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The performance of a brain-computer interface (BCI) will generally improve by increasing the volume

of training data on which it is trained. However, a classifier✬s generalization ability is often negatively

affected when highly non-stationary data are collected across both sessions and subjects. The aim of

this work is to reduce the long calibration time in BCI systems by proposing a transfer learning model

which can be used for evaluating unseen single trials for a subject without the need for training session

data. A method is proposed which combines a generalization of the previously proposed subject-specific

‘multivariate empirical mode decomposition’ preprocessing technique by taking a fixed band of 8-30

Hz for all four motor imagery tasks, and a novel classification model which exploits the structure of

tangent space features drawn from the Riemannian geometry framework, that is shared among the train-

ing data of multiple sessions and subjects. Results demonstrate comparable performance improvement

across multiple subjects without subject-specific calibration, when compared with other state-of-the-art

techniques.

Keywords: Motor imagery; brain-computer interface (BCI); tangent space, covariance matrix, multivari-
ate empirical mode decomposition (MEMD), subject-specific multivariate empirical mode decomposition
based filtering (SS-MEMDBF).

1. Introduction

The brain-computer interface (BCI) is gaining pop-

ularity due to its applicability to a number of di-

verse fields ranging from medicine to gaming. BCI

not only allows an alternative control mechanism for

healthy users but can also allow those with a disor-
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der of consciousness the means for communication or

control.1–5

Vidal6 first introduced the term BCI in 1973

before a follow up study by the same author in 1977

demonstrated on-screen cursor control using the vi-

sual evoked potential phenomenon. It wasn✬t until

1988 that Farwell and Donchin utilised the P300

event-related potential to successfully spell a word.

In the same year, Bozinovska et al.7,8 were able

to control a buzzer using their Contingent Nega-

tive Variation (CNV) potential, whilst Bozinovski et

al.9 were able to demonstrate robotic control using

changes in the alpha frequency band for the very first

time. More details about the early works carried out

in BCI can be found in Bozinovski and Bozinovska.10

The field of Artificial Intelligence (AI) has seen a

resurgence in recent years along with its subfields of

machine learning and artificial neural networks11–13

with an increasing body of literature appearing on

deep networks.14 Techniques such as these and others

used for neural modelling15,16 attempt to mimic cor-

tical processes and have uses not only in neuroscience

but also in engineering17 and computer science. A

BCI is complex device and often utilises techniques

from many of these fields along with the collective

expertise of physicians, psychologists, hardware, and

software engineers to produce a system which is suf-

ficiently accurate and fast as to be practical.

Although the field of BCI can generally be sub-

divided into those which focus on endogenous and

those on exogenous methods,18 this paper focuses on

the former principle of imagined movement, i.e. mo-

tor imagery (MI) BCI.19 A perennial problem in MI

based BCI, is the length of time it typically takes to

train a machine learning model to classify modula-

tions in a user’s brainwaves. Additionally, it is gen-

erally accepted that just because one classifier pro-

duces a high accuracy for one participant, this does

not necessarily mean that it will do so in another, or

even for that matter, on the same participant on a

different day. In other words, there is rarely a one-

size-fits-all solution in machine learning, or at least

it has yet to be discovered.

Initially in MI BCI, subjects had to adapt to

a classifier with invariant parameters, and although

early studies demonstrated some level of success us-

ing this approach, it would often take an imprac-

tically long time to train the user. For instance,

Bozinovska et al. (1990, 1992),20,21 in their closed-

loop paradigm using the contingent negative varia-

tion (CNV) phenomena,20 were able to exploit the

expectation process to effect a change.

These attempts, though largely successful, re-

quired a classifier to be retrained before each test-

ing period adding further unnecessary delay. One

method was to train on all previous sessions data,

which has the side-effect of being drawn from differ-

ing probability distributions, leading to a significant

estimation bias.22 A modern approach to this prob-

lem is to find a pattern or shared structure in the

differences in these data taken both from different

sessions and often from different subjects.23

Bozinovska et al.20,21 used a stimulus based

closed-loop CNV paradigm which needed no initial

training and is a good example of a zero-training

BCI. Common spatial patterns (CSP), which fre-

quently appear in the literature, utilise covariance

matrices as a feature space, as do studies based on

Riemannian geometry which however, appear much

less often. In the past, researchers have applied sev-

eral different transfer learning methods in conjunc-

tion with CSP. In a move towards the coveted “zero

training BCI”, Krauledat et al.24 developed an on-

line system which demonstrated that performance

did not suffer even in the absence of a calibration

session, due to the application of spatial filters gen-

erated from previous session data, which generalise

better than those obtained from a single session.

