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Abstract

Illuminating interactions between proteins and small drug molecules is a long-
standing challenge in the field of drug discovery. Despite the importance of un-
derstanding these interactions, most previous works are limited by hand-designed
scoring functions and insufficient conformation sampling. The recently-proposed
graph neural network-based methods provides alternatives to predict protein-ligand
complex conformation in a one-shot manner. However, these methods neglect the
geometric constraints of the complex structure and weaken the role of local func-
tional regions. As a result, they might produce unreasonable conformations for chal-
lenging targets and generalize poorly to novel proteins. In this paper, we propose
Trigonometry-Aware Neural networKs for binding structure prediction, TANKBind,
that builds trigonometry constraint as a vigorous inductive bias into the model and
explicitly attends to all possible binding sites for each protein by segmenting the
whole protein into functional blocks. We construct novel contrastive losses with
local region negative sampling to jointly optimize the binding interaction and affin-
ity. Extensive experiments show substantial performance gains in comparison to
state-of-the-art physics-based and deep learning-based methods on commonly-used
benchmark datasets for both binding structure and affinity predictions with variant
settings. We release our code at https://github.com/luwei0917/TankBind.

1 Introduction

Proteins are the workhorses of human bodies. They have a wide range of interaction partners, small
molecules, other proteins, and DNA/RNA, for example. In this paper, we focus on drug-like small
molecules as the interaction partners for proteins. The words ligands, drugs, small molecules and
compounds are used interchangeably throughout the paper. Small molecules activate or inhibit
activities of target proteins through mostly non-covalent interactions. In 2021, FDA approved 60
new drugs, among which 36 were small molecules [1]. Understanding the mechanism-of-actions
and off-target effects of drug molecules typically requires analyzing the structures of the related
protein-ligand complexes [2, 3], but solving the complex structure experimentally is a an extremely
challenging task. Despite tremendous effort spent on this topic over the last 50 years, only about
19,000 protein-ligand complex structures have been solved experimentally using X-ray, Cryo-EM or
NMR [4]. On the other hand, the estimated chemical space of drug is 1060 and estimated number
of unique proteins in human body is at least 20, 000, making the number of possible protein-ligand
complex far exceeding the number of experimentally solved structures [5, 6].
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On the computational side, molecular docking is a commonly-used method for predicting the protein-
ligand complex structures the corresponding binding affinities [7–10]. Generally, the docking process
involves three main stages: (1) locating favorable binding sites given a protein target; (2) sampling
the ligand conformation as well as its position and orientation within these sites; (3) scoring and
ranking the conformations of the complex using physics-inspired empirical energy functions to refine
the structures and assess protein-ligand binding affinity. Due to its good interpretability and usability,
docking has been integrated in drug development process for a long time and a number of successful
cases have been reported [11]. However, most open-source docking packages use atom-level pairwise
scoring functions, limiting the capacity to model the many-body effects. Moreover, they need to
sample a large range of possible ligand poses and protein side-chain conformations, which leads to
relatively high computational cost [7, 12].

To overcome these challenges, we propose a two-stage deep learning framework to neuralize the
molecular docking process and predict the binding structures with better accuracy and lower com-
putational cost. In the first stage, we segment the whole protein into functional blocks and predict
their interactions with the ligand, creating an protein-ligand interaction energy landscape using a
novel trigonometry-aware architecture. The trigonometry module has enough model capacity to
capture many-body effects. In the second stage, we prioritize the crystallized binding structures
by constrastively ensuring a weaker binding affinity for non-native interactions. In particular, our
model improves the drug-protein binding structure predictions with a combination of (i) a novel
trigonometry-aware architecture that jointly infuses trigonometry constraints and excluded-volume
effects as inductive biases, (ii) a new divide-and-conquer strategy that constructs the protein-ligand
local functional binding pairs in a contrastive manner. By doing so, we create a funnel-shape energy
landscape for the inter-molecular interaction, removing the need of extensive sampling [12–14].

Our novel method is well-motivated by leveraging prior knowledge from physics and biology.
Physically, the inter-molecular trigonometry module, inspired by the intra-molecular Evoformer
module used in AlphaFold2 [13], ensures that our energy landscape disfavors configurations of
protein-ligand complexes that are prohibited by laws of nature, for instance, no two atoms could
overlap and the distances between atoms have to satisfy triangle inequality theorem in euclidean
geometry. More details on these constraints is shown in section 3.3. Biologically, the functional
regions of proteins tend to be more conserved and closely associated with binding [15, 16], allowing
the model to learn critical information and generalize better to unseen proteins.

We evaluate our algorithm against several state-of-the-art deep learning and physics-based docking
methods on task of binding structure prediction under multiple settings. Compared with baselines,
our model increase the fraction of predictions with ligand root-mean-square deviation (RMSD) less
than 5Å by 16% in re-docking setting, 22% in self-docking setting, and 42% in the more difficult new-
protein setting. Our model is also capable of predicting binding affinities, achieving better correlations
with experimentally-measured values than sequence-based, structure-based and even complex-based
methods. We also show that TankBind has the potential to discover novel mechanism-of-actions of
drug molecules by identifying unseen protein binding sites.

2 Related Work

Geometric Deep Learning for drug discovery. There has been a surge of interest in integrating
geometric priors for representation learning in the domain of drug discovery [13, 17–23]. Recent
researches have incorporated geometric information and symmetry properties of the input signals to
improve the spatial perception of the learned representations. These works have been shown great
potential in various applications like protein structure modeling [13, 17–19], molecular low-energy
generation prediction [24–26], property/function prediction [22, 23] and molecule design [20, 21].
Among which, AlphaFold 2 achieved outstanding performance in protein structure prediction [13],
representing the state-of-the-art geometry-aware method. Our work is inspired from this ground-
breaking work, adapting it from the intra-molecular structure prediction to the field of predicting the
inter-molecular binding structure and binding affinity.

