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Abstract. A class of nonlinear evolution equations involving locally Lipschitzian term
is discussed. By using a global linearization iterative method, the existence of tangent
directions to the set determined by nonlinear evolution equations is proved in two cases:
without and with the control function involved. This result is then applied to the problem
of optimal control with nonlinear evolution equation as constraint.

Introduction. The problem of tangent directions to the sets determined by some equa-
tion is a very important problem in optimization and optimal control. In the famous results
obtained by Dubovitskii, Milyutin, Girsanov (cf. [6]), Joffe, Tikhominov (cf. [7]) and oth-
ers, considering only one equality constraint in the form of ordinary differential equation,
the proofs of the existence of tangent directions are based on the Lusternik theorem. The
Lusternik theorem is also applied to optimization and optimal control problems with more
than one equality constraint as in {8], [9], [10], [11], [12].

In [1}, some generalization of the Lusternik theorem is proved by using the method of
contractor directions under essentially weaker assumptions about differentiability than the
Lusternik theorem requires. This generalization is applied to the problems of optimization
and optimal control in (1], [13], [14] and [15].

However, none of these results (i.e., Lusternik theorem and its generalization) are appli-
cable to the problems of optimal control with nonlinear evolution equation as constraint
because of too strong assumptions that these results require.

In (3] and [5] the global linearization iterative method from [2] is applied to prove the
existence of tangent directions for nonlinear evolution equation and quasilinear evolution
equation, respectively. An application to the optimal control problem of quasilinear evolu-
tion equation as constraint is also considered.

In this paper, the results from [3] are extended to a more general class of nonlinear
evolution equation with locally Lipschitzian term and the existence of tangent directions to
the set determined by this equation is proved. Next, as an application, the local extremum
principle for the optimal control problem with these general nonlinear evolution equation
as constraint is proved.
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1. Existence of sclution of nonlinear evolution equation. The existence of solution
of nonlinear evolution equation with Lipschitzian term is proved in [2]. However application
of these theorems to the case of existence of tangent direction necessitate formulating them
in a bit different form.

Let Z C ¥ C X be Banach spaces with norms || - |lz > 1| - [iy = |- llx.

A.0) We assume that there exist positive constants C, 3 with 0 < 5 < 1 such that
lzlly < Cliellx *ll=l% - (1.1)

Given 0 < b, denote by C(0, b; X) the Banach space of all continuous functions z = z(t)
defined on the interval [0, 5] with values in X and the norin

l2]loo,x = SI:P[Hx(t)I!X 0<t<h . (1.2)

In the same way, the norms [|y||co,y and ||2||ce,z are defined for ¥ and Z.
Let C'(0, b, X) stand for the vector space of all continuously differentiable functions from
[0,8] to X. Let the function

%o € C(0,5,Z) N C'(0, b, X). (1.3)

Let Wy be an open ball in Y with center z¢(0) and radius 7g > 0. Put Vo =Wy N Z and let
V1 be closure of Vp in Y. Let F : [0,b] x V; — X be a nonlinear mapping f: [0,b] xV; — X
be a nonlinear mapping locally Lipschitzian with respect to z.

Consider the following Cauchy problem:

& YF(a)+ [(a)=0, 0<t<h, (1.4)
z(0) = &, (1.5)

where £ = 25(0). Let G be the set of functions z in C(0,b;Vy(]| - ||z)) N C*(0, b; X) with
z(0) = & € Z and ||z — 2Zollco,y < ro. We assume that the mapping F is differentiable in
the following sense:

For each (t,z) € [0,b] x G there exists a linear operator F'(t,z) such that

e Y F(z +€h) — F(-,2) — eF'(, 2)h)loo.x — O

as € — 0%, where h € C(0,b; Z) N C'(0,b; X).
The operator f is differentiable at the point zg in the following sense:
For each t € [0,b] there exists a linear operator f'(t,zo) such that

e ”f("xo + Eh) - f(‘,!l)g) - Efl('a:EO)h“oo,X —0

as € = 0% where h € C(0,b; Z) N C'(0, b; X).
Let us introduce a nonlinear mapping in the form

dz
Pz(t) = P F(t,z) + f(t,z). (1.6)
In order to prove the existence of the solution for (1.4), (1.5) we need to make the following
assumptions:
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A.1) The functions F, f are continuous in the following sense:
lzn — z|lco,y — 0 implies [|F(-,2n) — F(:,2)]lco.x — 0
as n — oo and
lzn — zlleo,y — 0 implies [[f(-,2n) — /(;,2)]lc0,x — 0.

