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Abstract

Free-living amoebae belonging to Acanthamoeba genus are widely distributed protozoans which are able to cause infection in

humans and other animals such as keratitis and encephalitis. Acanthamoeba keratitis is a vision-threatening corneal infection with

currently no available fully effective treatment. Moreover, the available therapeutic options are insufficient and are very toxic to

the eye. Therefore, there is an urgent need for the development of more effective anti-amoebic agents. Nanotechnology ap-

proaches have been recently reported to be useful for the elucidation antimicrobial, antiviral, antifungal and antiprotozoal

activities and thus, they could be a good approach for the development of anti-Acanthamoeba agents. Therefore, this study

was aimed to explore the activity and cytotoxicity of tannic acid-modified silver nanoparticles, pure silver nanoparticles and pure

gold nanoparticles against clinical strains of Acanthamoeba spp. The obtained results showed a significant anti-amoebic effect of

the tannic acid-modified silver nanoparticles which also presented low cytotoxicity. Moreover, tannic acid-modified silver

nanoparticles were well absorbed by the trophozoites and did not induce encystation. On the other hand, pure silver nanoparticles

were only slightly active against the trophozoite stage and pure gold nanoparticles did not show any activity. In conclusion and

based on the observed results, silver nanoparticle conjugation with tannic acid may be considered as potential agent against

Acanthamoeba spp.
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Introduction

Acanthamoeba genus is a widely distributed, free-living pro-

tozoa which includes some strains with the ability to cause

infection in animals. Among them, Acanthamoeba keratitis

(AK) a sight-threatening infection of the cornea has gained

importance worldwide due to an increase in the reports of

AK every year (Lorenzo-Morales et al. 2013; Chomicz et al.

2016; McKelvie et al. 2018; Walochnik et al. 2015). Lately,

this genus has also been reported to act as vehicle of poten-

tially pathogenic endosymbionts (Scheid 2007; Scheikl et al.

2016; Müller et al. 2016).

Regarding AK, the main key predisposing factors of this

infection include contact lens use, corneal trauma and exposi-

tion of eye to contaminated water. Amoebae mainly localized

in the corneal epithelium may also invade the underlying stro-

ma and infiltrate through the corneal nerves, causing neuritis

and necrosis. AK is still often misdiagnosed as fungal or viral

keratitis, which results in delay of proper treatment and could

eventually lead to loss of vision. So far, no drug has been

described as a single fully effective treatment against AK

and current therapeutic approaches are restricted to the appli-

cation of chlorhexidine digluconate combined with

propamidine isethionate or hexamidine. Unfortunately,
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prolonged treatment with these therapeutic agents is very toxic

for the human eye. Summarizing, there is an urgent need for

the development of novel treatments that would be less toxic

to the eye and more effective against both trophozoite and cyst

stages of Acanthamoeba spp. (Clarke et al. 2012; Lorenzo-

Morales et al. 2015; Padzik et al. 2017).

Synthesized nanoparticles (NPs) are currently proposed as

a new generation of antimicrobial, antiviral antiparasitic and

antifungal agents (Shahverdi et al. 2007; Sondi and Salopek-

Sondi 2004). Regarding the previously reported activity

against parasitic organisms, silver nanoparticles have been

widely tested including reports of their activity on hematoph-

agous vectors such as Anopheles sp. , Culex sp. ,

Haemaphysalis sp. (Marimuthu et al. 2011; Jayaseelan et al.

2012) and helminths, Echinococcus granulosus, Schistosoma

japonicum (Rahimi et al. 2015; Cheng et al. 2013). Moreover,

the anti-protozoal activity of silver nanoparticles has been

described against Giardia intestinalis, Entamoeba histolytica,

Cryptosporidium parvum, Toxoplasma gondii, Leishmania

spp. and Plasmodium spp. (Said et al. 2012; Panneerselvam

et al. 2016; Saad et al. 2015; Ullah et al. 2018; Rai et al. 2017;

Adeyemi et al. 2017). Gold nanoparticles have not been tested

intensively, but their anti-helmintic and anti-protozoal activity

was also investigated and confirmed (Bonelli 2018; Roy et al.

2017).

