

(3) For each pair (i, j) perform a (j � i)-restricted alignment of the two

strings S1 ¼ si . . . sn and S2 ¼ sj . . . sn using the classical dynamic

programming method (allowing only j � i � 1 diagonals to the left

of the main diagonal).

(4) If there is a match between S1 and S2, of length at least j�i, with �k
errors, then a repeat exists, beginning at location i and ending at the

location before the k + 1st error found in step 3.

Complexity analysis: The time complexity of the naive algorithm is

O(n4). There are O(n2) iterations, and in each iteration we compute the

dynamic programming matrix of size O(n2). The space used is that of the

edit distance matrix, which is of size O(n2).

In the following section we explain the efficient algorithm. We present it

as a three-tier modification to the simple algorithm. The new algorithm

reduces the time to O(nk log k log(n/k)) and it reduces the space from

O(n2) to O(k2).

2.2 An efficient algorithm

We present a three-tier speedup to the naive algorithm. First, we reduce the

number of iterations. Then, we show how each iteration can be improved

by pruning the edit distance matrix. The third speedup fine-tunes the com-

putation time of the partial edit distance matrix.

Speedup #1: reduce the number of iterations. We use the idea2 of Main and

Lorentz (Schmidt) to reduce the number of iterations from O(n2) to

O(nlog(n/k)). The algorithm, rather than considering all possible starts,

anchors the comparisons at the center of the string. In the first iteration,

the input is S ¼ s1, . . . , sn, and all repeats that cross the center of the string

(i.e. include character sn2) are found. In the following iteration, S is divided

into two substrings, S ¼ uv, u ¼ s1. . .sn/2 and v ¼ sn/2+1. . .sn. The algorithm

which finds repeats crossing the center is applied recursively to both u and v.

In order to locate all repeats that include the character sn/2, it is necessary
to consider all alignments in which sn/2 corresponds to another character

in the string. Following we describe the procedure which aligns location

n/2 with all indices p > n/2. By symmetry, alignments for values p < n/2 can

be produced.

Find repeats

For p ¼ 1 to n/2 do // find repeats with period p

(1) Forward Direction: Find the longest prefix of sn/2+p. . .sn that

p-restricted matches a prefix of sn/2. . .sn with �k errors. (Fig. 1).

(2) Backward Direction: Find the longest suffix of s1. . .sn/2+p�1 that

p-restricted matches a suffix of s1. . .sn/2�1 with �k errors.

(3) Consider all pairs k1, k2 for which k1 + k2 ¼ k. Let ‘1 be the length of

the backward direction comparison with k1 errors, and ‘2 be the length

of the forward direction comparison with k2 errors. If ‘1 + ‘2 � p then
there is a tandem repeat extending from sn/2�‘2þ1 . . . sn/2þ‘1

We illustrate this idea with the following example.

Let k ¼ 4, find the k-edit repeats in the string S ¼ ctcgagctcctgacctcgtga.
We show the iteration of p ¼ 6, assuming that the first appearance of ‘t’

in the string is location n/2. We omitted the first part of the string since it

is not necessary for the example. The forward direction comparison is done

by aligning the string sn/2. . .sn with the string sn/2+6. . .sn. The optimal

alignment (i.e. obtaining the minimum edit distance) is shown in

Figure 2. Two gaps are introduced, and there are two mismatches.

The length of the forward extension with 4 errors is 14 (i.e. the alignment

extends up until location n/2 + 6 + 14 � 1). Since we allowed 4 errors in the

forward extension, and k ¼ 4, we do not allow any errors in the backward

extension. The length of the backward extension with 0 errors is 1 (the single

character c).
The copies of the repeat are derived from the 2-sequence alignment

as follows:

Repeat of length 21 with 4 errors.

Copy 1: CTC--GAG

copy 2: CTCCTGAC

copy 3: CTCGTGA

Fig. 1. Computing repeats: ‘1 is the length of the forward direction com-

parisons with k1 < k errors, and ‘1 is the length of the backward direction

comparison with k2 < k errors. If k1 + k2 � k and ‘1 + ‘2 � p, then there is a

k-edit repeat at sn/2�‘2+1 . . . sn/2+‘1.

2Main and Lorentz use O(log n) iterations, and we state that there are

O(log(n/k)) iterations, since we deal with strings of length �k separately,

using a straightforward algorithm.

