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Abstract

Motivation: Somatic copy-number alterations (SCNAs) play an important role in cancer development. Systematic
noise in sequencing and array data present a significant challenge to the inference of SCNAs for cancer genome
analyses. As part of The Cancer Genome Atlas, the Broad Institute Genome Characterization Center developed the
Tangent normalization method to generate copy-number profiles using data from single-nucleotide polymorphism
(SNP) arrays and whole-exome sequencing (WES) technologies for over 10 000 pairs of tumors and matched normal
samples. Here, we describe the Tangent method, which uses a unique linear combination of normal samples as a
reference for each tumor sample, to subtract systematic errors that vary across samples. We also describe a modifi-
cation of Tangent, called Pseudo-Tangent, which enables denoising through comparisons between tumor profiles
when few normal samples are available.

Results: Tangent normalization substantially increases signal-to-noise ratios (SNRs) compared to conventional nor-
malization methods in both SNP array and WES analyses. Tangent and Pseudo-Tangent normalizations improve the
SNR by reducing noise with minimal effect on signal and exceed the contribution of other steps in the analysis such
as choice of segmentation algorithm. Tangent and Pseudo-Tangent are broadly applicable and enable more accur-
ate inference of SCNAs from DNA sequencing and array data.

Availability and implementation: Tangent is available at https://github.com/broadinstitute/tangent and as a Docker
image (https://hub.docker.com/r/broadinstitute/tangent). Tangent is also the normalization method for the copy-
number pipeline in Genome Analysis Toolkit 4 (GATK4).

Contact: rameen@broadinstitute.org or gadgetz@broadinstitute.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1. Introduction

Cancer often arises from the accumulation of somatic alterations in the
genome, including point mutations, structural rearrangements and
copy-number alterations (Weir et al., 2004). Somatic copy-number

alterations (SCNAs) can have significant impact in activating onco-
genes or inactivating tumor suppressor genes to drive the development
of cancer (Beroukhim et al., 2010; Zack et al., 2013). In 2006, the NCI
and NHGRI launched The Cancer Genome Atlas (TCGA) project to
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comprehensively characterize the genomic and molecular features of
different cancer types (The Cancer Genome Atlas Network et al.,
2013). TCGA collected samples from more than 11 000 cancer patients
across 33 tumor types. The use of next-generation sequencing (NGS)
and high-resolution microarrays allowed us to finely characterize
SCNAs in cancer genomes and facilitate the discovery of novel genes
that drive cancer (Korn et al., 2008; The Cancer Genome Atlas
Network et al., 2013; Zack et al., 2013).

Standard approaches to detect somatic copy-number profiles in-
volve determining DNA content at various sites across the genome
in tumor samples, and comparing this tumor DNA content to that in
normal samples. For example, in array comparative genomic hybrid-
ization (CGH) or single-nucleotide polymorphism (SNP) arrays, sig-
nal intensities of DNA probes for various genomic loci scale with
sample DNA content at each locus (LaFramboise, 2009). Similarly,
high-throughput sequencing enables determination of coverage lev-
els at loci across the genome, also reflecting sample DNA content
(Yoon et al., 2009). Detection of somatic copy-number alterations
(SCNAs) typically relies on determining the ratios between DNA
content in tumor versus normal samples across these loci, which
aims to normalize the different affinities (either of probes or
sequencing) associated with each locus.

Such analyses can be confounded by at least three sources of
noise. First, stochastic variations result in random deviations be-
tween measurements of DNA content and true DNA content. This
can be overcome by averaging measurements across adjacent loci
(e.g. using segmentation algorithms; Venkatraman and Olshen,
2007) or by sequencing to greater average depth. Second, germline
copy-number variations (CNVs) can be misinterpreted as SCNAs.
This can be overcome by comparing tumor DNA to normal DNA
from the same patient, or by masking common CNVs. Third, sys-
tematic errors can result from subtle differences between experimen-
tal conditions that were applied when generating sequencing or
microarray data from tumors and their normal controls, which can
affect the locus-specific affinities.

Despite rapid advancement in sequencing technologies and
improvements in copy-number tools that attempt to combat system-
atic noise, such as Control-FREEC, ExomeCNV, VarScan2 and
CNVkit (Boeva et al., 2012; Koboldt et al., 2012; Rieber et al.,
2017; Sathirapongsasuti et al., 2011; Talevich et al., 2016; Zare,
2017), filtering out systematic noise present in NGS and microarray
data remains a significant challenge. Many of these tools use similar
approaches to reduce systematic noise, either with matched case–
control samples or with GC correction (Zhao et al., 2013). While
matched normal samples can sometimes approximate their tumors’
noise profiles, they are not always available, and during the sequenc-
ing process, many of them may be processed under conditions differ-
ent from those of their corresponding tumors and therefore may not
have similar noise profiles. And while GC-content bias constitutes a
large component of systematic noise, GC correction does not target
all sources of noise present in copy-number data. Other potential
sources of systematic noise include mappability biases across the
genome and variability in experimental conditions during PCR amp-
lification, cross-hybridization, or sample and library preparation.
Thus, currently available tools do not adequately address these gaps
in copy-number analysis.

