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Abstract

Over the past decade, human host genome-wide association studies (GWASs) have contributed greatly to our understanding

of the impact of host genetics on phenotypes. Recently, the microbiome has been recognized as a complex trait in host

genetic variation, leading to microbiome GWAS (mGWASs). For these, many different statistical methods and software tools

have been developed for association mapping. Applications of these methods and tools have revealed several important

findings; however, the establishment of causal factors and the direction of causality in the interactive role between human

genetic polymorphisms, the microbiome and the host phenotypes are still a huge challenge. Here, we review disease scoring

approaches in host and mGWAS and their underlying statistical methods and tools. We highlight the challenges in

pinpointing the genetic-associated causal factors in host and mGWAS and discuss the role of multi-omic approach in

disease scoring statistics that may provide a better understanding of human phenotypic variation by enabling further

system biological experiment to establish causality.
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Introduction

Our understanding of the diversity of the human genome has

improved considerably in the past decade with the advances

in high-throughput sequencing technology [1]. These high-

throughput technologies have also revolutionized disease

scoring statistics (DSS) approaches. DSS refer to the application

of statistical methods to any ‘omic’ data to identify and

characterize the factors underlying human phenotypic variation

(Figure 1). Leveraging on the huge technological developments,

DSS have led to the identification of various factors that

shape the diversity of the human genome at individual, family

and population levels. DSS provided deeper insights into the

basis of phenotypic variation, including human appearance,

disease susceptibility/resistance, disease severity and response

to treatment [2]. In recent years, studies have also corroborated

the role of the microbiome on human phenotypic variation,

and the microbiome has emerged as a complex trait in human

variation [3, 4]. These studies have shown that themicrobiome is

intimately involved in the interplay between health and disease

[5, 6]. For example, alterations in the composition of the gut

microbiome, also known as dysbiosis, are now known to be

associated with many complex diseases such as inflammatory

bowel disease, cancer and autoimmune disorders [7]. Altogether,

these remarkable discoveries from human genome-wide

association study (GWAS) andmicrobiomeGWAS (mGWAS) have

raised enthusiasm among researchers to conduct research to

obtain a broader understanding of human genetic architecture,

particularly as each new DSS approach continues to reveal novel

biomarkers for disease phenotypes.
Although we know that the taxonomic composition and rel-

ative abundance of the microbiome is associated with host
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Figure 1. Development of various DSS.

Figure 2. Illustrative representation of host GWAS, mGWAS and the integrative host-microbiome study approach.

genetics and host phenotypes, little is known about the associ-

ated causative genetic factor; the precisemolecularmechanisms

underlying the expression of a given phenotype, is at best,

poorly understood [3, 5]. Recent studies have suggested that the

microbiome impacts host phenotype through alteration of the

host gene regulation in the interfacing host epithelial cells or

modification of open chromatin status in the intraepithelial lym-

phocytes [8]. The genetic risk factors in the observed relationship

between host genetic polymorphisms, the host’s phenotypic

expression and themicrobiome composition are of fundamental

biological and medical interest as a 1st step toward causality.

DSS can play major roles toward dissecting associated genetic

factors by helping to identify and prioritize likely associated

variants in linkage disequilibrium (LD) with causal variant from

the set of statistically associated genetic polymorphisms. This

will enable further biological experiment to reveal their precise

molecularmode of action.WhileDSShave enabled identification

of novel genes, pathways and networks that harbor genetic

variations responsible for a horde of phenotypes, current human

host and mGWASs do not clearly provide a mechanistic under-

standing of how the consortium of host genetic variation, the

microbiome and the environment cooperate to influence traits/

disease. Furthermore, we even delve into the challenges host or

mGWASs face in discerning true risk variants and the perplexity

in understanding how these risk variants exert their effects [9].

However, these constitute an important step toward a global

understanding of what and how human variation contributes to

phenotypic differences ranging from development, physiology

and behavior to pathogenesis of many human diseases. With

this global view, it has today become critical to integrate different

factors that potentially play roles in the human phenotypic vari-

ation. Consequently, the integration of multi-omic data within

integrative DSS approaches (Figure 2) will greatly improve our

understanding and unravel the complex interaction between

host genetics, microbiome and environment that are pertinent

to human health and disease. Such integrative DSS approaches

will facilitate the understanding of causality and subsequently

translate to clinical and medical applications, including proper

diagnosis, prevention and treatment. It is important to note that

the integration of such high-dimensional and diverse multi-

omic data is itself challenging [10].