D.Sokol et al.

e32

Speedup #2: Reduce the Size of the Dynamic Programming Matrix. In

the straightforward algorithm, the forward and reverse direction extensions

are computed by building the dynamic programming edit distance matrix for

each pair of substrings. The second idea for speeding up the algorithm uses

the observation that it is not necessary to compute the entire edit distance

matrix, since we are only looking for k errors.

Using the ideas of Ukkonen (1983) and Landau/Vishkin (Levenshtein,

1966), we can reduce the size of the matrix fromO(n2) toO(k2). Consider the

diagonals in the edit distance matrix, where diagonal d corresponds to

the diagonal with indices {(i, j)|i � j ¼ d}. The main diagonal is diagonal

0. Any diagonal in the edit distance matrix that has distance >k from diagonal

0 is not of interest since all of its values will be >k. Thus, it is only necessary
to compute the values on 2k + 1 diagonals. Furthermore, on a given diagonal,

successive values differ by at most 1. Therefore, it is only necessary to

store the location of the last row on each diagonal that has value h for

each 0 � h � k. Instead of the edit dist matrix, we compute a k · k matrix

L such that:

L[d, h] ¼ largest row in the edit_dist matrix on diagonal d that has

the value h.

Analysis: The matrix L can be computed by filling in n · 2k entries in the
dynamic programming matrix. Each row needs 2k values, and potentially n

rows will have to be computed. Using the classical dynamic programming

edit distance algorithm (as in Section 2.1), this can be done in O(nk) time.

Only a constant number of rows need be stored, hence the space complexity

is O(k2). This looks excellent, however, consider the fact that the

matrix L needs to be computed, in a given iteration, for each possible

1 � p < n/2. This results in the matrix being computed potentially O(n)
times, resulting in O(n2k) time per iteration. This is where the third speedup

comes into play.

Speedup #3: reduce the computation time of the dynamic programming

matrix. The third speedup uses information from one period size for the

following period size. In each iteration, the algorithm computes the edit

distance matrix separately for each period 1 � p � n/2. For p ¼ 1, this

translates into the computation of an edit distance matrix for the two strings

sn/2. . .sn and sn/2+1. . .sn. For p ¼ 2, a new matrix is computed for the strings

sn/2. . .sn and sn/2+2. . .sn, and so on. The only change from one period size to

the next is the deletion of the first character in the second string. There is a lot

of overlapping computation between different period sizes. Landau, Myers

and Schmidt (LMS) (Landau and Schmidt, 1993) called this problem ‘incre-

mental string comparison’, and showed how to get from one matrix to the

next in O(k) time, assuming we are only searching for up to k errors.

Thus, we can compute the first O(k2) matrix using the previous speedup

(Levenshtein, 1966), and then for each period size spend O(k) time using

LMS to modify the matrix.

The only remaining issue is that when using the LMS algorithm to update

the matrix it is not trivial to figure out the values for ‘1 and ‘2, i.e. the longest

common extension forward and backward. These values correspond to the

rightmost column in the dynamic programming matrix, for which a certain

value k1 < k appears. In (Landau et al., 2001) this is solved by

maintaining a heap for each value k1 < k, which contains all columns having

the value k1. Thus, the rightmost column can be located and updated in

O(log k) time.

Complexity analysis: There are O(log (n/k)) iterations. In each iteration,
we construct a matrix of sizeO(k2) in timeO(k2 + nk). The matrix is modified

for each period size in O(k log k) time. Overall, each iteration takes O(nk

log k) time, and the algorithm has time complexity O(nk log k log(n/k)). The

space complexity is O(n + k2).

2.3 Implementation

We have implemented the program in C++ including the first two speedups.

The third speedup is complicated, and it is our guess that in practice it will

not significantly affect the program. This is based on the observation that in

practice we almost never compute the full n · k matrix, as we stop calcu-

lating each of the diagonals after k + 1 errors are found. Our program can

process a string of several thousand characters in a fraction of a second.

Currently, the running time of the program is proportional to the time it

takes to print the output.

An inherent flexibility exists in the definition of approximate repeats, with

the goal of allowing for mutations. This flexibility poses an issue when the

goal is to detect all substrings of the input string that satisfy the definition.

The issue is that in practice there is too much output. Each repeat that is

reported satisfies the mathematical definition; however, many reported

repeats differ only slightly one from another. Hence, our challenge was

to modify our algorithm in a way that it reports a meaningful and significant

subset of the found repeats. To this end, we filter out all repeats that prove to

be redundant. The filtering is incorporated into the algorithm itself, which is

much more efficient than doing a post-processing phase to filter the output.

