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TANGENTIAL-EXCEPTIONAL SETS FOR
HARDY-SOBOLEV SPACES1

CARME CASCANTE AND JOAQUN M. ORTEGA

Section 1. Introduction

Let B denote the unit ball in C", and S its boundary. Let dtr be the
normalized Lebesgue measure on S. For a > 0 and 0 <p < +% the
Hardy-Sobolev space Hp is the space of holomorphic functions f in B so
that R f HP(B), where if f F-,kfk is its homogeneous expansion, Rf
Y:k(k + 1)fk. It is well known that for ap > n, this space consists of
Lipschitz functions.

In recent years there has been a great number of works dealing with the
convergence along tangential approach regions of functions in the space of
Poisson integrals of Bessel potentials of Hp functions. It turns out that the
"tangentiality" of the approach region depends on n, a and p (see [N-R-S],
[N-S] and [A-Nl), and it flattens as the order of regularity increases. In the
unit ball case, and for p > 1, it is easy to see, following [N-R-S] how these
approach regions look.
IffHP,n-ap>Oand srs,then

If(z)l < C[ll z[l"/P(1 Izl)’-"/PMpR’f() + MIR’f()] (1)

where M denotes the Hardy-Littlewood maximal function, and where
Mpf (M [flP)1/p.

In the extreme case ap n, the above pointwise estimate is replaced by

If(z)l _< C I1- zgln/p log I Izl MpR".f() + MIR"f( ) (2)

Now, if we define

g() {z B;I1 -zl < (1 -Izl)l-P/n},
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respectively

d(") z B; [1 z[ < (p-1)/n1
log

1

and denote by Mr, respectively Pf, the corresponding maximal operators, (1)
and (2) say that they are of weak type (p, p). In particular if f Hp, there
exists lim f(z), as z approaches sr, z in the tangential region, for almost every
srS.
Our purpose is to study the size of the exceptional set where the limit of a

function in Hp along some intermediate tangential regions fails to exist. For
the real case, the first result is in [A-N], and prc;blems in the same direction
for a class of holomorphic functions has been obtained in [Su] (see [Ci-Do-Su]
and [Do] for related results).

Before stating more precisely our results, we need some more definitions.
For 0 < 6 < + oo, and to(t) a non-decreasing function in [0, + oo], vanishing at
zero and satisfying to(2t) < cto(t), and for E c S,

H’( E) inf{ j to(6j);E B(j, 6j), 6j <_ }
where B(srj, 6j) is a non-isotropic ball. The non-isotropic Hausdorff measure
is then defined by

H(E) lim H’(E).
60

It is well known that H and H have the same zero sets.
In Section 2 we begin with a characterization of the Hardy-Sobolev spaces

Hp, p > 1, obtaining a representation in terms of a "fractional Cauchy-type"
transform of functions in LP(dtr). As an immediate corollary we deduce
from this representation and the results in [Su], the desired size of the
tangential-exceptional set of Hp functions. The case p < 1 follows directly
from the methods in [A].
The third section deals with the extreme case ap n. We obtain a

necessary condition for E c S to be an ex6eptional set with respect to
tangential regions (sr) of exponential type. Similar results for the real case
were obtained by [Do] (see also [Ci-Do-Su] for the other results in this line).
On the other hand, we also include two examples which give some

information about the sharpness of the necessary condition.
As a final remark on notation, we adopt the usual convention writing by

the same letter various absolute constants which values may differ in each
occurrence.
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Finally, we would like to thank P. Ahern and J. Bruna for some helpful
conversations on parts of this paper. We also thank the referee for some
suggestions.

Section 2

We begin this section with an integral representation for the Hardy-
Sobolev spaces Hv, p > 1. Such representation can be viewed as a holomor-
phic nonisotropic version of the classical Calderon’s identity between Sobolev
and potential spaces. One of the inclusions is established in [A-Co]. Since to
our knowledge there is no written proof of the other one, we include it here.