In this paper, we (1) discuss genetic risk in the observed

associations between host genetics, the microbiome and the

complex diseases using DSS, (2) outline the role of integrative

multi-omic approaches to unravel causality and (3) conclude by

highlighting some research areas where further work on DSS is

needed to establish integrative genetic risk factors of complex

traits and diseases.

Human variation

Human populations differ in the distribution and frequency of

their phenotypic expressions. These ‘human variations’ result

from both their genetic components whose compositions are

largely shaped by their genomic history and nongenetic compo-

nents. The genomic history of human evolution is characterized

by the exchange of genetic materials across individuals, result-

ing into individuals with unique genetic features. Consequently,

the current pattern of human genetic diversity is hypothesized

to be ‘ancestral’, most genetic variants having occurred once in

human history and vertically spread across populations, rather

than due to recurrent mutations [11]. This genetic mixing gener-

ated substantial genetic variation. It is estimated that the human

genome contains between 4.1 and 5.0 million polymorphisms,

at least 99% of them being Single Nucleotide Polymorphisms

(SNPs) and short indels [12]. Despite the large number of genetic

variants in the genome, only a minute fraction of them are

hypothesized to be causal of disease [11], the majority being

neutral (having no contribution to phenotypic variation) or near

neutral.

In addition to genetic variation, the human microbiome, the

collection of bacteria, archaea, fungi, protozoans and viruses

that colonize our body surfaces and their respective genomes,

plays an important role in health and disease variation [5, 8]. A
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long-standing goal in human genetic studies is elucidating the

fraction of heritability and environment that may contribute to

the variation in health and disease [11]. This goal is, however,

challenging owing to the myriad of confounding factors that

likely mask true and causative associations. To this end, various

DSS methods for host and mGWAS have been developed to

investigate the association between genetic variability and/or

microbiome composition and disease susceptibility/resistance

[12, 13].

It is worth to note that current developed omic technologies,

particularly genotyping arrays and imputation panels, have

widely been designed for populations of European descent

with long-range patterns of LD [13]. Additionally, current

microbial databases are built with genomes of European descent

populations. The insufficient capture of some haplotypes from

non-European populations limits the power to detect important

associations. In addition, many new genetic associations to

diseases that have been identified from both host and mGWASs

have primarily been applied to samples from population of

European ancestry [12, 13]. This has an implication that a

substantial proportion of functionally important variations in

other populations are not captured. This may partly explain the

challenge in replicating variants identified in some populations

let alone drawing a strong mechanistic link between the

associated variants and disease phenotypes. Variants associated

with diseases found in populations of European descent do

not always replicate in non-European, particularly African

populations [12, 14] for several reasons, including differences

in allelic architecture, LD and confounding of environmental

factors across populations. In addition, genetic determinants

of disease and their effect sizes have also been shown to vary

significantly between European and African populations [13, 14].

The high levels of genetic diversity and the burden of com-

plex diseases in non-European, particularly in African popula-

tions, may further introduce both challenges and opportunities

not only for host and mGWAS but also for the general omic

analyses [9, 14]. The high genetic diversity, environmental het-

erogeneity and high burden of diseases that characterize the

African population [15] make it clear that leveraging the African

genomic data is pertinent to a robust analysis. Notwithstanding,

current genome-wide DSS that leverage a single level of omic

data may be limited for adequately gaining insights into the

basis of observed phenotypic expressions.

Whereas the importance of increasing host GWAS to

include samples from non-European ancestry has been long

appreciated, the observation that the composition and relative

abundance of the human microbiome is influenced by diet,

environment and host genetics has demonstrated how studies

on diverse backgrounds may provide valuable insights. For

example, Smits et al. compared the gut microbiome of the

Hadza hunter-gatherers of Western Tanzania to 18 others in

16 different countries with varying lifestyles [16]. They found

the gut microbiome composition to be clearly differentiated

between traditional and industrialized populations. With the

inclusion of multiple genetically diverse populations in the

analysis, it is hoped that it will be possible to (1) elucidate

the genetic architecture of many complex traits, (2) more

accurately reconstruct ancestral haplotype which cannot occur

in non-Africans and (3) shed light on the role of the human

microbiome in disease susceptibility and resistance given

differing environment and the burden of communicable and

noncommunicable diseases in Africa, South America and Asia.

