
TAO: Techniques for Algorithm-Level Obfuscation
during High-Level Synthesis

Christian Pilato and Francesco Regazzoni

Università della Svizzera italiana, Lugano, Switzerland

christian.pilato@usi.ch,francesco.regazzoni@usi.ch

Ramesh Karri and Siddharth Garg

New York University, New York, NY, USA

rkarri@nyu.edu,sg175@nyu.edu

ABSTRACT
Intellectual Property (IP) theft costs semiconductor design com-

panies billions of dollars every year. Unauthorized IP copies start

from reverse engineering the given chip. Existing techniques to

protect against IP theft aim to hide the IC’s functionality, but fo-

cus on manipulating the HDL descriptions. We propose TAO as a

comprehensive solution based on high-level synthesis to raise the

abstraction level and apply algorithmic obfuscation automatically.

TAO includes several transformations that make the component

hard to reverse engineer during chip fabrication, while a key is

later inserted to unlock the functionality. Finally, this is a promis-

ing approach to obfuscate large-scale designs despite the hardware

overhead needed to implement the obfuscation.

CCS CONCEPTS
• Hardware→ Electronic design automation; • Security and pri-
vacy → Hardware reverse engineering;

KEYWORDS
High-Level Synthesis, Algorithm-Level Obfuscation, Reverse Engi-

neering, IP theft.

1 INTRODUCTION
The cost of manufacturing an Integrated Circuit (IC) is growing as

technology scales, limiting the number of companies that can afford

the billion dollar manufacturing foundries [6]. Many companies are

thus becoming fab-less, outsourcing ICmanufacturing to third-party

foundries [7]. This creates security issues: a rogue in the potentially

untrusted foundry can access the chip design and reverse engineer

the functionality to steal the Intellectual Property (IP) [5].

Several techniques have been proposed to thwart reverse engi-

neering of an IC at an untrusted foundry. Split manufacturing splits

the computing resources from the interconnections, with the two

parts fabricated in different foundries. Logic obfuscation has been

extensively investigated for this purpose as well [14]. The designer

adds additional inputs and modules to the design to hide the correct

functionality, while a locking key (unknown to the foundry and

written later in a tamper-proof memory) activates the IC. With the

increasing complexity of ICs, designers are migrating to high-level

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

DAC ’18, June 24–29, 2018, San Francisco, CA, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5700-5/18/06. . . $15.00

https://doi.org/10.1145/3195970.3196126

Specification

High-Level
Description RTL Design Gate-Level

Design

Layout Non-
functional IC

Activation

Functional IC

Locking key

Untrusted Foundry

Logic Synthesis

Design Company

Manufacturing

High-Level
Synthesis

with Obfuscation

Physical
Synthesis

Figure 1: IC design flow; red artifacts show IC reverse engi-
neering. TAO extends HLS with obfuscation using a key.

synthesis (HLS) to automate the design process [11]. While one can

apply logic obfuscation on the generated netlist [13], more robust

solutions can be applied directly at the algorithm level.

Algorithm-level obfuscation aims at developing anti-reverse

engineering techniques based on the characteristics of the algorithm

the different steps in HLS. We aim at raising the abstraction level

of RTL obfuscation by embracing a security-aware HLS flow to

generate obfuscated designs by construction.

Techniques for Algorithm Obfuscation (TAO) start from a high-

level description of the functionality in C language, and use HLS

methods to produce the corresponding obfuscated RTL description.

This is achieved by obfuscating the HLS results or the generated

RTL description. TAO extends HLS algorithms to obfuscate the

most sensitive details of an algorithm. TAO presents techniques

that obfuscate the information that comes from the specification

(e.g., constant values, loop bounds) and the information generated

by HLS (e.g., control states, used and unused data path resources,

execution latency). TAO can obfuscate complex functions as part

of a comprehensive HLS-based obfuscation design flow.