Similarly, others25 have also demonstrated their

zero training subject-independent system by using

a general classifier trained on a large dataset taken

from forty-five subjects. By using subject-specific

spatial and temporal filters, Fazli et al.25 allowed

new BCI users immediate control in real time with

only a slight drop in performance. Others have per-

formed regularisation of spatial filters26,27 to achieve

effective subject-to-subject transfer, whilst more re-

cently, researchers have turned their attention to

Riemannian geometry28–30 as a tool to achieve the

same ends. The non-stationarity inherent in elec-

troencephalogram (EEG)/magnetoencephalography

(MEG) signals is another significant problem in BCI

and is often exhibited in inter-session transfers. Also

known as a covariate shift, this can cause classifier

performance to deteriorate over time. As both EEG

and MEG are often recorded using multiple chan-

nels over multiple trials, this can lead to a high di-

mensionality further impacting on classification ac-
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curacy. Sugiyama et al.31 use covariate shift adap-

tation in conjunction with an importance weighted

cross-validation method to address the inherent bi-

asedness of traditional model selection techniques.

Others such as Satti et al.,32 have also used simi-

lar methods by applying a covariate shift minimiza-

tion technique to variances in CSP filtered channels.

These techniques often rely on the relabelling of of-

fline data as does the similar process of employing

boosting-based learning algorithms as seen in Dai et

al.33 EEGNet34 was also proposed recently as a type

of compact convolutional neural network for EEG-

based brain-computer interfaces which works well,

even when limited training samples are available.

Transfer learning is the process of applying the

knowledge gained from one task, to another related

activity. The first discussion of transfer learning in

machine learning was by Bozinovski.35

BCI research is primarily concerned with

the challenge of gleaning useful information from

a recorded dataset through the identification of

some invariant feature(s), often referred to as

domain adaptation.36 It consists of first find-

ing a domain-independent structure (a domain-

independent model, feature set, or set of rules) and

then adapting it to the new domain of interest. An

alternative approach, is to discover some structure in

the rules for classification between different sessions

or subjects, sometimes referred to as rule adapta-

tion.23

This work describes a novel BCI classification

technique which exploits the structure of tangent

space features drawn from the Riemannian geome-

try framework which is shared among the training

data of multiple sessions and subjects. This is done

by proposing a classification model which can be used

for evaluating unseen single EEG MI trials of a new

subject without creating a classification model using

its training session data.

In the training session, a novel tangent space

based transfer learning (TS-TL) classification model

has been created by exploiting the features obtained

from the fixed band multivariate empirical mode de-

composition (FB-MEMD) filtering (8-30 Hz) to en-

hance EEG signals using leave-one-subject-out cross-

validation (LOSO-CV). The features share some

common information because the feature set is gen-

erated whenever a subject is asked to perform the

same MI task. The proposed method exploits the

shared structure of the tangent space features among

the training data of eight subjects and then uses the

shared structure model to identify unseen single EEG

MI trials from the remaining ninth subject, while ap-

plying the LOSO-CV procedure.

The overall aim of this work is to reduce the

long calibration time in BCI systems by proposing

a model which can be used for evaluating unseen

EEG MI single trials for a subject with no training

session data. Therefore, the following objectives are

proposed:

(1) To study the subject-to-subject non-stationarity

present in the EEG signals;

(2) To present the results in terms of classification

accuracy when single trials are classified.

2. Dataset

The publicly available BCI competition IV dataset

2A37 is used for this study. The dataset contains

EEG signals from twenty-two EEG channels and

three EOG channels with left mastoid used as a refer-

ence. Four MI tasks: right hand, left hand, foot, and

tongue movements were performed in this dataset.

The dataset contains data from nine healthy sub-

jects with each subject having two sessions: one for

training, and one for testing. Each session contains

288 trials of MI data with 72 trials for each MI task.

The EEG signals contained in this dataset were orig-

inally sampled at 250 Hz and then band-passed be-

tween 0.5 Hz and 100 Hz. Additionally, a 50 Hz notch

filter was applied to remove power-line noise. The se-

lection of time-interval in a single trial period plays

an important role in MI classification.

A 2 sec data window, between 0.5 sec and 2.5

sec (Figure 1), is taken after the onset of the visual

cue in the training stage, as used by the competition

winner.38 Further details about the BCI competition

IV dataset 2A can be obtained from.37 All twenty-

two channels have been considered in this study as

shown in Figure 2.

Table 1 shows the number of correct trials (CT)

and rejected trials (RT) from all subjects as marked

by event 1023 in the evaluation session37 which de-

notes trials containing artefacts.

