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TANGENT BUNDLES OF HOMOGENEOUS
SPACES ARE HOMOGENEOUS SPACES

R.   W.  BROCKETT  AND  H.  J.  SUSSMANN

Abstract.   In this paper we describe how the tangent bundle

of a homogeneous space can be viewed as a homogeneous space.

The purpose of this note is to establish a simple result on the structure of

the tangent bundle of a homogeneous space. Even though it is both natural

and elementary it does not appear to be in the literature.

We shall associate with every Lie group G another Lie group G*,

constructed as a semidirect product of G with the Lie algebra of G (the

precise definition is given below).

Our result is:

Theorem. If a Lie group G acts transitively and with maximal rank on a

differentiable manifold X, then G* acts transitively and with maximal rank

on the tangent bundle of X.

Clearly, our result implies that the tangent bundle of a coset space

GjH is again a coset space and moreover, is of the form G*¡K for some

closed subgroup K of G*. We will compute K below.

We now define G* and prove the theorem. Let L be the Lie algebra of G,

thought of as the tangent space of G at the identity. For each g e G, we let

ad(g) denote the differential at the identity of the inner automorphism

x-*gxg~l of G. Thus ad is a (not necessarily one-to-one) homomorphism

of G into the group of linear automorphisms of L. We define G* as the

product manifold /. x G, with the group operation given by

(1) {a, g) ■ (a', g') =(a + ad(g)(a'), gg').

The verification that G* is a group is trivial and will be omitted. Also,

it is clear that the operation defined by (1) is differentiable, so that G* is a

Lie group.

Now, let G act differentiably on a manifold X. For each xe X, let

6X:G^X be defined by dx(g)=gx.

If x e X, then the differential of 6X at the identity maps L into Xx (the

tangent space of A" at x). If a 6 L, we let â(x)=ddx(a). It is easy to see that

ô is a smooth vector field on X. Use r(X) to denote the tangent bundle of A".
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We define a left action of G* on riX) by

(2) ia, g) ■ v = dogiv) + dig ■ Ttiv))   forv^riX).

Here it denotes the natural projection from t(A') onto X (i.e. 7r(y)=;c if

and only if v e Xx) and ag:X->-X is the map x->-gx. Clearly, both dagiv)

and dig ■ 7r(y)) belong to Xg.niv), so that the sum is defined. We omit the

trivial verification that (2) satisfies

(0, e) • v - v   for all v e t(A")

and

iia,g)-ia',g'))-v=ia,g)-Ha',g')v).

Also, it is clear that the action of G* on riX) defined by (2) is differentiable.

Now assume that G acts transitively and with maximal rank on X.

If v and v' belong to t(A'), then there exists geG such that g • 7r(i>)=7r(i/)

(by the transitivity). Since G acts with maximal rank, there is an a e L

such that dd1!{v-)ia)=v'—dogiv).

Therefore (a, g)-v=v'. This shows that G* acts transitively on t(A').

We now show that G* acts with maximal rank. Let Gn be the connected

component of the identity element of G. Then G0 acts with maximal rank

on X. Therefore the G0-orbits are open submanifolds of X. If Y is a Go-

orbit, then G0 acts transitively and with maximal rank on Y. We have

already shown that this implies that G* acts transitively on t( Y). Since

G* is obviously connected, it follows that G* acts with maximal rank on

t(T). Now riX) is obviously the union of the sets t( Y), where F is a Go-

orbit in X. These sets are open submanifolds of riX). It follows that G*

acts with maximal rank on riX). Then, necessarily. G* also acts with

maximal rank on t(A').

Remarks. (A) If G acts transitively on X it does not follow that G*

acts transitively on t(A') (let A'=the real line with its usual one-dimensional

differentiable structure and G—the real line considered as a discrete group).

(B) If H is a closed subgroup of G, then H* can be identified, in an

obvious way, with a closed subgroup of G*. One verifies easily that the

isotropy group of 0isXx) corresponding to the action of G* on t(A") is

precisely //*, where Hx is the isotropy group of x corresponding to the

action of G on X. In particular, we have the diffeomorphism riG¡H)~

G*¡H*.
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