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Abstract

Despite its broad applications, cisplatin affords considerable nephro- and hepatotoxicity

through triggering inflammatory and oxidative stress cascades. The aim of the current

investigation was to study the possible protective effects of tangeretin on cisplatin-induced

hepatotoxicity. The impact of tangeretin on cisplatin-evoked hepatic dysfunction and histo-

pathologic changes along with oxidative stress, inflammatory and apoptotic biomarkers

were investigated compared to silymarin. Tangeretin pre-treatment significantly improved

liver function tests (ALT and AST), inhibited cisplatin-induced lipid profile aberrations (total

cholesterol and triglycerides) and diminished histopathologic structural damage in liver tis-

sues. Tangeretin also attenuated cisplatin-induced hepatic inflammatory events as indi-

cated by suppression of tumor necrosis factor-α (TNF-α) and enhancement of interleukin-

10 (IL-10). Meanwhile, it lowered malondialdehyde (MDA), nitric oxide (NO) and nuclear

factor erythroid 2-related factor 2 (NRF-2) levels with restoration of glutathione (GSH), and

glutathione peroxidase (GPx). Regarding mitogen-activated protein kinase (MAPK) path-

way, tangeretin attenuated cisplatin-induced increase in phospho-p38, phospho-c-Jun N-

terminal kinase (p-JNK) and phospho-extracellular signal-regulated kinase (p-ERK1/2) in

liver tissues. In addition, tangeretin downregulated Bax expression with augmentation of

Bcl-2 promoting liver cell survival. Our results highlight the protective effects of tangeretin

against cisplatin-induced acute hepatic injury via the concerted modulation of inflammation,

oxidative stress, MAPKs and apoptotic pathways.

Introduction

Cisplatin is one of the most widely used anticancer agents in the management of different

malignancies. While 70–80% of patients respond to platinum treatment, such an initial effect

is not robust, and results from a 5-year patient survival study revealed that the response is
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only 15–20% due to the development of resistance [1]. The relapse of the disease and the

emergence of resistance in initially responsive tumors occur within 18–24 months [2, 3]. The

dose scale necessary to overcome even a small increase in cellular resistance can lead to severe

cytotoxicity in normal cells, such as nephrotoxicity, hepatotoxicity and spermiotoxicity which

radically limits the clinical usefulness of cisplatin-based therapy [4–6]. Cisplatin-induces

nephrotoxicity through multiple mechanisms, including hypoxia, the generation of free radi-

cals, inflammation, and apoptosis with an increase in the pro-apoptotic protein Bax and a

decrease in the anti-apoptotic protein Bcl-2 [7]. While, the mechanisms of cisplatin-induced

hepatotoxicity are not fully understood [8], the link between oxidative stress and cisplatin tox-

icity was suggested in many experimental models [9, 10]. Several reports have implicated free

radicals and reactive oxygen species (ROS) in cisplatin toxicity associated with an increase in

lipid peroxidation (LPO), decreased levels of protein bound sulfhydryl groups and glutathione

[11].

There is an increasing interest in the use of phytochemicals for evaluating their synergistic

efficacy in combination with chemotherapeutic agents [12]. This is supported by the vast epi-

demiological data indicating the protective effect of vegetables and fruit intake rich in naturally

occurring compounds against various diseases including cancer [13]. Flavonoids are dietary

compounds that are widespread in fruits and vegetables. They have demonstrated a good

potential as anticancer agents via their antiproliferative activity against human tumor cell lines

[14], therefore, they were employed in cancer combination therapies for greater efficacy and

safety [15].

