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TANGENT FRAME FIELDS ON SPIN MANIFOLDS
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In this note we prove the following theorems.

THEOREM A. Let Mn be a spin manifold with n = 7 mod 8
and n > 7. Then M admits at least 8 nonhomotopic tangent
4-frame fields.

THEOREM B. Let Mn be a spin manifold with n = 3 mod 8
and n > 3. Suppose that wn-4M = 0 and w4M wn~ιM = 0.
Then Mn admits a tangent 4-frame field iff

wn-zM = 0 and χ2M = 0 .

l Introduction* Here Mn denotes a closed connected smooth
manifold of dimension n. A tangent k-ίrame field on Af* is an ordered
set of k linearly independent vector fields on Mn. The classical
theorem of Hopf states that Mn possesses a tangent 1-frame field iff
the Euler characteristic χM = 0. A table of necessary and sufficient
conditions for tangent 2-f rame fields on orientable manifolds appears
in [10] while conditions for tangent 3-frame fields are tabulated in
and [3]. In particular, Atiyah and Dupont prove in [1] that any
orientable manifold Mn with n = 3 mod 4 admits a tangent 3-frame
field. This result is best possible since neither the sphere S8i+3 nor
S3 x CPii+2 admits a tangent 4-frame field.

Recall that an orientable manifold Mn is called a spin manifold
if the Stiefel-Whitney class w2M is trivial. The mod 2 semicharac-
teristic χ2M

n is defined if n = 2s + 1 by

χ2M = Σ dim Ht(M; Z/2) mod 2 .

Let σM denote the signature of Mn whenever n is divisible by 4.
Finally δ represents the Bockstein-coboundary operator associated
to the exact coefficient sequence Z —• Z' —> Z/2.

Theorem A is a best possible result for n = 7 mod 16. In [8, p.
690] Szczarba constructed certain spin manifolds Mn with n = S mod 4
as the quotient spaces of free and differentiable actions of generalized
quarternion groups on Sn. The span of these spherical space forms
Mn with n = 7 mod 16 and n > 7 is precisely 4 by Theorem 1.1 of
[2].

An immediate consequence of Theorem A and the result of Thurs-
ton given by [14, Corollary 1] is the following.

COROLLARY. Let Mn be a spin manifold with n = 7 mod 8 and
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n > 7. Then M possesses a C°° codimension 4 foliation with trivial
normal bundle.

We shall derive the following consequence of Theorem A and a
theorem of Atiyah-Dupont given in [1, p. 25].

PROPOSITION. Let M* be a spin manifold with n = 0 mod 8 and
n > 8. Suppose that H^M; Z) has no 2-torsion, dwn_6M = 0, and u2 = 0
for all u in H\M; Z/2). Then M admits a tangent 5-frame field iff

wn^M = 0 , χM = 0 , and σM = 0 mod 16 .

The above proposition was proved by Atiyah-Dupont under the
assumption that Mn is 3-connected. Both Theorem A and B were
announced in [7] and generalize Theorem 1.2 of [9] Indeed, their
proofs are applications of the Postnikov methods developed by Emery
Thomas and applied in [9], [11], [12], [13], [5], and [6]. We thank
Samuel Gitler, James Heitsch, and Joao de Carvalho for helpful con-
versations.

2. Proof of Theorem A* The ^-invariants in a modified Pos-
tnikov resolution for the fibration

(2.1) Vn,4 > B Spin (n - 4) -?U B Spin (n)

through dimension n where n = 3 mod 4 and n > 7 are listed with
their defining relations below.

k1: Sq2Sq^_3 = 0

W: Sq2^1 - 0 .

(See resolution II of [6, p. 56].) Let

τ: Mn • B Spin (n)

classify the tangent bundle of M where n = 7 mod 8 and n > 7. We
must show that τ lifts to J3Spin(w - 4) in (2.1). Set n = 8t + 7.
Since the Wu classes vjή are trivial for i > At, the classes wtM are
trivial for i > 8t by the formula

W= S q F .

The proof of Theorem 1.3 of [11] evaluates k\τ) and k\τ) by secondary
and tertiary operations applied to w8t+2M = 0 respectively. Thus

k\τ) = 0 =
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because of zero indeterminacy. Let U denote the Thorn class of the
Thorn complex Tτ associated to the tangent bundle τ. In [9] Thomas
proves that

U k\τ) = ψ(U)

with zero indeterminacy where ψ is a stable secondary operation
associated to the relation in the Steenrod algebra

Sq4Sq8ί+4 + Sq2(Sq8ί+4Sq2) + Sq1(Sqδί+4Sq3 + Sq8ί+βSqι) = 0 .