Let {z,} C G be a Cauchy sequence in C(0,b;Y’) and let {h,} C C(0,b;Y)NC’(0,b; X)
be bounded in C(0,b;Y). Then, €, — 0 implies

67—11“F('=In -+ E‘nh"n) - F(" In) - E'nFI('a5'3rz)h'n”oo,)( -0

/

as m — oo. There exists a constant gy such that

[f(z+eh) = (@)oo, x < qo€lllloo,x -

A.2) There exists a constant Cy > 0 with the following property. For x € G any function g
such that ||g|lco,x < o0 if h is a solution of the equation

dh
d—t+F’(t,:r:)h+g:0, 0<t<b, h(0)=0,

then
1h]lco,x < 8Collgllco,x -

A.3) For z € G the linearized equation

d

Ez_j +F'(t,2)z+ F(t,z) - F'(t,2)z + f(t,2) =0, (1.7)
0 <t <b, 2(0) = 0, admits smooth approximate solutions of order (u,v,¢) with0 < p <1
in the sense of the following definition.

Definition 1.1. (Altman [2]) Let u > 0, v > 0, 0 > 0 be given numbers. Then the
linearized equation (1.7) admits smooth approximate solutions of order (u,v,c) if there
exists a constant M > 0 which has the following property. For every x € G, K > 1 and
Q > 1, if |lz||co,z < K then there exists a residual (error) function y and a function z such
that

l2llc0,z < MQK", (1.8)
[¥lico,x < MQ*K?,
and
% + F'(t,z)z2+ F(t,z) — F'(t,z)z + f(t,z) +y=0, 0<t < b, 2(0)=&. (1.9)

Let us consider z € G and z be a solution of the equation (1.9) and put z = z + h. Then
h is a solution of the equation

dh

= + F'(t,z)h+ Pz +y=0, 0<¢t<b, h{0)=0,

where P is defined by (1.6). Under these assumptions we can construct an iterative method
of contractor directions in a similar way as in [2]. The difference will lie only in the initial
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point of iterative process. In our process it will be a function zo(t) introduced by (1.3) (in
[2] zo(t) = 0, where z¢ is a fixed point of the space X). Next, let us assume that zo is given
by (1.3) and zy, Z2....,%n € G are known and satisfy the following induction assumptions
for all indices 1 < n

|7i]|o.z < Aexp(a(l —q)t;) = K;,

and
| Pzilloo,x < [PZol|oo,x exp(—(1— g)ti),

where o > 1 and A are subject to condition
a(l—q)=1>0, a>p(l-v)-0o ', p(l=v)~0>0, (1.10)

and
MQRM)YVE(GR) ™1 < A7 R a1 - q) — 1], (1.11)

with Py = ||Pzol|co, x. The above induction assumptions are true for all n in view of Lemma
1.2 from [2].
Let z, be a solution of equation (1.9) with z = 2,, ¥ = y». Let @ = @, be such that

QMQ KT < Py exp(—(1 = q)tn).
We put z, = zn + hn such that h, is a solution of equation

h
‘Z—t" + F'(t,zn)hn + Pz + 4y =0, 0<t<b, hy(0) =0,

Now, with 0 < ¢, < 1 to be determined, put
Tpt1 = In + €nhn, tny1 =tn + €n, to=0. (1‘12)

Under the above assumptions, by using the iterative method of contractor directions in [2],
the following existence theorem is proved

Theorem 1.1. (Altman [2]) In addition to the hypothesis (A.0) to (A.3), suppose that
conditions (1.10) and (1.11) are satisfied and b' is such that

(1 — @6}~  expl(1 - QB)CI'Co(1 + P la(l - QA <10,  (L13)
where Py = || Pzg|lo,x and 3 satisfies condition
0=1-(14+0a)s>0. (1.14)
Then equation (1.4), with b replaced by ¥, has a solution z, and
|Zn — Zlloo,y =0 as n— o0,

where {z,} is determined by (1.12) and ||z, — zo|co,v < 7o for all n.

