
Differential and Integral Equations, Volume 1, Number 4, October 1988, pp. 409-422. 
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Abstract. A class of nonlinear evolution equations involving locally Lipschitzian term 
is discussed. By using a global linearization iterative method, the existence of tangent 
directions to the set determined by nonlinear evolution equations is proved in two cases: 
without and with the control function involved. This result is then applied to the problem 
of optimal coNtrol with nonlinear evolution equation as constraint. 

Introduction. The problem of tangent directions to the sets determined by some equa
tion is a very important problem in optimization and optimal control. In the famous results 
obtained by Dubovitskii, Milyutin, Girsanov (cf. [6]), Joffe, Tikhominov (cf. [7]) and oth
ers, considering only one equality constraint in the form of ordinary differential equation, 
the proofs of the existence of tangent directions are based on the Lusternik theorem. The 
Lusternik theorem is also applied to optimization and optimal control problems with more 
than one equality constraint as in [8], [9], [10], [11], [12] . 

In [1], some generalization of the Lusternik theorem is proved by using the method of 
contractor directions under essentially weaker assumptions about differentiability than the 
Lusternik theorem requires. This generalization is applied to the problems of optimization 
and optimal control in [1] , [13] , [14] and [15] . 

However, none of these results (i.e., Lusternik theorem and its generalization) are appli
cable to the problems of optimal control with nonlinear evolution equation as constraint 
because of too strong assumptions that these results require. 

In [3] and [5] the global linearization iterative method from [2] is applied to prove the 
existence of tangent directions for nonlinear evolution equation and quasilinear evolution 
equation, respectively. An application to the optimal control problem of quasilinear evolu
tion equation as constraint is also considered. 

In this paper, the results from [3] are extended to a more general class of nonlinear 
evolution equation with locally Lipschitzian term and the existence of tangent directions to 
the set determined by this equation is proved. Next, as an application, the local extremum 
principle for the optimal control problem with these general nonlinear evolution equation 
as constraint is proved. 
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1. Existence of solution of nonlinear evolution equation. The existence of solution 
of nonlinear evolution equation with Lipschitzian term is proved in [2]. However application 
of these theorems to the case of existence of tangent direction necessitate formulating them 
in a bit different form. 

Let Z C Y C X be Banach spaces with norms II · liz ~ II · IIY ~ II · llx· 
A.O) We assume that there exist positive constants C, 8 with 0 < 8 < 1 such that 

(1.1) 

Given 0 < b, denote by C(O, b; X) the Banach space of all continuous functions x = x(t) 
defined on the interval [0, b] with values in X and the norm 

llxlloo,X =sup [llx(t)llx: 0 ~ t ~ b] . (1.2) 
t 

In the same way, the norms IIYIIoo,Y and llzlloo,z are defined for Y and Z. 
Let C' ( o, b, X) stand for the vector space of all continuously differentiable functions from 

[0, b] to X. Let the function 

x0 E C(O,b,Z) nC'(O,b,X). (1.3) 

Let Wo be an open ball in Y with center x0 (0) and radius r0 > 0. Put V0 = W0 n Z and let 
vl be closure of Vo in Y. Let F : [0, b] X vl ---> X be a nonlinear mapping f : [0, b] X vl ---> X 
be a nonlinear mapping locally Lipschitzian with respect to x. 

Consider the following Cauchy problem: 

dx 
dt + F(t,x) + f(t,x) = 0, 0 ~ t ~ b, 

x(O) = ~o, 

(1.4) 

(1.5) 

where ~o = xo(O). Let G be the set of functions x in C(O, b; Vo(ll · liz)) n C'(O, b; X) with 
x(O) = ~o E Z and llx- xolloo,Y < ro. We assume that the mapping F is differentiable in 
the following sense: 
For each ( t, x) E [0, b] x G there exists a linear operator F' ( t, x) such that 

E- 1 IIF(·, X+ Eh) - F(·, x) - EF' (·, x)hlloo,X ---> 0 

as E ___. o+, where hE C(O, b; Z) n C'(O, b; X). 
The operator f is differentiable at the point x0 in the following sense: 

For each t E [0, b] there exists a linear operator f' ( t, x0 ) such that 

E-1 II/(·, xo + Eh)- !(·, xo)- E/'(·, xo)hlloo,x---> 0 

as E---> o+ where hE C(O, b; Z) n C'(O, b; X). 
Let us introduce a nonlinear mapping in the form 

dx 
Px(t) = dt + F(t, x) + f(t, x). (1.6) 

In order to prove the existence of the solution for (1.4), (1.5) we need to make the following 
assumptions: 
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A.1) The functions F, f are continuous in the following sense: 

llxn- xlloo,Y--+ 0 implies IIF(-, Xn)- F(-, x)lloo,X--+ 0 

as n --+ oo and 

llxn- xlloo,Y --+ 0 implies IIJ(-, Xn)- f(-, x)lloo,X--+ 0. 