We recall the following facts from [9] and [13]. Let

s: M x M > M x M

denote the involution which interchanges factors and let

c: M x M > Tτ

denote the collapsing map associated to an embedding of τ as a
neighborhood of the diagonal in M x M. Select a basis

(2.3) a l f - - - , a r

for the graded vector space Σ£Ό2] H\M Z/2). Let β19 •••,&. be the
dual basis by Poincare duality such that

if deg at + deg β3- = n. Here μ generates Hn(M; Z/2) while clearly
r = χ2M. We set

(2.4) A = ±ai®βi.
ί = l

Then c*ί7 = A + s*A and A s*A = χ2M(μ (x) μ).
Suppose that ψ{A) is defined. The indeterminacy of ψ(A) is

trivial iff w4M = 0 since

Sq4(^ ® μ) = Sq4v (x) μ = v-w4M(g) μ

for any class v in Hn~\M; Z/2). We consider the universal example
(#, m, v) for the operation ψ on classes of dimension 8t + 7.

(2.5) i3C - ^ ^ --̂ -> X(Z/2, 8t + 7) .

Here p is the principal fibration induced from the path-loop
fibration on

C = K(Z/2, 16ί + 11) x K(Z/2, 16ί + 13) x iΓ(Z/2, 16ί + 14)

by the classifying map K(Z/2, 8t + 7) —> C with component operations
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(Sq8ί+4, Sq8ί+4Sq2, Sq8ί+4Sq3 + Sq^Sq1)

applied to the fundamental class c of K(Z/2, 8ί + 7) Now m denotes
the homotopy-commutative multiplication on E while v in H2n(E; Z/2)
represents ψ.

We now exploit a technique of [4] in order to evaluate ψ(U).

Let

A:Mx M >E

denote any lifting of the class A in (2.4) under the assumption that
ψ(A) is defined. Then the map (2.6) g = mo (A, L s ) : M x Λf-> E
defines a lifting of A + s*A such that

g*v = A*w + s*Ay = 0

since s* is the identity on H2*(M x M; Z/2).
Let

£7: Γτ > E

be any lifting of the Thorn class U and set / — U°c. Since e* is a
monomorphism, ψ(U) vanishes if we can show that

c*ψ(U) = f*v = g*v = 0 .

Since / and g are liftings of c*?7, there exists a map

h:MxM >ΩC

unique up to homotopy such that / and m(i°fe, g) are homotopic. We
identify h with a triple (x, y, z) of classes in ίZ"*(M x M; Z/2). Thus

(2.7) /*v = g*v + Stfx + Sq% + Sq1* = Sq4x .

The map i°h is invariant under s since both / and g are invariant-
Thus the homotopy class [h] + [hos] lies in the image of

[M x M, ίΓ(Z/2, 8ί + 6)] > [M x M, ΩC] .

Consequently,

(2.8) x + s*xεSq8ί+4ίί8ί+6(M x M; Z/2) .

Note that Sq4 is trivial on any class in H\M\ Z/2) (g) Hin-4'\M; Z/2)
with bi-degree (i, 2n — £ — i) different from (w — 4, w) and (w, n — 4).

The following lemma implies by (2.8) that the symmetric class
x + s*x contains no nontrivial classes of bi-degree (n — 4, n) or
(n, n — A). Thus x is symmetric in the classes with bi-degree (nf n — 4)
and (w — A, n). We conclude that
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0 = Sq*X = f*v .

LEMMA, Let Mn be any orientable manifold with n — ij + 3 and
3 > 0.

Let

p . H^-^M x M; z/2) > Hn'\M; Z/2) (g) H*(M; Z/2)

be the projection morphism corresponding to the Kunneth formula.
Then the kernel of P contains

8q*-*H*-\M x M; Z/2) .

Proof. Let a (g) β be a class with bi-degree (i, 4i + 2 — i) in
M; Z/2). By the Cartan formula and dimensionality

= a2 (x) Sq4^2yS + Sq^1^ <g) Sq4^i+1/9 + Sq^2^ (x) Sq4ί*-ί+2/3 .

The image of Sq4i(α (g) /S) under P is clearly trivial unless i = 2i.
Further,

Sq2i+1/3 - SqΉq 'jS = 0 in

ifίAΓ; Z/2) when i = 2j .

To complete the proof of Theorem A, we must justify the assump-
tion that ψ(A) is defined. We leave this verification to the reader,
since we shall make similar calculations in the more complicated
proof of Theorem B. Finally, by [1, Proposition 6.13], the existence
of a tangent 4-f rame field on M given by a lifting of τ to B Spin (n — 4)
implies the existence of 8 nonhomotopic tangent 4-frame fields.