Remark 1.1. In our case, the proof will be analogous, only instead of zo(f) = xg, where
Zo is some point of the space X, the function z((t) given by (1.3) will be discussed.

Remark 1.2. In the proceeding of the proof the following estimates are obtained (cf. [3])

> enllhnlloo,y < (1= )] exp((L = Q)S]C[E'Co(l + )P *la(1 — ) A]*  (1.15)
n=0
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[Anlloo,x < bCo(1 + )| Pzol|co,x exp(—1(1 — q)tx) (1.16)
Y enexp(—6(1 = q)tn) < [6(1 - q)] ' exp(5(1 —1q)). (1.17)
n=0

Remark 1.3. Theorem 1.1 shows only one example of the existence theorem by using
global linearization iterative method (GLIMI) based on the method of contractor directions.
Other existence theorem can be introduced by using combinations of smoothing operators
and elliptic regularization as in [2], Chapter 8, Theorem 1.1 and also by using elliptic
regularization without smoothing operators, as in {2}, Chapter 9, Theorem 1.1. In all these
methods, in our case the proof will be analogous with the replacement of function zy(t) =
by the function zo(t) given by (1.3).

2. Existence of tangent directions. Existence of tangent directions for nonlinear
evolution equation without Lipschitzian term has been proved in [3] and for quasilinear
evolution equation, in [5].

The existence Theorem 1.1, as well as theorems mentioned in Remark 1.2, can be applied
to prove existence of tangent directions to the set defined by general nonlinear evolution
equation with Lipschitzian term; i.e., in the form (1.4)-(1.5).

Definition 2.1. A vector h € Y is a tangent direction to the set @ at the point zg if there
exists eg > 0 such that for any 0 < ¢ < ¢g there exists z(¢) € () satisfying conditions
z(e) =20+ ch+7(e) and e |r(e)]| = Oase—o™.
In our problem

Q={zcC0,5:Vo(l| - II2))NC'(0,6;X) : Px =0, z(0) = &7}, (2.1)

where P is defined by (1.6), & is some element of the space Z. We shall prove

Theorem 2.1. Let

1. zo be a solution of the Cauchy problem (1.4), (1.5), i.e., zy € @Q;

2. the hypothesis of Theorem 1.1 be satisfied with function zgy replaced by zo + €h;
3. there exist constants ¢; = ¢i(h) and co = ca(h) such that

|\F(:,z0 + €h) — F(-,20) — €F'(-,20) hloo,x < cre?, (2.2)

1£(-, 2o + €h) — f(-.z0) — €f' (-, T0) Al oo, x < 262 (2.3)

then any h satisfying the equation

%+F’(t,ﬂ:0)h+f’(t,(lfo)h=0 (2.4)

is a tangent direction to the set () at the point zg.

Proof: In view of Definition 2.1, we have to prove that, for zg € @, from the fact that 2 # 0
satisfies equation (2.4) follows that there exists a function r(¢) such that z(e) = zo+eh+7(€)
is a solution of the Cauchy problem (1.4), (1.5) and e !||r(e)|| — 0 as ¢ — 0.
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Let Py(e) = || P(zg + €h)||co,x. By using equation (2.4) and the fact that zo € Q we have

Po(e) = || P(zq + €hl|
= ||d(zq + €h)/dt + F(-,z0 + €h) + f(:, zo + €h)]]
= ||d(zo + €h)/dt + F(-,z0 + €h) + f(-, 20 + €h) — dzo/dl
~ F(,z0) — f(,20) — e(dh/dt + F'(-,z0) + f'(-;z0) )|
<||F(:,z0 +€h) — F(-,20) — €F'(-,zo)hll + ||/ (-, 2o + €h) — f(-,z0) — €f'(-, zo) | -

(2.5)
In view of assumption 3, (2.5) implies the estimates
Po(€) < e1€% + cg€? = cé?,
where ¢ = ¢; + ¢2. Then ) ) i
[PO(E)]I—S < Cl—s€2(l~s) (2.6)
and .
0< —[Ro(e)]' 77 <l 7R, (2.7)

From condition (1.14) of Theorem 1.1, it follows that 1 — 2§ > 0 (since a > 1). Then (2.7)
implies that