Let 1 < p < + and 0 < a < n. For f LP(dtr), define

and

f() d,(),C,f( z) fs (1 z)

Cg C,Lt’( dtr), normed by IIFII cg inf IlfllL,<a).
F=C,f

THEOREM 2.1. H C, with equivalence ofnorms provided 1 < p, a < n.

Proof of Theorem 2.1. As we have already said, Lemma 2.2 in [A-Co]
gives IICfll,, _< CIIfllL’<d). Hence, we just need to prove that the map
C,,’Lp Hv is onto.

Let Pk be a homogeneous polynomial of degree k. Using Lemma 2.1 in
[A-Col it is easy to check (see page 433 in same work)

CP(z) r(n)r(n -a + k)
r(n a)r(n + k) e(z) (1)

Suppose first that a is an integer. Then F(n + k)/F(n-a + k) is a
polynomial in k of degree a, and it can be written as

r(n + k)
r(n -a + k) a,(k + 1)" + a,,_l(k + 1) ’-’ +". +a0.

Since R"Pk(Z) (k + 1) Pk(Z), the above formula together with (1), shows
that

R,_ id)Pk l"(n)C’(a’Ra + a’-I + +a F(n a) Pk. (2)
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For f Hp, define

r(n -a)
r(n) (a.R"f + ao_lR-if + +aof ).

Then, T is a bounded operator from Hp to Hp (see [Gr] and [Kr]) and, by
(2), for each f HP, C,Tf f, that is, C has a right inverse.
For general a, the asymptotic development in [T-E] and Stirling’s formula,

give that there exist hi(a, n), N, so that for each r > 0,

lim (k + 1)
k- +oo

n+k-a) 1)r(r(n+k) (o(k+

"at-"’" +1r-l(k q- 1)a-r+l)]- /r"

Let

bk 1- r(n +k-a)
r(n + k) (o(k + 1) -[-...-[-lr_l( k -[- 1)a-r+1).

the above convergence says that there exists ko so that for k > ko,

2lhrl + 1

(k+l)
r" (3)

Let T be the operator defined by

r(p)

r(n a)r(n + k)
r(n)r(n a + k) P
r(n -a)
r(n) ((k+ 1)

+ "’"-F(k-F 1)"-r+la

ilk <ko,

r_l)Pk if k >_ ko,

where Pg is a homogeneous polynomial of degree k.
Again as a consequence of [Gr] and [Kr], for each r N, T: Hp - H;,

and we will see that provided r and k0 are chosen big enough (r z is
sufficient), the operator I C,T:HP HP has norm strictly less than one.
This is equivalent to say that if we let T R"(I CAT), there exists e < 1
such that

II Zlfll., < e Ilfllp,
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Now, if f Hp, let f Ek 0 Pk be its homogeneous expansion. Then

Tlf _. (k + 1)bk Pk.
k>_k

First suppose 1 < p < 2. Integrating on slices (see [Ru, page 15]) we get

ilZlfll22
1 fo2"n’l Tlf(ei)12dO dtr( )

(k + 1)2’lbkl2LIek()12do’( )
k>k

k>_k (k -[- 1) 2r

where in last inequality we have used (3).
Now applying Theorem 2.1 in [A-B] to each R’Pk, we obtain

IlZlfll22 < c
1 #2 2

>-o (k + 1)2r-211R’fll’ IIRflIp"

where e’ < 1, if r and k0 are chosen big enough.
Finally, since p < 2, we deduce that there exists e < 1 so that

Zlfllp < Ilfllp,

If p > 2, integrating again on slices, and applying Theorem 6.3 in [Du] to
each one of the slices we obtain

1 2"n"
eiO

_, L( k + 1)p-2+PlbklPle()lPdo.( )
k>k

<cE fs
1

k>_ko (k + 1)
r’-’/lR’Pk()lpd’()

<c 1

k>ko ( k -k- 1) p(r-2)+2
IIRfll’ < e’IIR"flIPp

provided K0 and r are big enough.
Hence IITfllp _< e llRfllp e llfllp,, and Co,T is invertible in Hp.
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In particular there exists S:HP - HP with C
Hp, we are done. m

TS Id. Since T H --.