We deal with the issue of filtering by augmenting the different phases of

our algorithm. The first filtering technique filters repeats found within an

individual iteration, while the second technique filters repeats found in

different iterations.

Filtering a given iteration: 1. Choose the Optimal Period using the Local

Maximum. The first point of comparison is anchored at the center position

of the string, but the second point varies, and only by one character at a time.

Suppose there exists an alignment for some p with h errors. Then, this

alignment can be converted into an alignment for p + 1 with at most h +
1 errors. Thus, we do not want to report every possible k-edit repeat. We are

only interested in the value p that produces the best matching of the

surrounding string segments. This leads to a local maximum idea. As the

first point is anchored, and the second point moves forward, the comparison

produces better matches as the second point nears a corresponding position

in a different part of the repeat. The comparison gives worse results as the

second point moves away from that ‘optimal’ position, until it begins nearing

the corresponding position of another repeat.

2. Combine several neighboring repeats. Once a local maximum, p,

is found, we have potentially k different repeats with period p, each shifted

over several characters. This is because we consider k1 errors to the left

and k2 errors to the right, for all values of k1, k2 such that k1 + k2 ¼ k. For

purposes of reporting the repeats, it is much clearer to see the shifting

repeats as a single repeat. Hence, in this case, we combine all repeats

with period p into a single repeat. We note that the combined repeat has

at most 2k errors.

Filtering between iterations: The idea for filtering between iterations is

a simple one. If a repeat reaches either end of the string segment being

examined by the current iteration, it will also be detected by a different

iteration at a higher level in the recursion and thus need not be reported in the

current iteration.

3 RESULTS

The table on the left in Figure 3 contains a summary of the repeats

that our program detected in the first 14 000 bp of human chromo-

some 18 (May 2004). The exact filtering criteria are still being

improved, and thus we manually filtered the repeats to clarify

c t c - - g a g c t c c t g a
c t c g a g c t c c t g a c c t c g t g a

+6 n

Fig. 2. Optimal alignment obtaining the minimum edit distance.

Tandem repeats over the edit distance

e33

results. The criterion for this run allows up to k ¼ 40 errors and

requires a minimum length of at least 100 characters more than the

number of errors. This particular criterion was tested on pseudor-

andom strings created using the C++ function rand(), which

produces statistically random output in a single run. The function

rand() was initialized using the system clock time, ensuring a dif-

ferent set of statistically random strings for each execution. It was

tested on 20 strings, each 20 000 in length, and returned a single

repeat in 6 of them, and no repeats in the rest. The table on the right

of Figure 3 shows the results of TRF (Benson, 1999) on the same

sequence.

In Figure 4 we show the alignments of the copies of the two

new repeats found by our program, beginning at positions 795

and 10 690.

4 DISCUSSION

Many of the repeats that are found by our program are also found

by TRF (Benson, 1999), which uses a non-evolutive definition. This

is due to the fact that the consensus type repeat often satisfies the

evolutive definition as well. Sometimes, our program will detect

more errors than TRF, because in the case of a deviation in a single

period, we count each deviation twice: once from the period before

to the period with the deviation and once again from the period with

the deviation to the period after. However, more often, changes will

occur and be repeated for several periods before they change

again. It is in these situations that the evolutive definition is

most applicable. A non-evolutive definition causes an error to be

reported for each period in which the deviation occurs, whereas an

evolutive definition counts it as only one error until it is changed

again.

We conclude that our novel definition and efficient program

provide a useful tool for analyzing whole genomes. It is our

hope that with its widespread use new scientific discoveries and

inferences will be achieved.

Conflict of Interest: none declared.

ACKNOWLEDGEMENTS

Thisworkwas partially supported byNSFgrant DBI-0542751 to J.T.

and D.S., and by PSC-CUNY grant 67217-0036 to J.T.

Conflict of Interest: none declared.

REFERENCES

Benson,G. (1995) A space efficient algorithm for finding best scoring non-overlapping

alignments. Theor. Comput. Sci., 145, 357–369.

Benson,G. (1997) Sequence alignment with tandem duplication. J. Comput. Biol., 4,

351–367.

Benson,G. (1999) Tandem repeats finder—a program to analyze DNA sequences.

Nucleic Acids Res., 27, 573–580.

Collins,F.S. et al. (2003) The Human Genome Project: lessons from large-scale

biology. Science, 300, 286–290.

