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ABSTRACT. In the last few years various infinite dimensional extensions to

Krasnoselski’s Theorem on starshaped sets [14] have been made. These began

with a paper by Edelstein and Keener [8] and have culmdnated in the papers

by Borwein, Edelstein and O’Brien [3] [4] by Edelstein, Keener and O’Brien

[9] and finally by O’Brien [16].

Unrelatedly, Borwein and O’Brien [5] posed a question which arises in

optimization [2] [II] of when a closed set is pseudoconvex at all its mere-

bers.

In this paper we show that these two questions can be handled simul-

taneously through a slight refinement of the powerful central result in

[16] with attendant strengthening of the results in [5] [16]. This in turn

leads to some interesting characterizations of convexity, starshape and of

various functional conditions.
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i. INTRODUCTION

We will suppose throughout that X is a (real Hausdorff) locally convex

(topological vector) space with continuous linear dual X’. Most of our results

will require in fact that X be a Banach space. If A c X is an arbitrary set,

A0 AriA and co A denote respectively the closure, interior, interior

relative to the closed affine span of A and the convex hull of A. Aff(A)

and span(A) will denote the affine and linear spans of A respectively. Any

other usage is in accord with [7] and [12].

In accord with previous work [7] [12] we will say x sees a in A if the

line segment [ x,a] (= co{x,a}) is contained in A. We say A has visibility

of cardinality a (a-visibility) if every subset of A of cardinality a is

simultaneously seen by some point a A. If a card(A) we say A has

starshape. If A has k-visibility for every natural number k we say A has

finite visibility. We define

and

starA(a) {xeA: [x,a]cA}

star A n(starA(a) aeA}

(i.I)

(1.2)

Then A has starshape if and only if star A # and a-visibility is

the requirement that {starA(a) aeA} have nonempty intersection for sub-

families of cardinality a. We also recall that a e A is said to be a cone

point [9] if there is a nonzero x’ X’ such that x’ (a) sup{x’ (x): x

starA(a) }.

Krasnoselski [14] showed that if A is a compact subset of R
n

and every

n+l cone points can be seen by some point in A then A is starshaped. This
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was generalized in [4] to show that if A is a closed relatively weakly compact

subset of a Frchet space with finite visibility it has starshape. The proof

method here is entirely different from Krasnoselski’s but recently O’Brien [16]

has shown that if A is a closed relatively weakly compact subset of a Banach

space and every finite set of cone points is visible in A that A is star-

shaped.

Another object of our investigations will be the tangent cone to A at

a [19] defined by

T(A,a) {heX: h lira t (an-A) a e A a a t
n

> 0}
n n n

(1.3)

Here convergence is in the initial topology on X. If A is a convex set

or a smooth manifold in Rn T(A,a) is the standard tangent cone. In general,

it is a closed cone but need not be convex. Following Guignard [II] we call

the closed convex hull of T(A,a) the pseudo-tangent cone to A at a

P(A,a) co T(A,a) (1.4)

It is always a closed convex cone and if a e is nonempty. In Rn

P(A,a) {0} if and only if a is an isolated point of A. This is not true

A
0

in general [2]. Also if a P(A,a)= X

These cones have proven useful in optimization for the formulation of

necessary and sufficient conditions for constrained optima to exist ([1], [2]

[ii],[19]) When looking at sufficiency one says that a set A is pseudo-

convex at a if

A- a P(A,a) (1.5)

Borwein and O’Brien 5] called a closed set pseudoconvex if it is

pseudoconvex at all its members. They showed among other things that a closed
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bounded subset of a super reflexive Banach space [7] is pseudoconvex if and

only if it is convex. If we let PA(a) P(A,a) + a and

P(A) n{PA(a): aEA} (1.6)

pseudoconvexity is the requirement that A c P(A) Finally we will examlne

one other entity

R(A) F{P(A,a) aEA} (1.7)

which again is clearly a nonempty convex cone.

2. CONVEXITY AND STARSHAPE

We begln with some elementary relationships that will be essential to our

development.

PROPOSITION I. In any locally convex space

(i) starA(a PA(a) and (ii) star(A) c P(A).

Since (ii) follows from (i) and the relevant definitions it suffices to show (i).