Drug-protein Interaction (DPI) prediction. The goal of DPI prediction is to illustrate the binding
structure and binding affinity between protein and ligand. Apart from docking-based approaches
[7, 8], prior machine learning-based works either use complex-free models to predict the binding
affinity directly from protein-ligand pairs [27–32] or make predictions through complex structure
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Figure 1: Overview of TankBind Model. The whole protein is divided into blocks of radius 20Å,
each block is going through the TankBind model along with the drug compound. Both protein blocks
and drug compound are modeled as graphs. The block-compound interaction matrix evolved multiple
times with additional input based on the distance maps of the protein block and the compound
through trigonometry module. Based on the updated interaction embedding, the model predicts the
binding affinity of the compound to the blocks and the block-ligand distance maps. A constrastive
loss function is used to ensure the native block binds stronger to the compound than decoys.

that has been previously obtained by experimental or docking approaches [33–35]. The former ones
are less interpretable while the latter requires data involved in vast experimental costs and labour.
More recently, EquiBind [36] takes a new approach by directly predicting the key points on both the
protein and the compound, and aligning their key points through the ingeniously designed optimal
transport loss. However, this method may generate compound structures clashing with the protein
structures and currently lacks the capability to predict the binding affinity, limiting its use in drug
discovery. In contrast, our approach has a trigonometry module imposing geometry constraints and a
state-of-the-art binding affinity prediction capability.

3 TankBind Model

3.1 Overview of TankBind model

The general protocol of our model is shown in figure 1. The encoding of protein and compound is
described in section 3.2. The rationale and implementation of trigonometry module is detailed in
section 3.3. The design of loss functions for training is described in section 3.4. The generation of
atom coordinates from predicted inter-molecular distance map is introduced in section 3.5.

3.2 Structural encoders of protein and drug

Our model input is the separate structures of a protein and a drug compound, both encoded as graphs.
Indices i, k always operate on the residue dimension, j, k′ always on the compound dimension. n is
the number of protein nodes and m is the number of compound nodes.

Protein. The protein is represented as a proximity 3D graph following Jing et al. [37]. We denote
the protein graph as Gp = (Vp, Ep), where each node vpi ∈ Vp corresponds to an amino acid, and has
feature h

(i)
vp with both scalar and vector features. Each node also has a position xpi ∈ R3 equal to the

Cartesian coordinate of Cαi
. An edge epik exists if vpk is among the 30 nearest neighbors of vpi . Each

edge epik ∈ Ep also encodes both the scalar and the vector features. We then apply the geometric
vector perceptrons (GVP) [18, 37] to embed the protein and arrive at feature hp ∈ Rn×s after graph
propagation, where n is the number of nodes and s is the embedding size.

To implicitly model side-chain flexibility, we choose a residue-level representation ignoring the finer
details of protein structure, separating our method from other methods that use all-atoms or surface
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vertexes representation [38, 39]. Also, as shown by Jumper et al. [13, 40], residue-level embedding is
enough to infer the side-chain conformation.

Motivated by protein co-evolution [15] and divide-and-conquer theory, the protein graph, Gp, is
further divided into subgraphs Gp′ . Each subgraph Gp′ includes all the vpi and epij inside the functional
block. The subgraph is denoted as Gp′ = ({vpi , e

p
ik} | ‖x

p
i − xo‖ ≤ 20Å, ‖xpk − xo‖ ≤ 20Å), where

xo is the center of the functional block predicted by a widely-used ligand-agnostic method, P2rank
[41]. Justification for the size of radius and use of P2rank is described in appendix G.

Drug compound. The drug compound is represented as a graph using TorchDrug toolkit [42]. The
compound graph is denoted as Gc = (Vc, Ec) where each node vcj ∈ Vc corresponds to a heavy atom

(non-hydrogen atom), and has feature h
(j)
vc and each edge ecjk′ has feature h

(jk′)
ec . We use Graph

Isomorphism Network (GIN) [43] to embed the compound and arrive at feature hc ∈ Rm×s after
graph propagation, where m is the number of heavy atoms and s is the embedding size.

3.3 Details of trigonometry module

Figure 2: Rationale for including
trigonometry module. Upper: Protein
node in square, compound nodes in cir-
cles. Lower: Trigonometry module en-
sures that the interaction between protein
node i and compound node j depends on
all protein and compound nodes k, k′.

The compound feature, hc, and the protein block feature,
hp, are used to form the initial interaction embedding
z(0) ∈ Rn×m×s, z(0)ij = hpi � hcj . The interaction em-
bedding will be further updated with pair distance map of
protein nodes, Dp

ik = ‖xpi − xpk‖ and pair distance map
of compound nodes, Dc

jk′ =
∥∥xcj − xck′

∥∥.

The rationale for including both the pair distance map of
the protein nodes and the pair distance map of the com-
pound nodes in updating the protein-compound interaction
embedding is explained with two simplified examples. As
shown in the upper part of figure 2, if a protein node A
is in close proximity with compound node B, then com-
pound node C will not be in contact with node A due to the
large distance constraint between node B and C. Distance
constraint between compound nodes B and D could also
force a node D to be in close contact with protein node A.

To build this observation of trigonometry constraints into
our model, we design the following module to update the
interaction embedding, in layer `, ∀(i, j):

z̃
(`)
ij = z

(`)
ij + Φ(

n∑
k=1

pikt
(`)
kj +

m∑
k′=1

t′
(`)
ik′ck′j)� g(z

(`)
ij ) (1)

where pik = φ(Dp
ik) is the linear embedding of encoded pair distance between protein nodes. p ∈

Rn×n×s, n is the number of nodes in protein block, s is the embedding size. cjk′ = φ(Dc
jk′) is the

linear embedding of encoded pair distance between compound nodes. c ∈ Rm×m×s,m is the number
of compound nodes. t(`)ij and t′

(`)
ij are the same gated linear transformations of z(`)ij but with non-

shared parameters, t(`)ij = Linear(z(`)ij )�g(z
(`)
ij ), t(`) ∈ Rn×m×s, g(z

(`)
ij ) = sigmoid(Linear(z(`)ij )),

Φ is a layernorm function followed by a linear transformation.