The disparity in omic research, in terms of genetic diversity of

the study population, and technology capacity across the globe,

may not favor the advancement of our understanding of the

intricate pathogenesis of complex diseases. In addition, such

disparity forms a major obstacle toward the full development

of appropriate global prevention and treatment strategies

particularly in light of precision medicine.

Methodologies underpinning host and
microbiome DSS

To identify one or more genetic variants associated with a given

disease, the most commonly used approach today is to perform

a genetic association study. This goal is achieved by comparing

the frequency of one ormore genetic variants between cases and

controls [17, 18]. This has led to the advent of the development of

various host-based GWASmodels,mostly based on linearmixed,

random, mixed effects and Bayesian frameworks [19, 20]. Box 1

provides a brief genesis of statistical methods for host-based

GWAS approaches. Although many of these approaches and

tools have been effective at uncovering the genetic basis ofmany

complex traits, they have potentially missed out many novel

genetic variants and/or failed to disentangle true signals from

spurious associations owing to limitations in the underlying

statistical models. Methodologically, these association frame-

works (Supplementary Table S1 ) can be classified into two broad

categories: linear regression-based and linear mixed model

(LMM)-based frameworks. Supplementary Table S1 displays the

category of the tools and provides a brief description on each

tool.

Box 1: statistical methods in host GWAS

The traditional statisticalmethod for GWASwas the simple

linear (1) or logistic (2) regression, which phenotype Y and

the fixed effects X by the relation:

Y = Xβ + ε (1)

log it(p) ∼ α + βX (2)

where β is the effect size, ε is randomnoise and P = E
(

Y|X
)

is

the expected value of phenotype given genotype. LMM

modifies (1) by introducing a random effects U so that the

model becomes

Y = Xβ + U + ε. (3)

While LMM represented a powerful methodology, three

key issues remained at the forefront of its implemen-

tation: (i) computational cost in evaluating the vari-

ance parameters, (ii) strategy of modeling SNP effects

(fixed SNP effect vs random SNP effect) and confounders

and (iii) method of modeling genetic architecture of the

phenotype (infinitesimal versus non-infinitesimal), lead-

ing to development of various statistical tools. Under

an infinitesimal model, the χ2 [1 Degree of Freedom

(d.o.f)] test statistic for testing association in equation (3),

with the hypothesis βtest = 0 is

χ2 =

(

x′
testV

−1y
)2

x′
testV

−1xtest
, (4)

where, V = cov(y) = σ 2
g K + σ 2

ε I; K is the genetic relationship

matrix (kinship matrix) that models sample structure and

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bfgp/ely040/-/DC1
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I is n×n identitymatrix. The variance parameters σ 2
g and σ 2

ε

are typically unknown and to be computed. The computa-

tion of variance components in LMM is, however, expen-

sive. Various approaches have been proposed to reduce

computational cost. Kang et al. [22] proposed a direct esti-

mation σ 2
g and σ 2

ε by maximizing the REML function, and

then applying spectral decomposition [23] obviating more

computationally intensive approach of determining the

best linear unbiased prediction via Henderson’s iterative

procedure [24].

Computational efficiency is improved from other

approaches that replace the usual relatednessmatrix com-

puted from all genome-wide SNPs by low-rank related-

ness matrix [23]. In addition, the effective sample size

of a random effect is reduced by clustering subjects into

genetically similar groups. Moreover, logistic mixed model

has recently been advocated for, in place of LMM, analysis

of binary traits. This is because LMM is based on the

assumption that the trait has constant residual variance—

an assumption that is usually violated by binary traits in

the presence of covariates [24]. In recent years, in light

of trait polygenicity, LMM methods that simultaneously

test the effect of multiple SNPs have been developed, for

example, GCTA [25]. In these, the model is set as

Y = Xβ +

p
∑

i=1

gi + ε (6)

where gi is a vector of genetic effects on whole genome.

Bayesian modeling technique has since been adopted for

joint analyses of multiple SNPs, because of their abil-

ity to increase power by leveraging known information

on marker effects. Chen et al. [24] proposed Hierarchical

Bayesian model, in which the SNP random effects are

assumed to follow the mixture distribution:

Y = Xβ + Uα + ε (7)

where αj values are assumed to follow a Gaussian

distribution.