Here, we present Tangent, a copy-number inference pipeline that
aims to address these gaps by constructing noise profiles using a sub-
set of normal samples to target all potential sources of systematic
noise. The normal samples used for Tangent will ideally have been
processed using the same experimental conditions as the tumor sam-
ples, but do not have to be from the same patients as the tumors.
Our pipeline begins with either a whole-exome sequencing (WES)
BAM file or raw probe-level intensity data and concludes with seg-
mented copy-number calls, processing data with special attention to
noise reduction, artifact removal, germline CNV removal and qual-
ity control. The Tangent pipeline can be applied to both WES and
Affymetrix SNP Array 6.0, both of which have been the basis for
data analyses in TCGA. Tangent can also be extended to other
sequencing platforms. Additionally, we describe Pseudo-Tangent, an
approach that uses signal-subtracted tumor data to augment

standard normal data in the Tangent pipeline. Pseudo-Tangent is
particularly useful when there is a limited number of normal samples
that can be used for denoising. Tangent is the basis for copy-number
normalization in the GATK4 CNV workflow available within
Genome Analysis Toolkit 4 (GATK4; McKenna et al., 2010) and is
available through Github and Docker.

2. Materials and methods

2.1 Generation of raw coverage data
As input to Tangent, we generated raw coverage data from either
Affymetrix SNP arrays or from WES. For SNP arrays, the procedure
to generate raw coverage data is described in Supplementary
Methods. This procedure includes an initial quantile-normalization
pre-processing step that ensures the total signal across all SNP loci is
uniform between all samples in each cohort analyzed. For WES
data, we used the GATK DepthOfCoverage tool on input .bam files
to assess coverage from the input .bam file (Depristo et al., 2011).
DepthOfCoverage outputs values for a set of genomic loci (‘inter-
vals’) representing the hybrid capture targets. Interval files are avail-
able in Firecloud/Terra from the broad-firecloud-tutorials/
Broad_MutationCalling_QC_Workflow_BestPractice workspace.
Flow charts for each type of input data are presented in
Supplementary Figure S1A and B.

2.2 Tangent normalization
Tangent assumes that systematic noise, after log-transformation, is
distributed according to a similar additive pattern in tumor samples
as in normal samples. (We use log2 copy ratios because we have
found that this representation works well for noise reduction [data
not shown], suggesting that much of the observed noise is
multiplicative.) We model the space of log2 copy ratios as:

N � N?;

where the noise space, N, is determined empirically based on the
collection of normal samples, as described in detail below, and the
signal space is its orthogonal complement, N\. As a consequence of
linear algebra:

1. Each tumor, Tj can be represented uniquely as

Tj ¼ noiseðTjÞ þ signalðTjÞ

where noise(Tj) is a vector in N, and signal(Tj) is a vector in N \.

2. The noise vector, noise(Tj), equals the projection of Tj to N and

can be explicitly computed by way of the pseudoinverse, as

described below. (Note that, in principle, the variation across

normal samples may not be entirely orthogonal to the signal of

somatic copy-number alterations in a specific tumor—raising

concerns that the projection of Tj to N will include true signal.

However, in practice, if N is of a much lower dimension than

the overall space, such ‘overfitting’ is likely to be minimal and

the signal in the tumor will not be substantially reduced. We

evaluate the extent to which the signal is reduced in practice in

Section 3.2 below.)

3. The signal vector, signal(Tj), equals the residual, Tj – noiseðTj).

In summary, we define the noise profile of a tumor to be
noise(Tj), the projection of the tumor to a lower-dimensional sub-
space spanned by the coverage profiles of the normal samples. This
is individually calculated for each tumor using data from normal
samples. To minimize systematic noise, we then subtract that projec-
tion from the raw log2-transformed copy-number profile of the
tumor. This difference, the signal, is the Tangent-normalized cover-
age profile for that tumor.

In detail, for i 2 f1; 2; 3; . . . nNg where nN is the number of nor-
mal samples, the ith normal sample is represented as a vector, Ni, of
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log2 copy-ratio intensities in genomic order, with each coordinate
corresponding to one of the non-CNV probes. The noise space, N, is
defined as the ðnN � 1Þ-dimensional plane containing the vectors
fN1;N2;N3; . . . ; NnN

g. Note that nN � 1 � M, where M equals
the dimension of the ambient (log2 copy-ratio) coordinate space or
equivalently, the number of markers not excluded as poor quality or
potential CNVs. Similarly, for j 2 f1; 2;3; . . . ; nTg, where nT is

the number of tumor samples, Tj represents the jth tumor sample in
the same format as Ni. A constructed normal profile that closely
matches the noise profile for a tumor Tj is determined as the point in
N that is closest to Tj using a Euclidean metric, i.e. the projection,
pðTjÞ, of Tj on N. The resulting normalization of Tj is set to the re-
sidual, Tj � pðTjÞ.

The projection pðTjÞ can be computed directly using standard
linear algebra techniques. A rigid transformation of Euclidean mark-
er space prior to normalization does not alter the resulting normal-
ization of Tj. In particular, an appropriate translation of the
Euclidean space ensures that N passes through the origin and forms
a vector subspace of Euclidean space, in which the normal vectors
now reflect the deviation from the typical normal (i.e. the noise).

After projection to N, the noise profile for each sample can be
expressed as a linear combination of nN � 1 translated normal
vectors,

pðTjÞ ¼ N �Npi � Tj

after translation, where N is the array whose columns correspond to

nN � 1 normal samples that span N and Npi is the pseudoinverse of
N. This noise profile, that is closest to the tumor, is then subtracted
from the tumor signal to obtain a ‘clean’ signal.