Tangeretin, a citrus flavonoid concentrated in the peel of citrus fruits, has exhibited signifi-

cant anti-inflammatory and antioxidant activities [16, 17]. Tangeretin oral bioavailability and

safety have been reported previously [18, 19]. Notably, it has inhibited cancer cell proliferation

in human cancer cell lines derived from squamous cell carcinoma, gliosarcoma, leukemia, mel-

anoma, colorectal cancer, gastric carcinoma, lung carcinoma, breast carcinoma and oral cancer

cells [20–22]. In a previous study from our laboratory, we have reported that pretreatment of

cisplatin-resistant human ovarian cancer cells with tangeretin synergistically enhanced the

growth inhibitory effects induced by low dose of cisplatin [23]. The combination markedly trig-

gered apoptosis and arrested the cell cycle at G2-M. Additionally, the phosphoinositide3-kinase

(PI3K)/protein kinase B (Akt) survival pathway was effectively downregulated. The fact that

tangeretin enhances the cytotoxic actions of cisplatin encouraged us to investigate whether tan-

geretin, as a bioactive flavonoid, can protect against cisplatin-evoked hepatotoxicity, a serious

complication of cisplatin that may limit its therapeutic utility. To this end, the hepatoprotective

effects of tangeretin were assessed by measuring its ability to antagonize cisplatin-induced

inflammation, oxidative stress and apoptotic cell death in rat liver. The effect of tangeretin was

compared to silymarin, a naturally occurring flavonoid used as a reference hepatoprotective

agent. Several studies have reported its hepatoprotective effects in acute and chronic hepatic

diseases [24–26]. Silymarin has been reported to protect against CCl4- [27–29], acetamino-

phen- [30, 31], D-galactosamine- [32] and cisplatin- [33] induced liver injuries.

Material and Methods

Ethics Statement

The experimental protocol of the current study was approved by the Ethics Committee of the

Faculty of Pharmacy, Beni-Suef University (Reference Number: 2014/A-32). The Guidelines

for the Care and Use of Laboratory Animals declared by the US National Institute of Health

were followed in all the experimental procedures.
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Animals

Adult male Wistar rats weighing 160–200 g were obtained from the National Institute for

Research, Cairo, Egypt. Rats were kept under controlled conditions of temperature (22±1°c),

humidity (60±10%) and normal photoperiod (12–12 h light-dark cycles) with free access to a

standard commercial pellet diet and water.

Materials

Cisplatin was purchased from Sigma-Aldrich, MD, USA, whereas tangeretin was purchased

from Shaanxi Huike Botanical Development Co. (Xi'an, China). All other chemical reagents

used in the study were of analytical grade (AR). Antibodies against Bax, Bcl-2 and β-actin were

purchased from Santa Cruz Biotechnology (Santa Cruz, CA) while Erk1/2, p-Erk1/2, JNK, p-

JNK, p38 and p-p38 antibodies were purchased from cell Signaling Technology (Beverly, MA).

Experimental design and treatment protocol

The animals were divided into 7 groups, each with eight rats, according to their experimental

treatment as follows: (1) Normal (control) group: rats received only oral vehicle (2% Tween

80) p.o for 7 consecutive days and a single i.p injection of isotonic saline on the 2nd day of the

experiment; (2) Silymarin group: rats received silymarin (100 mg/kg/day p.o) for 7 days and a

single i.p injection of isotonic saline on the 2nd day of the experiment; (3) Tangeretin group:

received tangeretin (100 mg/kg/day p.o) for 7 days and a single i.p injection of isotonic saline

on the 2nd day of the experiment; (4) Cisplatin group: received oral vehicle for 7 days and a sin-

gle dose of cisplatin (7.5 mg/kg i.p) on the 2nd day of the experiment; (5) Cisplatin-Silymarin

group: rats received silymarin (100 mg/kg/day p.o) for 7 days and a single dose of cisplatin (7.5

mg/kg i.p) on the 2nd day of the experiment, 1 hour after the dose of silymarin; (6) Cisplatin-

Tangeretin 50 group: rats received tangeretin (50 mg/kg/day p.o) for 7 days and a single dose

of cisplatin (7.5 mg/kg i.p) on the 2nd day of the experiment day, 1 hour after the dose of tan-

geretin; (7) Cisplatin-Tangeretin 100 group: rats received tangeretin (100 mg/kg/day p.o) for 7

days and a single dose of cisplatin (7.5 mg/kg i.p) on the 2nd day of the experiment day, 1 hour

after the dose of tangeretin.

The selected doses of cisplatin and tangeretin were chosen after performing preliminary

experiments based on previous dose-response studies that have been reported to cause hepato-

toxicity [33, 34] and marked antitumor effects in rats [17, 35].