This improved power over other LMM-based methods,

such as GCTAmodeled [25] by equation (6).Meanwhile, Loh

et al. [33], in the current popular BOLT-LMM tool, undertook

a different Bayesian approach to capture non-infinitesinal

genetic architecture, modeling SNP effect sizes by fitting

non-Gaussian mixture prior distribution that better mod-

els small- and large-effect sizes. In this framework, the test

statistic in (4) is derived to be

χ2 =
(x′

testy
∗)

c
, where y∗ is a vector of residual phenotypes

obtained by fitting a Gaussian mixture of priors to the

standard LMMand c is calibration factor defined so that the

LD score regression intercept of the χ2 test statistic under

the non-infinitesimal model matches with that under the

infinitesimal model (4).

Linear regression-based approaches (Box 1)model the pheno-

type of an individual as function of fixed effects (which include

genotype at the candidate marker, as well as optional covariates

such as age, gender and other clinical information). In such

models, the inflation in the test statistic can then be controlled

by using differentmethods. These include genomic control,mul-

tidimensional scaling, structured association and principal com-

ponent analysis. These methods are implemented in the GWAS

software tools including STRAT [21] and the currently popular

PLINK [22] (Supplementary Table S1). Although these methods

are effective at controlling inflation in test statistic when the

population has structures, they do not suffice in the presence of

population substructure [19]. In particular, they do not account

for the complete genealogy of all study subjects. LMM (Box 2),

an extension of the standard linear regression, partitions the

explanatory variables into two groups: fixed effects, which are

modeled as parameters that are fixed but unknown, and random

effects, which are modeled as being drawn from a random

distribution. This provides a powerful method to simultaneously

account for various levels of sample structure, including pop-

ulation stratification, family structure and cryptic relatedness.

Principally, this is achieved by fitting population structure as a

fixed effect and incorporating marker-based kinship informa-

tion via the variance–covariance structure of the random effect

for the individuals [23, 24]. To date, LMM remains the workhorse

for association mapping and nearly all-current GWAS tools are

based on it. Importantly, not only does LMM provide a control

for confounding due to sample structure, but it also increases

the statistical power to detect causal variants and enables esti-

mation of heritability explained by genotyped markers [25]. This

is achieved by applying a correction that is specific to a given

type of sample structure [26, 27].

Box 2: statistical methods in mGWAS

Diversity metrics (alpha diversity or beta diversity) can

be leveraged as phenotype for mGWAS. In mGWAS [35]

beta diversity is leveraged as phenotype in GWAS. The

beta diversity analysis usesmicrobiome distancemeasures

such as UniFrac and Bray-Curtis dissimilarity. Let D =

(dij) be a beta diversity distance matrix between subjects

i and j. Let Gij = |gi − gj| be the genetic distance. The

main hypothesis here is that if a SNP is associated with

the microbiome (through its distance matrix), then the

microbiome distance measure should be smaller for pairs

of subjects that have identical genotype at the SNP given

SNP. Then, assuming a linear relationship,

dij = β0 + βGij + εij

where εij is the environmental effect. If n is the number of

individuals, then n
2 (n−1) pairs of subjects can be clustered

into three groups with genetic distance 0, 1 and 2. The

hypothesis H0 : β = 0 versus β > 0 is tested using a score

statistic, S, derived by minimizing
∑

i<j

(

dij − β0 − βGij

)2
:

S =
∑

i<j d
∗
ijGij, where d∗

ij = dij − 2
n(n−1)

∑

p<q dpq. The

conditional variance of S on D is Var0(S|D) = σ 2 =
∑

i<j,p<q d
∗
ijd

∗
pqCov(Gij,Gpq), Cov(Gij,Gpq) = 0 when i, j,p and q

are distinct.

Then the variance-scaled score statistic for testing

association of a microbiome distance with a genetic dis-

tance across pairs of subjects is then given by Zsc = S/σ ∼

N(0, 1).

This model was subsequently extended to incorporate

multiple distance matrices so as to improve statistical

power.