The sex chromosomes have traditionally presented a challenge in

the normalization step of copy-number calling. Theoretically, we
can address this issue by having separate reference planes for male
and female samples, and normalizing tumor samples against their
sex-matched reference plane. However, since the performance of
Tangent improves with the number of normal samples in the refer-
ence plane, here, we include both male and female normal samples
in our reference plane for Tangent normalization. The inclusion of
the X chromosome requires special treatment to ensure that the dis-
tance from a tumor to a normal reflects noise differences, without

being artificially inflated due to difference in sex. Additionally, we
must take into account that the normalization, Tj � pðTjÞ, of Tj

could potentially alter the apparent chromosomal copy-number of
X, due to the fact that pðTjÞ is a weighted average of copy ratios
from both male and female samples. To address these issues, we in-
clude in our reference plane a theoretical normal with copy-number
precisely two throughout the autosomes and one throughout the X
chromosome. Tangent normalization against this expanded collec-

tion of normal samples will adjust the copy-profile of X for any sam-
ple, regardless of sex, to a mean level with �2 copies of X. The
ensuing analysis can detect focal SCNAs within X, but discounts
whole-chromosome changes of X. Currently, the Y chromosome is
excluded from Tangent normalization. Use of sex-matched normals
should enable recovery of whole-chromosome SCNAs in the sex
chromosomes.

The large number of reference normal samples presents compu-
tational challenges as the projection matrix depends on the compu-
tation of the pseudoinverse of an M x nNmatrix (�1.5e6 � 3000).
To address this issue, we mimic Gram–Schmidt orthogonalization,
but on a blockwise level and decompose the reference plane into or-
thogonal blocks so that the projection, pðTjÞ, can be computed on a

block-by-block basis with only one block in memory at a time. Each
block of data represents approximately 250 normal samples, typical-
ly from multiple batches. The orthogonalization process replaces the
ith block of normal data by its Tangent normalization against blocks
1 through i� 1. When a new batch is processed, an additional block
is added using the normal samples from the batch at hand, which
are themselves first normalized against the reference normal
samples.

2.3 Pseudo-Tangent
Amassing a sufficiently large collection of normal samples that spans
the range of systematic noise types in the tumor samples is often dif-
ficult and sometimes infeasible. We therefore developed Pseudo-

Tangent as an adaptation of Tangent that uses signal-subtracted
tumor profiles (i.e. ‘pseudo-normal profiles’) to populate its refer-

ence subspace in addition to the standard normal profiles used by
Tangent.

In the first step of Pseudo-Tangent, we use Tangent with a small
set of normals to define the reference subspace and then circular bin-
ary segmentation (CBS) to generate a tentative copy-number profile

for each tumor (Venkatraman and Olshen, 2007). We then subtract
these tentative profiles from their original log-transformed tumor

profiles in order to generate a corresponding pseudo-normal profile
for each tumor input (keeping only deviations from the CBS segment
values). In the next step of Pseudo-Tangent, the tumors are parti-

tioned into n approximately equal subsets, with each subset then
Tangent-normalized against a reference subspace of pseudo-normals

in that subset’s complement. The partition parameter n is a user-
controlled parameter that is inversely related to the cardinality of
each subset. Finally, CBS is used to convert the resulting Pseudo-

Tangent-normalized coverage profiles into segmented copy-number
calls in the form of log2 copy ratios (Supplementary Fig. S1C).

It is possible that with sufficient numbers of pseudo-normal sam-
ples, true SCNAs in a tumor may be normalized away due to overfit-
ting. We therefore explored implementation of an additional step to

limit the number of dimensions of the pseudo-normal space to im-
prove Pseudo-Tangent’s overall performance. We first performed

truncated singular value decomposition (tSVD) on the entire collec-
tion of pseudo-normal profiles. We next retained a subset of the sin-
gular vectors with the greatest singular values to construct a reduced

subspace spanned by these singular vectors before proceeding with
the remaining steps of Pseudo-Tangent by normalizing our tumors

against this reduced subspace. This tSVD step limited the dimension-
ality of our pseudo-normal reference subspace and constrained us to
a smaller number of singular vectors to describe our pseudo-normal

noise distribution.

2.4 Comparisons against other normalization methods
When comparing Tangent normalization to other normalization
methods, we opted to exclude the X and Y chromosomes from our

analyses so that differences in their handling of the sex chromo-
somes would not affect their performances. For similar reasons, we
excluded CNV probes that map to known germline copy-number

polymorphisms or other regions where, due to errors in the experi-
mental platform, data across normals vary widely (Supplementary

Table S1). In our data, we identified such regions by running
GISTIC on the normal samples, to identify loci whose estimated
copy-number changes in normals rose to levels that might lead to

false positive GISTIC peaks. Specifically, we excluded loci whose
G-scores across normals were >20% of the threshold for being
called a significantly recurrent SCNA by GISTIC in the correspond-

ing tumor cohort. To normalize using matched normals, we sub-
tracted the log2 ratios of each matched normal from its

corresponding tumor. For tumors with more than one matched nor-
mal (blood or normal tissue sample), the matched blood sample was
preferred over the matched normal tissue sample. To normalize

using the five nearest normals approach, we subtracted from each
tumor the mean of the five normals closest to it based on Euclidean

distance (Beroukhim et al., 2007).
To normalize using the average-normal method with WES data,

we first averaged the coverage at each interval across the entire
panel of normal samples to produce a standard average-normal. We
then subtracted the log2 ratios of this computed average-normal

from each tumor. Normalization using GC correction was per-
formed based on the GC content normalization algorithm in
HMMcopy (Lai et al., 2016).
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3. Results

3.1 Tangent method overview
We have found systematic biases to be prevalent in both array- and
sequencing-based data, both within and across batches, and found
that these biases can generate widespread false positive SCNAs that
can recur across samples (Fig. 1A). In principle, these biases can be
overcome by normalizing tumor data only against normal control
samples that have been profiled under identical experimental condi-
tions. In practice, many of these experimental conditions are neither
known nor measured. We developed the Tangent method to recon-
struct normal controls that most accurately represent the tumor
noise profile, so as to overcome these tumor-specific biases.