On the other hand, it is known that some plant metabolites

such as flavonoids, alkaloids or terpenes present anti-parasitic

activity (El-Sayed et al. 2012; Hajaji et al. 2017). Among

them, tannins are polyphenolic plant metabolites with con-

firmed anti-obesity, anti-diabetes, anti-oxidant and anti-

microbial activity. Furthermore, the extracts might be usable

as a new dietary supplement, which could control the human

intestinal microbiome (Ogawa and Yazaki 2018). Tannins are

capable to form insoluble complexes with nucleic acids, car-

bohydrates, proteins and to chelate metal ions. Tannic acid

(penta-m-digalloyl glucose) is the simplest, hydrolysable tan-

nin with confirmed anti-microbial, anti-cancer and anti-

oxidant activity (Haslam 2007; Scalbert 1989; Nelofer et al.

2000; Athar et al. 1989).

In this study, the activity and cytotoxicity of tannic acid-

modified silver nanoparticles (AgTANPs), pure silver nano-

particles (AgNPs) and pure gold nanoparticles (AuNPs) was

investigated against clinical strains of Acanthamoeba spp.

Material and methods

Isolation, cultivation and molecular identification
of the strains

Three Acanthamoeba spp. clinical strains obtained from cor-

neal scrapes of patients with AK, respectively, P1, P13 and

P19, were initially examined in wet-mount slides using sterile

saline solutions. In the clinical diagnosis, non-invasive

methods of slit-lamp, also called biomicroscopy, and in vivo

confocal microscopy were used. Both methods were per-

formed to capture digital images of the cornea which allowed

preliminary identification of the infectious agent. Isolates

were cultured axenically in 25-cm2 culture tissue flasks (with-

out shaking) at 27 °C in PYG medium [0.75% (w/v) proteose

peptone, 0.75% (w/v) yeast extract and 1.5% (w/v) glucose]

containing gentamicin 10 mg/mL in the Department of

Medical Biology, Medical University of Warsaw, Poland.

Additionally, the ATCC 30010 type strain A. castellanii Neff

was used as a control strain. All strains were subcultured twice

a month and checked for their growth under direct light mi-

croscope using Bürker chamber (haemocytometer). Both clin-

ical samples and cultured isolates were genotyped based on

18S rRNA sequence analysis as described previously

(Chomicz et al. 2015).

Nanoparticles

All nanoparticles (NPs) used in this study were kindly provided

by the Department of Animal Nutrition and Food Science,

Warsaw University of Life Sciences, Poland. The pure silver

nanoparticles (AgNPs) and pure gold nanoparticles (AuNPs)

were obtained from Nano-Tech (Warsaw, Poland). Both hydro-

colloids of AuNPs and AgNPs were produced by an electric

non-explosive method from high purity metals and

demineralized water (Polish patent 380649). The structures of

the nanoparticles were visualized by a JEM-1220 transmission

electron microscope (JEOL, Tokyo, Japan). Tannic acid-

modified silver nanoparticles (AgTANPs) were synthesized by

chemical reduction method using silver nitrate (AgNO3) purity

99.999% (Sigma-Aldrich, St. Louis, MO, USA). AgTANPs

were prepared by mixing the heated aqueous solution of

AgNO3 (95.2 g, 0.017%) with the aqueous solution of tannic

acid (0.6 g, 5% C76H52O46 Sigma-Aldrich). The long-term sta-

bility of the colloidal dispersions of all tested NPs (zeta poten-

tial) was measured and confirmed by the electrophoretic light-

scattering method with a Zetasizer Nano ZS, model ZEN3500

(Malvern Instruments, Worcestershire, UK) (Orlowski et al.

2014; Urbańska et al. 2015; Zielinska et al. 2011).

Activity assays

AuNPs, AgNPs and AgTANPs at concentrations of 50, 25,

12.5, 6.25 and 2.5 ppm were examined in vitro and compared

for their anti-amoebic activity. To determine the efficacy of the

tested NPs against the trophozoite stage (log growth phase

after 6 days following subculturing), a previously described

colorimetric 96-well microtitre plate assay, based on the

oxido-reduction of AlamarBlue was used (McBride et al.

2005). Subsequently, the plates were analyzed over a period

of 72 to 96 h on the Synergy HTX Multi mode reader
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(BioTek) with Gen5 program using a test wavelength of

570 nm and a reference wavelength of 630 nm. For those

strains that were sensitive to the tested NPs, the 50% (IC50)

and 90% (IC90) inhibitory concentrations were calculated and

extrapolated by linear regression analysis. The inhibition

curves of the analysis were developed. All experiments were

performed three times, each in triplicate. Standard deviation

and mean values were calculated. Amoebae in both control

and tested assays were observed by Leica DMi8 inverted mi-

croscope using a Leica MC190 HD camera.