Another type of physical constraint need to be take into consideration is the excluded-volume (Van
Der Waals) and saturation effect. As shown in the upper figure 2, if protein node A forms a strong
interaction, hydrogen bonding for example, with compound node B, then node D is unlikely to form
the same type of interaction with node A because node A has limited number of hydrogen donors
or acceptors. To account for these effects, we designed a self-attention module to modulate the
interaction between a protein node and all compound nodes by taking the whole interaction between
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this protein node and all compound nodes into consideration.

ż
(`)
ij = z̃

(`)
ij + Φ(concath(

m∑
k′=1

(w
(`)h
ijk′ v

(`)h
ik′ )� gh(z̃

(`)
ij ))) (2)

w
(`)h
ijk′ = softmaxk′(q

(`)h
ij

>
k
(`)h
ik′ ) (3)

, where q
(`)h
ij ,k

(`)h
ij ,v

(`)h
ij are linear transformation of z̃(`)ij , h is number of attention heads. Function

gh is the standard g with reshaping the embedding into heads at the end, Φ is a linear transformation.

Lastly, a non-linear transition module is added to transit the interaction embedding to the next
layer through multilayer perceptron, z(`+1)

ij = MLP(ż
(`)
ij ). The whole trigonometry module is

composed of three consecutive parts, the trigonometry update, the self-attention modulation, and
the non-linear transition module. Layernorm is applied on every input z(`)ij and a 25% dropout is
applied to the trigonometry update and self-attention modulation during training. The final outputs,
drug-protein binding affinity, â =

∑n
i=1

∑m
j=1 Linear(z(L)ij ) , and inter-molecular distance map,

Dpred
ij = g(z

(L)
ij )Linear(z(L)ij ), are predicted directly based on the last layer embedding z

(L)
ij , where

L is the number of module stacks.

3.4 Design of binding interaction and affinity loss functions

Many previous works model the interaction between compound and protein by only preserving the
interaction region, residues that far away are ignored [26, 44]. On the positive side, the computation
and memory demand for characterize the interaction between protein and the drug compound is
greatly reduced by focusing on regional interaction. But the fact of not binding to alternative binding
sites is also a valuable information. By the nature of crystallization, if a protein-compound complex
could be successfully crystallized, other possible binding sites on this protein definitely bind less
strongly than the native binding site to the compound, therefore, those other binding sites could
be used as high-valued decoys. Based on this observation, we designed a max-margin constrastive
affinity loss, equation 4, following the idea of [45]. Such that the compound’s predicted affinity, â, to
the decoys is less than the experimentally measured affinity, a, by a margin value, ε.

Laffinity(âζ , a) = 1(ζ)(âζ − a)2 + (1− 1(ζ)) max(0, âζ − (a− ε))2 (4)

where âζ is the predicted affinity to block ζ, and indicator function 1(ζ) = 1 when block ζ encloses
the native ligand, and 1(ζ) = 0 otherwise. We, therefore, take full use of information stored in
the whole protein instead of only the native binding region. We also include a mean squared erorr
(MSE) loss for native interaction distance map, Ldistance = 1(ζ) 1

nm

∑n
i=1

∑m
j=1(Dpred

ij − Dij)
2.

The overall training objective of TankBind is: L = Laffinity + Ldistance.

3.5 Generation of drug coordinates based on predicted inter-molecular distance map.

The Cartesian coordinates, {x̂cj}, of the heavy atoms of a drug compound could be deduced ana-
lytically based on the predicted inter-molecular distance matrix, Dpred

ij , the coordinates of protein
nodes, {xpi }, and the pair distance matrix of compound nodes, Dc

jk′ [46, 47]. But since predicted
distance matrix contains noise, we take a numerical approach [46, 48]. By minimizing the total loss,
Lgeneration, which consists of two parts, the interaction loss and the compound configuration loss, we
could derive the coordinates of the docked drug coordinates, {x̂cj}.

Lgeneration = Linteraction + Lconfiguration =
n∑
i

m∑
j

(|D̂ij −Dpred
ij |) +

m∑
j

m∑
k′

(|D̂c
jk′ −Dc

jk′ |) (5)

D̂ij =
∥∥xpi − x̂cj

∥∥, D̂c
jk′ =

∥∥x̂cj − x̂ck′
∥∥ (6)

where n is the number of protein nodes, andm is number of compound nodes, and {xpj} are the Carte-
sian coordinates of protein nodes. All inter-molecular distances are clamped to have an upper bound of
10Å to focus on the direct interaction. In self-docking setting, when the compound configuration is un-
known, we add a local atomic structures (LAS) mask to the configuration loss to allow for compound
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Table 1: Blind self-docking. All models take a pair of ligand structure (generated by RDKit) and
protein structure as input, trying to predict the atom coordinates of the ligand after binding. Test set
is composed of 363 protein-ligand structure crystallized after 2019 curated by PDBbind database.
Details about model runtime and the number of model parameters are in appendix C

Ligand RMSD Centroid Distance
Percentiles ↓ % Below

Threshold ↑ Percentiles ↓ % Below
Threshold ↑

Methods 25% 50% 75% Mean 2Å 5Å 25% 50% 75% Mean 2Å 5Å

QVINA-W 2.5 7.7 23.7 13.6 20.9 40.2 0.9 3.7 22.9 11.9 41.0 54.6
GNINA 2.8 8.7 22.1 13.3 21.2 37.1 1.0 4.5 21.2 11.5 36.0 52.0
SMINA 3.8 8.1 17.9 12.1 13.5 33.9 1.3 3.7 16.2 9.8 38.0 55.9
GLIDE(c.) 2.6 9.3 28.1 16.2 21.8 33.6 0.8 5.6 26.9 14.4 36.1 48.7
VINA 5.7 10.7 21.4 14.7 5.5 21.2 1.9 6.2 20.1 12.1 26.5 47.1
EQUIBIND-U 3.3 5.7 9.7 7.8 7.2 42.4 1.3 2.6 7.4 5.6 40.0 67.5
EQUIBIND 3.8 6.2 10.3 8.2 5.5 39.1 1.3 2.6 7.4 5.6 40.0 67.5
TANKBind-R 2.8 5.2 11.2 9.4 16.0 47.9 1.0 2.3 7.7 7.3 44.9 69.4
TANKBind-C 2.4 4.5 8.4 8.2 19.6 54.8 0.9 1.9 5.4 6.3 53.2 73.3
TANKBind-P 2.6 4.5 8.1 8.5 16.3 54.0 0.9 1.9 5.2 6.4 53.2 74.4
TANKBind 2.4 4.0 7.7 7.4 19.3 61.7 0.9 1.7 4.2 5.5 56.5 77.4