Tangent assumes that variations in experimental conditions can
introduce variations in signal intensity or coverage profiles, such
that normal samples that represent a single diploid state can produce
signal intensity or coverage profiles encompassing a subspace N of
the space of all possible coverage profiles. By accruing a collection
of normal samples from the same batch/center as the tumors and
with similar noise characteristics, Tangent attempts to construct this
reference subspace N as the space that spans all linear combinations
of normal profiles. Tangent then assumes that, for any copy-number
profile T from a tumor sample, the point in subspace N that is most
similar to T represents the profile of a normal sample characterized
under similar conditions as T. SCNAs are then represented as the
difference between T and that nearest point in subspace N (Fig. 1B–
D; see Section 2).

3.2 Tangent analysis on microarray data
To assess Tangent’s performance on copy-number profiles generated
from microarray data, we applied it to data comprising 497

glioblastomas and 451 normal samples profiled by TCGA using
SNP 6.0 arrays. We benchmarked Tangent against two other nor-
malization methods: use of matched normal samples from the same
patient (which was possible for only 386 of the GBMs), and use of
the five normal samples with noise profiles closest to those in the
tumor (Beroukhim et al., 2007). We compared the performance of
these normalization approaches in detecting SCNAs based on pres-
ervation of signal intensity, reduction in ‘empirical noise’, and im-
provement in signal-to-noise ratio (SNR). We measured the
‘empirical signal’ as the standard deviation of median signal inten-
sities among all chromosome arms and the ‘empirical noise’ as the
median absolute difference between log2 copy ratios of adjacent
intervals or probes.

All three normalization methods described preserved signal in-
tegrity, but only Tangent normalization consistently reduced system-
atic empirical noise and thus increased SNRs (Fig. 2A–C;
Supplementary Fig. S2). Normalization using the five nearest nor-
mals improves empirical noise levels negligibly, and normalization
by matched normals tends actually to increase empirical noise levels
and decrease SNRs relative to data that had not been normalized. As
a result, segmented copy-number profiles generated after Tangent
normalization exhibited less hyper-segmentation than profiles gener-
ated using other methods (Supplementary Fig. S2).

We next investigated the effects of increasing the size of the nor-
mal reference pool used by Tangent on reducing noise. We re-
applied Tangent to our set of glioblastomas while incrementing the
numbers of normal samples used to define our reference subspace
from 0 (i.e. no use of Tangent) to 3146 samples across 13 batches
(median number of normal samples per batch 255, range 102 to
281). These normal samples represented data generated by TCGA
from normal blood leukocytes obtained from patients with a variety
of cancers. We observed a monotonic reduction in median empirical
noise levels with increasing numbers of normal samples, although
this improvement decreased asymptotically and offered negligible
benefits after approximately 1000 normal samples (four batches;
Fig. 2D; note that the number of normals varied across TCGA
batches). It is possible that the optimal number of normals depends
upon the resolution of the underlying data. We would anticipate
that higher-resolution data, measured at more genomic loci, might
benefit more from large panels of normal samples.

We also investigated the effects of altering the composition of
our normal reference pool, and specifically the utility of including
normal samples that had been profiled in the same versus different
batches of arrays as the tumor under study. We observed greater em-
pirical noise reduction when utilizing the entire set of normal sam-
ples across batches than we did when applying Tangent using a
reference subspace containing only normal samples from the same
batch (Fig. 2E). Nevertheless, whether Tangent utilizes the entire
reference subspace or it uses only a subset of normal samples from
the same batch, both methods consistently yield lower levels of post-
normalization empirical noise compared to pre-normalization noise
for all tumors.

3.3 Tangent analysis on whole-exome

sequencing data
We next evaluated Tangent’s performance on sequencing data, by
applying it to WES data generated by TCGA. We initially evaluated
data from 123 tumors and 129 matched normal samples across four
tumor types: low grade gliomas, lung squamous cell carcinomas,
prostate adenocarcinomas and stomach adenocarcinomas (‘WES set
1’; see Supplementary Table S3). We compared the performance of
Tangent with normalizing against matched normals, an average nor-
mal from a panel of normals. We also combined each approach with
a method that corrects for variations in local GC content (Ha et al.,
2014) to determine whether Tangent provides improvements be-
yond GC correction.