1 n-ILet x starA(a)_ Then a =--x + a A and since a / a
n n n n

lira n(an -a) x-a E T(A,a) Thus x PA(a)

In particular, if a E star A A is pseudoconvex at a (The reverse

implication fails trivally as is shown by A {I: nEN} u {0} and a 0).
n

It follows that a closed convex set is pseudoconvex since star A A in this

case.

Let l(x) x/I Ixl 12 We will say a norm closed set A is nice if

(a) span A is a closed subspace of a weakly compactly generated Banach space

X and (b) I(A-x) is relatively weakly compact for all x not in A

(Recall that X is weakly compactly generated if X span K for some weakly



TANGENT CONES, STARSHAPE AND CONVEXITY 463

compact set K [7]). The nice sets turn out to be exactly the boundedly rel-

atively weakly compact sets as the next Lemma shows.

LEMMA I. A is boundedly relatively weakly compact exactly when l(A-x)

is relatively weakly compact for each x A.

PROOF. Since A x is boundedly relatively weakly compact exactly when

A is, we may assume x 0 Let {Xn {l(an)} be a sequence in I(A)

Then x a /llanl 12. Now either the sequence {a has an unbounded sub-
n n n

sequence and equivalently {x has a subsequence convergent to zero, or {a
n n

being bounded has a weakly convergent subsequence (call it {a again) with
n

limit x Since we may assume {llanll 2} converges to some positive

-I
(because 0 A) we see that {x } converges weakly to a x. The converse

n

is similar. Since, by the Eberlein-Smulian Theroem [7] weak compactness and

weak sequential compactness agree, we are done.

Moreover, any boundedly relatively weakly compact set A has span A weakly

compactly generated. To see this let B =A n nB for each n N where B is
n

the unit ball in X. Let K B and set
n z n

n

K U{K n N}.
n

Each B is relatively weakly compact and another application of the Eberlein-
n

Smulian Theorem shows that K is also. Thus the weak closure of K generates

a weakly compactly generated space and since A span K span A has the

desired property. It follows that any closed set A in a reflexive Banach

space is nice as is any weakly compact set in a normed space (we may embed it

in its completion without changing its closure) and any boundedly relatively

weakly compact set in a Banach space. A non-trivial example of the later class

>
is provided by A {kb: beB, k 0} where B is any closed relatively weakly
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compact set not containing the origin. An examination of the proof of the

central result in [16] shows that it holds in the following form.

PROPOSITION 2. [16]. Suppose A is a nice closed set in a Banach space

X and, for some a e A [x,a] A Then there exists a convex set U with

interior, a smooth point a e U and a functional x’ X’ such that

(i) A n U {a}

(ii) x’ (a) --sup{x’(u): u U} > x’(x)

Recall that u is a smooth point of U if there is a unique support functional

f for U at u with f(u) i

THEOREM I. If A is a nice closed subset of a Banach space

star A n{P(A,a) + a: aeA} P(A) (2.1)

PROOF. By Proposition 1 (ii) it suffices to show that given any

x star A x PA(a) for some a A Since x star A we can find

a A such that [x,a] A. Let a be the smooth point guaranteed by

Proposition 2. Suppose h e T(A,a) Then if h is nonzero we can find a

sequence

a / a a e A a # a t > 0 with h tn(an-a) / h
n n n n n

It suffices to show that A(h) { + %h: % > 0} and U
0

are disjoint as then

they can be separated by a linear functional which supports U at a Since

a is a smooth point this functional can be taken to be x’ whence it follows

that

x’(a + h) => x’(a) > x’(x) h e T(A,x)

As PA(a) a + co T(A,a) it is clear that x k PA(a).
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If %h + U
0

It remains to show that A(h) o U
0

not a for n > nA
n

and some % > 0 Then assuming, as we may, that % 1 and t > 1 we have
n

n n n n

(1 __l)u0 U
0

t t
n n

|

since U is convex and 0 < < 1 This contradicts A n U {a}
t
n

So A n U
0

and one is done.