%[PO(E)P_E —0 as e— 0. (2.8)

Then, in view of (2.6) for sufficiently small €, condition (1.13) of Theorem 1.1 is satisfied
with Py replaced by Py(e). Thus, by virtue of this theorem with zg replaced by zg+¢€h, there
exists a solution z(¢) of equation (1.4). Let us put 7(¢) = r—zg(€). Then z(¢) = zg+eh+r(e).
It is easy to prove that z(e) satisfies also condition (1.5), since the iterative sequence {z,}
consists of functions belonging to G; i.e., such that z,(0) = & and ||z, — z(€)|lco,y — O as
n — 00. In view of the definition of || - ||eo,¥ the last condition implies that

Vi €[0,8] lza(t) — z(e)(t)]ly — 0;
ie., for t =0, z(€){(0) = &. Now it is sufficient to prove that
e Hr(e)]| =0 as e — 0. (2.9)

From the iterative process in our case, it follows that

(&)l =D enllBall- (2.10)
1=0

Then, in view of condition (1.15) from Remark 1.2 with Py replaced by Py(e) and (2.10),
we get estimate

e Hir(e)ll < ((1 - )8) ™" exp((1 = g)8)e(b'eo(1+ ) e (Po(e)) *((a(l — )4)°. (2.11)

In view of (2.8) the above estimate implies (2.9)

3. Nonlinear evolution equation with control function. Existence of solution.
Let Z C Y C X be Banach spaces satisfying the same conditions as before. Let us introduce
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a Banach space U and the space Lo (0,5;U) of control functions u = u(t), 0 < ¢t < b with
the norm

le]loo,tr = ess sup{|ju(t)|lv : 0 <t <b}.

Given two nonlinear mappings F (¢, z,u) and f(¢, z, u). We will discuss the following Cauchy
problem

B Pl ), u(t) + f(t,2(),u(t) =0, 0<t<b (3.1)

dt
.’E(O) = &p, (3.2)

where &, = z0(0), z¢(0) is introduced as in Section 1. Let r; > 0, ug be given control
function. Denote by B the set B = {u : ||u — uplloo,y < 71} and let G be defined as in
Section 1. We assume that the mapping F' is differentiable in the following sense: for each
(t,z,u) € [0,b] X G x B, there exist linear operators, F;(t,z,u) and F, (¢, z,u) such that

E_IHF(-,LE + Eh’ U+ EU) - F(a m,u) - E(F:l:('a a:,u)h + Fu('amvu)v)Hoo,X =0 (33)

ase— 0T, he C(0,0;Z)NC0,b;X) and v € B.
The operator f is differentiable at the point (zg,up) in the following sense: for each
t € [0,b] there exist linear operators f;(t,zo,ug) and f, (¢, zg,uo), such that

6-—1“f(_, o+ Eh) Up + E’U) - f(: fL'().uO) - E(f:l:('a Ty, uO)h + fu('aIOa uO)U”oo,X — 0 (34)

as € — 0T, where h € C(0,b; Z) N C1(0,b; X).
Let us introduce nonlinear mapping (z,u) — P(z,u) in the form

Pla,u)(t) = 5 4 F(t, (1), u(t)) + (1, 2(t), u(0). (3.5)

In order to prove the existence of the solution for (3.1) and (3.2) we need to make the
following assumptions.
(B1) The functions F, f are continuous in the following sense:

|zn = Z|lco,y = 0 and ||un — tlleo,r =0 as n — oo imply

|F(, zn,un) — F(,2,u)||co,x = 0 as n — oo,
|zn — 2|loo,y — 0 and |jup — tlleo,y =0 as n — oo imply
1/ (s Znsun) = f( 2, 0)|loo,x = 0 as n— oo,
Let {z,} C G be a Cauchy sequence in C'(0,5;Y) and let
{h} C C(0,6;Y)NC(0,5; X)
be bounded in C(0,b;Y). Then ¢, — 0 implies

67_,_1HF('» In +fnhn7 Un +€nvn) —F('7 In, Un) _fn(Fa:('a In, un)hn+Fn('a Tn, un)vn)”oo,X -0
(3.6)
as n — oo where {u,} is a Cauchy sequence and {v,} is bounded in the norm || - ||co,v-
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There exists a constant gg such that