Before stating a result concerning the size of the tangential-exceptional
sets for H, we need some definitions. Assume n ap > 0, and let sr S,
r > 1 and/3 > 0. Define the tangential approach region

and if f" B --+ C, let

Mf() M,f(’) sup If(z)l

be the corresponding maximal function. Notice that if r 1, ’1(’) D(sr) is
the usual admissible region, and we will denote Mlf by Nf.

THEOREM 2.2. Suppose 0 < p < +o% r > 1, ap < n and m r(n ap).
Let v be a positive Borel measure on S so that

v(B(sr, 8)) O(am) forall e S,8 > O.

Then there exists C > 0 such that for each f H,

Proof of Theorem 2.2. The case p > 1 follows immediately from theorem
3.8 in [Su], where the same conclusion is proved for Cp, and the previous
Theorem 2.1.
The remaining case 0 < p _< 1 can be shown using the same methods of

Theorem 1.1 in [A], where the admissible case, r 1 is considered, m

Theorem 2.2 together with a non-isotropic Frostman type theorem in [Co],
and the same kind of construction of holomorphic functions in H with
prescribed "tangential" exceptional sets in [A-Co], lead to the following
characterization of such exceptional sets.

COROLLARY 2.1. Let E c S compact, 0 < p < +% ap < n and m
r(n-ap) with > 1. Then E=E(f) for some f H if and only if
Hm(E) O, where

E(f) { S; ]lim f(z),z --+ f,(sr)}.

Remark 2.1. Theorem 2.2 and its corollary still remains valid for F
P[K,,. g], g LP(dtr), where a N and 0 < a < n, 0 < n ap, and
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is the non-isotropic Riesz kernel given by:

1
K(z,) I1-zln-

z, e S,

and where P(z, ) is the Poisson-Szeg5 kernel. The proof can still be used,
since if F is such an --harmonic function, then N(RF) LP(dtr)
(see [A-Ca]).

Section 3

We have seen in the previous section that the "wideness" of the tangential
approach regions for functions in Hp, flattens as n ap goes to zero. On
the other hand, if f Hp, and n ap < O, f is a continuous function up to
the boundary. So one would expect that in the limit case n ap (as it
happens in the real case), the convergence of a function in Hp exists within a
much wider region.
Letl <p< +o%/x > l and define for srSandC>0

and for f defined on B, let Pf be the corresponding maximal function.

THEOREM 3.1. Let v be a positive Borel measure on S satisfying

( (1)v(B(ff, 6)) O n/z log
1-q

where q > p,lz > 1.

Then there exists C > 0 so that iff HP, ap n,

fslef( )lPdv(’) < cllfll,

Proof of Theorem 3.1. For f Hp we write

 0(1)f(z) =c(a) log7 g( tz ) dt,
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where g Rf. Thus the theorem will be proved once we show

Ief( )lPd( if ) < CliNg

Breaking the integral defining f in two pieces, from 0 to 1/2 and from 1/2
to 1, it is enough to show that if g Hp, and

G(z) fl (1 t)-1g(tz) dt,
/2

then

LP(dtr).

By H61der’s inequality

G(z)l -< (1 t) log i log log i t/2

(l-t)n- log 1-t/2

log log Ig ( tz)lp dt

dt

Since q > p > 1, the first integral converges. Since Nlglp Ll(dtr), and

IINIgl’ll<a) IINIgl p
LP(do")

we may apply Lemma 2.1 in [A-N], and write

Ig(z)l" _< E Akak( z), + Z - B,
k>l

where . < CliNg
kl

and each ak is a non-negative a-atom satisfying:
(a) there exists ’k S, 6k > 0 so that

supp ak - T(B(k, k)),
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where the tent T(B(k t3e)) B \ k D(r/), and the union is over all r/ S \
B(e,

