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TANGENT FRAME FIELDS ON SPIN MANIFOLDS

DUANE RANDALL

In this note we prove the following theorems.

THEOREM A. Let M" be a spin manifold with » = 7mod 8
and n > 7. Then M admits at least 8 nonhomotopic tangent
4-frame fields.

TueoreM B. Let M* be a spin manifold with » = 83mod 8
and 7n >3. Suppose that w, M=0 and w M -w,_ M = 0.
Then M" admits a tangent 4-frame field iff

WoesM =0 and . M=0.

1. Introduction. Here M™ denotes a closed connected smooth
manifold of dimension #. A tangent k-frame field on M" is an ordered
set of k linearly independent vector fields on M". The classical
theorem of Hopf states that M™ possesses a tangent 1-frame field iff
the Euler characteristic yM = 0. A table of necessary and sufficient
conditions for tangent 2-frame fields on orientable manifolds appears
in [10] while conditions for tangent 3-frame fields are tabulated in
and [3]. In particular, Atiyah and Dupont prove in [1] that any
orientable manifold M” with » = 3mod 4 admits a tangent 3-frame
field. This result is best possible since neither the sphere S®%*® nor
S? x CP*** admits a tangent 4-frame field.

Recall that an orientable manifold M™ is called a spin manifold
if the Stiefel-Whitney class w,M is trivial. The mod 2 semicharac-
teristic y,M™ is defined if n = 2s + 1 by

7o M = (z dim H,(M: Z/2)> mod 2 .

Let oM denote the signature of M"™ whenever n is divisible by 4.
Finally 6 represents the Bockstein-coboundary operator associated
to the exact coefficient sequence Z — Z — Z/2.

Theorem A is a best possible result for » = 7Tmod 16. In [8, p.
690} Szczarba constructed certain spin manifolds M™ with %» =3 mod 4
as the quotient spaces of free and differentiable actions of generalized
quarternion groups on S*. The span of these spherical space forms
M* with » = Tmod 16 and n > 7 is precisely 4 by Theorem 1.1 of
[2].

An immediate consequence of Theorem A and the result of Thurs-
ton given by [14, Corollary 1] is the following.

COROLLARY. Let M" be a spin manifold with n» = Tmod 8 and

157



158 DUANE RANDALL

n > 7. Then M possesses a C~ codimension 4 foliation with trivial
normal bundle.

We shall derive the following consequence of Theorem A and a
theorem of Atiyah-Dupont given in [1, p. 25].

PrOPOSITION. Let M™ be a spin manifold with » = 0 mod 8 and
n > 8. Suppose that H,(M; Z) has no 2-torsion, éw,_+M = 0, and u* = 0
for all  in H*(M; Z/2). Then M admits a tangent 5-frame field iff

W, M =0, yM=0, and oM =0mod16.

The above proposition was proved by Atiyah-Dupont under the
assumption that M* is 3-connected. Both Theorem A and B were
announced in [7] and generalize Theorem 1.2 of [9]. Indeed, their
proofs are applications of the Postnikov methods developed by Emery
Thomas and applied in [9], [11], [12], [13], [5], and [6]. We thank
Samuel Gitler, James Heitsch, and Joao de Carvalho for helpful con-
versations.

2. Proof of Theorem A. The k-invariants in a modified Pos-
tnikov resolution for the fibration

(2.1) V,.— BSpin (n — 4) — B Spin (n)

through dimension » where n = 3mod4 and n > 7 are listed with
their defining relations below.

k= w,_,

k' Sa*Sq'w,_, = 0

K: (Sq* + ~w)w,_, =0
E:Sq*kt = 0.

(2.2)

(See resolution II of |6, p. 56].) Let
z: M* —— B Spin (n)

classify the tangent bundle of M where » = Tmod8 andn > 7. We
must show that 7z lifts to BSpin(n — 4) in (2.1). Set » =8t + 7.
Since the Wu classes »,M are trivial for ¢ > 4t, the classes w,M are
trivial for 7 > 8¢ by the formula

W =S8qV.