1.1 Related Work
IC counterfeiting is a critical issue for fabless companies since they

may lose billions of dollars for IP theft and overselling [5]. So,

several IP protection techniques have been proposed at different

stages of the design process. Some methods focus on modifying

the design before fabrication with hardware watermarking [1] or

leveraging intrinsic hardware properties of the device with Physical

Unclonable Functions (PUFs) [17]. However, these solutions require

an intimate knowledge of the target technology and the back-end

tool-chain. Split manufacturing separates the fabrication of the

interconnections from the rest of the chip [8]. However, the process

requires a 2.5D integration technology. Another solution hides the

IC function by adding extra gates to the gate-level netlist and uses

1

https://doi.org/10.1145/3195970.3196126

DAC ’18, June 24–29, 2018, San Francisco, CA, USA Pilato, Regazzoni, Karri, Garg

a secret key to activate the IC [14],[10]. High-level transformations

have been already proposed but only to obfuscate DSP circuits [9].

SAT-based attacks can extract these keys [16, 18]. In [13], the

authors propose RTL hardening techniques by adding extra con-

nections among the functional units. While this approach is more

potent than gate-level methods, constant values and branches are

challenging to obfuscate since the design is already optimized. For

instance, interconnections between resources andmultiplexers have

been sized based on the given precision. However, this reveals in-

formation on their range. Since TAO applies at a higher level of

abstraction, it masks sensitive details of the algorithm by hiding

sensitive constants and encrypting them during the front-end with

a limited overhead. Key management is another aspect of algo-

rithmic obfuscation. Many companies are proposing solutions to

store keys in tamper-proof memories (e.g., one-time-programmable

memories) off-chip. These approaches are complementing this work

wherein TAO stores the keys in on-chip tamper-proof non-volatile

memories.

1.2 Contributions
HLS solutions to obfuscate an IC are unavailable. However, this

is a promising approach to broaden the set of obfuscations and

to obfuscate complex designs. For instance, in TAO, we propose

obfuscations both at the front-end level and during HLS. Working

at the HLS level allows us to remove the sensitive algorithmic

information and integrate it within the key. The main contributions

of TAO are as follows:

• TAO considers the untrusted foundry as the adversary (Sec-

tion 3.1);

• TAO is a HLS-based design flow for algorithmic obfuscation

that starts directly from C code (Section 3.2);

• TAO uses a set of obfuscation techniques that span all the

HLS steps (Section 3.3);

• TAO shows how to manage the locking key (Section 3.4).

1.3 Roadmap
After presenting the model of the components that we aim at pro-

tecting (Section 2), we present the TAO approach for algorithm-level

obfuscation, showing how it is implemented in a HLS flow (Sec-

tion 3). In Section 4, we evaluate the area and performance overhead

for the TAO obfuscation techniques and present a validation of the

obfuscated designs.

2 DESIGN MODEL
TAO targets ICs generated using HLS. State-of-the-art HLS tools

rely on the Finite-State Machine with Data path (FSMD) model [2].

The controller is a finite state machine (FSM) that determines which

operations execute in each clock cycle. The controller sends control

signals to trigger the operators and the interconnection in the data
path to perform the computation. These two parts are coupled, and

both are required to extract IC’s function.

The HLS flow is shown in Figure 2. It interfaces with state-of-the-

art compilers (e.g., GCC or LLVM) to parse the input C code, apply

compiler optimizations, and extract an intermediate representation

(IR) [11]. The HLS steps work on this IR as follows. Scheduling
selects the resources and memories and determines the operations

TAO-enhanced High-Level Synthesis Flow

RTL
Design

Compiler
Steps Binding

Scheduling

Controller
Synthesis

Code
Generation

Front-end Mid-level Back-end

Locking
key

C code

Working
key

Key management

Figure 2: HLS flow extended with key-based obfuscations.

to execute in each clock cycle. During module binding, operations
scheduled in different clock cycles are assigned to reuse resources.

Temporary values crossing the clock boundaries are mapped to

different registers during register binding [15]. The penultimate

step in HLS is interconnection binding, where the different resources
are interconnected. Ultimately, the control signals are identified and

the controller is generated during controller synthesis. The output
is an RTL design ready for logic synthesis.