(b) ak(Z) < 8-, for all z B.
Thus we only need to prove that

J’s su J’o 1 e)n- og 1 -t oog
-t a(tz) at a,(;) (1)

z()

is bounded independently of the atom a, which is supported in T(B(’0, 8)).
Since a supported in T(B(o 8)), the inner integral is in fact, from 1 c

to 1 for some positive constant c.
First, suppose

C
1 (p-1)i/n

Then a(tz) is zero unless B, where

( c )B B o,
1 p- 1)lx/n

Consequently, the inner integral above (1) is bounded by

1 )p-1(1 t) n-a log 1
1 )q--1log log 1 t 8-nxJ( ) dt

< C log- log log X(sr).

Integrating with respect to u and using the hypothesis, we deduce that (1) is
bounded by

1 q-1 log
log C

1-q



TANGENTIAL-EXCEPTIONAL SETS 77

Finally, if

C
8>_,

1
log.

1)ix/n

8 is bounded from below, and a(tz) is zero unless " B(sr0, 8). Hence (1) is
bounded by

1 P-l(log 1 q-1

"/*(log1/2)C(logg) logg) t
1-q

which is also bounded.

Remark 3.1. Theorem 3.1 can be used to prove the existence of limits of

Hp function within "exponential" tangential regions , along varieties. For
instance, if F is a smooth curve and v is the arc-length measure on it, it is
well known that if F is transverse, v(B(sr, 8))= O(8), whereas if it is
complex-tangential v(B(’,8))= o(8i/2). Thus if F is transverse (respec-
tively, complex-tangential), f HP, ap n, and /z > n (respectively, /x >
2n),lim f(z) exists as z approaches ’, z (sr) for almost every sr F
(with respect to arc-length). Note that in the transverse case, the tangential
region is wider than in the complex-tangential case.

THEOREM 3.2. Let 1 < p, Ix > 1, ap n. Then there exists C > 0 so that

H:/’({Pf() > t}) < C
[[fl[’’

p

for each f HP.

To prove Theorem 3.2 we need the following lemma.

LEMMA 3.1. Let 1 < p, ap n. There exists C > 0 so that for each
g LP(dtr), zo S and z (Zo),

g()fs (1 Z)
<- CTn_n/g ( zo),

where

zoa [Q[1/ Ig(’)Ipdtr(sr)
1/p

(here Q denotes non-isotropic balls in S).
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Proof ofLemma 3.1. Let zo S and z (zo) and define Q {st; ]1
sr2oi < 411 -Z2ol}. Then

g(’)
do’(sr)fs -z l

=I/II,

Ig(’)l
do’(C) /

11 -zl"-

and we will estimate both integrals separately.
In I we apply H61der’s inequality and we get

lg(sr)l
p do,(sr)

I1 zl(n-)p’

< C Ig(’)lp do,(’) log
1 Iz-----

Now, since z (Zo), we have

1 )l/p’lg
1 L [z[ < l1- z01--n/Ixp.

Thus

I< CI1-Zol-n/P(falg(()lPdo,(())
1/p

<-- CZn_n/txg (ZO).

In II, let 6 411 Zol. Then by H61der’s inequality

II < 1
Ig(g’)lp do’() (2kt) n/p

zkts<M (2kt) n-n/p 1-’ol <2k(-- CTn_n/tg ( Zo).

Proof of Theorem 3.2. Let f Hp. By Theorem 2.1, f= Cg
g LP(do’). By Lemma 3.1,

etf() <- CZn-n/tg()’

for any " S, and since by Lemma 1 in [Do],

Hn/({Tn /g > t}) < C--n tp

with

we obtain the desired conclusion.
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COROLLARY 3.1. Let 1 <p, ap n, ix > 1. Then for each f H
the limit f(z) exists as z approaches S, z in (), except for a set E with
Hn/(E) O.