We found that Tangent outperforms these conventional normal-
ization methods. Specifically, the average empirical noise in post-
Tangent-normalized data is 35% lower than post-normalization
against matched normals and 26% lower than post-normalization

A

B

D

C

Fig. 1. Overview of problem and method. (A) Segmented pre-normalized log2 copy-

number ratios on replicates of DNA from the HCC1143BL immortalized lympho-

cyte (non-cancer) line across 110 batches in chromosome 1. As these variations are

observed in the same DNA, they represent experimental artifacts. (B) Reduced, 2D

representation of the Tangent methodology. For each tumor we compute its projec-

tion onto a lower-dimensional subspace defined by normal samples profiled in parallel

with the tumors. Signal representing somatic copy-number alterations is contained

within the difference between the tumor and its projection. (C) Concept of Tangent

normalization: by using a linear combination of normal samples as a reference,

Tangent can compare each tumor sample to a reference constructed to match its noise

components. (D) Flowchart describing the steps of Tangent normalization
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against an average normal (Fig. 3A). This level of noise reduction is
attained without significant compromise on signal. The average
SNR in post-Tangent-normalized data is 58% higher than that

post-normalization against matched normals, and 78% higher than
post-normalization against an average normal (Fig. 3B). Adding GC
correction to the other two normalization methods does not enable

A

B

D E

C

Fig. 2. Normalization of SNP array data from 497 TCGA glioblastomas. Scatter plots indicate post-normalization versus pre-normalization (A) signal, (B) noise level and (C)

signal-to-noise ratios for the normalization methods: Tangent, five nearest normals and matched normals. (D) Box plot of post-normalization noise as a fraction of pre-normal-

ization noise, following tangent normalization with increasing numbers of normal samples (approximately 250 normal samples were added in each batch). (E) Noise ratio

(post-normalization over pre-normalization noise) for glioblastoma samples following tangent normalization using the entire reference plane versus tangent normalization

using only the normal samples processed in the same batch as a tumor. Almost all samples lie below y¼x, indicating that there is greater noise reduction with the full reference

plane
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them to reach the performance of Tangent. Use of Tangent results in
31% lower empirical noise and 57% higher SNR on average than
use of matched normals and 55% lower empirical noise and 115%
higher SNR on average than use of an average normal. Application
of GC-correction to Tangent-normalized data provided only mar-
ginal benefit relative to Tangent alone (Fig. 3A and B).

These analyses suggest that Tangent normalization largely
corrects for noise resulting from variations in GC content across
the genome. We also assessed the extent to which GC content, as
well as replication timing, contribute to the estimated noise
profiles (the projection of the tumor vector onto the noise
subspace N) that Tangent subtracts. We first determined the
estimated noise profile of each tumor in WES set 1 by computing
its projection into the subspace of matched normal samples. We
then determined the correlation between each of these estimated
noise profiles with genome-wide vectors for GC content and
replication timing (The ICGC/TCGA Pan-Cancer Analysis of

Whole Genomes Consortium, 2020). Overall, we observed only
weak correlations (average Spearman q of 0.00614 and 0.0223,
respectively; Supplementary Fig. S3A and B).

Tangent also performs better in detecting copy-number break-
points from WES data. To establish ground-truth breakpoints, we
applied SvABA to call rearrangement loci in 249 TCGA samples
that had whole-genome sequencing (WGS) data available (Wala
et al., 2018). By using the SvABA rearrangement calls as gold stand-
ard, we compared copy-number breakpoints detected in WES analy-
ses to these loci from WGS data, and calculated the distances
between these breakpoints and rearrangement loci. We specifically
compared the performance of Tangent normalization to the
average-normal method. The Tangent pipeline resulted in more
copy-number breakpoints that were adjacent to rearrangement loci
from WGS data compared to the average-normal pipeline (41% ver-
sus 13%). Among breakpoints that were adjacent to a rearranged
locus, the median distance between breakpoints and rearranged loci

A

C

E

D

B

Fig. 3. Performance of Tangent on WES data. (A) Noise levels and (B) signal-to-noise ratios for Tangent-normalized data (tangent); data normalized against corresponding

matched normals (MatchedNorm); and data normalized against an average across a panel of normals (AverageNorm), both with and without additional GC correction. (C)

Noise and (D) signal-to-noise ratios plotted against the number of normal samples in the reference subspace. (E) Signal-to-noise ratios for average-normal normalized profiles

and Tangent-normalized profiles plotted against purity for 40 simulated tumor sample generated at 10 different levels of purity
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was lower in the Tangent analyses than the average-normal analyses
(34.1 kb versus 203 kb; Wilcoxon Rank-Sum P¼2.2 � 10�16)
(Supplementary Fig. S3C and D).

Moreover, tumor purity and ploidy estimates improve with use
of Tangent. We applied ABSOLUTE on the segmented copy-number
calls generated by the Tangent and average-normal pipelines on the
samples with WGS data (Carter et al., 2012). The resulting purity
and ploidy estimates were compared to the ground truth that was
defined by the ABSOLUTE purity and ploidy calls available on
Genomic Data Commons (Taylor et al., 2018). We found that all of
the Tangent-normalized samples received ABSOLUTE calls, where-
as 25% of the samples in the average-normal pipeline were issued a
‘no call’. The average difference in purity estimates in Tangent-
normalized data compared to the ground truth was lower than that
in the average-normal pipeline (0.057 versus 0.103). To assess the
accuracy of the ploidy estimates, we calculated the log2 ratio of the
estimated ploidy to the ground truth ploidy. We found that 64% of
Tangent-normalized samples had the correct ploidy calls, as com-
pared to 37% in the case of the average-normal pipeline. Among
samples with incorrect ploidy calls, in the setting of Tangent nor-
malization, 25% could be explained by a discrepancy in genome
doubling calling, compared to 17% in the setting of the average-
normal pipeline (Supplementary Fig. S3E–G).