To protect the intellectual property (IP) of an algorithm, we

identify the following elements to protect via obfuscation:

• arithmetic operations: The designer aims at obfuscating the

Data FlowGraph (DFG), i.e., which and howmany operations

are executed, together with their dependencies.

• constant values (e.g., coefficients, loop bounds) reveal details
of the algorithm on one hand and enable further logic-level

optimizations on the other. The optimization results can leak

information on the operations manipulating these values.

• control flow represents the sequence of FSM states traversed

during the execution for the given inputs. It represents pro-

tocol implementations in control-dominated applications.

The elements are connected because leaking information on one

set of elements can aid recover details on the others.

3 HIGH-LEVEL SYNTHESIS TECHNIQUES
FOR ALGORITHM OBFUSCATION (TAO)

3.1 TAO Threat Model: The Untrusted Foundry

3.1.1 Untrusted Foundry’s Objective. The main goal of the rogue

in the untrusted foundry is to identify the functionality of the IC.

In particular, he or she aims at recovering the correct sequence of

states executed by the controller, along with the signals provided to

the data path (operations to execute, registers, and interconnections)

in each given clock cycle. This gives the foundry the possibility of

reproducing the IC, thus misappropriating the IP.

3.1.2 Foundry’s Capabilities. The untrusted foundry has full

access to the GDSII file (i.e., the layout) of the obfuscated circuit gen-

erated from the synthesis output using physical design tools. From

the GDSII file, we assume that the foundry can reverse engineer the

2

TAO DAC ’18, June 24–29, 2018, San Francisco, CA, USA

types of modules used in the design (i.e., registers, functional units,

interconnection elements) and can identify the operations executed

by each functional unit. The foundry can also perform simulations

with different input and lock key values to extract information from

the circuit that can help reconstruct the functionality. However,

the untrusted foundry does not have access to the correct key or a

functioning unlocked IC.

3.1.3 Target of the Attacks. Low volume customers who build

sensitive designs (e.g. US DOD) are typically targeted by untrusted

foundries under pressure from their government. Until recently,

IBM was maintaining the trusted foundry for the US government.

Once it got acquired by Global Foundries owned by a foreign entity,

there is no trusted foundry anymore.

3.2 TAO Approach
TAO extends the traditional HLS flow to obfuscate the IC function-

ality and make reverse engineering and hence the IP theft difficult.

Since an HLS-generated component requires interaction between

the data path and the controller, TAO is a comprehensive solution

for algorithm obfuscation embracing all steps in HLS.

3.2.1 Front-end. A locking key K is generated by the designer to

activate the IC, as shown in Fig. 1. The IR generated and optimized

during the HLS front-end is processed to determine the working
keyW used for obfuscation. The size of the working key depends

on the complexity of the algorithm to protect. We assign a fixed

number of key bits to obfuscate each constant, each basic block (to

obfuscate the DFG and the FSM states resulting from its scheduling),

and each control branch. After compiler parsing and optimization

steps, TAO extracts and obfuscates the constants (see Section 3.3.2)

to prevent HLS optimizations based on their bit-width that may

reveal sensitive information.

3.2.2 Mid-level. The IR is input to the HLS. The data path and

controller of each sub-function are obfuscated to hide the execution

of the correct algorithm. TAO obfuscates each control branch (see

Section 3.3.3) and basic block (see Section 3.3.4). In case of a condi-

tional jump, TAO masks the result of the condition with a key bit

that obfuscates the target state. The output and next-state functions

of the controller are masked with key bits to obfuscate the correct

transitions while maintaining logical but incorrect execution flows

in case of wrong locking keys. For each basic block, TAO creates

several DFG variants to thwart identification of the arithmetic oper-

ations and dependencies. In the data path, we add extra connections

among functional units and registers to implement several valid

DFG variants. The choice of the variants is encoded by the key bits

assigned to the basic block.

3.2.3 Back-end. This step generates the register transfer level

(RTL) description and the logic for key management of the obfus-

cated design. The component will feature an input port to load the

locking key, while the working key is stored internally and derived

from the input locking key. We discuss how to manage the case

where we need more working key bits than the available locking

key bits (Section 3.4).