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bfgp/ely040/-/DC1
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Lynch et al. [36], proposed an mGWAS method that

uses, as phenotype, relative abundance computed at a

given taxonomic level. Owing to the high dimension of

microbiome relative abundance data, their method applies

regularization based on lasso regression, which results in

a sparse solution. Host SNPs associated with microbiome

are then determined via permutation test, while specific

taxa correlated with host genetic variation identified using

stability selection [37].

While LMMs has become the method of choice for GWAS, it

presents a substantial computational challenge. Methods that

compute the exact association test statistics from complete or

imputed genotype data certainly provide ‘accurate’ P-values

and thus maintain high power. Current software tools using

exact computation of the test statistic include EMMA [28],

FaST-LMM [29] and more recently GEMMA [23] (Supplementary

Table S1). Although the P-values produced by GEMMA are

identical to EMMA and FaST-LMM, the algorithm in GEMMA

provides a higher efficiency, in terms of per-SNP computational

time. It is important to note, however, that even with efficient

implementation, the computation of variance component in

these tools scale in time of O(mn3), where m is the number of

markers and n is the number of individuals, and as such these

tools are impractical for analysis of large samples (Box 2) [26]. To

circumvent computational cost, several approximationmethods

have been proposed. These include (i) obviating repetitive

estimation of variance components, as implemented in the

software tools TASSEL [29] and EMMAX [30] (Supplementary

Table S1) and (ii) step-wise implementation [31]: estimation of

the residuals from the LMM under the null model and then

using these residuals as phenotypes for analysis by the standard

linear model (e.g. implemented in software GRAMMAR [32]. This

substantially reduces the per-SNP computation time. Another

important note is that these approximation-based tools show

reduced power at SNPswith small effect sizes. Recently, Loh et al.

[33] proposed an efficient approximation method that adapts

the LMM by taking a Bayesian perspective and modeling non-

infinitesimal genetic architectures via non-Gaussian mixture

prior distributions, invoking the fast variational approximation

to compute approximate phenotypic residuals. Their methods,

implemented in BOLT-LMM and BOLT-REML (Supplementary

Table S1), are the current state-of-the-art methods for host

GWAS analysis not only in terms of computation time and

memory requirement in large cohorts but also, importantly,

in terms of the genetic architecture modeled. Apart from the

methods proposed by Loh et al. [33], all currently existing tools

are based on the infinitesimal model in which all variants

are assumed causal with effect sizes following independent

Gaussian distribution. In addition, all current tools, as far

as we know (Supplementary Table S1), have computational

times that scale with the square or cube of sample size,

rendering them unfeasible in large data sets. Overall, all these

state-of-the-art methods of host GWAS cannot distinguish

confounding from polygenicity in the association test [19].

In contrast to host GWAS, methodological development for

mGWAS has just begun to emerge. The past 3 years have seen

the development of statistical methods for investigating host–

microbiome interactions. These methods leverage microbiome

features (relative abundance of microbial taxa, alpha diversity,

beta diversity or microbial pathway) as a complex trait and

determine their correlation with host genetics, by testing either

multiple-distance matrices across pairs of subjects or taxa

relative abundance [34]. Principally, GWAS can be performed

between any given set of genotypes and phenotypes, and

thus, although most of mGWAS carried out to date have been

limited to the metagenomic level, the framework can similarly

be performed at the metatranscriptomic, metaproteomic and

metabolomic levels.

The two currently existing mGWAS tools are based on linear

regression model as illustrated in Box 3 and Supplementary

Table S2 summarizes the functionalities of these mGWAS tools.

The 1st mGWAS tool is mGWAS [35]. It is a statistical framework

for identifying host genetic variants associatedwithmicrobiome

beta diversity with or without interacting with environmental

factors and corrects for skewness and kurtosis. The 2ndmGWAS

tool, HOMINID [36], which is based on Lasso regression, iden-

tifies associations between host SNPs and microbiome taxa.

Additionally, by using Lasso regression plus stability selection

with randomized Lasso, this tool enables identification ofmicro-

bial taxa that are correlated with specific host SNPs.