Before proceeding to derive consequences of this result let us introduce

the notion of a proper point. We will say that a is a proper point of A if

P(A,a) # X An application of the Hahn-Banach theorem shows that if a is

proper it is a cone point (but not conversely) since starA(a P(A,a) We

note that by Theorem i each nice closed subset A X has a proper point. In

fact, a simpleadapttion of the proof of Proposition 2 in [16] will show that in

this case the proper points are dense in the boundary of A

THEOREM 2. Suppose A is a nice closed set in a Banach space and W is

a weakly compact subset of X such that either

(i) every finite family F(m) {PA(ai): I =< i _< m] intersects in W, or

(ii) W is convex and has dimension n and every finite family with

n+l members intersects in W

Then A is starshaped and star A n W #

PROOF. We let QA(a) PA(a) n W Then in (i) {QA(a): a A} are weakly

compact with the finite intersection property and hence

# n{QA(a): a A} P(A) W star A W
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on applying Theorem i Case (ii) follows similarly from Helly’s Theorem [18]

since the QA(a) are now convex subsets of Rn.

In particular if A is relatively weakly compact we may let W co A

So if every finite family of proper points can be seen in A (i) holds.

Similar remarks apply to (ii). Thus as special cases, Theorem 2 includes

Krasnoselski’s theorem and the result in [!6] with cone points replaced by the

smaller set of proper points. In this framework the naturalness of using cone

(proper) points is obvious since the improper points play no role in defining

P(A) or in any intersection property. Finally, we observe that if X is

separable a closed set is starshaped if every countable collection of

{PA(a): a e A} has intersection. This of course is guaranteed by countable

visibility.

At least in incomplete normed space or Frchet space, Theorem 1 can fail

since it is then possible for there to be no proper points in which case P(A) X

It is easy to show [5] that if A is pseudoconvex at a a is proper if and

only if a is a support point for co A Since in the above mentioned cases

closed, bounded convex sets with no support points exist [5], [13], the Theorem

fails for these sets.

We turn now to psuedoconvexity of A Since this is equivalent to A P(A)

and since P(A) star A is guaranteed by Theorem we have A star A and so:

COROLLARY I. A nice closed set in a Banach space is convex if and only

if it is pseudoconvex.

Thus to try and find a pseudoconvex non-convex subset in Banach space one

must look for badly non weakly compact subsets of non reflexive spaces. In a

normed space however, any non-convex set with no proper points is pseudoconvex.

If we take the union of two separated copies of a convex set with no proper
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points the ensuing set S is disconnected and pseudoconvex and both Corollary 1

and Theorem 2 (i) fail for S

The only other condition which one seems to be able to impose on a pseudo-

convex set to make it convex is the following:

PROPOSITION 3. A pseudoconvex set A. is convex if (i) Ari # and (ii)

its proper points are dense in the relative boundary of A

PROOF. Suppose A is not convex and that a I
and a

2
lie in A and

Aria
t

ta I + (l-(-t)a
2

A for some t e [0 I] Let a
3

e and choose a

relatively open set U in A with a
3
+ U A Consider the set of segments

S =I[at u + a3]: u e U}. S is a relatively open set and thus some point

a
4

e S is a proper point in the boundary of A Since A- a
4 p(A,a4) #

X a
4

is a support of A with support functional x’ Thus

(a4)x’(a
t

tx’(a I) + (l-t)x’(a2) => x’

However, the line segment through a
t

and a
4

extends into A
ri

whence it

follows that x’ (a
t

< x’ (a4) This contradiction means that a
t

fails to

exist and A is convex.

3. UNBOUNDEDNESS OF STAR A

We now turn to conditions which further specify the form that star A takes.

We first examine the set R(A)

PROPOSITION 4. In any locally convex space X

R(A) R(eA + x) x e X > 0 (3.1)

P(A) + R(A) P(A). (3.2)

PROOF. If x R(A) x P(A,a) P(A, om) P(A+x,a+x) Thus
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x e n{P(A+x,a’): a’ eA+x} R(A+x) and (3.1) holds. Since 0 R(A) P(A)

R(A) + P(A) Conversely if a A p e P(A) r R(A) then p P(A,a) +

a r P(A,a) Thus p + r P(A,a) + P(A,a) + a c P(A,a) + a since P(A,a)

is a convex cone. So p + r e P(A) and (3.2) holds.