Subject A02 has the least number of the rejected

trials. The RT corresponding to each MI tasks are as

follow: left hand (LH): 1 trial, right hand (RH): 1

trial, foot: 3 trials and tongue: 0 trials, respectively.
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Figure 1. Trial timing.

Figure 2. Head plot showing twenty-two channel considered for this study from BCI competition IV dataset 2A.

This gives a total of 5 trials rejected for subject A02

in the evaluation session and similarly Table 1 lists

rejected trials for all other subjects.

Table 1. Subject wise breakdown of correct and rejected trials.

Subject
Number of trials

Total CT RT LH RH Foot Tongue

A01 288 281 7 1 2 3 1
A02 288 283 5 1 1 3 0
A03 288 273 15 5 2 4 4
A04 288 228 60 13 15 13 19
A05 288 276 12 2 7 0 3
A06 288 215 73 19 17 18 19
A07 288 277 11 1 3 1 6
A08 288 271 17 6 4 3 4
A09 288 264 24 7 7 3 7

3. Methods

Motion intentions are classes in an MI BCI. Other

BCI tasks may classify into ”switch motor”, ”let-

ter A”, ”disable buzzer etc. One of the tasks in

a BCI is to classify motion intentions into one of

two classes. However, the recorded EEG signals are

highly subject-specific, sensitive to noise, and have

inherent non-stationarities due to changes in the sig-

nal properties not only over time, but also within

the session as well as across sessions. They may re-

quire a long training time, which limits the use of

BCI in both patients and healthy individuals. Some

BCI paradigms typically require the collection of

numerous trials for machine learning techniques to

be effective. Hence, this work presents a novel ’tan-

gent space-based transfer learning’ (TS-TL) method

to improve classification performance. This classi-

fication technique exploits the shared structure in

the tangent space features among the training data

of multiple sessions and subjects, instead of simply

combining the training data as in previous studies.39

Whereas previous work by Gaur et al.,40 described

in the following section, demonstrates the effective-

ness of a novel ’subject specific multivariate empir-

ical mode decomposition’ (SS-MEMD) based filter-

ing method in the preprocessing stage (Figure 3),

the current work, although utilising SS-MEMD, fo-

cuses instead on the application of the novel TS-TL
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method at the classification stage. Please refer to Fig-

ure 4 for an overview of the proposed method.

The enhanced EEG signals from all twenty-

two channels have been used to extract the sam-

ple covariance matrix as a feature set which contains

n(n + 1)/2 features where n denotes the number of

channels. Here, in this study, the number of chan-

nels are twenty-two, so the features obtained from

the enhanced EEG signals are 253.

3.1. Multivariate Empirical Mode

Decomposition

EEG signals tend to have a poor signal-to-noise

(SNR) ratio and suffer from interference from both

external sources, such as power lines, and physio-

logical sources such as electrooculography (EOG)

and electromyography (EMG).41 The EEG signals

of interest corresponding to a particular movement

(such as µ and β rhythms in the case of motor im-

agery) are often obscured by these noise and interfer-

ence sources leading to erroneous results. Therefore,

a preprocessing technique is required to filter this

noise without weakening the original signal. In 1998,

Huang et al. proposed empirical mode decomposition

(EMD)42 which decomposes the original signal into a

finite group of band-limited basis functions which are

known as intrinsic mode functions (IMFs). Based on

this EMD approach, the original signal can be rep-

resented in terms of IMFs and a residual as follows:

Z(t) =

p
∑

k=1

Ik(t) +Rsp(t) (1)

where Z(t) denotes the recorded EEG signal in the

time domain, Ik(t) represents the kth IMF, and

Rsp(t) gives the residual. Thus, a summation of the

selected IMFs can be used to reconstruct the sig-

nal of interest.43 The remaining IMFs are then dis-

carded which may contain artefacts and noise. How-

ever, univariate EMD suffers from what is known

as a ’mode mixing’ issue.42 To overcome this is-

sue, another research group proposed an extension

to EMD which they call ensemble empirical mode

decomposition (EEMD).44 Unfortunately, this is also

unsuitable for real-time implementations as it adds

white noise to all channels making this method time-

consuming. Additionally, a multichannel version of

the EMD method has been proposed which uti-

lizes cross-channel information called multivariate

empirical mode decomposition (MEMD).45–48 The

mean A(t) is computed through multivariate enve-

lope curves, given as:49

A(t) =
1

p

p
∑

j=1

eηj (t) (2)