Box 3: some unsolved challenges in host and micro-
biome GWAS

• Statistical methodologies for host-based and mGWAS

for identifying causal factors in the observed associ-

ations between the environment, host genetics, the

microbiome, and complex phenotypes
• Determining the direction of causality in the interplay

between host genetics and microbiome in complex

traits
• Determining the impact of host epigenetics on micro-

biome features
• Accounting for interaction among microbial species,

in identifying specific microbial taxa associated with

host genetic variation
• Correcting for confounders arising from the multiple

factors that modulate the microbiome composition
• Modelling the true genetic architecture of complex

traits
• Accounting for the missing heritability in host GWAS

Limitations in current methods and tools for
host and mGWAS

Although substantial progress in the development of meth-

ods and tools for host genome-wide association mapping has

occurred over the past decade and many new tools continue to

be unveiled, many significant challenges need to be addressed

before the gap between statistical association and biological

association can be narrowed. Similarly, initial foray into mGWAS

using custom-made mGWAS tools or ported host GWAS tools

have illuminated several importantmicrobiome-associated host

genetic polymorphisms. Even so, however, several methodolog-

ical limitations and pitfalls exit in using these tools. Box 1

provides some challenges in host and mGWAS.

Most current host GWAS tools are built on the infinitesimal

genetic architecture, which makes the implicit assumption that

all variants are causal with small-effect sizes independently

drawn from Gaussian distributions. For complex traits, it is

now known, however, that only a small proportion of the

genetic variants are actually causal [17]. Thus, employing this

assumption clearly limits power. Bayesian techniques have been

http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bfgp/ely040/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bfgp/ely040/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bfgp/ely040/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bfgp/ely040/-/DC1
http://bfg.oxfordjournals.org/lookup/suppl/doi:10.1093/bfgp/ely040/-/DC1
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invoked to incorporate non-infinitesimal genetic architecture

[33, 34]. However, the prior on marker effect sizes is assumed

to follow independent Gaussian distributions. The validity

of the Gaussian assumption, according to the central limit

theory, requires sufficiently large sample sizes that may not

necessarily be the case in GWAS analyses. This concern can be

even greater for the case of ascertained case–control studies

because in such cases the distributions of genetic effects are

no longer Gaussian [37] and the independence between genetic

effects and environmental effects is lost due to disproportionate

sampling of cases and controls [38]. In the same light, methods

and tools so far developed to leverage the microbiome as a

complex quantitative trait for association mapping assumes

the infinitesimal genetic architecture and do not incorporate

the effect of genetic interactions on the microbiome. Early

insights gained from the mGWAS studies suggest that only a

few host loci interact with themicrobiome; thus, amore realistic

non-infinitesimal genetic architecture could be modeled by

taking a Bayesian approach and incorporating small and

large effect size loci using suitable distributions. However,

the question of how to choose the appropriate distribution

and/or incorporate the (possibly) different distributions of

marker-effect sizes (because not all markers were created

equal) remains open for future research. In addition, existing

methods [34] that leverages multiple microbiome beta-diversity

distance matrices apply the strongest association, defined

as the highest P-value from the set of P-values obtained

from each distance matrix, to evaluate significance. Statistical

techniques that allow to rescale the overall statistic threshold

by effect of distance matrices should provide increased power.

Here methods such as truncated product method [39] could

be employed. Meanwhile, aptly approaches to tackle the

complexity implied by the multi-dimensional interactions

among genetic loci would perhaps include recursive partitioning

method, multifactor dimensionality reduction or Bayesian

technique.

Itmust be pointed out that another great limitation of current

host andmGWASmethods alike is the absence of robust models

for interactions of host genetics and the microbiome with the

environment. While significant progress has been achieved in

this direction for host GWAS, no appreciable stride has been

made on themGWAS side. The plasticity ofmicrobiome data to a

plethora of environmental factors makes realistic investigation

of microbiome–environment interactions an extremely difficult

problem.A 1st step toward addressing this issue will be to define

a ‘gold standard’ for statistical methods that will be developed

for such complex interactions. Of course, given that complexity

of themicrobiome, in terms of dimensionality and features (zero

inflated, over dispersed and multiple outliers), any such models

that incorporate environmental factors is likely to be computa-

tionally intractable. In such a case, likelihood free methods such

as approximate Bayesian computation could be adopted. These

limitations and challenges in current DSS frameworks conse-

quently impact the progress toward a complete understanding

of the nature association between host genetics, gene regulation

and microbiome.