On the other direction we begin with the following construction

PROPOSITION 3.1. Let 0 < m < n/Ix, and E c S compact so that
Hm(E) O. Then there exists p > 1 and a with ap n, and f Hr, so that
for each E, the maximal function Pgf() +. In particular,

E c {sr S; t lim f(z),z ,z (sr)}.

Proof of Proposition 3.1. Let 1 < p and a n/p so that n a < 1. For
each z B, let gz be the function on S defined by

1 1
r, wherer> 1.gz()

11 z[
lg[1

We will first see that gz LP(dtr) and

C
IlgzllLd) <--

( 1)
r-1/""

log
1 Iz------

Indeed, let z0 z/Izl and B0 B(zo, 4(1 Izl)), Then

fslgz(C)lp dr(’) fnol 1 _( 1 )zln lgll zl

rp

z,i ( 1 )lgll
rp I + II.

In I, I1 zl 1 Izl. Hence

I<
C fB, dtr(ff)l" <C 1

( ) ( 1 ) rp-l"1 rp I1 zsr log
1

log
1 Iz! Iz
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In II, let

B, {" S;4.2’(1 Izl) I1 sr0l < 4.2’+1(1 Izl)}.

Then

II=C E
k+l\Bk n(k<ClOgl_lz I1 zgl log1

I1 zffl

E -c
logk<Cgall 2’(1-

rp

1(lgl- Izl)
Next, define for z B, the holomorphic function defined by fz(tO) Cgz(W).
By Theorem 2.1,

fz H and IILII, -<
C

r-1/p

Since n a < 1, Refz(W) K. gz(tO) > 0 and

1
Refz(z) > cfla -zln (log

1 C
dr(’) >

1
log

1-z l

(where in last inequality we have used (1) for p 1). Thus if we define

1 )r-liphz(w ) log
1 Izl L(o),

by the above estimates we have
(i) Ilhzllp, -< C,
(ii) Rehz>Oand

1
Re hz(z) > C log

1 Izl

l-lip

Let E c S be compact with Hm(E) 0. For each k N let {B(jk, tjk)}
be a disjoint family of non-isotropic balls with E

_
UB(jk, CIjk) and

Z,j6" < 1/2k, C > 0 an absolute constant.
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Define zjk B so that ’.k zaJlzl and 1 Izl e., where

(jk
C

1 )(p-1)tz/n"1og--
E,jk

Let F, E.."h, and F E,F, where h.k
of 6jk, F H, and by (ii),

hz;; By (i) and the election

71 )l_1/pRe F(z.) > Re F(z) > C7 log
’k

>_ C6,-n/u,p +oo as k +

provided we choose 1 < p with m n//zp < 0.
Next take srE and let kN be fixed. There exists jN so that
B(,, C16k) and since e < 6,

I1 z,k[ < 2((1 [z.[) + I1 ’ja:[) < 2(e,e + Cljk )
C C

<

(1)(P-1)t/n(log--Sjk log
1-1)(p-1)t/n.,lzjkl

we have z (sr). Hence P.F() +m for every sr E.

Finally, for p 2 we can give one more example.

PROPOSITION 3.2. Let E c S be a compact set with diam(E) < 1 so that
Hm(E) O, m < n. Then for every lz > 1 with (n + m)/2 < n/lz, there is

f H2,, a n/2, so that

E { S; tlimf(z),z ,z (s)},
where

{ c }(g’) z; I1 zl < /n’
log

1

The proof is based in the following lemma.
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LEMMA 3.2. Let m < n, I > 1 be as in Proposition 3.2 and let < 1.
There exists < 0 so that for any finite disjoint collection {B(, 6j)} ofpairwise
disjoint non-isotropic balls, with < , S and [1 (sr[ < r/ for every
j, k, then there exists F H(B) satisfying:

(i) ReF(z) >_ 0 for z closed enough to u{sri}, ReF(zj) >_ C if zi/[z[
’;, 1 Iz;I e; with ey e -(c/;)"/.