flexibility while enforcing basic geometric constraint,Lconfiguration =
∑m
j

∑m
k′ 1(j, k′)(|D̂c

jk′−Dc
jk′ |)

where 1(j, k′) = 1 when compound atom j and k′ are connected by connected by a bond, or 2-hop
away, or in the same ring structure, and 1(j, k′) = 0 otherwise [7, 36]. For every test protein-ligand
pair, TankBind predicts the binding affinity of the ligand to all segmented functional blocks and
chooses the one with strongest affinity to generate the binding structures.

4 Evaluation

4.1 Protein-ligand binding structure prediction

Dataset. We used publicly available PDBbind v2020 dataset [4] which has the structures of 19443
protein-ligand complexes along with their experimentally measured binding affinity. PDBbind is
a database curated based on the Protein Data Bank (PDB) [49]. We followed the same time split
as defined in EquiBind paper [36] in which the training and validation data are the protein-ligand
complex structures deposited before 2019 and the test set is the structures deposited after 2019. After
removing a few structures that unable to process using RDKit from the training set, we had 17787
structures for training, 968 for validation and 363 for testing[50]. We also reduced the possibility of
encountering equally valid binding sites by removing chains that have no atom within 10Å from any
atom of the ligand following the protocol described in [36].

Baselines. We compared TankBind with the most widely-used docking method AutoDock Vina[7]
and the recent proposed geometry-based DL method EquiBind [36]. We also included four popular
docking methods QVina-W, GINA[51], SMINA[52] and GLIDE[8] as listed in Stärk et al. [36].

Evaluation metrics. We follow prior work Stärk et al. [36] and use ligand root-mean-square
deviation (RMSD) of atomic positions and centroid distance to compare predicted binding structures
with ground-truths. The Ligand RMSD calculates the normalized Frobenius norm of the two
corresponding matrices of ligand coordinates. The centroid distance is defined as the the distance
between the averaged 3D coordinates of the predicted and ground-truth bound ligand atoms, indicating
the model capability of identifying correct binding region. Hydrogens are not involved in the
calculation.

Performance in blind flexible self-docking We start with a real-world blind self-docking exper-
iment. As shown in the table 1, TankBind achieves state-of-the-art performance, outperforming
geometry DL-based model EquiBind. This advantage is particularly evident in the top 25% and top
50% ligand RMSD, which allows our method to predict 22% more qualified (below Threshold 5Å)
binding poses than EquiBind. This results are also consistent in the metrics of centroid distance,
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Table 2: Blind self-docking for unseen receptors. All models evaluated on 142 crystallized protein-
compound structures where the proteins have not been observed in training set.

Ligand RMSD Centroid Distance
Percentiles ↓ % Below

Threshold ↑ Percentiles ↓ % Below
Threshold ↑

Methods 25% 50% 75% Mean 2Å 5Å 25% 50% 75% Mean 2Å 5Å

QVINA-W 3.4 10.3 28.1 16.9 15.3 31.9 1.3 6.5 26.8 15.2 35.4 47.9
GNINA 4.5 13.4 27.8 16.7 13.9 27.8 2.0 10.1 27.0 15.1 25.7 39.5
SMINA 4.8 10.9 26.0 15.7 9.0 25.7 1.6 6.5 25.7 13.6 29.9 41.7
GLIDE 3.4 18.0 31.4 19.6 19.6 28.7 1.1 17.6 29.1 18.1 29.4 40.6
VINA 7.9 16.6 27.1 18.7 1.4 12.0 2.4 15.7 26.2 16.1 20.4 37.3
EQUIBIND-U 5.7 8.8 14.1 11.0 1.4 21.5 2.6 6.3 12.9 8.9 16.7 43.8
EQUIBIND 5.9 9.1 14.3 11.3 0.7 18.8 2.6 6.3 12.9 8.9 16.7 43.8
TANKBind-R 3.6 6.9 17.0 12.6 5.6 35.2 1.3 3.6 15.7 10.3 35.2 58.5
TANKBind-C 3.4 5.5 9.8 9.9 9.2 43.0 1.1 2.6 8.1 7.9 46.5 65.5
TANKBind-P 3.3 5.5 10.9 11.2 5.6 45.1 1.3 2.3 7.9 9.1 47.9 66.9
TANKBind 2.9 4.7 8.8 9.1 4.9 55.6 1.3 2.3 4.8 7.0 45.1 75.4

Figure 3: Estimator of the Cumulative Distribution Function (ECDF) plot for ligand RMSD (left)
and Centroid Distance (right) from result evaluated on new receptors subset. The x axis of the figure
stops at 15Å because comparison for larger RMSD is less meaningful when the predicted location of
the ligand is away from the true binding site, a RMSD of 15Å is not better than RMSD of 50Å.

demonstrating that our method also has a clear advantage in the identification of binding region. Even
though GLIDE (commercial) and Autodock Vina are established docking software with more than a
decade of continuous development, our model remarkably frequently outperforms them. At the same
time, we are orders of magnitude faster than them, and on the same level as EquiBind (Appendix
C). In addition, we explore the possible of TankBind-R, where we randomly segment the protein,
TankBind-P, where we only doing the summation over protein nodes in equation 1, and TankBind-C,
where we only sum over compound nodes. The performance reduction on the these variants supports
our view that trigonometry message passing between proteins and ligand and segmentation choice
are critical to the prediction of binding structures.