The proof of Theorem 1.3 of [11] evaluates k'(c) and k*(t) by secondary
and tertiary operations applied to wg. .M = 0 respectively. Thus

k() =0 =FK(7)
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because of zero indeterminacy. Let U denote the Thom class of the
Thom complex Tt associated to the tangent bundle z. In[9] Thomas
proves that

U-k(7) = v(U)

with zero indeterminacy where + is a stable secondary operation
associated to the relation in the Steenrod algebra

Sq*Sa*** + Sq*(Sa*™Sq*) + Sq'(Sq*™Sq® + Sq**°Sq') = 0.
We recall the following facts from [9] and [13]. Let
SMxM—MxM
denote the involution which interchanges factors and let
cMx M— Tz

denote the collapsing map associated to an embedding of 7 as a
neighborhood of the diagonal in M x M. Select a basis

<2'3) @y, -0y &,

for the graded vector space >\["¥ H(M; Z/2). Let B, ---, 8, be the
dual basis by Poincaré duality such that

a; '/83' = 3«;:'#

if dega;, + deg 8; = n. Here p generates H"(M; Z/2) while clearly
r = %M. We set

(2.4) A:éai(@si.

Then ¢*U = A + s*A and A-s*A = .M Q p).
Suppose that +(A) is defined. The indeterminacy of +(A4) is
trivial iff w,M = 0 since

Saf(v @ p) = Sa'v Q@ ¢t = v-w,M Q) p

for any class v in H"*(M; Z/2). We consider the universal example
(B, m, v) for the operation + on classes of dimension 8t + 7.

(2.5) 00— B-2LK(Z/2, 8 + 7).

Here p is the principal fibration induced from the path-loop
fibration on

C = K(Z/2, 16t + 11) x K(Z/2, 16t + 13) x K(Z/2, 16t + 14)
by the elassifying map K(Z/2, 8t + 7) — C with component operations
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(Sq8t+4’ Sq8t+4sq2’ Sq8t+4sq3 + Sq8t+GSq1)

applied to the fundamental class ¢ of K(Z/2, 8¢t + 7). Now m denotes
the homotopy-commutative multiplication on E while v in H*(E; Z/2)
represents ajr.
We now exploit a technique of [4] in order to evaluate 4(U).
Let

A:M x M— E

denote any lifting of the class A in (2.4) under the assumption that
4(A) is defined. Then the map (2.6) g = mo(A, Aos): M X M— E
defines a lifting of A + s*4 such that

g*v = A*v + s*Av = 0

since s* is the identity on H**(M x M; Z/2).
Let

U Tc— E

be any lifting of the Thom class U and set f = Uocc. Since ¢* is a
monomorphism, 4(U) vanishes if we can show that

c*y(U)=ffv=9g"=0.
Since f and g are liftings of ¢*U, there exists a map
h: Mx M— 2C

unique up to homotopy such that f and m(ioh, g) are homotopic. We
identify & with a triple (x, v, 2) of classes in H*(M X M; Z/2). Thus

(2.7 f*v = g*v + Sq*r + So’y + Sqg'z = Sq*x .

The map 4ok is invariant under s since both f and ¢ are invariant.
Thus the homotopy class [k] + [hos] lies in the image of

[M x M, K(Z/2, 8 + 6)] — [ M X M, 2C] .
Consequently,
(2.8) x + s*xeSq T H¥ (M < M; Z[2) .

Note that Sq* is trivial on any class in H{(M; Z/2) Q H*™*{(M; Z/2)
with bi-degree (¢, 2n — 4 — ¢) different from (n — 4, n) and (n, n — 4).

The following lemma implies by (2.8) that the symmetric class
2 + s*x contains no nontrivial classes of bi-degree (n — 4, n) or
(n, n —4). Thus z is symmetric in the classes with bi-degree (n, n — 4)
and (n — 4, n). We conclude that
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0 = Sq'x = f*v.
LEMMA. Let M™ be any orientable manifold with n = 45 + 3 and
j>0.
Let
P. H* M x M; Z|2) — H**M; Z/2) ® H*(M; Z|2)

be the projection morphism corresponding to the Kunneth formula.
Then the kernel of P contains

Sa"*H XM X M; Z/2) .

Proof. Let a ® B be a class with bi-degree (¢,47 + 2 — 1) in
H" (M x M; Z/2). By the Cartan formula and dimensionality

Squ‘(a ® '3) = o ® Squ‘—zB + Sq"“la ® Sq4j—i+1B + Sqi-—za ® Sq4j—i+213 .

The image of Sqg*(a @ B) under P is clearly trivial unless 7 = 2j.
Further,

Sg¥*'8 = Sq'Sg¥B8 =0 in
H™(M; Z/2) when ¢ =2j.

To complete the proof of Theorem A, we must justify the assump-
tion that (A) is defined. We leave this verification to the reader,
since we shall make similar calculations in the more complicated
proof of Theorem B. Finally, by [1, Proposition 6.13], the existence
of a tangent 4-frame field on M given by a lifting of = to B Spin (n — 4)
implies the existence of 8 nonhomotopic tangent 4-frame fields.