Recall that a convex set C is said to recede in direction h if

c + %h C for -> O The set of all directions h is called the recession

cone of C rec C [17].

THEOREM 3. If A is a nice closed starshaped set in a Banach space then

R(A) is the recession cone of a star A

PROOF. If s star A and h R(A) we have for any t > 0

s + th e star A + R(A) P(A) + R(A) P(A) star A

where the containments follow from Proposition I, (3.2) and (2.1) in that order.

Thus star A recedes in direction h and R(A) rec C Conversely, if h is a

recession direction, s star A and n e N

and

s + nh P(A,a) + a Va A

h lim--- (s-a) P(A,a) a A
n

because P(A,a) is a closed cone. Thus h e R(A)

It is well known that a finite dimensional closed convex set is bounded if

and only if it has no recession directions. Theorem 3 says that in finite

dimensions a closed starshaped set has an unbounded star exactly when R(A) is

non trivial. This can be guaranteed by requiring that for every finite set

{al ,a A one can find a point h # 0 with th + a. A for < i < m,
I m I

0 < t < This "finite ray" condition imposes the finite intersection



TANGENT CONES, STARSHAPE AND CONVEXITY 469

property on {P(A,a): a e A} n S where $ {x: lxll i}. Since in finite

dimensions this last set is compact, R(A) # 0

Implicit in Theorem 3 is the proof that, if P(A) # , R(A) is the recession

cone for P(A) If star A # it is possible that R(A) is nonzero as is

shown by

A {(x,y): x R, y 0 or i} u {(x,y): x => o 0 =< y =< I}

which has R(A) (x,y): x => o y 0} It seems reasonable therefore to

consider R(A) as a general cone of recession directions for any closed set. This

is at least in part born out by the next proposition.

We recall that a functional x’ strongly exposes a convex set C at c if

x’(c) sup{x’ (x): c C} and if whenever x’(c x’ (c) and c C c
n n n

We recall that a Banach space has the Radon-Nikodym property [7] if and only if

every closed bounded convex set is the convex hull of its strongly exposed points.

These spaces include dual spaces which are subspaces of weakly compactly generated

spaces [7].

PROPOSITION 5. The following all imply R(A) 0

(i) A is closed relatively weakly compact in a Banach space.

(ii) A is closed and bounded in a Radon-Nikodym space.

(iii) A is closed bounded and convex in a Banach space.

(iv) A is compact in a locally convex space.

PROOF. Let a A and let C co(A-a) and suppose x C In case(i)

C is weakly compact and thus x can be separated from C by a strongly exposing

functional x’ (the strongly exposing functionals are a dense subset in the dual

space [6]). Let x’ expose c strongly. Then c A- a as A is norm
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closed c + a a A and

x’(x) > x’(c) _> x’(a-a) Yae A

Thus x’(x) > 0 while x’(a- x’(a-a-c) < o a e A It follows that

x P(A,) In particular R(A) C and because C is a bounded set and R(A)

is a cone R(A) 0 Case (ii) follows similarily since now the strongly

exposing functionals of any closed bounded convex set are dense in the dual [7].

Case (iii) follows from the Bishop-Phelps Theorem since now C A- a and

density of the support functionals suffices. In case (iv) any separating

functional is a support functional and supports C at an extreme point of C

by the Krein-Milman Theorem [12]. Milman’s converse [12, page 132] implies

that the extreme point belongs to A a and one proceeds as above.

It is not clear that parts of (i) and (ii) can be deduced from Proposition 2

and it remains unanswered as to whether a closed bounded set in a Banach space

can have R(A) # 0.

We next collect a number of characterizations of star A under one roof:

PROPOSITION 6. If A is a nice closed set in a Banach space X

(i) 0 e star A and A R(A) <=> A is a convex cone.

(ii) 0 e star A and star A R(A) <=> star A is a convex cone.

(iii) span A R(A) <=> A is a subspace.

PROOF (i) => By Theorem 3 and the hypotheses,

A R(A) star A + R(A) star AC A

Thus A R(A). <-- Since A is a convex cone 0 e star A A. Also A R(A)
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since star A + A star A (ii) is analogous.