Performance in self-docking unseen protein We next focus on the new protein setting, in which
the tested proteins have not been observed in the training set. Table 2 shows that Tankbind leads to
larger improvements over EquiBind and docking methods with regard to ligand-RMSD and centriod
distance.This is in line with our expectation that TankBind has better generalization ability due to the
physical-inspired trigonometry module and explicit consideration of conservative functional blocks.
In this setting, as shown in Figure 3 and table 2, for fractions smaller than 2Å, 5Å and 15Å, the
performance between EquiBind and other docking method are comparable, while TankBind is always
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Methods RMSE↓Pearson↑Spearman↑MAE↓

TransCPI 1.741 0.576 0.540 1.404
MONN 1.438 0.624 0.589 1.143
PIGNet※ 2.640 0.511 0.489 2.110
IGN 1.433 0.698 0.641 1.169
HOLOPROT 1.546 0.602 0.571 1.208
STAMPDPI 1.658 0.545 0.411 1.325

TANKBind 1.346 0.726 0.703 1.070

Table 3: Binding affinity prediction. TankBind
achieves SOTA on all four metrics.

Methods Ligand↓Centroid↓Below2A↑Below5A↑

w/o P2Rank 9.37 7.30 44.90 69.42
w/o Trig 8.73 6.44 44.08 74.93
TAPE 8.81 6.89 50.69 73.00
GAT 8.27 6.23 56.47 78.51
TankBind-P 8.47 6.44 53.17 74.38
TankBind-C 8.20 6.27 53.17 73.28

Origin 7.43 5.51 56.47 77.41

Table 4: Ablation results. We listed four main
metrics here, a complete table is in appendix E

better by a large margin, further confirming the effectiveness of our method and indicating that the
proposed strategy has practical values for the virtual screening of new proteins.

4.2 Protein-ligand binding affinity prediction

TankBind is also capable of predicting protein-ligand binding affinity because of the constrastive
affinity loss function. Since we segmented the whole protein into protein blocks, the predicted binding
affinity of ligand to the whole protein is equal to the binding affinity to the one protein block that
predicted to bind strongest with the ligand. To demonstrate the ability, we compared TankBind with
the state-of-the-art binding affinity prediction models.

Dataset. We split the dataset into training, test and validation splits based on the same time split
described earlier. The experimentally measured affinity data in PDBbind dataset has three different
names, depending on the exact experiment setups, 50% inhibiting concentration (IC50), inhibition
constant (Ki), and dissociation constant (KD), all converted to the unit of molar concentration.
Similar to previous methods [23, 44], we predict negative log-transformed binding affinity.

Baselines and evaluation metrics. We compare TankBind against two state-of-the-art sequence-
based methods, TransformerCPI [53] and MONN [28], two complex-based methods, IGN [38]
and PIGNet [54] both requiring prior knowledge of the inter-molecular structure to predict affinity,
and two structure-based methods, HOLOPTOT [23] and STAMPDPI [55]. For evaluating various
methods, we use four metrics – root mean squared error (RMSE), Pearson correlation coefficient,
Spearman correlation coefficient and mean absolute error (MAE). We also include the mean and
standard deviation across 3 experimental runs in appendix D.

Result As shown in Table 3, our model obtains the best performance in PDBbind test set, con-
sistently outperforms SOTA binding affinity prediction methods. Note that even without the prior
interaction information, TankBind also achieves better result than complex-based methods (PIGNET
and IGN), proving that the predicted binding structural information provided considerable gain to the
affinity prediction task.

4.3 Ablation study

We conducted ablation studies to investigate factors that influence the performance of proposed
TankBind framework. As shown in Table 4, the original version of TankBind with the trigonometry
message passing between protein and ligand shows the best performance among all architectures.
Replacing the P2rank with a randomly split of blocks performed the worst, which verifies our
hypothesis that functional block segmentation can improve generalization. Simple architecture
substitutions for protein (TAPE) [56] and molecular representation (GAT) [57] decrease slightly
the model performance. Replacing the intra-trigonometry module with the uni-modal variants
(TankBind-P and TankBind-C) both caused noticeable decreases in performances.
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Figure 4: (a) An example of TankBind identifying an unseen binding site. The protein is shown in
white, co-crystallized compounds of three PDBs in the training set is shown in purple. The ligand of
6K1S is shown in green. TankBind is able to find this correct pose for the compound, shown in red,
while the other two, Vina in orange, and Equibind in cyan, place the compound away from the true
binding site. (b) For PDB 6QRG, both protein and compound have not been seen in the training set.
But TankBind still find the correct pose. Crystallized ligand colored in green, TankBind prediction in
red, EquiBind in cyan and Vina result in organ.

4.4 Case studies

TankBind correctly identifies an unseen binding site for a new drug compound. As a repre-
sentative case, in PDB 6K1S, a seen protein binds to a new drug compound at a site that has not been
observed before. This protein has three co-crystallized complex structures in the training set, PDB
4X60, 4X61, 4X63. As shown in the left of figure 4, our method, shown in red, aligns well with the
true ligand, shown in green, despite our method has never seen any compound locates at this site
before. While other two methods, EquiBind in cyan, Vina in orange identify an incorrect site for this
compound. Packages Kalign, Biopython, and Smith-Waterman library are used to systematically
analyze the results [28, 58–60] (see Appendix H).

TankBind finds the correct pose when both compound and protein are unseen. We picked two
representative examples with both compound and protein are unseen, one, PDB 6QRG, in the right of
figure 4 and another, PDB 6KQI, in appendix B. Both PDB 6QRG and PDB 6KQI have max protein
similarity below 0.8 (6QRG 0.78, 6KQI 0.57), and max compound similarity below 0.4 (6QRG 0.36,
6KQI 0.27).