Tissue collection and preparation

Animals were sacrificed under ether anesthesia on the last day of the experiment. For the dif-

ferent biochemical measurements, blood samples were collected and allowed to stand for 30

min at 37°C, and then centrifuged at 1000 × g for 15 min at 4°C to separate serum and were

stored at −70°C. The liver tissues were quickly harvested and one part of the liver tissue was

instantly fixed in 10% phosphate buffered formaldehyde for histological and immunohisto-

chemical studies. For the biochemical determinations, another part of liver was homogenized

in lysis buffer containing protease and phosphatase inhibitor cocktails (Sigma-Aldrich,

St. Louis, MD, USA).

Serum Biochemical Tests

The collected serum was used for the colorimetric estimation of alanine aminotransferase

(ALT) and aspartate aminotransferase (AST) as mentioned before [36] by measuring the

amount of pyruvate or oxaloacetate produced by forming 2,4-dinitrophenylhydrazone. The
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produced color was measured spectrophotometerically at 546 nm. Concentrations of triglycer-

ides (TGs) and serum total cholesterol (TC) were measured by enzymatic colorimetric methods

using commercial kits (Spinreact, Gerona, Spain).

Oxidative Stress Biomarkers. Liver homogenates were used to determine nitric oxide

(NO) essentially as mentioned before, using Nitric Oxide (NO2
-/NO3

-) assay Kit (Assay

Designs, Ann Arbor, MI, USA) [37]. Greiss reagent was used for the quantitative colorimetric

determination of NO levels as total nitrate/nitrite. To reduce nitrate to nitrite, vanadium

trichloride and then Griess reagent was added and incubated at 37°C. The absorbance was

measured after allowing the mixture to cool at 540 nm. Results were expressed as μmol/g

tissue.

Glutathione (GSH) levels in liver tissues were, measured as mentioned before [38]. Briefly,

after the precipitation of liver proteins by 10% trichloroacetic acid, 10 mMDTNB (5,5’- dithio-

bis 2-nitrobenzoic acid) solution was added to develop the color that was measured at 412 nm.

Results were expressed as μmol/g tissue.

Enzymatic and Transcriptional Antioxidant Status

The homogenates of liver tissues were utilized in the determination of glutathione peroxidase

(GPx) activity using the corresponding assay kit (Sigma-Aldrich, St. Louis, MD, USA) accord-

ing to the manufacturer’s guidelines. The decrease in the absorbance of NADPH was deter-

mined at 340 nm. The amount of enzyme which oxidizes one μmol of NADPH per min at

25°C is defined as one unit of enzyme.

Lipid peroxides in liver tissues were expressed as malondialdehyde (MDA) and determined

as mentioned before [39]. The reaction proceeded in trichloroacetic acid, the precipitate was

removed and the absorbance was measured at 535 nm. Results were presented as nmol/g tissue.

The nuclear factor erythroid 2-related factor (NRF-2) is a transcription factor that controls the

redox homeostatic gene network. Hepatic tissue NRF-2 was estimated using Total NRF-2 Cell-

Based Colorimetric ELISA Kit (ImmunoWay Biotechnology, Newark, DE, USA) as directed

by the manufacturer.

Histopathologic Examination

Samples of tissues were fixed in 10% neutral formalin for 24 h, and paraffin blocks were then

processed for light microscopy examination. Slices of 4–5 μmwere obtained from the prepared

blocks and stained with hematoxylin-eosin (H&E). The preparations obtained were visualized

using a Nikon microscopy at a magnification of 400×.

Immunohistochemistry of Bax and Bcl-2 expression

Antigen retrieval and immunohistochemistry was performed essentially as mentioned before

[40]. In brief, paraffin-embedded tissue samples were rehydrated then blocked by 5% bovine

serum albumin (BSA) in Tris buffered saline. The samples were then incubated overnight at

4°C with primary antibodies against Bax or Bcl-2 (Santa Cruz Biotechnology Inc, CA, USA).