where j gives the length of vectors. eηj (t) denotes

the multivariate envelope curves for the entire set

of direction vectors. More details can be obtained

from.45 Further, the candidate IMF Rd(t) is com-

puted as Rd(t) = Z(t)− A(t). If the candidate IMF

satisfies the stoppage criterion, then it becomes the

multichannel IMF. Otherwise, the input Z(t) is set

equal to the remainder Rd(t) and the complete pro-

cess will be repeated again until the remaining mul-

tivariate IMFs (MIMFs) have been extracted. All of

the MIMFs must satisfy two criteria: 1) the number

of maxima and minima should be zero or differ by

one, 2) the mean value of the envelope defined by

the local maxima and local minima should be zero

at any point. For more details please refer to.45 Re-

cently, Gaur et al.50 proposed a method for auto-

matic selection of MIMFs with reduced number of

channels (FC1, C1, CP1, FCz, Cz, FC3, C3, CP3,

FC2, FC4, C4, CP4, C2, CP2, and CPz) to enhance

the performance of MI based BCI.

To get a better insight of the MEMD decom-

position of EEG signals, a trial of each MI task is

considered to decompose the EEG signal of three

channels FC3, CP1, and POz simultaneously of the

provided twenty-two channels. In the final analysis,

all of the twenty-two channels were considered. The

feet, tongue, left hand, and right hand MI EEG sig-

nals were decomposed using this MEMD method.

The decomposition mechanism of the left hand MI

task is shown in Figure 5 decomposed using single

trials from subject A01T.

In this work, an MEMD filtering of fixed band

8-30 Hz is used to enhance the EEG signals in the

preprocessing step for all motor imagery tasks. This

filtering process helps to filter themu and beta bands

by retaining the IMFs which contributes to them and

by discarding the remaining IMFs. The discarded

IMFs contain high and low frequency components >

30 Hz and < 8 Hz, artefacts, and noise. The selection

criterion used to select the IMFs is to compute the

mean frequency of all the obtained IMFs and retain

the IMFs whose mean frequency falls between 8-30
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Figure 3. Overview of our previous work showing Subject-Specific Multivariate Empirical Mode Decomposition (SS-
MEMD) preprocessing stage before extracting features using covariance matrix computation.

Figure 4. Block diagram of the proposed methodology.

Hz. The mathematical expression of mean frequency

is denoted as:

MeanFIMF =

∑n
j=1 Pjfj

∑n
j=1 Pj

(3)

where n denotes the length of the frequency bin,

and Pj gives the power spectrum at the frequency bin

i, whereas fj represents the frequency value at the

frequency bin i. The obtained IMFs satisfying the

above criteria were summed to obtain the enhanced

EEG signal. Whereas in Gaur et al.40 a subject spe-

cific mean frequency range is identified , the current

work takes a fixed band of 8-30 Hz for all subjects

and MI tasks, as is more common in the literature in
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Figure 5. The EEG signals of channels FC3, CP1, and POz and their corresponding MIMFs of Subject A01T for left
hand MI task.

an attempt to maintain consistency.26,38

As the MI task begins at 2 seconds, the covari-

ance matrix feature is computed for the EEG signals

between 2.5 and 4.5 seconds. In this study, the mean

frequency measure is also calculated to identify the

MIMFs corresponding to the right hand, left hand,

both feet, and tongue MI tasks.

4. Proposed model: Tangent Space
Based Transfer Learning (TS-TL)
classification model

As mentioned previously, although not affecting all

systems, one problem in BCI is the long calibration

time needed where subjects are involved firstly in a

training session, followed by an evaluation session.

This work aims to address this issue by proposing a

novel classification model which can be used for eval-

uating unseen single trials for a subject without any

previously recorded training session data.

The training sessions from multiple subjects are

indexed as s = {1, ..., S} and have ntr
s trials, Zs =

{
(

xi
s, y

i
s

)

}
ntr
s

i=1. The tangent space concept in the Rie-

mannian geometry framework and the logarithmic

mapping gives the inverse mapping which is defined

as,

Logc(Qi) = Pi =

||lower{Q1/2log(Q−1/2QiQ
−1/2)Q1/2}||

(4)

where Q denotes the r × r symmetric positive

definite matrices. Pi is defined as the derivative at

t = 0 of the geodesic distance between exponential

mapping Qi(= Expc(Pi)) and Q. Pi denotes a tan-

gent vector at Q in the TS. See Figure 6 for more

information and refer to40,51 for detailed explana-

tion.

These features are derived from the tangent

space and named as tangent space features. Only

n(n+ 1)/2 are considered by taking the lower trian-

gular matrix of the provided n× n features as given

in eq. (5).

F =











x11 x12 x13 . . . x1n

x21 x22 x23 . . . x2n

...
...

...
. . .