Let {xn} C G be a Cauchy sequence in C(O,b;Y) and let {hn} C C(O,b; Y) nC'(O,b;X) 
be bounded in C(O, b; Y). Then, En--+ 0 implies 

E~ 1 IIF(-, Xn + Enhn) - F(-, Xn) - EnF' (-, Xn)hn lloo,X --+ 0 , 
as n --+ oo. There exists a constant qo such that 

IIJ(·, X+ Eh) - f(·, x)lloo,X ~ qoEIIhlloo,X · 

A.2) There exists a constant C0 > 0 with the following property. For x E G any function g 
such that llglloo,x < oo if h is a solution of the equation 

dh '( ) dt + F t, X h + g = 0, 0 ~ t < b, 

then 
llhlloo,X ~ bCollglloo,X · 

A.3) For x E G the linearized equation 

h(O) = 0, 

dz 
dt + F'(t, x)z + F(t, x)- F'(t, x)x + f(t, x) = 0, (1 .7) 

0 ~ t ~ b, z(O) = 0, admits smooth approximate solutions of order (J.l, v, u) with 0 ~ J.l < 1 
in the sense of the following definition. 

Definition 1.1. (Altman [2]) Let J.l > 0, v > 0, u > 0 be given numbers. Then the 
linearized equation (1. 7) admits smooth approximate solutions of order (J.l, v, u) if there 
exists a constant M > 0 which has the following property. For every x E G, K > 1 and 
Q > 1, if llxlloo,Z < K then there exists a residual (error) function y and a function z such 
that 

and 

ll zlloo,Z ~ MQKv, 

IIYIIoo,X ~ MQ-p, Ku' 
(1.8) 

dz 
dt + F'(t, x)z + F(t, x)- F'(t , x)x + f(t, x) + y = 0, 0 ~ t ~ b, z(O) = €o. (1.9) 

Let us consider x E G and z be a solution of the equation (1.9) and put z = x +h. Then 
h is a solution of the equation 

dh 
dt +F'(t,x)h +Px+y=O, O~t~b, h(O)=O, 

where Pis defined by (1.6). Under these assumptions we can construct an iterative method 
of contractor directions in a similar way as in [2]. The difference will lie only in the initial 
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point of iterative process. In our process it will be a function xo(t) introduced by (1.3) (in 
[2] x0 (t) = x0 , where x0 is a fixed point of the space X). Next, let us assume that x0 is given 
by (1.3) and x1 , x2 , . •• , Xn E G are known and satisfy the following induction assumptions 
for all indices i ::; n 

and 
IIPxilloo,X :S IIPxolloo,X exp( -(1- q)ti), 

where a > 1 and A are subject to condition 

a(1- q)- 1 > 0, a> [J.t(1- v) - a]- 1 , J.t(1- v)- a> 0, (1.10) 

and 
(1.11) 

with Po= IIPxolloo,X· The above induction assumptions are true for all n in view of Lemma 
1.2 from [2]. 

Let Zn be a solution of equation (1.9) with x = Xn, y = Yn· Let Q = Qn be such that 

2MQ-JJ. K~ < ijPo exp( -(1- q)tn)· 

We put Zn = Xn + hn such that hn is a solution of equation 

dhn '( ) b h ( ) dt + F t, Xn hn + Pxn + Yn = 0, 0 :S t :S , n 0 = 0. 

Now, with 0 <En ::; 1 to be determined, put 

(1.12) 

Under the above assumptions, by using the iterative method of contractor directions in [2], 
the following existence theorem is proved 

Theorem 1.1. (Altman [2]) In addition to the hypothesis (A.O) to (A.3) , suppose that 
conditions (1.10) and (1.11) are satisfied and b' is such that 

[(1- q)8] - 1 exp[(1- q)8]C[b'Co(1 + q)Po] 1 - 8 [a(1- q)A]8 < r0 , (1.13) 

where Po = IIPxoll oo,x and s satisfies condition 

8 = 1 - (1 + a)s > 0. (1.14) 

Then equation (1.4), with b replaced by b', has a solution x, and 

llxn - x lloo,Y --+ 0 as n--+ oo, 

where {xn} is determined by (1 .12) and llxn - xolloo,Y < ro for all n . 