The slides were then washed and incubated with secondary antibodies. The sections were then

washed and visualized using 3,3’-diaminobenzidine tetrahydrochloride (DAB Horseradish Per-

oxidase Substrate Kit, Vector Laboratories Inc, Burlingame, CA, USA). Counter staining with

hematoxylin was used and the slides were observed under a light microscope (Leica Microsys-

tems, Germany) by an experienced observer blinded to the identity of the sample.
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Western blotting

Liver tissue homogenates were prepared for Western blotting as mentioned before [41]. Briefly,

protein concentration in the tissue lysate was determined using DC protein assay kit (Bio Rad).

Protein samples were then separated by SDS-PAGE (30 μg per lane) and transferred to a nitro-

cellulose membrane. The membrane were blocked using 5% (w/v) non-fat dry milk in Tris

buffered saline-tween 20 (0.025 M Tris; 0.15 M NaCl; 0.05% Tween 20; pH 7.4), incubated

overnight at 4°C with primary antibodies, rinsed, and then incubated with horseradish peroxi-

dase-conjugated secondary antibodies (Santa Cruz Biotechnology, Santa Cruz, CA) for 1 h at

room temperature before the detection using Super Signal West Pico chemiluminescent sub-

strate (Pierce, Rockford, IL). β-actin was used as a loading control. Band density in intermedi-

ately exposed films was quantitated using ImageJ image processing (ImageJ, National Institutes

of Health, USA).

Caspase 3/7 assay

Caspase-3/7 activities in liver tissue homogenate were measured using a Caspase-Glo assay kit

(Promega, Madison, WI, USA) following the manufacturer’s instructions.

Statistical analysis

The data were expressed as mean ± SEM. Statistical analysis was done using one-way analysis

of variance (ANOVA), followed by Tukey-Kramer post hoc multiple comparisons among

treatment means. The analysis was done using SPSS program, version 17. Differences were

considered significant at p< 0.05.

Results

Tangeretin pre-treatment improves liver function and inhibits cisplatin-
induced aberrations in lipids profile

To assess the severity of cisplatin-induced liver injury, liver function tests were performed.

Results revealed that the used dose of cisplatin triggered severe liver injury as indicated by ele-

vated serum ALT and AST enzyme activities. Meanwhile, increased serum total cholesterol

and triglyceride in cisplatin-treated group was observed showing an extensive damage to the

liver tissues (Table 1).

Table 1. Tangeretin pre-treatment improved liver function and inhibited cisplatin-induced aberrations in lipids profile.

ALT (U/l) AST (U/l) Triglyceride (mg/dl) Total Cholesterol (mg/dl)

Normal 24.5 ± 1.7 112.3 ± 13.6 53.3 ± 3.5 72.3 ± 4.9

Silymarin (100 mg/kg) 25.5 ± 3.1 112.5 ± 12.5 57.5 ± 5.2 69.5 ± 8.2

Tangeretin (100 mg/kg) 27.5 ± 2.4 114.3 ± 17.2 62.2 ± 8.4 71.6 ± 4.2

Cisplatin 77.3 ± 7.0* 290.0 ± 38.3* 175.2 ± 19.7* 138.0 ± 12.8*

Cisplatin + Silymarin (100 mg/kg) 38.8 ± 4.6# 136.2 ± 12.7# 111.0 ± 12.5# 89.6 ± 10.5#

Cisplatin + Tangeretin (50 mg/kg) 68.0 ± 5.1 252.8 ± 36.1 159.7 ± 20.2 122.4 ± 5.4

Cisplatin + Tangeretin (100 mg/kg) 35.8 ± 4.2# 132.2 ± 12.3# 84.8 ± 13.1# 82.5 ± 6.3#

Values are mean± SD of the mean (n = 4–5 independent values). Statistical analysis was carried out by using one way analysis of variance (ANOVA)

followed by Tukey-Kramer multiple comparisons test

* Significantly different from normal control at p < 0.05.
# Significantly different from cisplatin-treated (7.5 mg/kg) animals at p < 0.05.

doi:10.1371/journal.pone.0151649.t001
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On the other hand, pretreatment with tangeretin for 1 week significantly alleviated liver

damage as evidenced by a dose-dependent restoration of the normal liver functions and lipid

profile. At the same time, the reference hepatoprotective, silymarin afforded remarkable

hepatic protection against cisplatin-induced liver injury. These data suggest the hepatoprotec-

tive activity of tangeretin against the development of cisplatin-induced liver tissue damage

which were similar to that obtained by silymarin (Table 1).