(o2 4+ chutew) = [ 2,u)leo x < goe(lizlloo,x + [|ulloo,vr)- (3.7)

(B2) There exists a constant Cp such that the following condition is satisfied. For z € G,
any function g, such that ||glleo,x < 00, if (h,v) is a solution of the equation

dh
@ + Fe(t,z,u)h + Fu(t,z,u)jv+g9g=0, 0<t <bh, h(0)=0, (3.8)

then
[Plloo,x + lltlloo,r < 6Co gl 0, x -
(B3) For z € G, the linearized equation

— +F(tzu)z+ Pt o, w) v+ Ft o u) —Fp(t o, u)z+ f(tz,u) =0, 0<¢<b, 2(0) =&

(3.9)
admits approximate solution of order (u,v,o) with 0 < p < 1 in the sense of following
definition

Definition 3.1. Let u > 0, v > 0, ¢ > 0 be given numbers. Then the linearized equation
(3.9) admits approximate solution of order (u,v, o) if there exists a constant M > 0 with
the following property. Forevery t € G, v € B, k> 1,Q > 1, if ||2l|co,z < k and u € B
then there exist z, v and y such that

12llc0,z < MQE

[¥]loo,v < o0
“y“oo,X S MQ_'MI‘CU

and

d
d—j + Fy(t,z,w)z + Fu(t, ,u)v + F(t,z,u0) — Fy(t, z,u)e + f(t,z,u) +y=0  (3.10)

where 0 <t < b, 2(0) = &.
Let us consider some z € G and v € B and let z, v be a solution of equation (3.10) and

put z =z + h. Then h is a solution of the equation

dh
— + Fo(t,z,u)h + Fy(t,z,u)v+ Plz,u) +y =0 (3.11)

dt
0<t<b h(0)=0,

where P is defined by (3.5).

Now we can construct an iterative method of contractor directions for this problem in a
similar way as in Section 1. Let us assume that zg, 21,...,2, € G and ug,u;....,un € B
where u; = u;(t), 0 <t < band ty =0, t1,t2,...,t, are known. Then we find a solution
(2zn, vp) of the equation (3.10) with = = z,, and y = y,. Next let 2, = z,, + h,,. We put

In+1 = In + enhn (312)
tnt1 =ln + €q (313)
Unt1 = Un + €nUp. (3.14)
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We shall consider the iterative method of contractor directions under the following induction
assumptions for all 7z < n

Zilloo,z < Aexp(a(l — @)t;) = ki (3.15)
u; € B (3.16)
1P (2, %) [loo, x < Poexp(—(1 - q)t;) (3.17)
[villoo.r < BCH(1 + §)Poexp(—(1 — q)tn). (3.18)

The induction assumption (3.15), (3.17) are true for all n in view of Lemma 1.2 from (2]
with function P(z) replaced by P(z,u). The condition (3.18) is true for all n according to
the same procedure as in Theorem 1.1, where equation (1.16) is true with A, replaced by
Up.

Then we shall prove the following existance theorem.

Theorem 3.1. Let us assume that (B1)-(B3) and all assumptions of Theorem 1.1 are
satisfied. Then equation (3.1) with b replaced by V' has a solution (z,u) such that

[z = 2]|oo,y = 0, {ltn — ulloo,y — 0 (3.19)
asn — o0; {Zn}, {un} are determined by (3.12), (3.14) and

|z = 2o,y <70, [lu—uolloo,v <71- (3.20)

Proof: The proof of (3.19) for {z,} is the same as in Theorem 1.1. For {u,}, (3.19) follows
from estimates (3.18) in the same way as the convergence of sequence {z,}. The result

|P(zp,tun)|| — 0 as n — oo, (3.21)

which is auxiliary in the proof, can be obtained as in Theorem 1.1, with function P(z)
replaced by P(z,u) given by (3.5).

The fact that (z, u) is a solution of equation (3.1); i.e, P(z,u) = 0 follows from condition
(B1) for functions F' and f. In fact,

dz dzx
1P(ntn) = Pz, )| < |52 = S+ | PC 2y tn) = P,

+ “f('sxnaun) - f(,a:,u)“

(3.22)

Using (3.19) and (B1), we get that
|P(2n, un) — P(z,u)|| =0 as n-—oco.