3.3 TAO Obfuscation Techniques
In this section, we present the techniques implemented in the front-

end and the intermediate phases.

3.3.1 Creation of the Call Graph and Key Apportionment. TAO
starts by applying compiler and HLS transformations to the IR,

including function inlining and loop optimizations. For this, TAO

extracts the call graph to figure out the list and hierarchy of func-

tions implemented [11]. Other information consists of the number

of basic blocks
1
and the resulting control flows represented as a

Control Flow Graph (CFG). By analyzing this information, TAO

determines the number of working key bitsW needed to obfuscate

the algorithm:

W = Numi f + Numconst ∗C +
BB∑
i=0

Bi (1)

where Numi f and Numconst are the number of branches and con-

stants, respectively. C is the number of key bits assigned to imple-

ment each constant and Bi is the number of key bits assigned to

the basic block BBi .

3.3.2 Extraction of Constants. Constants are a requisite part

of the specification and may disclose sensitive information about

the implemented algorithm. Consider a digital filter whose coeffi-

cients are stored in an on-IC memory external to the component

and accessed through a memory interface. The loop bounds may

reveal the number of taps in the filter. TAO removes such sensitive

constants from the data path and use them as locking key bits.

HLS tools optimize the data path based on the data bit-width to

reduce the IC cost [4]. However, using the minimum number of

bits to represent a constant divulges information about its range.

TAO pre-defines the number of bits C to implement all constants

of the function. This may rule out subsequent logic optimizations

(e.g., constant propagation and trimming). Each constant V
p
i of the

input algorithm is obfuscated as follows:

V e
i = V

p
i ⊕ Ki (2)

where V e
i is the obfuscated value stored in the micro-architecture,

while Ki is a C-bit signal that represents the part of the working
key dedicated to obfuscating this constant. As a result, the same

constant value is coded in different ways based on the value of the

locking key, preventing the attacker from recovering the sensitive

information by comparing different versions of the design.

Example. Consider a constantV p
i = 10 to be stored using 5 bits

(5’b01010). The same value can be obfuscated as V e
i = 5’b10111

or V e
i = 5’b01101 based on locking keys Ki = 5’b11101 and

Ki = 5’b00111, respectively. The correct signal is obtained by

combining the obfuscated values V e
i with the input key bits:

V
p
i = V

e
i ⊕ Ki (3)

Instead, if a wrong key is provided, the resulting value will be

different from the one contained in the initial specification, but an

attacker cannot determine this. Evenwhen the constant represents a

loop bound, the exact number of execution clock cycles for complex

specifications is unknown to the attacker.

1
a basic block is a sequence of instructions with a single entry point and a single exit

point.

3

DAC ’18, June 24–29, 2018, San Francisco, CA, USA Pilato, Regazzoni, Karri, Garg

if (a > b) {
 // go to BB2
}
else {
 // go to BB3
}

controller datapath
a b

test

>
if (test == 1’b1)
 next_state = BB2_1st
else
 next_state = BB3_1st

controller

if (test ^ K == 1’b1)
 next_state = BB2_1st
else
 next_state = BB3_1st

controller

if (test ^ K == 1’b1)
 next_state = BB3_1st
else
 next_state = BB2_1st

HLS

obfuscation

K = 1’b1K = 1’b0

Figure 3: Obfuscation of control branches. Different ver-
sions are obtained by combining the test with the assigned
key bit, thwarting identification of the correct true and
false blocks.

3.3.3 Masking Control Branches. Each branch in the CFG is

reproduced in the function to determine the next state in the corre-

sponding FSM. This depends upon a condition which is the result

of a test (e.g., an arithmetic comparison or a Boolean operation)

evaluated in the data path (either true or false). TAO thwarts identi-

fication of the correct control flow (i.e., true and false branches)

by assigning a working key bit Kj to each branch j and changing

the corresponding test in the controller to be of the form:

test ⊕ Kj == 1
′b1 (4)

Based on the key bitKj , the two branches are reordered to reproduce

the correct control flow. For instance, the true and false blocks are
swapped when Kj = 1 because the xor operation inverts the value

of the variable test. In this way, the attacker cannot determine

which is the actual true (false) block without knowing the value

of the key bit. Fig. 3 shows this transformation on a simple example.