REMARK. The proof of Theorem A shows that any lifting of =
to any stage in the Postnikov resolution itself lifts to B Spin (n — 4)
since all the k-invariants of r are trivial with zero indeterminacy.

3. Proof of Theorem B. Let M™ be a spin manifold with n =
8t 4+ 3 for positive ¢ such that

wM-w, M=0 and w, M=0.
We adopt the notation of §2 freely. We must show that
7. M —— B Spin (n)
has a lifting in the fibration (2.1) iff
W, M =0 and yM=20.

Suppose the primary obstruction w,M vanishes. For n =11,
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the obstructions k'(z) and k*z) vanish since they lie in the image
of Sq* and a spin-trivial secondary operation respectively. For n > 11,
the proof of Theorem 1.8 of [11] establishes the triviality of &'(c)
and %%z), whenever defined. (Note corrigenda (ii) in {10].)

In [9] Thomas proves that

U-l¥c) = I'(U)

with zero indeterminacy where I" is a nonstable secondary operation
associated to the relation

Sqtsqst + Sql(sq8t+zsq1 + SthSqS) + SqZ(SthSqZ) — 0

which holds on mod 2 classes of degree < 8t + 4. Let (&, m, v) denote
the universal example for the operation I" on classes of degree 8¢ + 3.
Since I' is nonstable,

m*rv=vR1+1XRv + p*XR ™

in H*(E X E; Z/2). Suppose I'(A) is defined. The map g in (2.6)
associated to any lifting A defines a lifting of ¢*U such that

g'v = A% + s* Ay + A-s*A = LM R p) .

Let U: Tt — E be any lifting of the Thom class U and set f =
Uoc. The argument in §2 shows that

v = g*v.
(Recall that the lemma in §2 was formulated for » = 3 mod 4.) Thus
Uok¥(z) = T'(U) = U*v = (, M)U- p
and so by the Thom isomorphism
(@) = (LM .

The following lemma concludes the proof of Theorem B.

LEMMA. I'(A) s defined.

Proof. Now Sg¥***Sq'A = 0 = Sq*Sq*A in the spin manifold M x M
since

Sq8t+ZSq1 — SqZ(SqStSql)
Sq*Sq* = Sq*(Sq™Sq’) + Sq'(Sq™Sq’) .

Note that Sq*A is symmetric since

Sq*A + $*Sq*4 = ¢*Sq*U = 0.
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Thus Sq°A contains nonzero summands only of bi-degree (4t + 2, 4¢ + 3)
and (4¢ + 3,4t +2). Let S QY be any class with bi-degree (4t + 1,
4t 4+ 2). Now

Squsqlr\/ — SqZSqﬂ—lry _l_ Sqlqufy — 0
so by the Cartan formula
3.1) Sq*Sq*A = 3 8q“Sq’a; ® Sq“B;

where only the summands with degree «; = 4t or 4¢ + 1 are possibly
nonzero.
Suppose that the Wu class v,, = 0. Then

Sq“B = B-v, =0

for any B in H""(M; Z/2). If v, is nonzero, we are free to choose
v, to be a class in (2.8). Set a; = v,,., We consider any summand
in (3.1) with

degree a;, = 4t, degree B, = 4t + 3.
Now Sq“B; = B vy = Bi-a; =0 for ¢ = 5. If 1 =7,
Sq*So’a; = Sq*Sq* v, .
By dimensionality Sq* *»,, = ws,_,M. We conclude that
Sq*“Sq’*e; = Sq*w,,_ .M = w4M W, M=20.

But all summands in (8.1) with degree a, = 4¢ + 1 must vanish by
symmetry so

Sa*Sq*’A = 0.
The class Sq®A4 is symmetric since
Sqo¥A + s*Sa¥A = ¢*Sg*U = 0.

Recall that degree «, < 4t + 1 for every «; in (2.3). By symmetry
the possibly nonzero summands in Sg¥A are the classes

Sq“ e, &® Sa*7'B; + Sq*a; ® Sq“B;

where @; ® B; has bi-degree (4¢ + 1, 4¢ + 2).
We claim that either Sg*a; or Sq*B, is trivial. Choose a basis

L1 Vsty LVsty = * %y XUy
for v, H\(M; Z/2). Extend this basis to a basis

Ay, o0y &
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for H**Y(M; Z/2) with a, = zw,, for 1< j. Let B, ---, B, denote
the dual basis for H***(M; Z/2). For j < ¢ < and any class z in
HY(M; Z/2),

Sq“B;-z = Sq*(B,2) = Bi(2vy) = 0.
Thus g9*B8, = 0 for 5 <4. For 2 =7
Sq“(xivu) = xiwn-——sM + mﬁwn_4M =0.
We conclude by symmetry that Sq¥A = 0.
4. Proof of Proposition. Let M" be a spin manifold with

n=0mod8 and % > 8. We assume that H,(M; Z) has no 2-torsion,
ow,_M =0, and u* = 0 for all w in H*(M; Z/2). Let

7. M —— B Spin (n)

classify the tangent bundle of M. The following diagram is the
Moore-Postnikov resolution for the fibration

n: BSpin (n — 5) — B Spin (n)
through dimension #.