...

xn1 xn2 xij . . . xnn











(5)
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Figure 6. The tangent space (TS) at point Q. Pi gives a tangent vector at Q.

where, xij denotes the tangent space feature ex-

tracted between channel i and channel j in the fea-

ture matrix F for each trial and xi
s ∈ R

d denotes the

features derived from the EEG signals of the training

session for subject s during trial i, with d denoting

the number of features selected from the feature ma-

trix F . Since the sample covariance matrices (SCM)

are symmetric, the lower triangular matrix is consid-

ered for this study giving a total of d = n(n + 1)/2

features. The xi
s consists of tangent space features

computed at different scalp locations. Variable yis de-

notes the label of either ’left’ or ’right’ hand imagi-

nation, in trial i for session s. This approach is ap-

plicable for solving two-class classification problems.

Here, it is solved as a linear regression problem with

yis ∈ {+1,−1} for all i and s. Based on this assump-

tion, the model is linear with a noise term ν, the

linear function model is denoted by:

yis = wT
s x

i
s + ν (6)

related to the subject/training session s. Here, a lin-

ear classifier is used for each subject s with features

xi
s and weights ws. The parameters ws shows the

weights assigned to the individual features which are

further used to evaluate the class label for unseen

trials in the evaluation session of a new subject s.

Given a new EEG signal x for subject/ evaluation

session s, the class label is evaluated by,

ŷi+1
s = wT

s x
i
s (7)

where, ŷi+1
s denotes the class assigned to unseen tri-

als. Each subject/training session has a shared struc-

ture (Σ, µ) that represents the invariant properties

for class prediction. To be specific, (Σ, µ) represents

the covariance and mean vectors of features respec-

tively. The divergence of the training session model

from the shared structure of each subject ||ws − µ||

gives the session specific properties of the class pre-

diction.36 This shared structure is unknown, thus the

main goal is to find the shared structure across all

the subjects. This is achieved by combining the op-

timization problem as:

min
K,Σ,µ

LF (K,Σ, µ;Z, θ) = min
K,

∑
,µ

1

θ

s
∑

1

||Xsws − ys||
2

+

s
∑

1

Ψ(ws; Σ, µ)

(8)

where, LF denotes the least square loss func-

tion with N(0, σ2). The estimated label is expected

to be normally distributed with mean zero and vari-

ance σ2. In this work the σ2 symbol is replaced with

the θ symbol. The input matrix for each subject

training data in matrix form is defined as Xs =

[x1T
s , ..., xnT

s ]T . Here nT denotes the training ses-

sion features for a particular subject, T denotes

the transpose of the matrix, K = [w1, ..., ws]
T
, and

Z = {Zs}
S
s=1. It is a common phenomenon that mod-

els trained without cross-validation may over-fit and

lead to poor generalization of unseen evaluation data.

So Ψ is used as a regularization term to handle over-

fitting.

Equation 8 has two parts. The first part is the

summation of the losses from each session. All the

sessions fit well is ensured by minimizing it. The sec-

ond part of the equation 8 is solved using minimiza-

tion with respect toK and (Σ, µ) in an iterative man-

ner by alternatively holding K and (Σ, µ) constant.

Now, the optimization over ws for fixed Σ and µ is

computed for all subjects/ training session data and
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hence it is optimized independently. The new ws is

obtained in each iteration by computing the deriva-

tive with respect to ws for all subjects s and then,

equating it to 0. For each ws, the closed form update

is given by:

ws =
(1

θ
XT

s Xs + µ−1
)

−1(1

θ
XT

s ys + µ−1Σ
)

(9)

The ws is computed iteratively by solving the

above optimization problem. ws refers to the weights

of the linear regression problem for a single MI task.

The structure shared across multiple subjects’ train-

ing data is computed using multi-task BCI. The al-

gorithm steps are as follow:

(1) Input: Z,θ

(2) Set :
{(

Σ, µ
)}

=
{

I, 0}

(3) Repeat

(4) Update ws =

(

1

θ
XT

s ysµ+Σ

)

(

1

θ
XsXT

s µ+I
)

(5) Update Σ using Σ̂ =
∑S

s=1

(

ws−µ
)(

ws−µ
)T

Tr
((

ws−µ
)(

ws−µ
)T) + εI

(6) Update µ using µ̂ = 1
S

∑S
s=1 ws

(7) Until converge

(8) Output :
{(

Σ, µ
)}

ε denotes a small number used for diagonal loading

and I represents the identity matrix. The aforemen-

tioned algorithm is used for computing the shared

structure and ws across training sessions using leave-

one-subject-out-cross-validation (LOSO-CV) for all

subjects. More details about different variations of

the optimization problem used to compute ws can

be obtained in the literature.36,52

5. Results and discussion

In the evaluation session, the tangent space feature

is computed on all unknown test trials of the cor-

responding evaluation session A0SE on a trial-by-

trial basis identified by LOSO-CV, where S repre-

sents the subject number and E represents the eval-

uation session number. These features are classified

using the proposed method and assigned a particular

class. Currently, the proposed method can be applied

to motion intentions into two class problems. In this

dataset, there are four MI tasks, it gives a total of

six combinations of two-class classification problems

which are as follows: left vs. right (LvR), left vs. foot

(LvF), left vs. tongue (LvT), right vs. foot (RvF),

right vs. tongue (RvT), and foot vs. tongue (FvT).