Example. Consider the if-then statement in the black box

shown in Fig. 3. When a is greater b, the control transfers to BB2,
otherwise it transfers to BB3. After performing traditional HLS, we

obtain the controller and data path shown in the red boxes of Fig. 3.

Based on the results of the test, the next state is the first state of

BB2 or BB3. An attacker can determine which part of the algorithm

executes when the condition is true. Conversely, TAO solutions

can yield alternative versions of the controller (shown in the blue

boxes in Fig. 3). The two resulting tests are perfectly equivalent,

but the target state in case of true (false) result is different based
on the key bit. So, the attacker cannot determine which is the real

true block without knowing the correct value of the key bit. □
The same transformation applies to the test conditions of the for/

while loops because the front-end compiler translates them into

an identical form. One can obfuscate complex branch constructs

such as the switch-case by using more working key bits.

3.3.4 Rescheduling Obfuscates Resource Usage. To disguise the

arithmetic operations performed in the data path, TAO creates sev-

eral DFG variations for each basic block. TAO schedules each basic

block to determine the number and types of functional units and

registers, along with the clock cycle latency, to perform the corre-

sponding computation. This information is then used as constraints

for all variations. Algorithm 1 shows the procedure to create the

ALGORITHM 1: TAO algorithm to create DFG variants.

Procedure CreateDFGvariant(DFGi , ki)
Data: DFGi is the DFG of the basic block BBi ; ki is the key bits assigned to BBi
Result:VDFGi is the set of DFG variants associated with BBi
Var iants ← ∅
V ← ComputeKeyVariants(ki)
foreach v ∈ V do

distv ← ComputeDistance(v, ki) // compute distance between v and

ki
DFG∗i ← CopyDFG(DFGi) // create a copy of the current DFG

OP ← ClusterOperations(DFG∗i)
foreach op ∈ OP do

opj ← GetOperation(op, distv) // return an operation at

distance distv mod clusters
SwapOperationTypes(op, opj) // statistically swap the types of

the two operations

end
foreach dep ∈ DFG∗i do

depj ← GetDependence(d, distv) // return a dependence at

distance distv
RearrangeDependence(dep, depj) // statistically reorganize the

dependences

end
Var iants ← Var iants ∪ DFG∗i

end
return Allocation

-

-+

-

-+

* -

+

-+

+ *

+ *

* +

- + * -

+ * -

Merging
Variants

Op
Variant

Dep
Variant

1 2

3

Figure 4: Generation of DFG variants in TAO.

setVariants of DFG variations starting from a valid schedule DFGi
and the key bits assigned to the basic block. Fig. 4 shows the applica-

tion of this algorithm to a simple example. First, TAO produces the

2
Bi−1

key variants beginning from the allocated key bits ki . Then,
TAO produces a copy of the current schedule, topologically orders

the operations and clusters them based on the operation types. For

each operation, TAO determines a reciprocal one in an alternative

cluster, and swaps the two operation types with a probability of 0.5

(step 1 in Fig. 4). For every DFG edge, TAO elects an alternative

edge, and restructures the dependencies to return a credible DFG

(step 2 in Fig. 4). TAO combines all these solutions into a single

data path microarchitecture and restructures the interconnections

using extra multiplexers and control signals (step 3 in Fig. 4). In

each clock cycle, the functionality to execute is selected through

a combination of key bits (to select the variant) and scheduling

information (to select the operations).

4

TAO DAC ’18, June 24–29, 2018, San Francisco, CA, USA

KK-1 KK-2 K2 K1 K0…

…KW-1 KW-2 …

Locking key
(K bits)

Working key
(W bits)

AES key

NVM
(encrypted bits)

sys rst

AES

K2 K1 K0KK-1 KK-2KK+2 KK+1 KK

plain text

cipher text

Figure 5: Keymanagement when working key is larger than
the locking key (W > K). The key is generated at power up
and AES decrypts the values in the non-volatile memory.