Furthermore, we demonstrated that Tangent improves the accur-
acy of purity and ploidy estimates by comparing these estimates
with ‘real’ measures of purity and ploidy from FACS-sorting analy-
ses on 36 ovarian carcinomas in TCGA (Carter et al., 2012).
ABSOLUTE purity and ploidy calls were generated after either
Tangent or average-normal normalization, and the absolute differ-
ences in purity and ploidy from the FACS data were computed.
Tangent significantly outperformed Average-Normal normalization
in estimating ploidies relative to the FACS-sorting estimates (Mann–
Whitney P¼1.33e�3; Supplementary Fig. S3H). Estimated purities
from FACS-based estimates were not significantly closer to either
normalization method (Mann–Whitney P¼0.479; Supplementary
Fig. S3I).

Similar to our experience with SNP arrays, we found that
increased numbers of normal samples in the reference pool
improved empirical noise profiles after Tangent normalization.
Using WES set 1, we applied Tangent using between 10 and 1000
reference normal samples sequenced by TCGA, including normal
samples from patients with the four tumor types under study and six
other tumor types (see Supplementary Material). We found that
Tangent’s performance plateaued at approximately 200 normal
samples (Fig. 3C and D).

In order to understand how Tangent improves SCNA calling
under different tumor purity conditions, we assessed Tangent’s per-
formance relative to average-normal normalization on a set of simu-
lated sequencing runs. Using EAGLE, a whole genome simulator
developed by Illumina to mimic their sequencers’ performance
including biases and errors, we generated 40 simulated tumor sam-
ples (4 at each of 10 purity levels ranging from 10% to 100%), as
well as 40 simulated normal samples. After running Tangent on
these simulated samples, we noticed that SNRs improve as underly-
ing tumor purity increases (Fig. 3E). We estimated signal here as the
standard deviation of signal intensities of all segments after CBS and
empirical noise as the median absolute difference between log2 copy
ratios of adjacent intervals. In particular, signal, noise and SNR all
remain significantly improved with Tangent relative to Average
Normals Normalization at all tumor purities down to 10% (Fig. 3E
and Supplementary Fig. S4A and B). We conclude that Tangent nor-
malization improves SNR compared to average-normal normaliza-
tion regardless of purity.

One concern in using denoising algorithms such as Tangent is
that overfitting of tumors may eliminate real tumor signal. One con-
sequence could be to decrease estimated tumor purity. To address
this concern, we ran ABSOLUTE on 10 tumors within WES set 1
after normalizing their profiles using between 10 and 1000 reference
normal samples. The average difference in the purity estimated using
10 samples versus 1000 samples was only 0.006 (Supplementary
Fig. S4C and D).

In addition to running Tangent on these samples in TCGA, the
vast majority of which were fresh frozen samples, we also compared
the performance of Tangent to average-normal normalization using
a cohort of 37 Formalin-Fixed-Paraffin-Embedded (FFPE) CESC
samples in TCGA. Traditionally, FFPE samples have represented a
greater challenge in copy-number calling and often result in highly
noisy copy-number profiles (McSherry et al., 2007). We demon-
strated substantially improved copy-number calling when using
Tangent versus average-normal normalization, as quantified by re-
duction of hypersegmentation, improving from a median of 378 seg-
ments to 131 segments (Wilcoxon Rank-Sum P¼2.72 � 10�10),
regardless of segmentation algorithm used (Supplementary Fig. S4E
and F). These results demonstrate that Tangent improves copy-
number determination in FFPE samples, as well as in fresh frozen
samples.

We also found Tangent to run efficiently. When applying
Tangent to exomes representing 40 tumor and 40 normal samples,
Tangent consumed 2 min and 3 s of CPU on one Intel Skylake core.

3.4 The relative importance of normalization to other

pipeline components
We performed additional benchmarking analyses on a cohort of
TCGA CESC samples (306 WES tumors and 295 corresponding
SNP array tumors, detailed in Supplementary Methods) to evaluate
the magnitude of improvements in copy-number calling as a result
of Tangent normalization relative to differences between segmenta-
tion algorithms. We generated copy-number calls using four copy-
number pipelines: first by comparing Tangent to average-normal
normalization, then CBS to piecewise constant fitting (PCF) segmen-
tation post-normalization (Nilsen et al., 2012; Venkatraman and
Olshen, 2007). We performed comparisons according to four met-
rics: (i) manual review of copy-number profiles; (ii) average number
of copy-number segments; (iii) distance between copy-number pro-
files generated from WES versus SNP array data; and (iv) recapitula-
tion of known copy-number driver events using GISTIC2.0.

Visualization of the copy-number profiles from all 306 WES
samples demonstrated marked improvement from the average-
normal pipelines to Tangent and comparatively modest gains in per-
formance using CBS versus PCF as the segmentation algorithm of
choice (Supplementary Fig. S5A). The profiles generated from the
average-normal pipelines showed markedly increased and more in-
consistent copy-number events and empirical noise compared to the
cleaner profiles observed with Tangent.

We observed similar improvements in Tangent from average-
normal normalization when assessing noise in terms of level of
hypersegmentation. Analyses with extensive noise tend to result in
hypersegmentation, which can be reflected in higher number of
copy-number segments per sample. Following this principle, we
found that Tangent consistently generated fewer segments than
average-normal normalization regardless of our choice in segmenta-
tion algorithms and across different experimental platforms
(Supplementary Fig. S5B).

When comparing copy-number pipelines, one would expect the
best pipeline to provide the greatest concordance between results
from different experimental platforms. We used distance correlation
to evaluate the concordance across experimental platforms. We
found that once again regardless of the choice of segmentation algo-
rithm, Tangent normalization led to higher distance correlation be-
tween SNP array and whole-exome data when compared to the
average-normal pipelines (Supplementary Fig. S5C).