B Spin (n — 5)

l

E,

l

E - Kz Z/8, )
(4.1) 1
B KZ12 P 22,0 — 1)

|

B — K(Z[2,n — 2)

l

M —> B Spin (n) == K(Z/2, n — 4) .
Let f: M —— E, be any lifting for z. Then
f*KeH"M; ZD Z/8) = Z D Z/8.
Atiyah and Dupont in [1, p. 25] show that
[ =(0,0) if yM=0 and oM = 0mod16.
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We must show that = lifts to F, iff w,_ M = 0. Assume w, M =0
so 7 lifts to E,. -

The following diagram contains the first stage of a modified
Postnikov resolution for the fibration

B Spin (n — 6) —— B Spin (%)

through dimension n — 1.

E,
4.2) l
BSpin (n) 20X g7 n — 5) % K(Z/2, n — 4) .
Let h: E, — E, denote the induced map.
Then
h*k' = Sq*y

where y has the defining relation
Sq*(0w,—e) + Sq'w,_, = 0.

The map 7 lifts to E, since ow, M = 0 = w,_ M. The indeterminacy
of k'(z) is given by

Sa*Sq'H"(M; Z/2) = 0.

Now Sq* vanishes on H" *(M; Z/2) iff w* = 0 for all w in H*(M; Z/2)
by Poincaré duality and the Cartan formula. We conclude that
7(k') = 0 so 7 lifts to E, in (4.1).

We write g*k* = (u, v) where g: M — E, is any lifting of z and
the classes w and v belong to H"M; Z/2). Suppose that g*k* is
nonzero. Then at least one class, say u, is nontrivial. Now

0=0uecH"M; Z)~ Z .

Select any class « in H"'(M; Z) such that p,x = v where p,
denotes reduction mod 2. Next choose a class ¢ in H, ,(M; Z) such
that the evaluation xz(a¢) is an odd multiple of a generator for
H,(M; Z)~ Z. There exists such a class ¢ because H*'(M; Z) has
no 2-torsion.

Let ¢: N— M be the inclusion of an oriented codimension one
submanifold N (not necessarily connected) of M such that

t(tty) = @ .
Here p, denotes the fundamental homology class of N. Since

w(a) = x(i,fty) = @) (tty) ,
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it follows that ¢*u = p,(¢*x) = 0. Note that the lifting
goi: N— K,
of the stable tangent bundle of N does not lift to E, since
(goi)’i“k2 = (t*u, 1*v) # (0, 0) .

The following lemma applied to the connected components of
N yields a contradiction to the assumption that g¢g*k* is nonzero.
Thus 7 lifts to E, and the proposition is proved.

LEMMA. Let N be any codimension 1, closed, connected, orientable
submanifold of M with tnclusion denoted by i. Then any lifting of

To4: N —— B Spin (n)

to any space H; in the resolution (4.1) further lifts to B Spin (n — 5).

Proof. The normal bundle to N in M is trivial by orientability.
So N is a spin manifold whose stable tangent bundle is classified by
the composite to4. The Moore-Postnikov resolution in (4.1) is essen-
tially a modified Postnikov resolution through dimension » — 1. One
component of the class k* is the image of a class z in H" '(H,; Z/2)
with defining relation

Sq* + cw)w,_, = 0.

The corresponding spaces in the modified Postnikov resolution (2.1)
for the fibration

B Spin (n — 5) — BSpin (n — 1)

clearly map into E, and E, in (4.1). The map of resolutions begins
with the inclusion

B Spin (n — 1) — B Spin (n) .

With respect to the induced maps, the class z goes to &* in (2.1)
while the other component of k* in (4.1) maps to k* in (2.1). The
proof of Theorem A shows that any lifting of 7(N) to any stage in
the modified Postnikov resolution (2.1) for the fibration

B Spin (n — 5) —— B Spin (n — 1)

itself lifts to BSpin(n — 5). (See the remark in §2.) Thus the
same property holds for any lifting of the stable tangent bundle in
the resolution (4.1).
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