3.4 Key Management
One feature of TAO is to take care of the locking key, i.e., how one

delivers it to the IC and generates the working key. The locking key
is stored in a tamper-proof memory (e.g., EEPROM or Non-Volatile

Memory [3]) after IC fabrication [13, 14]. The technology defines

the number of locking key bits that one can deliver to the IC. The

working key has, instead, an arbitrary size because it depends on

the complexity of the algorithm and protection (i.e., number and

size of the basic blocks, the number of control branches, and the

number of constants).

When we have to derive many working key bits from a smaller

number of locking key bits, one solution entails reusing the locking

key bits as many times as needed to generate the working key. In

this situation, each key bit has a maximum fan-out of f = ⌈W /K⌉,
which may compromise the security of the generated IC for large

values of f . If the attacker can extract one working key bit, the

corresponding locking key bit and all its replicas can be extracted.

TAO proposes an alternative solution shown in Fig. 5. TAO uses

the locking key as an AES key to encrypt the working key at design

time. Non-Volatile Memory (NVM) in the IC stores the resulting

values. At power-up, the values in the NVM are decrypted using

the given locking key and loaded into the working-key registers.

This solution leverages the security guarantees of a 256-bit AES by

using a 256-bit locking key to secure the working key bits.

4 EXPERIMENTAL EVALUATION
To validate our approach, we extended Bambu (ver. 0.9.5) [12], an

open-source HLS framework. The modular organization of Bambu

enabled us to implement TAO as additional steps in the HLS flow.

4.1 Experimental Setup
We use TAO-enhanced Bambu to generate obfuscated circuits on

five benchmarks from a range of application domains: gsm is a

linear predictive coding analysis for telecommunication. adpcm

is an algorithm for adaptive differential pulse code modulation,

sobel is an image-processing algorithm. backprop is a method for

training neural networks, and viterbi is a dynamic programming

method for computing probabilities on a Hidden Markov model.

Table 1 shows the characteristics of the benchmarks. For each

benchmark, we report the number of constants (# Const), basic
blocks (# BB), and control branches (# CJMP) following the compiler

optimizations. Together with the number of lines of C code (# C

Table 1: Characteristics of the benchmarks.

Benchmark

#
C lines

#
Const

#
BB

#
CJMP

W
(bits)

gsm 110 4 88 4 484

adpcm 412 5 100 5 565

sobel 65 2 11 2 110

backprop 264 12 123 11 887

viterbi 144 117 98 9 4,145

+1% +0% +2% +0% +1%+4% +6% +5%
+11%

+20%+18%
+23%

+11%

+31%
+25%

baseline
branches

constants
DFG variants

no
rm

al
iz

ed
 a

re
a

ov
er

he
ad

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

benchmark

gsm adpcm sobel backprop viterbi

Figure 6: Area overhead of TAO obfuscations.

lines), they capture the algorithm complexity. These benchmarks

are bigger than those used to report logic obfuscation. Working at

a higher abstraction allows us to obfuscate larger circuits.

We set the bit-width of each obfuscated constant to 32 bits (i.e.,

C = 32), while the original constants range between 8 (char values)
and 32 bits (int values). We assign one bit to each control branch.

Finally, we assign four bits to each basic block to generate up to 16

DFG variants (i.e., Bi = 4 for all basic blocks) Table 1 reports the

working key bits required for each algorithm (W). We use a 256-bit

locking key in all experiments.

To evaluate TAO, we used Bambu HLS targeting the Synopsys

SAED 32nm Generic Library at 500 MHz. We synthesized the base-

line and obfuscated versions of the circuits using Synopsys Design

Compiler J-2014.09-SP2. Bambu generates RTL testbenches to vali-

date the circuit for a series of input values through RTL simulations.

These executions are compared against the respective executions

of the input specification in software. We extended the testbenches

generated by Bambu to specify different locking keys as input and

to verify the implementation for each of them. Simulations are

performed with Mentor ModelSim SE 10.3 and are instrumented to

report if the execution is correct and the number of cycles.