Tangeretin attenuates liver histopathological aberrations

We next explored the ability of tangeretin to protect against the histopathologic changes

accompanying cisplatin-induced liver injury. Liver sections of control, silymarin and tangeretin

groups showed the normal architecture of the liver tissues with minor Kupffer cells activation

(Fig 1). On the other hand, the administration of cisplatin caused a severe liver injury

(Table 2), as reflected by the dilatation and congestion of central vein and hepatic sinusoids

with Kupffer cell activation and focal hepatic necrosis. This was accompanied with diffuse

inflammatory cell infiltration. Pretreatment with tangeretin decreased the high pathologic

changes, suggesting the attenuation of liver damage with the preservation of the liver wall

architecture. These effects were closely analogous to those afforded by silymarin (Fig 1).

Fig 1. Tangeretin alleviates cisplatin-induced hepatic histopathologic injury in rats.Representative
photomicrographs of sections from of liver tissues stained by hematoxylin and eosin (× 400 magnification).
(A) Control rats receiving saline vehicle showed normal histological structure of the hepatic lobule. (B) Rats
which received silymarin (100 mg/kg p.o.) showed normal hepatic histology with few Kupffer cell activation
(arrow). (C) Rats which received tangeretin (100 mg/kg p.o.) showed slight hydropic degeneration of
hepatocytes (arrow). (D) Cisplatin-treated group showed dilatation and congestion of central vein and hepatic
sinusoids (arrow). (E) Liver of rat from cisplatin-treated group group demonstrated congestion of central vein
(short arrow), cytoplasmic vacuolization of hepatocytes (long arrow) and focal hepatic necrosis associated
with inflammatory cell infiltration (arrow head) (F,G) Silymarin and tangeretin pre-treatment revealed
attenuated morphological modifications with resolving Kupffer cell activation (arrow).

doi:10.1371/journal.pone.0151649.g001
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Tangeretin attenuates cisplatin-induced inflammatory response and
apoptosis in hepatic tissues

Cisplatin administration caused an inflammatory response as demonstrated by a 3.1 fold

increase of hepatic TNF-α and a decline in IL-10 (32%) levels (Fig 2). Pretreatment with tan-

geretin at 100 mg/kg dose decreased the levels of TNF-α by 46% and slightly increased the IL-

10. These results were similar to silymarin. In addition, the immunohistochemical detection of

Bax and Bcl-2 revealed an extensive expression of Bax (Fig 3A–3F) and decreased Bcl-2 (Fig

3G–3L) in the hepatic tissues of rats treated with cisplatin; events which were markedly miti-

gated by administration of tangeretin. These results were confirmed by Western blot analysis

of Bax and Bcl-2 (Fig 4A and 4B) and caspase 3/7 activation (Fig 4C) which indicated the abil-

ity of tangeretin to attenuate cisplatin-induced apoptosis in hepatic tissues. Analogous to sily-

marin, tangeretin counteracted these changes in favor of cell survival. Together, these

Table 2. Liver microscopic damage.

Histopathological alterations Control Silymarin Tangeretin Cisplatin Cisplatin+
Silymarin

Cisplatin +
Tangeretin

Kupffer cells activation - + - ++ + +

Congestion of central vein and hepatic sinusoids - - - +++ + -

Cytoplasmic vacuolation of hepatocytes - - - ++ - +

Focal hepatic necrosis associated with inflammatory cell
infiltration

- - - ++ - -

Hydropic degeneration of hepatocytes - - + - - -

+++ Extensive

++ Moderate

+ Mild

–Nil

doi:10.1371/journal.pone.0151649.t002

Fig 2. Tangeretin mitigates cisplatin-induced inflammatory response in liver tissues. The effect of tangeretin pretreatment on cisplatin-induced
inflammatory response in liver tissues as indicated by the modulation of TNF-α (A) and IL-10 (B). Columns, mean; bars, ± SEM (n = 8 independent values).
Statistical analysis was carried out by using one way analysis of variance (ANOVA) followed by Tukey-Kramer multiple comparisons test. *Significant
difference from normal control (vehicle) group at p < 0.05, #Significant difference from cisplatin group at p < 0.05. Tang 50; tangeretin (50 mg/kg), Tang 100;
tangeretin (100 mg/kg).

doi:10.1371/journal.pone.0151649.g002
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observations suggested the modulation of inflammatory cytokines and suppression of apopto-

sis as crucial events in tangeretin protection against cisplatin-induced hepatic insult.