Combining (3.21) and (3.22), we obtain P(z,u) =0.

The first part of (3.20) follows from estimates (1.15), and the second part from (3.18) in
view of estimates (1.17), where § = 1, r; = bCo(1 + §) Po(1 — ¢) ! exp(1 — q).
Remark 3.1. A similar result as in Theorem 3.1 can be obtained by using elliptic regular-
ization with smoothing operators or without smoothing operators to construct approximate
solution.

4. Existence of tangent directions. The existence of tangent directions for nonlinear
evolution equation without the Lipschitzian term and for quasilinear evolution equation
with control function involved has been proved in [3] and [5], respectively.
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Now, Theorem 3.1 will be applied to prove the existence of tangent directions to the set
given by general nonlinear evolution equation with Lipschitzian term; i.e., by (3.1)-(3.2).
Let

Q= {(z,U) : z—f+F(t,1(t),U(t))+f(t,:v(t),U(t)) =0, 0<t<b, 2(0)= Eo}- (4.1)

Definition 4.1. A vector (h,v) is a tangent direction to the set Q at the point (zg,ug)
if there exists € > 0 such that for any 0 < € < ¢g there exists (r(e), w(e)) € Q satisfying
conditions

z(e) = zo + eh + r(€), and ufe) = up + ev + w(e), (4.2)

where
e_lnr(c)nooy — 0, e'lﬂw(e)Hm,U —0 as e —0t. (4.3)

We shall prove

Theorem 4.1. Let

1. (z0,up) be a solution of the Cauchy problem (3.1), (3.2); i.e, (zg,up) € @

2. the hypothesis of Theorem 3.1 be satisfied with pair (zg, ug) replaced by (zo+¢€h, ug+ €v)
3. there exist constants ¢; = ¢1(h,v) and ¢g = ca(h, v) such that

|F(- 2o + €h,up + €v) — F(-, 20,u0) — €(Fz (-, To, uo)h + Fyu (-, 2o, u0)V) |00, x < c1€?, (4.4)
and
NF( 2o + eh,up + €v) — f(-, 20,u0) — €(fz (", To, uo)h + ful*, To, o)) |loo,x < coe?. (4.5)

Then, any (h,v) satisfying the equation

dh
dt
where 0 <t < b, h(0) = 0, is a tangent direction to the set Q) at the point (zg,up).

+ Fa:(tv Zo, UO)h + fz(t) Zo, UO)h + F'u.(ts Zg, uO)U + fu(t, Zo, UO)U =0, (46)

Proof: In view of Definition 4.1, we must prove the fact that (h,v) # O satisfies equation
(4.2), implies that (zo +€h +r(€), uo +€v +w(e)) is a solution of the Cauchy problem (3.1),
(3.2) with r(¢) and w(¢) satisfying conditions (4.3). Let Py(e) = ||P(zo + €h, up + €v) |00, x+
where operator P is given by (3.5). From equation (4.6) and assumption 1, we have

Po(e) = ||P(zo + €h,uo + €V)lloo,x
_ d(zo + €h)
==

” (CEO + Eh)

+ F(-, 20 + €h,ug + €v) + f(-, 20 + €h, up + €v) oo, x

+ F(-,zq + €h,ug + ev) + f(-, 29 + €h, ug + €v)
da: dh (4.7)
__EQ—F( IO’UO)_f('aIO,UO)— (dt +F( CE(),’U,o)h
+F‘u( 3$O:u0)v+fx('a:1:09u0)h+fu anuO) ”
< N||\F(-, 20 + €h,up + €v) — F (-, 20, up) — €Fz(-, 2o, u0)h — €Fy (-, 2o, uo)v||

+ || f(-, 20 + €h, ug + €v) — f(-, 20, u0) — €fz (-, 2o, uo)h — € fu (-, Zo, uo)v||.
Then, by using assumption 3, (4.7) implies that

Pyle) < cye? 4 coe? =cc® where c=c; +co. (4.8)
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Then, in the same way as in the proof of Theorem 3.1, we can get conditions (2.6), (2.7) and
(2.8). Then, in view of (2.6), condition (1.13) of Theorem 1.1 is satisfied with P, replaced by
Py(¢) for sufficiently small e. Thus, we can apply Theorem 3.1 with pair (zg, ug) replaced by
(zo+¢h, ug +€v) and we get that there exists a pair (z(e), u(¢)) satisfying equation (3.1). In
the same way as in the proof of Theorem 2.1, we shall show that z(¢) satisfies also condition
(3.2). Now it is enough to prove conditions (4.3).