Remark 1.1. In our case, the proof will be analogous, only instead of x0 (t) = x0 , where 
xo is some point of the space X , the function x0 (t) given by (1.3) will be discussed. 

Remark 1.2. In the proceeding of the proof the following estimates are obtained ( cf. [3]) 

00 

L En llhnll oo,Y ::; [(1- q)or 1 exp[(1- q)8]C[b'Co(1 + q)PoF-8 [a(1 - q)A] 8 (1.15) 
n = O 



TANGENT DIRECTIONS 413 

llhnlloo,X::; bCo(1 + q)IIPxolloo,X exp( -1(1- q)tn) (1.16) 

00 

L En exp( - 6(1- q)tn) ::; [6(1- q)r1 exp(6(1- q)). (1.17) 
n=O 

Remark 1.3. Theorem 1.1 shows only one example of the existence theorem by using 
global linearization iterative method ( GLIMI) based on the method of contractor directions. 
Other existence theorem can be introduced by using combinations of smoothing operators 
and elliptic regularization as in [2] , Chapter 8, Theorem 1.1 and also by using elliptic 
regularization without smoothing operators, as in [2], Chapter 9, Theorem 1.1. In all these 
methods, in our case the proof will be analogous with the replacement of function xo ( t) = xo 
by the function x0 (t) given by (1.3). 

2. Existence of tangent directions. Existence of tangent directions for nonlinear 
evolution equation without Lipschitzian term has been proved in [3] and for quasilinear 
evolution equation, in [5]. 

The existence Theorem 1.1 , as well as theorems mentioned in Remark 1.2, can be applied 
to prove existence of t angent directions to the set defined by general nonlinear evolution 
equation with Lipschitzian t erm; i.e., in the form (1.4)-(1.5). 

Definition 2.1. A vector hEY is a tangent direction to the set Q at the point xo if there 
exists Eo > 0 such that for any 0 < E <Eo there exists x(E) E Q satisfying conditions 

In our problem 

Q = {x E C(O,b;Vo(li ·liz)) n C 1 (0, b;X): Px = 0, x(O) =eo} , (2.1) 

where Pis defined by (1.6), eo is some element of the space Z. We shall prove 

Theorem 2.1. Let 
1. x0 be a solution of the Cauchy problem (1.4) , (1.5), i. e., xo E Q; 
2. the hypothesis of Theorem 1.1 be satisfied with function x0 replaced by xo + Eh; 
3. there exist constants c1 = c1 (h) and c2 = c2 (h) such that 

IIF (- , xo + Eh) - F(· , xo) - EF'(-, xo)h ll oo,X::; c1 E2 , 

then any h satisfying the equation 

dh dt + F'(t , xo)h + J'(t , x0 )h = 0 

is a tangent direction to the set Q at the point xo. 

(2.2) 

(2.3) 

(2.4) 

Proof: In view of Definition 2.1 , we have to prove that, for xo E Q, from the fact that h # 0 
satisfies equation (2.4) follows that there exists a funct ion r( E) such that x( E) = xo + Eh+r( E) 
is a solution of the Cauchy problem (1.4), (1.5) and C 1 ilr(E)II --+ 0 as E--+ 0. 
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Let P0 (~:) = IIP(xo + ~:h)lloo,X· By using equation (2.4) and the fact that Xo E Q we have 

Po(~:) = IIP(xo + ~:hll 
= lld(xo + Eh)jdt + F(-, Xo + Eh) + f(-, Xo + Eh)ll 
= lld(xo + ~::h)/dt + F(-, xo +~:h)+ f(-, xo +~:h) - dxo/dt 

- F(·, xo)- !(·, xo)- ~::(dh/dt + F'(-, xo) + /'(-, xo)h)ll 

~ IIF(·, xo +~:h)- F(-, xo)- ~::F'( · , xo)hll +II/(·, xo +~:h)-!( ·, xo)- ~::/'(-, xo)hll· 
(2.5) 

In view of assumption 3, (2.5) implies the estimates 

Po(~:)::; CtE2 + c2 ~: 2 = c~:2 , 

where c = c1 + c2 . Then 

and 

(2.6) 

0::; ![Po(~:)]l-s::; cl-sEl-28. (2.7) 
E 

From condition (1.14) of Theorem 1.1, it follows that 1- 28 > 0 (since a > 1). Then (2.7) 
implies that 