(iii) => We may assume X span A and then, by Theorem i, since

R(A) X P(A) X which implies star A X

The case in which star A is nonempty but 0 star A can be handled by

translation as can the case that aff A R(A) In general A R(A) does not

imply A is a cone as is shown by

A {(x’,y): IYl < x x => i} in R
2

4. SPECIAL SETS

There are cases in which the individual structure of the pseudotangent cones

can be specified more closely. Specifically one has some extra information if A

is somehow connected to a Frchet differentiable function g between Banach

spaces X and Y

PROPOSITION 6. (+/-) g’(x)P(A,x) P(g(A) g(X))o

-i
(ii) If B is a closed convex set, A g (B) and g is

continuously differentiable at x with g (x) surjective, then

g’(x)-ip(B,g(x)) P(A,x) and P(g(A),g(x)) P(B,g(x))

PROOF (i) This is proven in [Ii].

(ii) Under the resularity conditions imposed on g it is essentially

proven in [I0] that

g(x + (y)) g(x) g’(x)y

has a solution (y) for all sufficiently small y and that (ey) converges

to y as > 0 goes to zero. Suppose that g’(x)h P(B,g(x)). One can show

that there is a sequence h h with g’(x)h % (bm-g(x)) b e B % > 0.
m m m m m
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It suffices to show that h e P(A,x) Let k h /% Then
m m m

g’(x) 7k + g(x) I (g,(x)k + g(x)) + n-__In g(x) e B

For n sufficiently large (nk-) exists and g(x+(
k
)) B Since

n (x + qb( x) k k e P(A,x) and so h P(A x) The conclusions of

(ii) now follows from (i).

It follows that if B is a subspace, P(g I(B),x) is a subspace whenever

-i
x is a regular point. If every x e g (B) is regular (g is continuously

differentiable at x and g’(x) is surjective) it follows by using (2.1) that

-i
star A is an affine subspace (whenever A is nice) In particular, if g (0)

is a smooth surface in R
n

it has such a star. Our next proposition substantiates

the intuition that a nontrivial smooth surface cannot simultaneously be bounded

and starshaped. Indeed much more is true.

PROPOSITION 7. Suppose either A is closed and bounded in a Radon-Nikodym

space or A is relatively weakly compact in a Banach space and star A is

nonempty. Either there is some point a e A with P(A,a) not a subspace, or

A is singleton.

PROOF. As in the proof of Proposition 5 (i), (ii) there is a strongly

exposed point a
0 e A and a strongly exposing functional x’ such that

X (a0) < x (a) Vae A, a#a0

It follows that x’(h) >__ 0 for all h e P(A,a0) If a # a0, a e

star A we see that x’(al-a0) > 0 and, since al a
0

lies in P(A,a0)
x’ P(A,a0) [0, =) which implies P(A,a0) is not a subspace. On the other hand

if, a0e star A then A- a
0

P(A,a0) and again unless {a0} A we can

find a
2 # a

0
with a2 a0 e p(A,a0) Again since x’ (a

2
a0) > 0
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P(A, a0) is not a subspace.

If A is unbounded the proposition is certainly not true as is shown by

A (x,y)I x 0 or y 0 in R
2

In any case, if all the pseudotangent

cones are subspaces and star A is bounded and non empty it is a singleton.

As immediate corollaries to Theorem and Proposition 6 (ii), we have in

reflexive spaces

-i
COROLLARY 2. (i) If B is a closed convex set A g (B) and g is

regular at every point of A

star A {x + g’(x)-ip(B,g(x)): x A} (4.2)

(ii) If in addition g(A) is closed

star g(A) {g(x) + g’(x)P(A,x): x A} (4.3)

For example, if b 0,) and g(x) x2-1 A {x: Ixl => I} and g is

regular on A Since star A we know that the entities on the right hand

side of (4.2) fail to intersect. Indeed, when x we get [i,=) and when

x =-I we get (-,-I] From (4.3) we may deduce that if g(X) is closed

and g is always regular g(X) Y since this is the right hand side of

(4.3) when A X B Y

5. FUNCTIONAL CHARACTERIZATIONS

We first recall certain classes of functions. A function f" X R u{} is

convex if f(tx+(l-t)y) =< tf(x) + (l-t)f(y) for x,y in X and 0 =< t <
Similarily, f: X Y is affine if f(tx + (l-t)y) tf(x) / (l-t)f(y) for

x,y in X and 0 < t < If S is a convex cone in a space Y, f" X / Y

is said to be S-quasiconvex at x if f(x) f(x)e- S implies that f’(x).