To compare the ability of the pipelines in recapitulating known
driver SCNAs, we first applied GISTIC2.0 on WES data to generate
a list of significant copy-number events in the form of GISTIC peaks
(Mermel et al., 2011). We then compared these events to a published
list of 17 known gene amplifications and 3 known gene deletions in
CESC (The Cancer Genome Atlas Research Network, 2017). Copy-
number data processed using the Tangent pipelines detected more
known driver events than the average-normal pipelines, as evident
in both cases of CBS (19/20 versus 2/20) and PCF segmentation
(16/20 versus 6/20). In the Tangent pipeline with CBS segmentation,
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19 of the 20 driver events were detected, with the exception being
KLF5 amplification (Supplementary Table S2). We suspect the
KLF5 amplification peak is a result of local super-enhancer duplica-
tion, and since WES technology likely would not have captured the
non-coding super-enhancer region, this event was not detected in
any of the four pipelines (Zhang et al., 2018). However, the overall
greater sensitivity in detecting copy-number driver genes from
Tangent-normalized data compared to data processed with the
average-normal pipelines strongly suggests that Tangent normaliza-
tion offers a substantial improvement in copy-number calling, more
so than the choice of segmentation algorithm.

In all of these analyses, we found that Tangent normalization
meaningfully resulted in higher accuracy in copy-number calling
when compared to average-normal normalization. These improve-
ments in accuracy also exceeded the differences between CBS and
PCF segmentation, which affirms the important role of Tangent in
accurately profiling SCNAs.

3.5 Pseudo-Tangent: a method to compensate for

insufficient normal data
Tangent assumes that systematic noise distributions in tumors are
identical to those in normal samples. However, it is often impossible
to collect a sufficiently large collection of normal samples to encom-
pass the range of systematic noise types spanned by the tumor sam-
ples. In light of this limitation, we developed Pseudo-Tangent as an
adaptation of the Tangent pipeline that utilizes a reference subspace
composed of signal-subtracted tumor profiles (i.e. ‘pseudo-normal
profiles’) instead of the standard normals used in Tangent. In brief,
the method first estimates SCNAs for each tumor using standard
Tangent with a limited number of normal samples. Pseudo-Tangent
then applies Tangent again to detect SCNAs for each tumor, using a
reference subspace comprising other tumors from which the initially
detected SCNAs had been subtracted (see Section 2).

We applied Pseudo-Tangent to TCGA WES data from 306
CESC primary tumors (‘WES set 2’). We initially normalized these
data against WES data from five normal samples obtained from
blood and used these to generate 306 corresponding pseudo-normal
profiles. We then divided the tumors and their matching pseudo-
normal profiles into three batches, and normalized each tumor in
each batch against the pseudo-normal profiles in the other two
batches. (The number of batches is a modifiable parameter.)

We then compared these results to previously generated gold-
standard absolute allelic copy-number profiles (Taylor et al., 2018).
The gold-standard profiles were generated by applying the standard
Tangent pipeline and the ABSOLUTE algorithm (see Section 2;
Carter et al., 2012) to primarily SNP array data from these 306
tumors and 3154 normal samples. (ABSOLUTE did, however, use
mutation calls from WES data to optimize its tumor purity esti-
mates.) We selected gold-standard profiles based upon a different
experimental platform (SNP array data) to minimize cross-
contamination of artifacts in the WES data used by Pseudo-Tangent.
We measured empirical noise as the average distance of each probe
in the Pseudo-Tangent-generated coverage profile from its nearest
estimated absolute total copy-number level. We found that all 278
CESC tumors with ABSOLUTE solutions displayed lower empirical
noise levels after undergoing Pseudo-Tangent normalization than
they did after just the initial round of Tangent normalization using
only the 5 true normal samples (Fig. 4A).

One concern with applying Pseudo-Tangent is that with suffi-
cient numbers of pseudo-normal samples, true SCNAs in a tumor
may be normalized away due to overfitting. We therefore explored
whether limiting the number of dimensions of the pseudo-normal
space could improve Pseudo-Tangent’s overall performance.
Specifically, we performed singular value decomposition of the
pseudo-normal reference subspace, retained between 10 and 306 of
the singular vectors with the greatest singular values, and normal-
ized our tumors against a reduced subspace spanned by these singu-
lar vectors. We then determined the number of singular vectors that
provided optimal results, as indicated by generating copy-number

profiles with the smallest deviations from the results of our
gold-standard ABSOLUTE runs on the same tumors.

We found that the median difference between copy-number
levels generated after Pseudo-Tangent and those generated by the
gold-standard ABSOLUTE pipeline was lowest when we used the
150 singular vectors with the greatest singular values (Fig. 4B),
which captured 98% of the variance of the entire pseudo-normal
reference subspace. However, the optimal number of singular vec-
tors varied across the different tumors. In particular, the noisiest
tumors seemed to have greater empirical noise reductions when 10
singular vectors were used rather than larger numbers of singular
vectors (Fig. 4C). This behavior suggests that optimal use of Pseudo-
Tangent might take into account the noise level of the tumor being
normalized when determining the number of singular vectors to
retain.

In addition to running Pseudo-Tangent on these 306 fresh-frozen
CESC samples, we also investigated Pseudo-Tangent’s effect on
noisier FFPE tumors. We ran Pseudo-Tangent on a set of 37 FFPE
TCGA tumors, using 5 corresponding blood normal samples for ini-
tial normalization. Upon comparison with gold-standard absolute
allelic copy-number profiles as described above, the Pseudo-
Tangent-normalized copy-number profiles again exhibited lower
empirical noise levels as compared to the profiles of the same sam-
ples after only the initial round of Tangent normalization with only
five normal samples (Fig. 4D). Furthermore, when we attempted
Pseudo-Tangent normalization using a reduced subspace spanned by
the top 10 pseudo-normal singular vectors, we noted an additional
reduction in empirical noise, again primarily driven by the noisiest
tumors (Fig. 4E).