1 1 -
-[P0 (~:)] -s---> 0 as E---> 0. 
E 

(2.8) 

Then, in view of (2.6) for sufficiently small E, condition (1.13) of Theorem 1.1 is satisfied 
with Po replaced by P0 (~:). Thus, by virtue of this theorem with x0 replaced by xo+Eh, there 
exists a solution x(~:) of equation (1.4). Let us put r(~:) = x-x0 (~:). Then x(E) = xo+Eh+r(~::). 
It is easy to prove that x(E) satisfies also condition (1.5), since the iterative sequence {xn} 
consists of functions belonging toG; i.e., such that Xn(O) =Eo and llxn- x(~:)lloo,Y ---> 0 as 
n---> oo. In view of the definition of II · lloo,Y the last condition implies that 

Vt E [0, b]llxn(t)- x(E)(t)IIY---> 0; 

i.e., fort= 0, x(E)(O) =Eo- Now it is sufficient to prove that 

(2.9) 

From the iterative process in our case, it follows that 

00 

llr (E) II = L En llhnll · (2.10) 
i = O 

Then, in view of condition (1.15) from Remark 1.2 with Po replaced by Po(E) and (2.10), 
we get estimate 

In view of (2.8) the above estimate implies (2.9) 

3. Nonlinear evolution equation with control function. Existence of solution. 
Let Z C Y C X be Banach spaces satisfying the same conditions as before. Let us introduce 
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a Banach space U and the space L00 (0 , b; U) of control functions u = u(t ), 0:::; t :::; b with 
the norm 

llulloo,u = ess sup{llu(t)llu: 0:::; t:::; b}. 

Given two nonlinear mappings F(t, x , u) and f(t, x, u). We will discuss the following Cauchy 
problem 

dx 
dt + F(t , x(t), u(t)) + f(t, x(t), u(t)) = 0, 0:::; t:::; b 

x(O) = .;o, 

(3.1) 

(3.2) 

where .;0 = x0 (0), xo(O) is introduced as in Section 1. Let r 1 > 0, u0 be given control 
function. Denote by B the set B = { u : llu - uo lloo ,u < rl} and let G be defined as in 
Section 1. We assume that the mapping F is differentiable in the following sense: for each 
(t , x,u) E [O,b] x G x B , there exist linear operators, Fx(t , x,u) and Fu(t , x,u) such that 

E- 1IIF(·, X+ Eh, u + EV) - F(-, x , u) - E(Fx (- , x, u)h + Fu(-, x , u)v) lloo,X --+ 0 (3.3) 

as E--+ o+, hE C(O,b; Z) n C 1 (0,b;X) and v E B. 
The operator f is differentiable at the point ( xo, u0 ) in the following sense: for each 

t E [0, b] there exist linear operators f x(t , xo, uo) and fu(t , Xo, uo) , such that 

E- 111!( ·, xo + Eh , uo + EV) - J(-, xo.uo) - E(Jx (-, xo, uo)h + !u ( ·, xo , uo)v lloo,X --+ 0 (3.4) 

as E--+ o+ ' where hE C(O, b; Z) n C1 (0, b; X). 
Let us introduce nonlinear mapping (x , u) --+ P(x, u) in the form 

dx 
P(x , u)(t) = dt + F(t, x(t) , u(t)) + f(t, x(t), u(t)). (3.5) 

In order to prove the existence of the solution for (3.1) and (3.2) we need to make the 
following assumptions. 

(B1) The functions F, fare continuous in the following sense: 

llxn - xlloo,Y --+ 0 and llun - ulloo,U --+ 0 as n--+ oo imply 

IIF(·,Xn,Un)- F(-,x,u)lloo ,X--+ 0 as n--+ oo, 

llxn - xlloo,Y --+ 0 and llun - ull oo,U --+ 0 as n --+ oo imply 

IIJ( ·, Xn ,un) - f(· , x,u)lloo,X--+ 0 as n --+ oo, 

Let {xn} c G be a Cauchy sequence in C (O, b; Y) and let 

{hn} c C (O, b; Y) n C 1 (0, b; X) 

be bounded in C (O, b; Y). Then En --+ 0 implies 

E~ 1 IIF(·, Xn +Enhn, Un + EnVn) -F(· , Xn , Un) -En(Fx(- , Xn , Un)hn +Fn(· , Xn , Un)vn)lloo ,X--+ 0 
(3.6) 

as n--+ oo where { un} is a Cauchy sequence and { vn} is bounded in the norm II · lloo ,u. 
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There exists a constant qo such that 

llf(-, X+ Eh, u + w)- f( ·, x, u)lloo ,X:::; qoE(IIxlloo,X + llulloo,U ). (3.7) 