(x-x) S We will also say f: X + R is star-like at x if, for every x X,
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(x-x,f(x)-f(x)) P(Epif,(x,f(x))

Here Epif {(x,y): y >= f (x)} is the epigraph of f If (5.1) holds for

all x we say f is star-like.

THEOREM 4. If X is reflexive and f is continuous and starlike, it

is convex.

PROOF. Note first that (5.1) is a condition close o pseudoconvexity of

Epif. Once we show that in fact Epif is pseudoconvex it will follow from

Theorem 1 that Epif is convex and hence f is a convex function. To this

end we observe that since f is continuous any point on the boundary of Epif

is on the form (x,f(x)) Thus Eplf is trivially pseudoconvex at any point

not of this form. We note now that if s > 0 (0,s) P(Eplf, (x,f(x))

since

1(o s) li. (n (x-x) n (f (x) + s f()) T(Epif x f(x)
n

and so

(x-x, f(x) + s fCx)) P(Epif, (x,f(x))) x X s _> 0

because (5.1) holds and P(Epif, (x,f(x)) is a convex cone. This last con-

dition says Epif is pseudoconvex at (x,f(x)) and since this holds for each

x e X Epif is convex.

In the next corollary d+f(x,h) limsup

sided derivative of f
t->0+

f (x+th)-f (x)
is the upper one

COROLLARY 3. Suppose f is continuous and satisfies

f(x+ h) f(x) => d+f(x,h) Yhe X

for each x e X then f is convex.

(5.2)
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PROOF. We show (5.2) implies (5.1). Let h e X and let s > 0
n

s / 0 be chosen so that
n

f (X+Snh)- f (x)
d+f(x,h) lira

s
n-= n

1
Then, setting x x + s h t we have

n n n s
n

(tn (Xn-X) tn(f (Xn)-f (x)) / (h, d+f (x,h))

and, since f(Xn.) f(x) (h,d+f(x,h)) P(Epif, (x,f(x)) As before,

(0,f(x+h)-f(x)-d+f(x,h)) P(Epif, (x,f(x)) and we deduce that

(h,f(x+h)-f(x)) P(Epif, (x,f(x)) which since h is arbitrary is (5.1).

The inequality (5.2), of course, easily implies convexity if d+f(x,h)
exists and is convex in h

COROLLARY 4. If f: X + Y has a closed pseudoconvex graph, f is

affine.

PROOF. By Theorem I, the graph of f is a convex set. This implies

immediately that f is affine.

We finish by giving a condition for the "level sets" of a function to be

pseudoconvex at a point. This is again relevant for sufficiency of optimality

conditions [2], [ii]

THEOREM 5. Suppose f is a continuous mapping between two Banach spaces

X and Y and f is S-quasiconvex at x0
If x

0
is a regular point,

{x: f(x)-f(x0) - S} is pseudoconvex at x
0

-I
PROOF. We must show that A f (f(x0)-S) is pseudoconvex at x

0
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The S-quasiconvexity says that

-i -i
f (f(x0)-S) x

0
+ f’(x0) (-S)

Since x0
is regular, Proposition 6 (ii) implies that

-iA x
0
+ P(f (S-f(x0)),x0) PA(X0)

In case y R and S [0, =) for regularity continuous differentiability

is unnecessary and it suffices that f’ (x0) # 0 Since S-quasiconvexity

reduces to the usual notion of quasiconvexity at x
0

[15] we derive (assuming

X is reflexive)

COROLLARY 5. Suppose f: X / R is quasiconvex at x and f’ (x) is

nonzero when f(x) f(x0) Then {x: f(x) <_ f(x0)} is a convex set.

PROOF. Since f is continuous, {x" f (x) f (x0) contains the boundary

of {x: f(x) <, f(Xo)} By hypothesis, therefore, this later set is pseudo-

convex and in turn, convex.

In particular, a quasiconvex function with a nonzero derivative globally

has all its level sets convex. One can derive this last result directly with-

out asking for a non vanishing derivative.
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