(ii) IIFll, _< c.,.m, c

Proof of Lemma 3.2. If h is the holomorphic function on D given by

1 1
h(w) log 1 w’

for each z B we define the holomorphic function on B given by

1
log

1
fz(tO) h(

Taking real parts we obtain

Refz(tO) Re1_log
1

zo l1 -ol
Imp1Arg 1

ztO 1 tO

Since

Im
1
Arg

1
z-- 1-o

<0

for each z, tO in B, in order to see that Refz(tO) > 0, we just need to prove
that the product of real parts is positive. If z and tO are chosen sufficiently
close to u {ffj} this is deduced from the hypothesis on the sr}s.

Defining

fz(Z), z e B,

we deduce (i) from the above, and from the fact that fz(Z) >_ C logl/(1
[z I). In order to prove (ii), we will compute the norm by duality.

If we define the polynomial in R of degree n given by

Q Q(R) (R + (n 2)Id)...(R + Id)R2,
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it is then immediate to check that

C(n)
(1 r)

Associated to Q we define the operators and _, a n/2, by

0Pk ((k + (n 1))...(k + 2)(k + 1)2)1/2P,,
0_Pk ((k + (n 1))...(k + 2)(k + 1)2) -1/2

where Pk is a homogeneous polynomial of degree k. Then, if g is a
holomorphic function in a neighbourhood of B,

fsOF( o)g( og) d(r( o) fsQF(o)" O._g(w) dr(w)

-1
1

=C(n) . fs(log-y)
1

)n 0
g(o)) do’((.o)

(i zj

Using Cauchy’s integral formula and Schwarz’s inequality, the last expression
is bounded by

C

1/2
1/2

loge-. Ig(z)l (2)

where , < 1 is to be chosen.
Since log l/ej y-n/, if we choose A so that An m we have (2)

bounded by

C j? j)2n/tz)--m. [O_g(zj)12 (3)

Next, for each B(j, cSj), Zj - 4(). Taking infimums, we deduce that

IQ_,g( z)l _< inf PO g(sr).
B(j 6j)
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Since 2n/I. m > n and the balls are disjoint, we get

C

1/2

IlgllL2(d),

where in the first estimate we have app.lied Theorem 3.1, and the last
estimate is deduced from the fact that R"Q_ is a multiplier in L2(dr).

Finally, we deduce from the above that

II0FII -< CE
and since IIOFII2 IIRFII2, we have proved (ii) I

Proof ofProposition 3.2. With fixed k N, let {B(’jk jk)}, be a family of
non-isotropic disjoint balls satisfying E c Uj B(jk, Cl3jk) and let mk
so that mk(EiS)1/2 < 1/2k. Let zk and Fk be as in Lemma 3.2, and define
F EkmFk. Then, (ii) of Lemma 3.2, together with the election of the mk’S
give that F H2.
On the other hand, by (i) of last lemma,

ReF(zj) > RemkF(zjk ) > Cm.

Proceeding in the same way as in Proposition 3.1, we deduce from the above,
that for each " e E and for each k e N, there exists zj e (’), with
ReF(zjk) > Cm. Hence P,F() +oo for each sr e E.

Finally, from the definition of the Ek’s we deduce easily that if o e K c
\ E, K compact, there exists C C(K) > 0 with IFk(O)l _< CEa/, and

since m < n/l, the series defining F converges uniformly over the compact
sets of B\E. I

Remark 3.2. The same methods used in Proposition 3.2 actually show the
following statement. Suppose F is an s-set (s < n); i.e., suppose there exists
a positive measure v on S and c1, c2 > 0 so that

C1as /2(B(’, ())
_

C2s

for each sr F, 6 > 0. Assume E c F is compact with diam E < 1 and
Hm(E) O, m < s. Then E is an exceptional set (in the previous sense)with
respect to for each/x > 1 so that

s+m n<--<s.2 /z
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Added in proof. We have recently proved that the estimate in Theorem
3.1 is true if v(B(’, 6)= 0(n/g) and that the condition nn/(E)--0 in
fact characterizes the exceptional sets in Corollary 3.1, provided 1 < p < 2.
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