Frazier,M.E. et al. (2003) Realizing the potential of the genome revolution: the gen-

omes to life program. Science, 300, 290–293.

Fu,Y.H. et al. (1992) An unstable triplet repeat in a gene related to myotonic muscular

dystrophy. Science, 255, 1256–1258.

Groult,R., Leonard,M. and Mouchard,L. (2003) Speeding up the detection of

evolutive tandem repeats. In Proceedings of The Prague Stringology

Conference ’03.

Groult,R. et al. (2004) Speeding up the detection of evolutive tandem repeats.

Theor. Comput. Sci., 310, 309–328.

Hammock,E. and Young,L.J. (2005) Microsatellite instability generates diversity in

brain and sociobehavioral traits. Science, 308, 1630–1634.

Jeffreys,A.J. (1993) DNA typing: approaches and applications. J. Forensic Sci. Soc.,

33, 204–211.

Kannan,S.K. and Myers,E.W. (1996) An algorithm for locating regions of maximum

alignment score. SIAM J. Comput., 25, 648–662.

Katti,M.V. et al. (2000) Amino acid repeat patterns in protein sequences: their diversity

and structural-functional implications. Protein Sci., 9, 1203–1209.

K-edit Repeats TRF
Start End Length Errors Period Start End Length Errors Period

1 633 633 49 6 1 631 631 41 6
795 885 91 12 44
929 1147 219 6 29 929 1129 201 6 29

5017 5082 66 3 32 5017 5082 66 3 32
10690 10789 100 15 50
13119 13221 103 9 42 13119 13223 105 13 14

Fig. 3. The repeats found by our program are compared and contrasted with the repeats found by TRF (Benson, 1999).

Fig. 4. Alignments of the copies of two new repeats found by our program.

D.Sokol et al.

e34

Kitada,H. et al. (1996) Multiple alignment of biological sequences containing tandem

repeats. Genome Inform., 7, 276–277.

Kolpakov,R. and Kucherov,G. (2001) Finding approximate repetitions under hamming

distance. In Proceedings of the 9th European Symposium on Algorithms (ESA),

Lecture Notes in Computer Science, Vol. 2161, pp. 170–181.

Kolpakov,R et al. (2003) mreps: Efficient and flexible detection of tandem repeats in

DNA. Nucleic Acids Res., 31, 3672–3678.

Landau,G.M. and Vishkin,U. (1989) Fast parallel and serial approximate string

matching. J. Algorithm., 10, 157–169.

Landau,G.M. and Schmidt,J.P. (1993) An algorithm for approximate tandem repeats. In

Proceedings of the. 4th Annual Symposium on Combinatorial Pattern Matching,

Lecture Notes in Computer Science, Springer-Verlag, Vol. 648, pp. 120–133.

Landau,G.M. et al. (1998) Incremental string comparison. SIAM J. Comput., 27,

557–582.

Landau,G.M. et al. (2001) An algorithm for approximate tandem repeats. J. Comput.

Biol., 8, 1–18.

Levenshtein,V.I. (1966) Binary codes capable of correcting, deletions, insertions and

reversals. Soviet Phys. Dokl., 10, 707–710.

Main,M.G. and Lorentz,R.J. (1984) AnO(n logn) algorithm for finding all repetitions in

a string. J. Algorithm., 422–432.

Schmidt,J.P. All highest scoring paths in weighted grid graphs and their application to

finding all approximate repeats in strings. SIAM J. Comput., 27, 972–992.

Spong,G. and Hellborg,L. (2002) A near-extinction event in lynx: do microsatellite data

tell the tale? Conserv. Ecol., 6, 15.

The International Human GenomeMapping Consortium. (2001), Initial sequencing and

analysis of the human genome. Nature [Erratum (2001) Nature, 411, 720]. 409,

860–921.

Uform,M.W. and Wayne,R.K. (1993) Microsatellites and their application to popula-

tion genetic studies. Curr. Opin. Genet. Dev., 3, 939–943.

Ukkonen,E. (1983) On approximate string matching. In Proceedings of the Interna-

tional Conference Foundations of Computation Theory, Lecture Notes in Computer

Science 158, Springer-Verlag, pages 487–495.

Wexler,Y., Yakhini,Z., Kashi,Y. and Geiger,D. (2004) Finding approximate

tandem repeats in genomic sequences. In Proceedings of the 8th

Annual Conference on Research in Computational Molecular Biology

(RECOMB).

Tandem repeats over the edit distance

e35