4.2 Overhead
To evaluate the impact of each obfuscation, we modified Bambu to

select the methods to apply through command-line options. Since

these transformations are orthogonal, we generated different ob-

fuscated versions of the circuits by selectively invoking them. We

performed RTL simulations to check the latency regarding clock

cycles. When the correct key is applied, there is no performance

overhead on the generated designs concerning the baseline versions.
However, the target frequency is decreased by 8% on average when

5

DAC ’18, June 24–29, 2018, San Francisco, CA, USA Pilato, Regazzoni, Karri, Garg

we create DFG variants in the data path because of the additional

multiplexers. Also, the drop off in frequency is proportional to the

number of key bits assigned to each basic block because creating

more variants requires more multiplexers. Obfuscating the control

branches has a negligible impact on the frequency (less than 1%).

Representing the constants by a pre-defined number of bits C in-

creases the size of multiplexers, minimally changing the critical

path (around 4%). This is proportional to the difference from the

actual bits needed to represent the constants.

We performed logic synthesis on the circuits to evaluate the

area overhead of the various obfuscations. Fig. 6 shows the results,

where each value is normalized against the area of the respective

baseline version. The results indicate that obfuscating the control
branches has practically no area impact. This technique only adds

a few exclusive-or gates to the controller. Obfuscating constants

increases the area by 10% on average since it creates larger mul-

tiplexers and prevents logic-level optimizations. The creation of

DFG variants has the most impact, increasing the area by around

21% on average. This area overhead is mainly due to the additional

multiplexers to connect functional units and registers. This obfus-

cation is appropriate for benchmarks where the computational part

has simple functional units (e.g., shifters and Boolean operations)

or has many basic blocks. backprop is the benchmark with more

basic blocks and has the largest overhead (>30%). Similarly to the

frequency, the area overhead is proportional to the number of key

bits assigned to the basic blocks.

We evaluated the overhead of the two key management solu-

tions offered in Section 3.4. In the basic approach of replicating the

key bits, there is no performance or area overhead. The signals are

coming from the tamper-proof memory where the locking key is

stored and directly connects to the points where one uses the work-

ing key. For the AES-based solution, there are two contributions

to the area overhead: one part is the AES decryption module, and

the other one is the NVM used to store the encrypted key bits and

the flip-flops to save the decrypted values. The first contribution is

fixed and depends on the AES implementation. The second contri-

bution is proportional to the number of working key bits. Since key

decryption is performed only once at power-up, the performance

overhead is unimportant once the chip is ready to use.

4.3 Validation of Obfuscation Results
For each benchmark, we randomly generated 100 256-bit locking

keys. One key is supplied as input for TAO, while we tested the secu-

rity level of the created circuit with the others. First, we simulated

the generated circuits with the correct locking key corroborating

that the circuits produce the correct results. All other keys result

in wrong results and this assures that the attacker cannot turn on

the circuit with another key. More explicitly, we tested the “output

corruptibility” of each locked circuit, computed as the Hamming dis-

tance with respect to the output of the baseline circuit [18]. When

combined, the three obfuscation techniques produce an average

HD of 62.2% over the five benchmarks. Also, incorrect locking keys

impact the performance only when they modify the loop bounds.

Other constants have no effect, while data path obfuscation works

on a valid schedule without altering the total number of cycles. It is

difficult for an attacker to tell whether a circuit is behaving properly

or not. While the alternative DFGs are conceptually similar to the

creation of the Super CDFG in [13], constants and control branches

cannot be weakened even with SAT-based attacks. This is because

the oracle chip is unavailable in the untrusted foundry threat model.

Moreover, the information is fully cut out from the data path and

the controller, and one cannot recover it without the correct locking

key. The circuits generated by TAO have a higher security level

than previous obfuscation techniques at the logic level.