4. Discussion

Although Tangent was developed for use with SNP array data, we
have extended its use to WES data, and in principle it can be applied
to any source of copy-number data that measures DNA dosage with
varying signal intensity or depth of coverage, such as WGS or CGH.
For example, we have applied Tangent to targeted NGS cancer pan-
els to identify somatic copy-number alterations (Brastianos et al.,
2013). Indeed, Fehrmann et al. (2015) developed a similar method
to detect SCNAs from transcriptomic profiling data, in which they
remove principal components reflecting different transcriptional
states to enrich for transcriptional changes reflecting underlying
SCNAs. PEER (Stegle et al., 2010) also applies a similar approach to
tangent—factor analysis—to remove common expression patterns
in transcriptomic analyses.

Several additional approaches can further improve copy-number
estimates. For example, integrating rearrangement data collected
from WGS (Drier et al., 2013; Layer, 2014; Rausch et al., 2012;
Wala et al., 2018) can provide information about copy-number
breakpoints, thereby further improving accuracy of SCNA profiles.
Further improvements to SNRs can also be obtained from algo-
rithms that determine differences in absolute rather than relative
copy-numbers (Carter et al., 2012; Van Loo et al., 2010), including
methods such as Sequenza (Favero et al., 2015), Accucopy (Fan
et al., 2021) and Sclust (Cun et al., 2018), which integrate tumor
purity and ploidy estimation with normalization and segmentation
to further improve accuracy. However, these algorithms require nor-
malized copy-number ratios as inputs or calculate them internally,
and therefore are likely to benefit from the improved normalization
Tangent provides.

Accurate SCNA determination relies on having normal control
samples that have been processed in identical fashion to the tumors.
For example, SCNA profiling of tumors obtained from a large var-
iety of institutional sources—such as may occur when profiling
tumors studied in multi-institutional clinical trials or in clinical labo-
ratories—would ideally make use of normal tissue obtained from
each institution contributing tumors. Unfortunately, this is often dif-
ficult or impossible in practice. Likewise, tumor tissue obtained
through careful surgical resection in which the tumor is separated
from its blood supply for an extended period may not be adequately
reflected by normal DNA from blood samples. Pseudo-Tangent may
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help remove the effects of systematic noise in these situations by gen-
erating pseudo-normals from tumors that were processed in similar
fashion to each other. However, application of Pseudo-Tangent car-
ries risk of overfitting and loss of signal, particularly if SCNAs are
not adequately removed while generating pseudo-normals from

tumor samples. This is also a concern with Tangent itself, if some of
the ‘normals’ it receives as input in fact contain substantial signal
from tumors. In situations where true normals are available, exten-
sive profiling of these normals as controls for the tumors is prefer-
able to computational generation of pseudo-normals as described

A

C

D E

B

Fig. 4. Pseudo-Tangent decreases noise in resulting copy-number profiles compared to standard tangent, as measured by deviation from ABSOLUTE-estimated copy-number

levels. (A) Average deviation from ABSOLUTE-estimated copy-number levels after Pseudo-Tangent (vertical axis) versus Tangent alone (horizontal axis). (B) Improvement in

the deviation from ABSOLUTE-estimated copy-number levels after use of Pseudo-Tangent, as a fraction of the deviation after only standard Tangent had been used (vertical

axis), against the number of singular vectors used for Pseudo-Tangent (horizontal axis). The median improvement was greatest when 150 singular vectors were used. (C)

Average deviation from ABSOLUTE-estimated copy-number levels after Pseudo-Tangent (vertical axis) versus Tangent alone (horizontal axis) as in (A), after use of (left) 200

singular vectors, (middle) 100 singular vectors and (right) 10 singular vectors. Although median levels of deviation from ABSOLUTE-estimated copy-number levels increased

when fewer than 150 singular vectors were used, the noisiest tumors saw the greatest improvements when only 10 singular vectors were used. (D) Average deviation from

ABSOLUTE-estimated copy-number levels after Pseudo-Tangent (vertical axis) versus Tangent alone (horizontal axis) for 37 FFPE samples. (E) Average deviation from

ABSOLUTE-estimated copy-number levels after Pseudo-Tangent with use of 10 singular vectors (vertical axis) versus Tangent alone (horizontal axis) for 37 FFPE samples
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here. Moreover, we recommend performing quality control on these
normals to ensure that they contain no tumor-in-normal contamin-
ation—with special consideration to the possibility that tumors are
mislabeled as normals, and to tumor-adjacent normals that might
actually include infiltrating tumor.

The Tangent pipeline we describe here was the basis for copy-
number determination across TCGA. Through improved denoising of
raw coverage data, Tangent permits more accurate detection of SCNAs
compared to previous methods. With this improved detection comes
potential increased ability to identify subclonal SCNAs, which have
traditionally been and remain rather difficult to detect. Additionally,
both Tangent and Pseudo-Tangent are widely applicable to a large var-
iety of research and clinical applications and copy-number profiling
platforms, and can be integrated with further improvements in SCNA
detection that make use of alternative sources of information such as
rearrangement locations and tumor purity and ploidy.
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