From the iterative process, it follows that

o0 o0

Il =D enllball, Nwle)] = exllvall- (4.9)

n=0 n=0

Combining condition (1.13) (with Py replaced by Fy(e)) and (4.8), we get estimates (2.11),
which in view of (2.8), implies the first condition of (4.3).

The second part of (4.3) can be obtained similarly. Combining (3.18) (with Py replaced
by Py(¢)) and (4.9), we get

llw(e)]| < beo(1+q)Pole) Y enexp(—(1 — q)tn).
n=0

Applying estimates (1.17) with é = 1 to the last inequality and dividing by ¢, we have
e w(e)|] <bCo(1+ g)e  Pole)(1 —q) P exp(l —q). (4.10)

In view of (4.8), Py(€)/e — 0; then (4.10) implies the second part of (4.3).

5. An application: The extremum principle. The results of Section 4 can be applied
to problems of optimal problem with set Q) given by (4.1) as constraint. Let us consider the
following optimal control problem.

Minimize the functional

b
I(z,u) = /o fo(t, z(t),u(t)) dt (5.1)
under the constraints
o = F(t a0, u(t) + (6 2(0),u(1), (5.2
#(0) = éo, (5.3)
u(-) eV, (5.4)

where z(-) € C(0,5;Y) N C1(0,4 X),
V={u(")eLo(0,5U):u(t)cW CU for t€[0,b] ae },

X,Y, Ly, U are Banach spaces introduced in Sections 1 and 3, &g, as previously, is a fixed
element of the space Z. Let (xo,up) be a solution of the problem (5.1)-(5.4).
We shall assume that

C.1. functions F' and f satisfy all the assumptions of Theorem 4.1
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C.2. function f° is differentiable in the neighborhood N of (zq, ug) in the following sense:
there exist operators fJ(-,z,u) such that
6_1|f0('7m + Eha’u’) - fo('aza U) - Efg(‘, CL‘,’U)h’ — 0
Yo, ut ew) — O z,u) —ef(, zu)v| — 0
as € — 0, he C(0,5;Z)NCH0,5;X), v E€ Loo(0,b;U)
C.3. for any (z,u) € N one of the following conditions is satisfied:
f2(,z,u) is continuous with respect to u, i.e.,
lun — U)o,y — 0 implies |f72(:,z,un) — fo(,2,u)}|| =0 as n— oo
[o(-, z,u) is continuous with respect to z, i.e.,
lom = ooy — 0 implies |72, 2n,u) = f2(2,u) = 0 as n— oo

CA4. f°, f2, fo are measurable with respect to ¢ for any (z,u)
C.5. f° satisfies the Lipschitz condition with respect to (z, «) in the following sense: there
exists a constant k such that for any (z,u), (2, u') € N
1£o(zu) = 202wl S (= 2lloo,y + llu — ¥ loo,vr)

C.6. the set W is convex, closed and posseses a nonempty interior in U
C.7. the equation

dh
E = Fz(t, Zg, Uo)h + fz(t, To, UO)h =+ Fu(t, Zo, ’U,())’U + fu(t, g, Uo)U, h(O) =0 (55)

has a solution h € C(0,5;Y) N C(0,b; X) for every v € B

The problem of minimizing {(5.1) under constraints (5.2)-(5.4) we shall call problem I.

Denote S = C(0,5;Y)NC(0,b; X). By making use of the Dubovitskii-Milyutin Theorem
(cf. [6] Sec. 6) and Theorem 4.1, we shall prove a local extremum principle for problem I.
Theorem 5.1. (Local extremum principle). Let (zg,uo) be an optimal process for problem
I and assumptions C.1-C.7 be satisfied. If there exist Ag > 0 and function v(t) not all zero
satisfying equation

(fi—lf = )\Of;(t,Q:O,uO) — F; (t,Io,UO)l/}(t) - f;(t1107u0)w(t)7 ¢(b) =0 (56)

then the maximum condition holds

b
/0 (Ao fu(t 2o, uo) — Fi (¢, 2o, uo)b(t) — f1(t, o, uo)p(t), u —w’(t)) dt 20 (5.7)

forall0<t<b,ueV.