5 CONCLUSIONS AND FUTUREWORK
TAO is a comprehensive solution for algorithmic obfuscation during

high-level synthesis. This approach starts from a high-level descrip-

tion of the algorithm and creates a version of the corresponding IC

by masking all relevant details through an input locking key. TAO

presents a collection of techniques for obfuscating constant val-

ues, arithmetic operations, and control branches. TAO implements

this comprehensive solution within a state-of-the-art HLS tool and

validated on a set of representative benchmarks. These techniques

do not incur performance overhead and have an area overhead of

around 20% on average.

ACKNOWLEDGMENTS
R. Karri is supported in part by NSF (A#: 1526405) and CCS-AD. S.

Garg is supported in part by an NSF CAREER Award (A#: 1553419).

S. Garg and R. Karri are both with the NYUCenter for Cybersecurity

(cyber.nyu.edu) and supported in part by Boeing Corp.

REFERENCES
[1] E. Charbon. 1998. Hierarchical watermarking in IC design. In Proceedings of

CICC. 295–298.
[2] G. De Micheli. 1994. Synthesis and Optimization of Digital Circuits. McGraw-Hill.

[3] D. Forte, D. Bhunia, and M.M. Tehranipoor. 2017. Hardware Protection Through
Obfuscation. Springer Publishing Company, Incorporated.

[4] B. L. Gal, C. Andriamisaina, and E. Casseau. 2006. Bit-Width Aware High-Level

Synthesis for Digital Signal Processing Systems. In Proceedings of SOCC. 175–178.
[5] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor, and Y. Makris. 2014.

Counterfeit Integrated Circuits: A Rising Threat in the Global Semiconductor

Supply Chain. Proc. IEEE 102, 8 (Aug. 2014), 1207–1228.

[6] S. Heck, S. Kaza, and D. Pinner. 2011. Creating value in the semiconductor

industry. McKinsey on Semiconductors (Oct. 2011), 5–144.
[7] J. Hurtarte, E. Wolsheimer, and L. Tafoya. 2007. Understanding Fabless IC Tech-

nology. Elsevier. 296 pages.
[8] F. Imeson, A. Emtenan, S. Garg, and M.V. Tripunitara. 2013. Securing Computer

Hardware Using 3D Integrated Circuit (IC) Technology and Split Manufacturing

for Obfuscation. In Proceedings of SEC. 495–510.
[9] Y. Lao and K. K. Parhi. 2015. Obfuscating DSP Circuits via High-Level Transfor-

mations. IEEE Trans. on Very Large Scale Integration (VLSI) Systems 23, 5 (May

2015), 819–830.

[10] Y. W. Lee and N. A. Touba. 2015. Improving logic obfuscation via logic cone

analysis. In Proceedings of LATS. 1–6.
[11] R. Nane et al. 2016. A Survey and Evaluation of FPGA High-Level Synthesis

Tools. IEEE Trans. on CAD of Integrated Circuits and Systems 35, 10 (Oct. 2016).
[12] C. Pilato and F. Ferrandi. 2013. Bambu: A modular framework for the high level

synthesis of memory-intensive applications. In Proc. of FPL. 1–4.
[13] J. Rajendran, A. Ali, O. Sinanoglu, and R. Karri. 2015. Belling the CAD: Toward

Security-Centric Electronic System Design. IEEE Trans. on CAD of Integrated
Circuits and Systems 34, 11 (Nov. 2015), 1756–1769.

[14] J. A. Roy, F. Koushanfar, and I. L. Markov. 2010. Ending Piracy of Integrated

Circuits. Computer 43, 10 (Oct. 2010), 30–38.
[15] L. Stok. 1994. Data Path Synthesis. Integr. VLSI J. 18, 1 (1994), 1–71.
[16] P. Subramanyan, S. Ray, and S. Malik. 2015. Evaluating the security of logic

encryption algorithms. In Proceedings of HOST. 137–143.
[17] V. van der Leest and P. Tuyls. 2013. Anti-counterfeiting with hardware intrinsic

security. In Proceedings of DATE. 1137–1142.
[18] Yang Xie and Ankur Srivastava. 2016. Mitigating SAT Attack on Logic Locking.

127–146.

6