(B2) There exists a constant Co such that the following condition is satisfied. For x E G, 
any function g, such that llglloo,x < oo, if (h , v) is a solution of the equation 

dh 
dt + Fx(t, x , u)h + Fu(t, x, u)v + g = 0, 0:::; t:::; b, h(O) = 0, (3.8) 

then 

llhlloo,X + llulloo,U:::; bCollglloo,X · 

(B3) For x E G, the linearized equation 

dz 
dt +Fx(t, x, u)z +Fu(t, x , u)v+F(t, x, u) -Fx(t, x , u)x+ f(t, x , u) = 0, 0:::; t:::; b, z (O) = ~0 

(3.9) 
admits approximate solution of order (/1, v, CJ) with 0 :::; 11 < 1 in the sense of following 
definition 

Definition 3.1. Let 11 > 0, v > 0, CJ ~ 0 be given numbers. Then the linearized equation 
(3.9) admits approximate solution of order (!1, v , CJ) if there exists a constant M > 0 with 
the following property. For every x E G , u E B , k > 1, Q > 1, if llxlloo,z < k and u E B 
then there exist z, v andy such that 

and 

ll z lloo,Z < MQkv 

ll v lloo,U < 00 

IIYIIoo ,X:::; MQ - IJ.kCT 

dz 
dt + Fx(t , x , u) z + Fu(t , x , u)v + F(t, x, u) - Fx(t , x , u)x + f(t , x, u) + y = 0 

where 0:::; t:::; b, z (O) = ~O· 

(3.10) 

Let us consider some x E G and u E B and let z, v be a solution of equation (3.10) and 
put z = x +h. Then h is a solution of the equation 

dh dt + Fx(t, x , u)h + Fu(t, x , u)v + P(x, u) + y = 0 (3.11) 

0 :::; t :::; b, h(O) = 0, 

where Pis defined by (3.5). 
Now we can construct an iterative method of cont ractor directions for this problem in a 

similar way as in Section 1. Let us assume that xo , x 1 , ... , Xn E G and uo , u 1, ... , Un E B 
where ui = ui(t) , 0 :::; t :::; band to = 0, t1, tz , ... , tn are known. Then we find a solution 
(zn, Vn) of the equation (3.10) with x = Xn, andy = Yn· Next let Zn = Xn + hn. We put 

Xn+ l = Xn + Enhn 

tn+1 = tn + En 

Un+l = Un + EnVn · 

(3.12) 

(3.13) 

(3.14) 
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We shall consider the iterative method of contractor directions under the following induction 
assumptions for all i :::; n 

!!xilloo,Z < Aexp(a(1- q)ti) = ki 

Ui E B 

I!P(xi, ui)l!oo,X:::; Po exp( -(1- q)ti) 

l!vil!oo,u :::; bCo(1 + ij)Po exp( -(1- q)tn)· 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

The induction assumption (3 .15), (3.17) are true for all n in view of Lemma 1.2 from [2] 
with function P(x) replaced by P(x, u). The condition (3.18) is true for all n according to 
the same procedure as in Theorem 1.1, where equation (1.16) is true with hn replaced by 
Vn· 

Then we shall prove the following existance theorem. 

Theorem 3.1. Let us assume that (B1)-(B3) and all assumptions of Theorem 1.1 are 
satisfied. Then equation (3.1) with b replaced by b' has a solution (x, u) such that 

l!xn- xl!oo,Y ___. 0, l!un- u!!oo,U ___. 0 (3.19) 

as n ___. oo; {xn}, { Un} are determined by (3.12) , (3.14) and 

l!x- xol!oo,Y < ro , l!u - uol!oo ,U < r1. (3.20) 

Proof: The proof of (3.19) for {xn} is the same as in Theorem 1.1. For {un}, (3.19) follows 
from estimates (3.18) in the same way as the convergence of sequence {xn}· The result 

(3.21) 

which is auxiliary in the proof, can be obtained as in Theorem 1.1, with function P(x ) 
replaced by P(x, u) given by (3.5). 

The fact that (x , u) is a solution of equation (3.1) ; i.e, P(x, u) = 0 follows from condition 
(B1) for functions F and f. In fact , 

dxn dx 
I!P(xn,un) - P(x,u)l!:::; lldt - dt II+ I!FC,xn,un) - F(· , x ,u)l! (3.22) 

+ !If(- , Xn, Un) - f(-, x , u) II· 
Using (3.19) and (B1) , we get that 

I!P(xn, un) - P(x, u)l! ___. 0 as n ___. oo . 