Dilemma in risk factors: host genetics, gene
regulation and microbiome causality

The results of several host GWAS conducted over the years have

provided several insights into the biological processes underly-

ing many diseases [40]. Several genes, pathways and regulatory

Figure 3. Possible direction of interaction between host genetic,microbiome and

gene regulation on host phenotype.

networks have been identified for a number of complex diseases,

including cardiovascular diseases, type 2 diabetes and cancer

[41, 42]. While the pathogenesis and nature of the aberrant

activities in these pathways and regulatory networks is coming

into view for some complex diseases, the apparent molecular

circuitry remains generally elusive for most traits. Meanwhile,

initial forays into mGWAS have already demonstrated the inti-

mate link between host genetic polymorphisms andmicrobiome

attributes [43, 44]. For example, a pioneering study by Blekhman

et al. using samples from 93 individuals identified multiple host

loci associated with changes in abundance of microbial taxa [5].

Intriguingly, some of the loci detected in this and other mGWAS

carried out to date overlap with several expression quantitative

trait loci that have previously been identified across multiple

tissues [38]. Moreover, this link is observed to be tissue specific

[45] and enriched with specific human proteins [43]. These dis-

coveries suggest the likely influence of host gene regulation on

specific tissues that interactwith themicrobiome.However, little

is known about the interplay between host genetic variation,

microbiome composition and host gene expression and how this

impacts host traits (Figure 3).

Several challenges remain toward establishing causality.

These association results are often limited to correlations and

may generally end up identifying consequential changes rather

than the true risk factors that may lead to establish genetics

causality [13, 2]. For example, the predictive power of disease

risk remains poor because current identified variants account

for only a small proportion of additive genetic variation [2].

Consequently, current findings from disease scoring approaches

have not yet had major impact on therapeutic optimization

for the majority of complex traits. Moreover, it has become

apparent that changes in gene regulation are at the center stage

of biological mechanisms underlying most associations, and yet

our current knowledge of gene regulation is still limited [46].

Without a comprehensive knowledge of gene regulation and the

paucity in available tools for studying regulation, the transition

from statistical associations to biological insights (biological

mechanisms, the particular genes involved and the direction

of causality) remains a challenge. Nevertheless, significant

advances in technology coupled with multi-omic approaches,

which is able to simultaneously capture millions of data points,

will enable system-wide examination of complex interactions

in biological system [47].
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Omic data integration

The multi-omic approach involves understanding the complex-

ity of the living as a whole by incorporating data at multiple

biological levels: from gene sequencing to protein expression

and metabolic structures [48]. Therefore, these data cover wide

range of the biological information involved in the variations

that occur in the genes and cellular networks and influence

the functioning of organic systems in their entirety [48].

This approach has mainly been driven by the surge in high-

throughput sequencing efforts over the past two decades. Multi-

omic approach will be able to dramatically improve our way

of analyzing the biological system, which relies on a single-

omic model, that offers limited insight into the complex and

dynamic nature of biological networks and their association

with environment factors. Integrating data from all these

omic levels will be useful for identifying new biomarkers,

generating new knowledge and/or developing new diagnostic

tools. The integration of multi-omic data with GWAS will

bring more insight in the causal factors and the interactions

between the host, microbiome and environment. However,

multi-omics is still in its infancy [47, 49] and requires large-

scale studies that need state-of-the-art tools. So far, many

integrative multi-omic tools have been developed [50]. Multi-

omic method, however, poses significant challenges in terms

of the analysis approach, the statistical methods and the

interpretation of these numerous data [51]. One of the most

important challenges is the difficulty of representing existing

knowledge about the molecular processes involved in many

complex diseases, given that biological systems are a myriad of

complex connections and are closely linked to their evolutionary

history. Another fundamental challenge is that of matching the

heterogeneous data from different methods and platforms. It

requires a synchronization of huge amount of data that vary

in data format, thus potentially will add bias and noise to data

integration processes. This step can use various strategies either

merging the different data coming from the same subjects

or trying to homogenize the data. However, it is very critical

because matching the data must not only put the data in

the same files but also bring a new meaningful knowledge.