Proof: Let us define the following sets:

Z1 ={(z,u) €S X Loo(0,5;U) : u{-) € V} (5.8)
dz
Zy = {(a:,u) €S X Loo(0,0;U) : o =F(t,z,u)+ f(t,z,u), 2(0)= 50} : 659

In view (5.8) and (5.9), our problem can be expressed in the form: minimize the functional
I(z,u) under the constraint (z,u) € Z; N Z2.
In order to use the Dubovitskii-Milyutin Theorem, we have to find

Co the cone of decrease of the functional I at the point (zg, ug);
(1 feasible cone to the set Z; at the point (zg, ug);
Cy tangent cone to the set Zy at the point (zg,up);
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and dual cones Cg and Cf.
Let us consider the functional I(z,u). In view of assumption C.2-C.4, we have that there
exists derivative of I(z, u) in any direction (h,v) such that

b

I'(zg,u0)(h,v) =/(; (fa(t, zo,u0)h + fo(t,zo,ug)v) dt. (5.10)

In view of assumption C.5, functional I(z,u) also satisfies the Lipschitz condition with

constant bk since
H(@,w) = I'(,w)] S BF°( ) = £ () 5.11)
<Ok (flz — 2"l + flu = )] . '

In view of (5.10) and (5.11), we have that all the assumptions of Theorem 7.3 from [6] are
satisfied. Then I(z,u) regularly decreases at (zg,ug) and

b
Co = {(h,v) €85 X Loo(0,b;U) : / (fs(t, zo,uo)h + f(t,20,up)v) dt < 0} . (5.12)
0

Then, in view of Theorem 10.2, from [6]

b
Cy = {fo € (S X Loo(0,5;U))" ¢ folh,v) = —Ao /0 (F(t, 70, uo)h + f2(t, 20, uo)v) dt} :

(5.13)
Now let us consider constraint Z;. In view of the assumption C.6 and the definition of the
norm || - |leo,rr (cf. Section 3), it is easy to prove that the set V' is also convex, closed and
possesses a nonempty interior in the topology of the space L, (0,b;U) generated by the
norm || - |jeo,v- Then, in view of Theorem 8.2, from [6], we get

C1 ={(h,v) €S X Loo(0,5;U) : v = Au~ug), u€ intV, A >0}, (5.14)
and applying Theorem 10.5 from [6] we have
Ci ={fi(h,v) € (S X Lo (0,6;U))* = f1(h,v) = f1(v)}, (5.15)

where f{ is a functional supporting the set V' at the point ug. Let us consider Z;. From
assumption C.1 we can apply Theorem 4.1 and we get inclusion

dh
{(h,v) € S X Los(0,b;U) : - + Fo(t, 20, up)h + fr(t, zo,u0)h

+ Fu(t,l‘o,uO)‘U + fu(t,Io,UQ)’U = 0, 0 S < b, h(O) = 0} C 02 .

(5.16)

Now we can use the Dubovitskii-Milyutin Theorem from [6]. In view of its proposition, there
exist functionals f; € C7, ¢ = 0,1,2, not all zero, such that the Euler-Lagrange condition
holds; i.e.,

fo(h,U)+f1(h,’U)+f2(h,U)=0, (517)

for all (h,v) € S X Lo (0,b;U).
Let us consider (5.17) for the pairs (h,v) satisfying condition (5.5). Then, from (5.16),
fa(h,v) =0 and using (5.13) and (5.15) we have

b
fi(h, v) = f{(v) = /\0‘/0 (f;(t,IQ,Uo)h+f;(t,zo,UQ)’U) dt . (5.18)
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Now proceeding analogously as in [6], [4]; i.e., integrating by parts and using (5.5) and (5.6),
we get

b
fiw) = / (=F2 (¢, 20, uo)b(t) — 2t To,uo)(t) + Ao f2(t, 20 u0), v) dt,  (5.19)
0
where f] is a functional supporting the set V' at the point ug.
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