5 Conclusion

In this work, we propose a novel binding structure and affinity prediction model, TankBind, that
builds trigonometry constraints into the model and explicitly attends to all possible binding sites by
segmenting the whole protein into functional blocks. We observe significant improvements on task of
binding structure prediction over existing deep learning methods: a 22% increase in the fraction of
prediction below 5Å in ligand RMSD, and a 42% increase when the proteins have not been observed
in the training set. Moreover, we demonstrate that the model is able to predict affinity and outperform
SOTA methods on PDBbind. This work opens a new direction for modelling the inter-molecular
interaction between protein and drug molecule. Numerous directions for further exploration include
incorporating a ligand conformer generation module, enhancing the dataset with AlphaFold-predicted
structure and public available SAR data, integrating the segmentation of functional block in an
end-to-end manner, and combining the model with protein backbone dynamics modeling to handle
larger scale conformation changes induced by drug-protein interactions.
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A Additional binding structure prediction results and pseudo code for
trigonometry module

A.1 Blind re-docking.

In re-docking, the ligand conformations are given as input. As shown in table 5, In 64.5 % of the test
set, TankBind has ligand RMSD less than 5Å, compared to 48.2 % for EquiBind and 26.7 % for Vina.

Table 5: Blind re-docking. In re-docking setting, the input compound conformations are the co-
crystallized conformations. All three models evaluated on the test set of 363 protein-compound
structures crystallized after 2019 curated by PDBbind database.

Ligand RMSD Centroid Distance
Percentiles ↓ % Below

Threshold ↑ Percentiles ↓ % Below
Threshold ↑

Methods 25% 50% 75% Mean 2Å 5Å 25% 50% 75% Mean 2Å 5Å

QVINA-W 1.6 7.9 24.1 13.4 27.7 39.0 0.9 3.8 23.2 11.8 40.4 55.4
GININA 1.3 6.1 22.9 12.2 32.2 46.8 0.7 2.8 22.1 10.9 43.8 58.4
SMINA 1.4 6.2 15.2 10.3 30.1 46.7 0.8 2.6 12.7 8.5 45.3 63.5
GLIDE 0.5 8.3 29.5 15.7 43.4 45.7 0.3 4.9 28.5 14.8 45.4 50.4
VINA 4.5 9.7 19.9 13.4 13.2 26.7 1.7 5.5 18.7 11.2 29.8 47.9
EQUIBIND-R 2.0 5.1 9.8 7.4 25.1 49.0 1.4 2.6 7.3 5.8 40.8 66.9
TankBind 1.4 3.3 6.8 6.9 37.5 64.5 0.8 1.8 4.2 5.4 55.9 78.5

We also show the cumulative distribution plot for ligand RMSD and centroid distance in figure 5.

Figure 5: Blind re-docking. Estimator of the Cumulative Distribution Function (ECDF) plot for
ligand RMSD (left) and Centroid Distance (right) based on the test set result. TankBind has a higher
fraction of prediction with lower RMSD. The x axis of the figure stops at 15Å because comparison
for larger RMSD is less meaningful, a RMSD of 15Å is not necessarily better than RMSD of 50Å.
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A.2 Blind re-docking new receptors

We also benchmark on the new receptors test set in which the proteins have not been seen in the
training set, shown in table 6 and figure 6.

Table 6: Blind re-docking new receptors. All three models evaluated on 142 PDBs which is a subset
of the original 363 PDBs. The proteins in this subset have not been seen in the training set.

Ligand RMSD Centroid Distance
Percentiles ↓ % Below

Threshold ↑ Percentiles ↓ % Below
Threshold ↑

Methods 25% 50% 75% Mean 2Å 5Å 25% 50% 75% Mean 2Å 5Å

VINA 6.6 12.3 25.9 16.1 8.5 19.7 2.4 7.3 25.2 14.0 23.2 39.4
EQUIBIND 4.9 9.6 15.8 11.3 8.5 25.4 2.9 6.6 14.3 9.3 16.2 41.6
TankBind 2.6 4.6 9.2 8.8 20.4 53.5 1.4 2.5 6.0 6.9 37.3 73.2

Figure 6: Blind re-docking new receptors. Estimator of the Cumulative Distribution Function (ECDF)
plot for ligand RMSD (left) and Centroid Distance (right) from result evaluated on new receptors
subset and with known ligand conformations. TankBind achieves a significantly better performance
than the other two methods.

A.3 Visual understanding of ligand RMSD

In figure 7, we show the corresponding predicted structures at good (below 2Å), medium (below 5Å),
and poor (above 10Å) ligand RMSD values.

Figure 7: Corresponding predicted structures for good (below 2Å), medium (below 5Å), and poor
(above 10Å) ligand RMSD.
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B Another example of TankBind finding the correct binding site when both
the protein and the ligand are unseen.

A protein is unseen when the max protein sequence similarity (normalized Smith-Waterman alignment
score) to the training set is less than 0.8. A compound is unseen when max compound similarity
(Tanimoto Similarity of Morgan fingerprints) to the training set is less than 0.5. Figure 8 shows that,
for PDB 6KQI, we correctly locate the true binding site on the protein, while the other two methods
fail to do so under the same re-docking setting.

Figure 8: Visual inspection of PDB 6KQI. Another example of finding the native binding site when
both the protein and the ligand are unseen. Crystallized ligand colored in green, TankBind prediction
in red, EquiBind in cyan and Vina result in organ.

C Runtime details of different methods

The averaged runtime is shown in table 7. Baseline numbers are taken from EquiBind paper. The
TankBind model has 1.8M parameters, comparable to EquiBind and GNINA, having 1.4M and 0.4M
parameters respectively.

Table 7: averaged runtime per prediction for different methods.

AVG. SEC. AVG. SEC.
Methods 16-CPU GPU

QVINA-W 49 -
GNINA 247 146
SMINA 146 -
GLIDE(c.) 1405* -
VINA 205 -
EQUIBIND 0.16 0.04
TankBind 0.54 0.28
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D Repeated runs of protein-ligand binding affinity prediction.

Table 8 provides more details than the figure in main text, including the mean and standard deviation
of various methods across 3 experimental runs. Our model outperforms other models. For PIGNet
and STAMP-DPI, we were unable to re-train the model, so we directly used the save-model provided
by official repository for prediction.