KEMARK. The proof of Theorem A shows that any lifting of τ
to any stage in the Postnikov resolution itself lifts to B Spin (n — 4)
since all the A -invariants of τ are trivial with zero indeterminacy.

3. Proof of Theorem B* Let Mn be a spin manifold with n =
St + 3 for positive t such that

wJΛ' Wn-sM = 0 and wn^M = 0 .

We adopt the notation of §2 freely. We must show that

τ:M >ESpin(w)

has a lifting in the fibration (2.1) iff

wn_zM = 0 and χ2M = 0 .

Suppose the primary obstruction wuM vanishes. For n = 11,
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the obstructions k\τ) and k\τ) vanish since they lie in the image
of Sq2 and a spin-trivial secondary operation respectively. For n > 11,
the proof of Theorem 1.3 of [11] establishes the triviality of k\τ)
and k\τ), whenever defined. (Note corrigenda (ii) in [10].)

In [9] Thomas proves that

U k\τ) = Γ(U)

with zero indeterminacy where Γ is a nonstable secondary operation
associated to the relation

Sq4Sq8ί + SqW+'Sq 1 + Sq8ίSq3) + Sq2(Sq8ίSq2) - 0

which holds on mod 2 classes of degree < 8fc + 4. Let (E, m, v) denote
the universal example for the operation Γ on classes of degree 8έ + 3.
Since Γ is nonstable,

m*v — v (x) 1 + 1 (x) # + p*c (g) P*'

in H2n(E x E; Z/2). Suppose Γ(A) is defined. The map g in (2.6)
associated to any lifting A defines a lifting of c*U such that

g*v = Ά*v + s*A*v + A s*A = %2M(μ (x) μ) .

Let U: Tτ —> E be any lifting of the Thorn class U and set / =
ΪJoc. The argument in §2 shows that

f*v = g*v .

(Recall that the lemma in §2 was formulated for n Ξ= 3 mod 4.) Thus

Uok\τ) = Γ(U) = C7*v = (χM)U-μ

and so by the Thorn isomorphism

&2(τ) = (χzM)μ .

The following lemma concludes the proof of Theorem B.

LEMMA. Γ(A) is defined.

Proof. Now SqM+2Sq1A = 0 = Sq8ίSq3A in the spin manifold M x M
since

Sq8ίSqs - Sq2(Sq8ί~1Sq2) + Sq1(Sq8lSq2) .

Note that Sq2A is symmetric since

Sq2A + s*Sq2A = c*Sq2C7 - 0 .
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Thus Sq2A contains nonzero summands only of bi-degree (4έ + 2, At + 3)
and (4ί + 3, U + 2). Let /5 (x) 7 be any class with bi-degree (4£ + 1,
U + 2). Now

Sq^Sq^ = Sq'Sq""1? + Sq'Sq"? = 0

so by the Cartan formula

(3.1) Sq8ίSq2A = Σ Sq4ίSq2^ (x) Sq«A

where only the summands with degree at = 4έ or 4£ + 1 are possibly
nonzero.

Suppose that the Wu class vu = 0. Then

Sq4ί/3 = /S.v« = 0

for any β in HU+\M; Z/2). If v4ί is nonzero, we are free to choose
v4t to be a class in (2.3). Set a3- = v4t. We consider any summand
in (3.1) with

degree at = U , degree A = U + 3 .

Now Sq4ίA = /Srv4i = βi a,- = 0 for i ^ i If i = j ,

By dimensionality Sq4ί~2^4ί = w8t_2M. We conclude that

Sq^Sq2^- - Sq4wn_5M = w.M-w^M = 0 .

But all summands in (3.1) with degree at = U + 1 must vanish by
symmetry so

Sq8ίSq2A - 0 .

The class Sq8ίA is symmetric since

Sq8ίA + s*Sq8ίA - c*Sq8ίC7 = 0 .

Recall that degree at ^ U + 1 for every at in (2.3). By symmetry
the possibly nonzero summands in Sq8ίA are the classes

Sq4ί+1α, (x) Sq^'βi + Sq4 ί^ (x) Sq4ίA

where at (g) βt has bi-degree (4t + 1, 4ί + 2).
We claim that either Sq4ί^ or Sq4*/̂  is trivial. Choose a basis

for vuH\M) Z/2). Extend this basis to a basis

a l f - - - , a r
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for Hit+\M; Z/2) with a, = xtv4t for i ^ j . Let βίf •••,&. denote
the dual basis for HU+2(M; Z/2). For j < i ^ r and any class 3 in
E\M) Z/2),

Sq^.z = Sq4ί(&z) - A(^4 ί) - 0 .

Thus gq 4 ^ = 0 for j < i. For i <> j

Sq4ί(a^4ί) = XiWn-sM + x\wn^M = 0 .