Combining (3.21) and (3.22), we obtain P(x, u) = 0. 
The first part of (3.20) follows from estimates (1.15), and the second part from (3.18) in 

view of estimates (1.17) , where 8 = 1, r 1 = bC0 (1 + q)P0 (1- q)- 1 exp(1- q). 
Remark 3.1. A similar result as in Theorem 3.1 can be obtained by using elliptic regular
ization with smoothing operators or without smoothing operators to construct approximate 
solution. 

4. Existence of tangent directions. The existence of t angent directions for nonlinear 
evolution equation without the Lipschitzian term and for quasilinear evolution equat ion 
with control function involved has been proved in [3] and [5] , respectively. 
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Now, Theorem 3.1 will be applied to prove the existence of tangent directions to the set 
given by general nonlinear evolution equation with Lipschitzian term; i.e., by (3.1)-(3.2). 

Let 

Q = { (x, u): ~~ + F(t, x(t), u(t)) + f(t, x(t), u(t)) = 0, 0::; t::; b, x(O) =eo}. (4.1) 

Definition 4.1. A vector (h, v) is a tangent direction to the set Q at the point (x0 , u0 ) 

if there exists co > 0 such that for any 0 < c < co there exists (r(c), w(c)) E Q satisfying 
conditions 

where 

We shall prove 

Theorem 4.1. Let 

x(c) = xo + ch + r(c), and u(c) = uo + cv + w(c), 

1. (x0 , u0 ) be a solution of the Cauchy problem (3.1), (3.2); i.e, (x0 , u0 ) E Q 

(4.2) 

(4.3) 

2. the hypothesis of Theorem 3.1 be satisfied with pair (x0 , u0 ) replaced by (x0 +ch, u0 +cv) 
3. there exist constants c1 = c1 (h,v) and c2 = c2 (h,v) such that 

IIF(· , xo + ch, uo + cv)- F(·, xo, uo)- c(Fx(·, xo, uo)h + Fu(-, xo, uo)v)lloo,X::; c1c2, (4.4) 

and 

II/(·, xo + ch, uo + cv)- !(·, xo, uo)- c(/x(·, xo, uo)h + fu(-, xo, uo)v)lloo,X ::; c2c2. (4.5) 

Then, any (h, v) satisfying the equation 

dh 
dt + Fx(t, xo, uo)h + fx(t, xo, uo)h + Fu(t, xo, uo)v + fu(t, xo, uo)v = 0, (4.6) 

where 0 ::; t ::; b, h(O) = 0, is a tangent direction to the set Q at the point (x0 , u0 ). 

Proof: In view of Definition 4.1, we must prove the fact that (h, v) # 0 satisfies equation 
(4.2), implies that (x0 +ch+r(c),u0 +cv+w(c)) is a solution of the Cauchy problem (3.1), 
(3.2) with r(c) and w(c) satisfying conditions (4.3). Let Po(c) = IIP(xo + ch, uo + cv) lloo,x , 
where operator Pis given by (3.5). From equation (4.6) and assumption 1, we have 

Po(c) = IIP(xo + ch, uo + cv)lloo,X 
d(x0 + ch) 

= II dt + F(-, xo + ch, uo + cv) + f(-, xo + ch, uo + cv)lloo,x 

d(xo + ch) 
= II dt + F(-, Xo + ch, uo + cv) + !(·, xo + ch, uo + cv) 

dxo dh (4.7) 
- dt- F(·, xo, uo)- !(·, xo, uo)- c( dt + Fx(·, xo, uo)h 

+ Fu(-, xo, uo)v + fx(·, xo, uo)h + fu(·, xo, uo)v)ll 

::; IIF(·, Xo + ch, uo + cv)- F(-, xo, uo)- cFx(·, xo, uo)h- cFu(·, xo, uo)vll 

+ II/(· , xo + ch, uo + cv)- !(·, xo, uo)- cfxC. xo, uo)h - cfu(·, xo, uo)vll· 

Then, by using assumption 3, ( 4. 7) implies that 

(4.8) 
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Then, in the same way as in the proof of Theorem 3.1, we can get conditions (2.6), (2.7) and 
(2.8). Then, in view of (2.6), condition (1.13) of Theorem 1.1 is satisfied with Po replaced by 
Po(E) for sufficiently small L Thus, we can apply Theorem 3.1 with pair (x0 , u0 ) replaced by 
( x0 + E h, u0 + EV) and we get that there exists a pair ( x (E) , u (E)) satisfying equation ( 3.1). In 
the same way as in the proof of Theorem 2.1, we shall show that x(E) satisfies also condition 
(3.2). Now it is enough to prove conditions (4.3). 