The classification accuracy is calculated for all nine

subjects for each evaluation session.

Table 2. LOSO-CV classification accuracy (%) for
the proposed classification method with one vs. one
scheme applied on BCI competition IV dataset 2A.

Subject
Accuracy with proposed method (%)

LvR LvF LvT RvF RvT FvT

A01 88.65 93.57 97.89 96.4 100 68.57
A02 61.27 62.86 65.03 79.29 67.83 70.21
A03 91.24 88.15 85.19 97.83 97.83 78.68
A04 74.14 57.63 83.93 77.59 82.73 62.5
A05 57.04 66.2 78.42 64.96 60.45 60.28
A06 69.44 70.09 71.7 67.89 58.33 55.14
A07 60 86.62 81.02 89.29 87.41 70.07
A08 94.03 80.74 91.79 83.94 90.44 85.4
A09 83.85 94.03 97.69 78.36 83.85 88.81

Average 75.52 77.77 83.63 81.73 80.99 71.07
Std 14.39 13.83 11.14 11.42 15.39 11.34

Table 2 reports the LOSO-CV results obtained

in terms of classification accuracy using a one vs.

one scheme when studied on BCI competition IV

datatset 2A. The LvR MI task provided an aver-

age of 75.52% group accuracy across all nine sub-

jects whereas the LvF MI task gives an average of

77.77% group classification accuracy for nine sub-

jects. The LvT MI task demonstrates a maximum

group classification accuracy of 83.63% when com-

pared with all other MI tasks for all nine subjects.

The RvF MI task gives an average of 81.73% group

accuracy whereas the RvT MI task reported an av-

erage of 80.99% group classification accuracy for all

nine subjects. The FvTMI task resulted in the lowest

group classification accuracy of 71.07% when com-

pared with all other MI tasks. It should be noted

that although an increase in the number of partic-

ipants would lead to a more statistically significant

result, this restriction is due to the nature of the

dataset used being BCI Competition IV Dataset IIa.

Table 3 compares the classification accuracy of

the proposed method against competing comparable

methods available in the literature. Std denotes stan-

dard deviation in Table 3.

Method 1 (M1) displays results from the evalua-

tion session from previously published work by Gaur

et al.40 which uses a subject-specific MEMD based

filtering method (SS-MEMDBF) for preprocessing

and implements a Riemannian geometry framework
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devised separately for each subject for classification.

In M1, for each subject, a subject-specific filtering

range is identified in the training session before a

classification model is created and used to classify

each unseen single trial of the evaluation session.

The proposed method uses a generalised 8-30 Hz fre-

quency band to cover the mu and beta bands, and

the LOSO-CV mechanism to build the classification

model before classifying unseen single trials from the

evaluation session not used in the LOSO-CV proce-

dure. The average classification accuracy of the pro-

posed method (TS-TL) (75.52±14.39) is comparable

to method M1 (79.93±14.99). Two of the nine sub-

jects show a slight improvement of >1% when classi-

fied using the proposed method whilst five are within

3% of the results presented in M1.

Table 3. Classification accuracy (%) for a left versus
right motor imagery task when compared with other
published works on BCI competition IV dataset 2A.

Subject Proposed M1 M2 M3 FBCSP
method

A01 88.65 91.49 88.89 90.28 84.4
A02 61.27 60.56 51.39 57.64 57.04
A03 91.24 94.16 96.53 95.14 97.08
A04 74.14 76.72 70.14 65.97 64.66
A05 57.04 58.52 54.86 61.11 69.63
A06 69.44 68.52 71.53 65.28 62.96
A07 60 78.57 81.25 61.11 77.14
A08 94.03 97.01 93.75 91.67 93.28
A09 83.85 93.85 93.75 86.11 92.31

Average 75.52 79.93 78.01 74.92 77.61
Std 14.39 14.99 17.01 15.43 14.82

Method 2 (M2)26 implements CSP on band-pass

filtered EEG between 8 and 30 Hz before calculating

the log variance from three pairs of filters for extrac-

tion of features and uses linear discriminant analy-

sis (LDA)26 for a binary classification problem. One

subject shows an improvement of almost 10% whilst

three others show varying levels of improvement.