Tangeretin limits oxidative stress and boosts hepatic antioxidant
defense

Cisplatin administration elicited hepatic oxidative stress as demonstrated by elevation of NO

levels (195%) and decline of GSH content (29%) (Fig 5). In addition, cisplatin caused a marked

decrease of hepatic antioxidant defenses as indicated by the decrease in GPx activity (29%)

together with elevation of MDA (210%) and NRF-2 (375%) as compared to the control group

(Fig 6). Pretreatment with tangeretin significantly protected against the oxidative stress as indi-

cated by lowering of MDA, NO and NRF-2 in addition to the restoration of GSH and GPx,

events which were analogous to the actions of silymarin. Together, these data suggest that the

Fig 3. Tangeretin modulates cisplatin-induced protein expression of Bax and Bcl-2 in rat liver.
Representative images for the immunohistochemical detection of Bax (A -F) and Bcl-2 (G-L) expression in
liver tissues (arrows) (magnification: × 400).

doi:10.1371/journal.pone.0151649.g003
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Fig 4. Tangeretin counteracts cisplatin-induced apoptotic changes of Bax and Bcl-2 in protein expression in rat liver. (A) Western blot analysis
showed the expression levels of Bax and Bcl-2 in liver tissues after the indicated treatments. (B) Relative expression levels of Bax and Bcl-2. The amount of
immunoblotted proteins was quantitated by densitometry and normalized to that of β-actin. Columns, mean; bars, ± SD (n = 3 independent experiments). (C)
Relative caspase 3/7 activity in liver tissues after the indicated treatments. Columns, mean; bars, ± SD (n = 4 independent values). Statistical analysis was
carried out by using one way analysis of variance (ANOVA) followed by Tukey-Kramer multiple comparisons test. Silymarin (100 mg/kg); Tangeretin (100
mg/kg); Cisplatin (7.5 mg/kg). *Significant difference from normal control (vehicle) group at p < 0.05, #Significant difference from cisplatin group at p < 0.05.

doi:10.1371/journal.pone.0151649.g004

Fig 5. Tangeretin limits cisplatin-induced oxidative stress in liver tissues. The effect of tangeretin pretreatment on cisplatin-induced oxidative stress in
liver tissues as indicated by the modulation of hepatic NO (A) and GSH content (B). Columns, mean; bars, ± SEM (n = 8 independent values). Statistical
analysis was carried out by using one way analysis of variance (ANOVA) followed by Tukey-Kramer multiple comparisons test. *Significant difference from
normal control (vehicle) group at p < 0.05, #Significant difference from cisplatin group at p < 0.05. Tang 50; tangeretin (50 mg/kg), Tang 100; tangeretin (100
mg/kg).

doi:10.1371/journal.pone.0151649.g005
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ability of tangeretin to counteract cisplatin-induced oxidative stress and enhance the antioxi-

dant defenses plays a role in the defense against cisplatin-induced hepatic injury.

Tangeretin downregulates MAPK pathway in cisplatin-induced acute
hepatic injury

The MAPK pathway has been reported to be activated in cisplatin-induced hepatic cytotoxicity

[42]. Western blotting analysis revealed that administration of cisplatin activated MAPK signal

transduction as evidenced by increased phosphorylation of p38 MAPK, JNK and ErK1/2 with-

out affecting the corresponding total protein levels compared to the control group (Fig 7). Pre-

treatment with tangeretin attenuated the phosphorylation of the three hepatic MAPKs; effects

which were comparable to those afforded by silymarin. Together, these data suggest that tan-

geretin downregulation of MAPK pathway plays a role in alleviating cisplatin-induced hepatic

insult.