Table 8: Comparison of predictive performance of ligand binding affinity using the PDBbind2020
dataset under time split.

Methods RMSE ↓ Pearson ↑ Spearman ↑ MAE ↓
Sequence-based Methods
TransformerCPI 1.741 ± 0.058 0.576 ± 0.022 0.540 ± 0.016 1.404 ± 0.040
MONN 1.438 ± 0.027 0.624 ± 0.037 0.589 ± 0.011 1.143 ± 0.052

Complex-based Methods
PIGNet※ 2.640* 0.511* 0.489* 2.110*
IGN 1.433 ± 0.028 0.698 ± 0.007 0.641 ± 0.014 1.169 ± 0.036

Structure-based Methods
HOLOPROT 1.546 ± 0.065 0.602 ± 0.006 0.571 ± 0.018 1.208 ± 0.038
STAMPDPI※ 1.658* 0.545* 0.411* 1.325*
TANKBind 1.346 ± 0.007 0.726 ± 0.007 0.703 ± 0.017 1.070 ± 0.019

E Additional ablation studies

Our ablation studies compose of mainly two categories. The first one is mainly associated with the
framework of model, and the second one is associated with the training protocol. On the model side,
TankBind-P is only doing the first summation over protein nodes inside the bracket of the equation
1, TankBind-C is only doing the second summation. We also included the results when the whole
trigonometry module is only applied once, (single stack), and is completely removed, (no trig). For
protein embedding, we tested using the pre-trained model TAPE to embed the protein instead of the
GVP, and, for compound embedding, using GAT in place of GIN . On the side of training protocol, we
tried replacing P2Rank binding sites with randomly selected binding sites, "TankBind-R", removing
the random shift added to the center of protein block, "no random", and only training on the protein
block contains the native ligand, "native only".

Table 9: Complete ablation results.

Ligand RMSD Centroid Distance
Percentiles ↓ % Below

Threshold ↑
Percentiles ↓ % Below

Threshold ↑

Methods 25% 50% 75% Mean 2Å 5Å 25% 50% 75% Mean 2Å 5Å

baseline 2.45 3.96 7.67 7.43 19.28 61.71 0.87 1.74 4.22 5.51 56.47 77.41
TankBind-R 2.84 5.24 11.17 9.37 15.98 47.93 0.98 2.31 7.71 7.30 44.90 69.42
native only 3.01 7.14 21.49 12.92 17.08 41.05 1.05 4.68 20.23 11.34 37.47 51.52
no shift 2.65 3.94 7.73 7.57 19.56 58.68 0.79 1.75 4.53 5.60 55.10 76.58
GIN to GAT 2.48 4.05 7.72 8.27 19.01 57.02 0.82 1.66 4.19 6.23 56.47 78.51
TAPE 2.48 4.55 9.20 8.81 19.01 53.44 0.90 1.97 5.86 6.89 50.69 73.00
TankBind-C 2.38 4.47 8.36 8.20 19.56 54.82 0.93 1.87 5.41 6.27 53.17 73.28
TankBind-P 2.58 4.53 8.14 8.47 16.25 53.99 0.93 1.87 5.15 6.44 53.17 74.38
single stack 2.73 4.59 8.23 8.04 13.22 55.10 0.95 1.95 4.82 5.97 50.69 75.48
no Trig 3.34 5.26 8.56 8.73 4.13 47.93 1.25 2.22 5.01 6.44 44.08 74.93
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F Example of the existence of equally valid binding sites that confuses the
result

PDBbind curated the raw PDB file by only preserving a single ligand. In a few cases, when two
or more identical chains are crystallized together, there are more than one valid binding site for the
ligand. Here, we show an example with PDB 6MO9 in figure 9.

Figure 9: An example of equally valid binding sites that confuses the result. Green is the ligand
preserved by PDBbind, but there is an equally valid binding site for each chain. PDB 6MO9.

G Details about protein segmentation

Protein graph is segmented for two main reasons: computational memory efficiency and biological
functional generalization. One the computational side, since the size of proteins has a large variation,
ranging from a few dozen amino acids to more than 3000 amino acids, the memory consumption to
represent the protein and the interaction between protein and ligand could easily exceed the capacity
of a typical GPU. On the biological side, large protein typically have multiple domains. Each protein
domain, typically of size 200 amino acids, folds and interacts with ligand independently from the rest.
Also, protein domains, as the building blocks of proteins, are more evolutionary conserved which
means that a model explicitly learning on a domain level could generalize better to new domains.
Each block is a sphere of radius 20Å typically includes about 200 amino acids, in line with the size
of a protein domain. Block of radius 20Å is large enough to enclose the drug molecules, which is
usually less than 15Å long, and small enough to be memory efficient.

We tried two ways of segmenting the whole protein. First approach is random segmentation; We
randomly select an protein node, and use this node as the block center. But this approach is not
efficient, since the binding site on protein has certain characteristic, more hydrophobic for instance.
In second approach, we used a ligand-agnostic method, P2rank v2.3 (trained model was released on
2018) [41] to identify possible ligand binding sites, and use the centers of those potential binding
sites as the block centers. For some small proteins, no binding site is identified, we therefore add an
extra protein block located at the center of the whole protein. During training, we also add an extra
protein block centering at the centroid of the co-crystallized ligand.