Method 3 (M3)53 again implements CSP and

uses detection of the covariate shift and adaptive

learning. The proposed method outperforms M3 by

>0.5%. Subject A04 has also improved by > 8% with

an additional three subjects showing an improvement

of >3%.

A filter bank common spatial pattern (FBCSP)

technique implements filter bank CSP on EEG sig-

nals between 8 and 32 Hz taking a frequency band of

4 Hz. The frequency bands considered are 4-8, 8-12,

12-16, 16-20, 20-24, 24-28 and 28-32. Thereafter, the

log variance from three pairs of filters for extraction

of features is computed and uses linear discriminant

analysis (LDA)26 for a binary classification problem.

Four subjects show an improvement of almost 4%

whilst one subject shows a slight improvement of less

than 1%.

Although the results of this current study are

presented here in comparison with other state-of-

the-art methods, it is an unfair comparison. Results

obtained using the TS-TL method are based on a

different approach whereby a generalised model is

created using the LOSO-CV mechanism described

above. In other state-of-the-art methods, a subject

specific classification model is first created using

training session data before a subject specific clas-

sification model is used to classify evaluation data

for the same subject. The results herein demonstrate

that it is possible to create a generalised model and

then further classify the unseen trials of a new sub-

ject’s evaluation data by using the proposed novel

method.

Figs. 7, 8 and 9 display the difference between

the classification accuracy computed using (1) SS-

MEMDBF with the Riemannian geometry frame-

work40 (M1 in Table 3), (2) FB-MEMDBF (filtered

using a fixed frequency band of 8-30 Hz) with tan-

gent space based transfer learning (TS-TL) and (3)

FBCSP method obtained in the evaluation session

for all of the six possible binary MI tasks. The perfor-

mance improvement is demonstrated with bar graphs

for all nine subjects.

Fig. 7(a) shows the classification accuracy com-

parison using SS-MEMDBF with the Riemannian

geometry framework (M1), FB-MEMDBF with TS-

TL and other state-of-the-art methods (M2, M3 and

FBCSP) obtained in the evaluation session for the

left hand and right hand MI tasks. With the pro-

posed tangent space based transfer learning method,

comparable results were achieved when compared

with these other state-of-art methods. Although, the

results obtained with SS-MEMDBF40 and the Rie-

mannian geometry framework are impressive, a few

of the subjects still perform badly. This may be due

to the effect of non-stationarity, even after developing

a subject specific classification model. Hence, there

is a need to create a generalized model using trans-

fer learning which may help to overcome this issue.
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Left vs Right MI task
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(a)Comparison of classification accuracy for left hand and right hand MI task.

Left vs Foot MI task
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(b)Comparison of classification accuracy for left hand and foot MI task.

Figure 7. The bar graph displays the classification accuracy comparison using SS-MEMDBF with Riemannian geom-
etry framework, FBCSP and FB-MEMDBF (8-30 Hz) with TS-TL and other state-of-the-art methods obtained in the
evaluation session for (a) left hand and right hand MI tasks (b) left hand and foot MI tasks.

With the proposed method, a fixed band of 8-30 Hz

is considered in the preprocessing step and the fea-

tures were classified using a LOSO-CV mechanism

demonstrating results comparable with other state-

of-the-art methods. One of the nine subjects (A02)

shows a slight improvement in classification accuracy

when compared with all four of the competing meth-

ods.

The bar graph shown in Figure 7(b) displays

the classification accuracy comparison using SS-

MEMDBF with the Riemannian geometry frame-

work, FBCSP method and FB-MEMDBF (8-30 Hz)
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Left vs Tongue MI task
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(a)Comparison of classification accuracy for left hand and tongue MI task.

Right vs Tongue MI task
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(b)Comparison of classification accuracy for right hand and tongue MI task.

Figure 8. (a) The bar graph displays the classification accuracy comparison using SS-MEMDBF with Riemannian ge-
ometry framework, FBCSP and FB-MEMDBF (8-30 Hz) with TS-TL obtained in the evaluation session for (a) left hand
and tongue MI task (b) right hand and tongue MI task.

with TS-TL obtained in the evaluation session for

left hand and foot MI tasks. There is an improve-

ment in classification accuracy for two of the nine

subjects using the FB-MEMDBF (8-30 Hz) with TS-

TL method when compared to SS-MEMDBF with

the Riemannian geometry framework. Subjects A06

and A09 show an improvement in the evaluation ses-

sion. A total of three subjects of the nine subjects

haves shown improvement in the classification accu-

racy when compared with FBCSP method. Subjects

A05 and A06 show an improvement of >8% in the

evaluation session.