Fig 6. Tangeretin boosts hepatic antioxidant defense in cisplatin-induced oxidative stress in liver tissues. The effect of tangeretin pretreatment on
cisplatin-induced oxidative stress in liver tissues as indicated by the modulation of GPx (A), MDA (B) and NRF-2 (C) content. Columns, mean; bars, ± SEM
(n = 8 independent values). Statistical analysis was carried out by using one way analysis of variance (ANOVA) followed by Tukey-Kramer multiple
comparisons test. *Significant difference from normal control (vehicle) group at p < 0.05, #Significant difference from cisplatin group at p < 0.05. Tang 50;
tangeretin (50 mg/kg), Tang 100; tangeretin (100 mg/kg).

doi:10.1371/journal.pone.0151649.g006
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Discussion

The present study sheds light on the possible protective actions of tangeretin, a natural flavone

found in citrus peels, against cisplatin-induced hepatic injury in rats. In a previous study, we

have addressed the ability of tangeretin to synergize the anticancer activity of cisplatin in ovar-

ian cancer cell lines study through targeting cancer cell survival pathways such as phosphoino-

sitide 3-kinase/Akt signaling [23]. The focus of the current study was whether tangeretin can

alleviate cisplatin-induced hepatotoxicity, one of the serious complications of cisplatin that

may limit its therapeutic utility and to move a step towards the translational application of tan-

geretin in cancer combinatorial protocols. Notwithstanding its valuable applications as an anti-

cancer agent, cisplatin has significant nephrotoxic and hepatotoxic side effects. Cisplatin

inflicts hepatic injury through the activation of inflammatory and oxidative stress pathways

along with associated apoptosis and anomalies in liver structure and function [9, 10]. These

complications besides the chemoresistance are the most important limiting factors for the clini-

cal application of cisplatin in the cancer treatment [10, 43].

Fig 7. Tangeretin downregulates MAPK pathway in cisplatin-induced acute hepatic injury.Western blot analysis demonstrates that cisplatin increased
the phosphorylation of p38 MAPK (upper panel), JNK (middle panel) and ErK1/2 (lower panel) without affecting the corresponding total protein levels,
compared to the control group. Tangeretin and Silymarin pretreatments mitigated the phosphorylation of the three MAPKs. Tang 50; tangeretin (50 mg/kg),
Tang 100; tangeretin (100 mg/kg).

doi:10.1371/journal.pone.0151649.g007
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TNF-α and IL-10 play a crucial role in mediating the interplay between inflammatory, oxi-

dative stress and apoptotic pathways [44–46]. Tangeretin afforded significant protection

against cisplatin-induced hepatic injury in rats mainly through the suppression of TNF-α and

upregulation of IL-10 and indirectly via combating ROS production. In addition, tangeretin

protected against cisplatin effect through its anti-apoptotic effects which were similar to those

afforded by the reference hepatoprotective, silymarin. These actions signify the potential use of

tangeretin in attenuating cisplatin-induced liver lesions.

Cisplatin induces a massive inflammatory response in liver tissues which was observed by

the elevation of the proinflammatory, TNF-α and the decline of the anti-inflammatory, IL-10

[47, 48]. TNF-α intensifies the hepatic tissue inflammation via the chemotaxis of immune cells

and activation other cytokines [49]. On the other hand, the decline in IL-10 exacerbates hepatic

lesion because of its ability to downregulate antigen presentation and the pro-inflammatory

cytokines release [50, 51].

Tangeretin significantly inhibited TNF-α and restored IL-10 levels, which can be assumed

as a chief mechanism for its hepatoprotective role in cisplatin-induced hepatic injury. The find-

ings were parallel to the histopathologic results that showed the ability of tangeretin to attenu-

ate the inflammatory cell infiltration and hepatic necrosis. The anti-inflammatory actions of

tangeretin are mediated through the modulation of TNF-α and other inflammatory mediators

[52].

Cisplatin administration triggered lipid peroxide formation and depleted the hepatic GSH

and GPx. Oxidative stress was reported to be involved in cisplatin-induced acute hepatic injury

[9, 10]. The depletion of GSH and GPx, which play major roles in the cellular defense against

oxidative stress and cellular damage, renders hepatic tissues more susceptible to oxidative stress

[53, 54]. Tangeretin administration alleviated oxidative stress and improved the antioxidant

status in rats which was in agreement with previous studies [55, 56]. The observed antioxidant

actions of tangeretin play a role in the protection against cisplatin injury.