Despite P2rank assigns a score to each predicted binding site on the protein, the scores are fixed
regardless of the interacting ligand because of the ligand-agnostic nature of P2rank. If we simply use
the center of most probable binding site predicted by P2rank as the center of interaction block, this
interaction block encloses the ligand for 73% of the test set. Our method, being a ligand-dependent
method, improve the rate to 90%.
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H Systematically analysis of the PDBbind dataset

In order to examine whether our model has the capability to place the compound to a unseen binding
site, we aligned all the training protein-ligand complex structure with the same protein, defined by
having the same UniProt ID, to the test set protein. Kalign is used to align the protein sequences
first, and Superimposer function within package BioPython is used to align the structures. After the
alignment, we computed centroid distance between aligned compounds and centroid of the test set
compound. We found three cases in total having the centroid of all aligned training set compounds at
least 10Å away from the centroid of test set ligand. They are PDB 6HMY, 6MO9 and 6K1S. With a
visual examination of these PDBs along with aligned training set PDBs, we found that the, for PDB
6HMY and 6MO9, the apparently unseen binding site are caused by the process of crystallization and
multimeric nature of certain proteins. For PDB 6MO9, the single chain protein having two identical
binding sites due to packing during crystallization. For PDB 6HMY, the protein is a pentamer which
means there are actually 5 identical binding sites for the complete protein complex. But in PDB
6K1S, we found a genuine unseen site. We found three training set PDBs having the same protein:
4X60, 4X61, 4X63. In order to remove the possibility that a close homolog exists, we computed the
normalized Smith-Waterman alignment score, and found no homolog with score above 0.8 for PDB
6K1S other than the three PDBs with identical protein mentioned beforehand. Compound similarity
is computed based on the Tanimoto Similarity of their Morgan fingerprint using RDKit.

I Hyper-parameters

The embedding sizes of the embedding of protein blocks and compound embedding are 128. The
channel sizes of distance embedding are also 128. The trigonometry module is stacked 5 times.
Transition module is a multilayer perceptron, where the hidden channel size is four times the input
channel size. Dropout rate is set to 25%. layernorm is applied after each transition.

J Training details

During training, data is augmented in two ways. First the protein blocks that do not bind to the
specific compound are used as decoys. The constrastive loss function is designed to ensure the
compound binds weaker to those decoys than the native protein block. The margin, ε in constrastive
loss is set to 1, corresponding to 1 magnitude in binding concentration. A protein block encloses
the ligand when it covers more than 90% of the native interaction. Second, the model will see a
slightly different protein block for every training data because the center of block will have a random
shift of -5Å to 5Å, drawn from the uniform distribution, in all three axes. In bind re-docking, the
native conformation is given as input, while in bind self-docking setting, the local atomic structures
(LAS) mask, as defined in section 3.5 is applied to the compound node pair-distance map. The
compound node pair distance map is based on the native conformation during training and based
on the conformation generated by RDKit during testing. Our model include the models in ablation
studies are trained for 200 epochs, after which no performance gain was observed. The model with
the lowest validation loss was chosen as the best model. Each epoch has 20,000 randomly sampled
block-ligand pairs. The total training process takes about 50 hours on a single NVIDIA RTX 3090
GPU. We use Adam optimizer with a constant learning rate of 0.0001.

K Implementation details of baselines for drug-protein binding structure
prediction

Vina AutoDock Vina v1.2.3 is downloaded from https://github.com/ccsb-scripps/
AutoDock-Vina. We follow the tutorial listed in https://autodock-vina.readthedocs.io/
en/latest/docking_basic.html and use the center of ligand as the box center. The box size is
set to 100Å and exhuastiveness is set to 32.

EquiBind EquiBind is downloaded from https://github.com/HannesStark/EquiBind. We
follow the instruction and use saved model as listed in the GitHub. Our result slightly differs from
the reported value. It could be due to a version change made by the developer, since its still an

19

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 6, 2022. ; https://doi.org/10.1101/2022.06.06.495043doi: bioRxiv preprint 

https://github.com/ccsb-scripps/AutoDock-Vina
https://github.com/ccsb-scripps/AutoDock-Vina
https://autodock-vina.readthedocs.io/en/latest/docking_basic.html
https://autodock-vina.readthedocs.io/en/latest/docking_basic.html
https://github.com/HannesStark/EquiBind
https://doi.org/10.1101/2022.06.06.495043
http://creativecommons.org/licenses/by-nd/4.0/


active repository. In the setting of "new receptors", following the same procedure, We got 142 "new
receptors" PDBs while EquiBind got 144 (exact list not provided). We estimated that the 142 version
and 144 version will affect the reported value by less than 2%. The result for other baselines are
copied directly from the EquiBind paper for ease of comparison.

L Implementation details of baselines for binding affinity prediction

TransformerCPI We downloaded the code from the official repository https://github.com/
lifanchen-simm/transformerCPI. we changed from the default classification task to regression
task and switched to the PDBbind2020 dataset with time split, word2vec model is also retrained to
extract sequence features based on the new dataset.

MONN We downloaded the code from the official repository https://github.com/lishuya17/
MONN. The authors did not use a separate validation set, but instead used a clustering-based cross-
validation strategy. We switched the data split mode to time split and repeated the original authors’
data preprocessing steps on PDBbind2020 dataset.

PIGNet We downloaded the code and best save-model (best performance on CASF2016 bench-
mark) from their official repository https://github.com/ACE-KAIST/PIGNet. Due to the lacking
of pre-processing scripts for data augmentation, we were unable to re-train the model using PDB-
bind2020. Instead, we used the best save-model presented by the authors. The result could be
improved with additional data augmentation on the whole dataset instead of the PDBbind2019 refined
set currently used for training.

IGN We downloaded the code from their official repository https://github.com/zjujdj/
InteractionGraphNet/tree/master. The authors used PDBbind V2016 as an experimental
dataset. We switched the data split mode to time split and repeated the data pre-processing protocol
used by the authors on PDBBind2020.

HOLOPROT We downloaded the code from their official repository https://github.com/
vsomnath/holoprot. The authors used PDBbind2019 refined set as an experimental dataset split
by ligand scaffold and protein sequence. We followed the original authors’ data pre-processing on
PDBbind2020 and calculated the multi-scale representation of proteins. The model was retrained on
this new dataset with the default setting.

STAMP-DPI We downloaded the code from their official repository https://github.com/
biomed-AI/STAMP-DPI. The authors used PDBbind2016 general set as training set. We followed
the original data pre-processing and performed on the split PDBbind 2020 test set. We were unable
to extract all features required for training due to time constraints. The released model was employed
to evaluate on the test set without re-training.
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