July 31, 2019 23:17 ws-ijns˙revision7

Tangent Space based Transfer Learning Classification Model for a Binary Motor Imagery based Brain-Computer Interface 13

Right vs Foot MI task
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(a)Comparison of classification accuracy for right hand and foot MI task.

Foot vs Tongue MI task
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(b)Comparison of classification accuracy for foot and tongue MI task.

Figure 9. (a) The bar graph displays the classification accuracy comparison using SS-MEMDBF with Riemannian geom-
etry framework, FBCSP and FB-MEMDBF (8-30 Hz) with TS-TL obtained in the evaluation session for (a) right hand
and foot MI task (b) foot and tongue MI task.

Fig. 8(a) presents the classification accuracy

when comparing SS-MEMDBF with the Rieman-

nian geometry framework, FBCSP method and FB-

MEMDBF (8-30 Hz) with TS-TL obtained in the

evaluation session for the left hand and tongue MI

tasks. Two of the nine subjects show improvement

in classification accuracy using the FB-MEMDBF

(8-30 Hz) with TS-TL. The difference between av-

erage classification accuracy of the two methods is

within 1%. Subjects A05 and A08 show a maximum

improvement of > 6%. A total of six of the nine sub-

jects show improvement in the classification accuracy
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when compared to FBCSP method. Subjects A03,

A05, A06 and A08 give an improvement of >9% in

the evaluation session.

Fig. 8(b) shows the classification accuracy com-

parison using SS-MEMDBF with the Riemannian

geometry framework, FB-MEMDBF (8-30 Hz) with

TS-TL and FBCSP method obtained in the evalua-

tion session for the right hand and tongue MI tasks.

Two of the nine subjects show improvement in clas-

sification accuracy using the proposed method. The

difference in average classification accuracy of the

two methods is within 3%. Subjects A03 and A08

show an improvement of > 2% and > 7% when com-

pared to SS-MEMDBF with the Riemannian geom-

etry framework. Six of the nine subjects have im-

proved in classification accuracy when compared to

FBCSP. Subject A02 has shown maximum improve-

ment of >10% whilst other four subjects have shown

an improvement within 2%.

Fig. 9(a) similarly shows the classification accu-

racy comparison using SS-MEMDBF with the Rie-

mannian geometry framework, FB-MEMDBF (8-30

Hz) with TS-TL and FBCSP method obtained in the

evaluation session but for the right hand and foot

MI tasks. Two of the nine subjects show improve-

ment in classification accuracy using the proposed

method. The average classification accuracy with the

proposed method is > 81%. The greatest improve-

ment is seen in subjects A03 and A06 of < 1% when

proposed method is compared to SS-MEMDBF with

the Riemannian geometry framework. Additionally,

the classification accuracy of four of the nine subjects

have improved when the proposed method is com-

pared with the FBCSP method. Subjects A02, A03

and A08 show an improvement of >4% in the evalua-

tion session while subject A09 improved marginally.

Fig. 9(b) again compares SS-MEMDBF with the

Riemannian geometry framework, FB-MEMDBF (8-

30 Hz) with TS-TL and FBCSP obtained in the

evaluation session but this time for the foot and

tongue MI tasks. In this case also, the classifica-

tion accuracy of two subjects improved using the

proposed method with an average of 71.07%. Sub-

ject A03 showed significant improvement of > 8.8%

with subject A08 improving by > 4% when proposed

method is compared to SS-MEMDBF with the Rie-

mannian geometry framework. While three of the

nine subjects shows an improvement in the classifica-

tion accuracy when proposed method is compared to

FBCSP method. Subject A09 has shown maximum

improvement of >23%.

6. Conclusion

BCI classifier performance is often linked to the vol-

ume of training data. However, this data which is

often recorded across sessions as well as across sub-

jects, leads not only to a highly non-stationary train-

ing dataset, but can also be very time consuming

to collect. A method is presented to enhance per-

formance of a two-class MI based BCI using sam-

ple covariance as a feature set by combining a pre-

viously reported SS-MEMDBF preprocessing tech-

nique40 with a novel tangent space based learn-

ing (TS-TL) classification method. Whereas FB-

MEMDBF preprocessing helps to obtain enhanced

feature separability and reduce the error rates due to

intrinsic non-stationarities present in EEG signals,

the addition of TS-TL handles non-stationarities

more efficiently. This novel method allows for the

classification of unseen trials from evaluation session

data using LOSO-CV resulting in comparable im-

provement across subjects. The problem of lengthy

recording sessions could thus be solved by classi-

fiers trained using transfer learning techniques. Fu-

ture work will focus on applying this method to real-

time data and multi-class problems on EEG and

MEG datasets whilst reducing the computational

time complexity of the proposed method.
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