Cisplatin induced apoptotic cell death in hepatic tissues by the modulation of Bax and Bcl-2

expression levels [57]. The current data revealed that tangeretin inhibited the pro-apoptotic

Bax and increased the anti-apoptotic Bcl-2, indicating diminished hepatic apoptosis. The atten-

uation of hepatic tissue apoptosis can be related to the observed suppression of oxidative stress

and TNF-α which enhance liver tissue apoptosis [58].

Cisplatin-induced hepatotoxicity has been reported to be associated with MAPK signal

transduction pathway which plays a major role in mediating cellular inflammatory response

and apoptosis [59, 60]. Our results revealed the ability of cisplatin to induce the phosphoryla-

tion of p38, JNK and ERK1/2 in liver tissues which are in accordance with previous reports

[59]. These changes were abrogated by pretreatment with tangeretin which underlie the modu-

lation of MAPK signaling pathway as a putative mechanism for the protection against cisplatin

injury. This action could be secondary to its antioxidant and anti-inflammatory activities. The

reactive oxygen species generated by cisplatin treatment can activate various downstream pro-

teins that mediate apoptosis and necrosis, in particular, MAPK family proteins [61]. The

MAPK family comprises of three major serine/Threonine kinase proteins such as ERK, JNK

and p38 which are associated with cell growth and differentiation, and are extensively linked to

inflammation, apoptosis and cell death [62]. Cisplatin treatment shifts the balance between

pro- and anti-apoptotic signals towards proapoptotic cascade [63]. It affords upregulation of

Bax, a proapoptotic effector and diminishes Bcl-2, an anti-apoptotic protein. It also induces

translocation of Bax from cytosol to mitochondria releasing cytochrome c to cytosol [64].

Cytochrome c further activates caspase 8, 9 and ultimately 3, thereby triggering apoptotic cell

death [65]. Previous reports have regarded caspase activation as a crucial cellular mechanisms

for induction of apoptosis in renal tubular cells in cisplatin-induced acute renal injury [66].
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Many in vitro and in vivo studies have demonstrated the central role of p38, JNK and ERK1/2

in cisplatin-induced oxidative stress and apoptosis [65]. It’s noteworthy that due to the mutual

interplay between MAPKs and ROS with consequent deleterious effects on liver tissues, the

current study cannot specifically confirm the activation of MAPK being a cause or a result for

the hepatoprotection [67, 68].

In the same context, evidence has indicated that cisplatin treatment is associated with reac-

tive oxygen species (ROS) generation which activates p38 MAPK resulting in apoptotic cell

death in rat kidney [69]. The cross-talk between p38 MAPK and caspase signaling cascade was

also reported in cisplatin-treated carcinoma and rat renal tissues [69]. It has been suggested

that p38 and JNK favor apoptotic cell death [70, 71]. It is also reported that JNK is associated

with TNF-α-induced apoptosis [72]. The interplay between p38 MAPK and TNF-α has been

described in cisplatin-evoked renal injury [69] where p38 MAPK acts as an upstream signal

Fig 8. Diagram depicting the proposed protective mechanisms of tangeretin against cisplatin-induced hepatic injury.

doi:10.1371/journal.pone.0151649.g008
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which activates the transcription factor NF-κB with the consequent generation of TNF-α [73].

Abrogation of ROS production/ p38 MAPK activation by the antioxidants such as N-acetyl

cysteine has considerably protected the renal tissues from cisplatin insult [69].

In conclusion, the present work underscores the possible protective effects of tangeretin

against cisplatin-induced acute hepatic injury in rats (Fig 8). These favorable actions confirm

tangeretin benefits as an effective and safe approach for the management of one of cisplatin

drawbacks. Further studies addressing the impact of tangeretin after repeated administration

of cisplatin and at different time points are warranted, in order to delineate the exact underly-

ing molecular mechanisms of tangeretin in cisplatin-evoked hepatotoxicity and the implication

of other cell signaling networks.
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