In addition, incorporating various omic data each of which

typically contains many measurement errors raises the issue

of quality control. This is compounded by the fact that the

measuredmolecular data are prone to bias arising from samples

preparation and processing. Another challenge is analyzing the

data of huge size and of different classifications (molecular data,

measurement features, technology used, biological samples,

type of study, etc.). Therefore, bioinformatics approaches and

pipelines and their associated mathematical models need to

address the dimensionality and heterogeneity of the data. In

doing so, machine-learning approaches may be more suitable

for data integration and related modeling, as they provide

a robust way of leveraging hidden knowledge from various

omic data types to improve analyses.On the other hand, topolog-

ical data analysis methods that examine the shape of data with

geometric dimensional conversions [52] can also be suitable in

finding hidden patterns compared to other standards methods

such as correlation-based analysis [53, 54] and unsuper-

vised data integration (matrix factorization methods, Bayesian

methods, network-based methods,multiple kernel learning and

multi-step analysis) [53, 55]. The other approach to explore

is the complex network-based approaches, which may be

worthy of exploration to efficiently handle the multi-omic data

deluge [53].

Role of bioinformatics in the era of
multi-omics

Considering the molecular variation of biomarkers, the rapid

growth in large-scale omic technologies opens windows for

global views of biological system in a holistic hypothesis-driven

manner. Integrative approaches need to be designed and applied

to various levels of biological information to comprehend

the pathogenesis of complex diseases [49]. Bioinformatic

approaches, resources and computational biology tools are at

the center for the advancement in implementing real-time

multi-omic integration and health care analytics. Bioinformatics

is arguably a recent field but has substantially contributed

to the advancement in the modernization of computational

techniques and capacity to handle the amount of biological

data generated by genome sequencing and variation studies

[1, 10, 15]. Bioinformatics currently plays a critical role in

deciphering omic data and organizing information in all aspects

of independent omic layers. While bioinformatics and compu-

tational biology tackle challenges raised from each independent

omic data type in the past decades [15, 49], today multi-omic

era has raised further challenges in integrating various levels

of biological information [47, 49]. Furthermore, analyzing and

interpreting such integrative biological information demand

outstrips supply and further bioinformatics and computational

biology capacities are needed. This issue raises the need to

strengthen the multidisciplinary nature of bioinformatics and

education. In doing so, this will have a critical impact on

the discovery of multi-omic diagnostics, biomarkers, clinical

decision-making and data-driven medicine.

Conclusions and perspectives

The substantial role of host genetics on the microbiome and

on host phenotypes has been identified using the wealth of

available DSS tools. Although many of these methods and tools

have been effective at uncovering the genetic basis of many

complex traits, they have potentially missed out many novel

genetic variants and/or failed to disentangle true signals from

spurious associations owing to limitations in the underlying

single-omic statistical models. Given the current experimental

observations of the strong influence of host genetics on the

microbiome and the role of the microbiome on host pheno-

types, it has become increasingly apparent that integrating the

microbiome in host GWAS will reveal many important insights

and it will be a strong 1st step toward establishing causality. A

critical challenge facing the host genetics and microbiome field

is the identification of genetics risk factors with strong effect

to allow the establishment of the direction of causality in the

observed associations between the environment, host genetics,

microbiome and complex diseases. A complete solution for this

issue would be one of the major breakthroughs for a century-

long problem on understanding human variation relevant.

The integrative analysis may be the key to better understand

the role and mechanisms of host genetics, microbiome and

environment in the manifestation of many complex diseases

(Figure 2). This will ultimately revolutionize therapeutics, driving

the era of precision medicine. The major challenge for this inte-

gration lies in the development of novel statistical techniques

and multi-omic data integration. The integrative analyses will

throw bioinformatics and human genetic studies into a brand-

new era, quickening the pace ofmovement frompopulation level

to individual level understanding of complex human traits and

diseases.
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It will be interesting to perform simulations to examine the

power of various current host and mGWAS methods and to

investigate their performance under various important factors,

such as sample size,marker effect size, host genetic correlations,

population structure and microbial interactions. Such simula-

tions will not only highlight current methodological limitations

but also guide development and validation of future association

tools. In brief, we discussed DSS approaches in host GWAS

and in mGWAS, outlining their associated methods and tools.

We further discussed the limitations of these methods and

highlighted the dilemma in dissecting causality between host

genetic, microbiome and environment. Finally, we underscored

the importance of integrating multi-omic data with GWAS and

outlined some of the challenges in this data integration. We

believe that this paper may motivate the development of new

methods for mGWAS.

Key Points

• Discussing issues related to host and mGWAS
• Outlining current methods and tools available for host

and mGWAS
• Discussing the importance of integrative multi-omic

approaches in understanding causal factors and the

direction of their effects on host phenotypes
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