Cytotoxicity of nanoparticles

The cytotoxicity assays were performed using a fibroblast HS-

5 cell line (ATCC). A commercial kit for the evaluation of

drug-induced cytotoxic effects based on the measurement of

lactate dehydrogenase (LDH) activity released to the media

(Pierce LDH cytotoxicity assay kit 88953, 88954) was used as

per protocol. In order to set up the assay, HS-5 cells were

plated in 96-well plates (13.5 × 103 cells per well) and incu-

bated for 24 h at 37 °C, 5% CO2. Forty five minutes before

collecting the supernatant, 10 μL of Lysis Buffer (10×) was

added to another set of triplicated wells containing Target Cell

Maximal LDH Release Control and Volume Correction

Control. At the end of incubation, plates were centrifuged at

250×g for 3 min. Fifty microlitres of each sample medium to a

96-well flat bottom plate in triplicate wells was transferred and

50 μL of reaction mixture to each sample well was added and

mixed by gentle tapping. All was incubated at room tempera-

ture for 30 min protected from light. At the end, 50 μL of stop

solution was added to each sample well and mixed by gentle

tapping. To calculate the % of cytotoxicity, absorbance was

measured at 490 and 680 nm.

Transmission electron microscopy

The samples were cut into pieces of 1 mm3 and fixed in the

2.5% solution of glutaraldehyde (grade I, 25% in H2O, puri-

fied for electron microscopy use in 0.1 M phosphate buffer

(pH 6.9)). Then, the samples were transferred into the 1%

solution of osmium tetroxide (Sigma-Aldrich) in 0.1 M phos-

phate buffer (pH 6.9) for 1 h and subsequently rinsed in dis-

tilled water, dehydrated in the ethanol gradient and impregnat-

ed with epoxy embedding resin (Epoxy–Embedding Kit,

Fluka, Sigma-Aldrich). After 24 h, the samples were embed-

ded in the same resin and baked for 24 h at 36 °C. Then, the

blocks were transferred into 60 °C and baked for another 24 h.

The blocks were cut into ultrathin sections (50–80 nm) using

an ultramicrotome (LKB Ultratome III, Sweden) and trans-

ferred onto copper grids, 200 mesh (Agar Scientific Ltd.

GB). Subsequently, the sections were contrasted using uranyl

acetate (uranyl acetate dehydrate, ACS reagent, 98.0%, Fluka,

Sigma-Aldrich) and lead citrate (citrate tribasic trihydrate for

electron microscopy, Sigma-Aldrich). The morphological

structure of each specimen was inspected using a JEM-1220

transmission electron microscope (TEM) at 80 keV (JOEL,

Japan) coupled with a digital camera (Morada) and Olympus

Soft Imaging Solutions software (Olympus, Germany).

Results

Characterisation of nanoparticles

The tannic acid-modified silver nanoparticles (AgTANPs),

pure silver nanoparticles (AgNPs) and pure gold nanoparticles

(AuNPs) solutions were characterized by TEM technique. The

obtained results showed that tested nanoparticles ranged 10–

100 nm in diameter (Fig. 1).

Genotyping

All tested Acanthamoeba clinical isolates were classified to

the T4 group. The P1 strain was classified as Acanthamoeba

polyphaga at the morphological level and P13 strain as A.

castellanii, whereas P19 isolate was only classified at the ge-

nus level.

Nanoparticles activity and cytotoxicity

The obtained results of the in vitro NP tests against the

Acanthamoeba spp. trophozoites varied and depended on the

type of NPs used. AgTANPs, as the only ones, acted in the

dose-dependent manner. All tested nanoparticles showed sim-

ilar cytotoxicity on the fibroblasts at tested concentrations.

The calculated 50% cytotoxicity was achieved at 30 ppm

while 90% toxicity was achieved at 120 ppm.

The most favourable anti-amoebic effect in relation to cy-

totoxicity was revealed in assays with AgTANPs. The lowest

calculated IC50 was 16 ppm for the P13 strain after 72 h of

incubation (Fig. 2) and 14 ppm for the Neff strain after 96 h of

incubation. The lowest calculated IC90 was 67 ppm for the

P13 strain after 72 h of incubation (Fig. 3).

The AgNPs were much less effec t ive agains t

Acanthamoeba trophozoites. Particularly, the lowest calculat-

ed IC50was 55 ppm for the Neff strain after 96 h of incubation.

It is noteworthy that all clinical isolates were resistant to all

tested doses of AgNPs.

The hydrocolloid AuNPs were not active against all select-

ed Acanthamoeba strains at all tested doses.