From the iterative process, it follows that 

= = 
(4.9) 

n=O n=O 

Combining condition (1.13) (with Po replaced by Po(E)) and (4.8), we get estimates (2.11), 
which in view of (2.8) , implies the first condition of (4.3). 

The second part of ( 4.3) can be obtained similarly. Combining (3.18) (with Po replaced 
by Po(E)) and (4.9), we get 

00 

Jlw(E)II ~ bco(l + q)Po(E) L En exp( - (1- q)tn). 
n=O 

Applying estimates (1.17) with 8 = 1 to the last inequality and dividing by E, we have 

E- 1 llw(E)II ~ bCo(1 + q)E- 1 Po(E)(1- q)- 1 exp(1- q). (4.10) 

In view of (4.8), Po(E)/E ___. 0; then (4.10) implies the second part of (4.3). 

5. An application: The extremum principle. The results of Section 4 can be applied 
to problems of optimal problem with set Q given by ( 4.1) as constraint. Let us consider the 
following optimal control problem. 

Minimize the functional 

I(x, u) =fob r(t, x(t), u(t)) dt 

under the constraints 

dx 
dt = F(t, x(t), u(t)) + f(t, x(t), u(t)), 

x(O) = ~o, 

u( ·) E V, 

where x( · ) E C(O, b; Y) n C 1 (0, b; X), 

V = {u( ·) E L=(O,b;U): u(t) E W c U for t E [O,b] a.e.}, 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

X, Y, L=, U are Banach spaces introduced in Sections 1 and 3, ~0 , as previously, is a fixed 
element of the space Z. Let (x0 , u0 ) be a solution of the problem (5.1)-(5.4). 

We shall assume that 

C.l. functions F and f satisfy all the assumptions of Theorem 4.1 
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C.2. function r is differentiable in the neighborhood N of (xo, uo) in the following sense: 
there exist operators f~ (- , x, u) such that 

E-llr(-,x + Eh,u)- rc,x,u)- Ej~(-,x , u)hl-+ 0 

E-llr(·, X, U + EV)- r(·, X, u)- Ej~(-, X, u)vl---+ 0 

as E---+ 0, hE C(O,b; Z) n C 1 (0, b;X), v E Loo(O,b; U) 
C.3. for any (x , u) EN one of the following conditions is satisfied: 

f~(-, x, u) is continuous with respect to u, i.e. , 

llun- ulloo,U---+ 0 implies IJ~(·,x , un) - f~( · ,x,u)ll-+ 0 as n---+ oo 

J~(· , x, u) is continuous with respect to x, i.e. , 

llxn- xlloo,Y ---+ 0 implies If~(-, Xn, u)- !~(-, x, u)l---+ 0 as n---+ oo 

C.4. r, !~ , !~ are measurable with respect tot for any (x , u) 
C.5. r satisfies the Lipschitz condition with respect to (x, u) in the following sense: there 

exists a constant k such that for any (x, u), (x', u') E N 

Ire. x, u)- r( ·, x', u')l ~ k (llx- x'lloo,Y + llu- u'lloo,U) 
C.6. the set W is convex, closed and posseses a nonempty interior in U 
C.7. the equation 

dh 
dt = Fx(t, xo, uo)h + fx(t , xo, uo)h + Fu(t, xo , uo)v + fu(t , xo, uo)v, h(O) = 0 (5.5) 

has a solution h E C(O, b; Y) n C 1 (0, b; X) for every v E B 
The problem of minimizing (5.1) under constraints (5.2)-(5.4) we shall call problem I. 

Denote S = C(O, b; Y) n C 1 (0, b; X). By making use of the Dubovitskii-Milyutin Theorem 
( cf. [6] Sec. 6) and Theorem 4.1, we shall prove a local extremum principle for problem I. 

Theorem 5.1. (Local extremum principle). Let (x0 , u0 ) be an optimal process for problem 
I and assumptions C.1-C.7 be satisfied. If there exist ..\0 > 0 and function '1/J(t) not all zero 
satisfying equation 

~~ = ..\of~(t,xo , uo)- F; (t,xo ,uo) 'I/J (t) - J;(t , xo ,uo)'I/J (t), '1/J(b) = 0 (5.6) 

then the maximum condition holds 

fob (..\of~(t , xo , uo)- F~(t , xo , uo)'I/J(t)- f~(t , xo , uo)'I/J(t), u- U0 (t)) dt ~ 0 (5.7) 

for all 0 ~ t ~ b, u E V. 