We conclude by symmetry that Sq8ίA = 0.

4. Proof of Proposition* Let Mn be a spin manifold with
n = 0 mod 8 and ^ > 8. We assume that H^M; Z) has no 2-torsion,
δwn^M = 0, and u2 = 0 for all u in H2(ilί; Zj2). Let

classify the tangent bundle of M. The following diagram is the
Moore-Postnikov resolution for the ίibration

π: B Spin (n - 5) > B Spin (n)

through dimension n.

B Spin {n - 5)

i

ΐ .
Γjr, > f\l/j m ZJjOf ϊvJ(4 1} 1 ,.

n-2)

I
jlf __!_> B Spin (w) -^Λ JKΓ(Z/2, n - 4) .

Let /:Λf >JS?3 be any lifting for τ. Then

/;iifc3 e Hn(M; Z 0 Z/8) ^ Z ® Z/S .

Atiyah and Dupont in [1, p. 25] show that

f*k3 - (0, 0) iff χM = 0 and σM = 0 mod 16 .
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We must show that τ lifts to E3 iff wn_M = 0. Assume wn^M = 0
so τ lifts to Ex.

The following diagram contains the first stage of a modified
Postnikov resolution for the fibration

B Spin (n - 6) > B Spin (n)

through dimension n — 1.

A
(4.2) J

5 Spin (rc) ̂ _ ^ i i ί + K(z, n - 5) x J5Γ(Z/2, Λ - 4) .

Let h: Et—> Eί denote the induced map.
Then

h*kι = Sq2y

where y has the defining relation

_6) + S q ^ _ 4 = 0 .

The map τ lifts to Έγ since δwn_QM = 0 = wn_4M. The indeterminacy
of k\τ) is given by

8q2SnΉn-χM; Z/2) = 0 .

Now Sq2 vanishes on Hn'\M; Z/2) iff u2 = 0 for all t* in H\M; Z/2)
by Poincare duality and the Cartan formula. We conclude that
τ(kι) = 0 so τ lifts to E2 in (4.1).

We write g*k2 = (w, v) where g: M-> E2 is any lifting of τ and
the classes u and v belong to Hn~\M; Z/2). Suppose that g*k2 is
nonzero. Then at least one class, say u, is nontrivial. Now

0 = dueHn(M; Z) ** Z .

Select any class x in Hn~\M; Z) such that p2x = u where ρ2

denotes reduction mod 2. Next choose a class a in Hn^(M; Z) such
that the evaluation x{a) is an odd multiple of a generator for
HQ(M; Z) & Z. There exists such a class a because Hn~\M; Z) has
no 2-torsion.

Let i:N—>M be the inclusion of an oriented codimension one
submanifold N (not necessarily connected) of M such that

Here μN denotes the fundamental homology class of N. Since

x(a) = x(i*μN) = (i*x)(μ*) ,
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it follows that i*u = p2(i*x) Φ 0. Note that the lifting

goi:N > E2

of the stable tangent bundle of N does not lift to E3 since

(goi)*k2 == (i*u, i*v) Φ (0, 0) .

The following lemma applied to the connected components of
N yields a contradiction to the assumption that g*k2 is nonzero.
Thus τ lifts to E3 and the proposition is proved.

LEMMA. Let N be any codimension 1, closed, connected, orientable
submanifold of M with inclusion denoted by i. Then any lifting of

τo%: N > B Spin (n)

to any space E3 in the resolution (4.1) further lifts to f> Spin (n — 5).

Proof. The normal bundle to N in M is trivial by orientability.
So N is a spin manifold whose stable tangent bundle is classified by
the composite τ°i. The Moore-Postnikov resolution in (4.1) is essen-
tially a modified Postnikov resolution through dimension n — 1. One
component of the class k2 is the image of a class z in jff*"1^; Z/2)
with defining relation

(Sq4 + 'W4)wn_4 = 0 .

The corresponding spaces in the modified Postnikov resolution (2.1)
for the fibration

B Spin (n - 5) > B Spin (n - 1)

clearly map into E1 and E2 in (4.1). The map of resolutions begins
with the inclusion

B Spin (n - 1) > B Spin (n) .

With respect to the induced maps, the class z goes to k2 in (2.1)
while the other component of k2 in (4.1) maps to fc3 in (2.1). The
proof of Theorem A shows that any lifting of τ(N) to any stage in
the modified Postnikov resolution (2.1) for the fibration

B Spin (n - 5) > B Spin (n - 1)

itself lifts to _BSpin(w-5). (See the remark in §2.) Thus the
same property holds for any lifting of the stable tangent bundle in
the resolution (4.1).
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