Both AgTANPs and pure AgNPs were well absorbed by

the trophozoites. The NPs were visible inside the trophozoites

just after 2 h of incubation. Amoebae remained filled up with

NPs for the whole tested period (Fig. 4).
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Discussion

Currently, there is no definitive effective therapy against AK.

In most cases, diamides and biguanides are the first line of

treatment as their amoebicidal activity was confirmed by in

vitro studies. Unfortunately, these therapies are very invasive.

Prolonged therapy leads to higher toxic effects on the cornea

and may also stimulate amoebae encystation (Lorenzo-

Morales et al. 2015).

Different NPs, mainly AgNPs and AuNPs, have been test-

ed in vitro for their activity on pathogenic microorganisms.

Due to these promising results, some NPs have started to be

considered as a new generation of anti-microbial, anti-fungal,

anti-parasitic and anti-viral agents (Bondarenko et al. 2013).

However, there are just a few available studies on the activity

of NPs agains t amphizoic protozoans including

Acanthamoeba. Regarding studies in Acanthamoeba, AgNPs

were tested against the environmental Acanthamoeba strain

ATCC 30234. In this case, the obtained results showed signif-

icant dose-dependent decrease of adherence ability and meta-

bolic activity after 96 h of exposure (Grün et al. 2017). The

silver containing solutions were also examined by Willcox et

al. (2010). The results indicated that the viability of exposed

Acanthamoeba polyphaga trophozoites, measured by the

track forming units (TFU) calculation, was reduced. In our

experiments, AgNPs were active only against the Neff

(environmental) strain. Interestingly, all tested clinical strains

were not sensitive to the pure AgNPs and AuNPs.

In our study, it was confirmed that both silver nanoparticles

were absorbed by the trophozoites and internalized. The path-

way of nanosilver action has been widely studied but their

mechanism of action is still not fully elucidated yet. Previous

studies in bacteria have reported that AgNPs destabilize the cell

membrane, collapse the plasmatic membrane potential and de-

plete the levels of intracellular ATP (Lok et al. 2006). Most

probably, AgNPs affect the cell membrane and react with pro-

teins by releasing silver ions. In addition, it has been recently

confirmed that AgNPs cause oxidative damage within the cell

(Yan et al. 2018). The study on Candida albicans revealed that

AgNPs induced oxidative stress-mediated programmed cell

death through the accumulation of intracellular reactive oxygen

species (ROS) and affected other cellular targets such as: mem-

branes, ergosterol content, cellular morphology and cell ultra-

structural components (Radhakrishnan et al. 2018).

Furthermore, it seems that AgNPs possess multitargeted mode

of action that results in anti-microbial, anti-fungal and anti-

Fig. 2 Inhibition of the

Acanthamoeba Neff strain

trophozoites treated with the

AgTANPs compared to

cytotoxicity of the fibroblasts

treated with the AgTANPs

Fig. 1 Transmission electron microscopy (TEM) images of the a AgTANPs, b AgNPs, c AuNPs distribution and diameter
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protozoal activity. We showed that AgTANPs were significant-

ly more effective against Acanthamoeba than pure AgNPs and

AuNPs. This effect was sustained against all tested clinical

strains. The best anti-amoebic effect was noted against Neff

and P13 clinical strain for which IC50 was the most favourable

in relation to cytotoxicity. As absorbtion of AgTANPs and

AgNPs by trophozoites was similar, it suggests that tannic acid

modification increased significantly biological effectiveness of

this conjugation. Moreover, AgTANPs had no impact on the

encystment rate, which remained at the same level when com-

pared to the control assays. In studies performed by other au-

thors, the amoebicidal activity against A. castellanii trophozo-

ites was also confirmed for the AgNPs conjugated with a plant

extracts (Borase et al. 2013). It seems that combination of

AgNPs and plant metabolites might be a promising approach

in the treatment of the Acanthamoeba infection.

Fig. 4 Transmission electron microscopy (TEM) images (a, b, c) of the

Acanthamoeba castellaniiNeff strain trophozoite after 72 h of incubation

with 25 ppm of AgTANPs. The arrows show absorbed nanoparticles

inside the trophozoites. The intracellular organelles are marked as

follows: (pm) plasmatic membrane, (m) mitochondria, (n) nucleus, (er)

endoplasmic reticulum, (v) vacuole

Fig. 3 Inhibition of the

Acanthamoeba P13 strain

trophozoites treated with the

AgTANPs compared to

cytotoxicity of the fibroblasts

treated with the AgTANPs
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The results of our studies suggest that AgTANPs may be

considered as the potential agents against Acanthamoeba spp.

Nevertheless, further studies should be conducted to elucidate

their mechanisms of action.
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