Proof: Let us define the following sets: 

Z1 = {(x,u) E S x L00 (0 ,b;U): u( ·) E V} (5.8) 

{ dx 
Z2 = (x ,u) E S x L00 (0 ,b;U): dt = F(t , x,u) + f(t,x,u), x(O) =Eo} . 

(5.9) 

In view (5.8) and (5.9) , our problem can be expressed in the form: minimize the functional 
I(x , u) under the constraint (x, u) E Z1 n Z2. 

In order to use the Dubovitskii-Milyutin Theorem, we have to find 

C0 the cone of decrease of the functional I at the point (x0 , u0 ); 

cl feasible cone to the set zl at the point (xo , uo); 
c2 tangent cone to the set z2 at the point (xo , uo ); 
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and dual cones C0 and Ci. 
Let us consider the functional I(x, u). In view of assumption C.2-C.4, we have that there 

exists derivative of I(x, u) in any direction (h, v) such that 

I'(xo,uo)(h,v) =fob (f~(t,xo,uo)h+f~(t,x0 ,u0 )v) dt . (5.10) 

In view of assumption C.5, functional I(x, u) also satisfies the Lipschitz condition with 
constant bk since 

II(x,u)- I'(x',u')l::; blr(-,x,u)- r(·,x',u')l 

::; bk (llx- x'll + iiu- u'll) . 
(5.11) 

In view of (5.10) and (5.11), we have that all the assumptions of Theorem 7.3 from [6] are 
satisfied. Then I(x, u) regularly decreases at (x0 , u0 ) and 

Co = { (h, v) E S x L00{0, b; U) ; [ {!~ (t, Xo, uo)h + JZ(t, xo, uo)v) dt < 0} . {5.12) 

Then, in view of Theorem 10.2, from [6] 

c~ = { fo E (S X Loo{O, b; U)t ' fo(h, v) = -Ao 1' u; (t, Xo, uo)h + !~ (t, Xo, uo)v) dt} . 

(5.13) 
Now let us consider constraint Z1 . In view of the assumption C.6 and the definition of the 
norm II · II 00 , u ( cf. Section 3), it is easy to prove that the set V is also convex, closed and 
possesses a nonempty interior in the topology of the space £ 00 (0, b; U) generated by the 
norm II · ll oo,U · Then, in view of Theorem 8.2, from [6], we get 

C1 = {(h, v) E S x L00 (0, b; U): v = >.(u- uo), u E int V, >. > 0} , (5.14) 

and applying Theorem 10.5 from [6] we have 

Ci = {ft(h,v) E (S x L00 (0,b;U))*: ft(h,v) = f~(v)}, (5.15) 

where If is a functional supporting the set V at the point u0 . Let us consider Z2 . From 
assumption C.1 we can apply Theorem 4.1 and we get inclusion 

dh 
{(h,v) E S X Loo(O,b;U) : dt +Fx(t,xo,uo)h+fx(t,xo,uo)h 

(5.16) 
+ Fu(t, Xo, uo)v + fu(t, Xo, uo)v = 0, 0::; t::; b, h(O) = 0} c c2. 

Now we can use the Dubovitskii-Milyutin Theorem from [6]. In view of its proposition, there 
exist functionals fi E Ct, i = 0, 1, 2, not all zero, such that the Euler-Lagrange condition 
holds; i.e., 

fo(h,v) + ft(h,v) + h(h,v) = 0, (5.17) 

for all (h,v) E S x L00 (0,b;U). 
Let us consider (5 .17) for the pairs (h,v) satisfying condition (5.5). Then, from (5.16), 

h(h, v) = 0 and using (5.13) and (5.15) we have 

ft(h,v) = f~(v) = >.o fob (f~(t,xo,uo)h + f~(t,xo,uo)v) dt. (5.18) 
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Now proceeding analogously as in [6], [4]; i.e., integrating by parts and using (5.5) and (5.6), 
we get 

f~ ( v) = lab ( -F: (t, xo, uo)?/J(t) - f~ (t, xo, uo)?/J(t) +>.of~ (t, xo, uo), v) dt, (5.19) 

where ff is a functional supporting the set V at the point u0 . 
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