
Tap Arduino: An Arduino microcontroller for low-latency
auditory feedback in sensorimotor synchronization experiments

Benjamin G. Schultz1 & Floris T. van Vugt2

Published online: 5 November 2015
# Psychonomic Society, Inc. 2015

Abstract Timing abilities are often measured by having par-

ticipants tap their finger along with a metronome and present-

ing tap-triggered auditory feedback. These experiments pre-

dominantly use electronic percussion pads combined with

software (e.g., FTAP or Max/MSP) that records responses

and delivers auditory feedback. However, these setups involve

unknown latencies between tap onset and auditory feedback

and can sometimes miss responses or record multiple, super-

fluous responses for a single tap. These issues may distort

measurements of tapping performance or affect the perfor-

mance of the individual. We present an alternative setup using

an Arduino microcontroller that addresses these issues and

delivers low-latency auditory feedback. We validated our set-

up by having participants (N = 6) tap on a force-sensitive

resistor pad connected to the Arduino and on an electronic

percussion pad with various levels of force and tempi. The

Arduino delivered auditory feedback through a pulse-width

modulation (PWM) pin connected to a headphone jack or a

wave shield component. The Arduino’s PWM (M = 0.6 ms,

SD = 0.3) and wave shield (M = 2.6 ms, SD = 0.3) demon-

strated significantly lower auditory feedback latencies than the

percussion pad (M = 9.1 ms, SD = 2.0), FTAP (M = 14.6 ms,

SD = 2.8), and Max/MSP (M = 15.8 ms, SD = 3.4). The PWM

and wave shield latencies were also significantly less variable

than those from FTAP and Max/MSP. The Arduino missed

significantly fewer taps, and recorded fewer superfluous re-

sponses, than the percussion pad. The Arduino captured all

responses, whereas at lower tapping forces, the percussion pad

missed more taps. Regardless of tapping force, the Arduino

outperformed the percussion pad. Overall, the Arduino is a

high-precision, low-latency, portable, and affordable tool for

auditory experiments.

Keywords Auditory feedback . Sensorimotor

synchronization .Motor timing .Musical Instrument Digital

Interface (MIDI) . Microcontrollers

Humans show a remarkable capacity to align motor output with

sensory input. For example, most individuals can effortlessly

synchronize movements with the beat of music or the sound

productions of a partner. In order to understand how synchrony

is achieved, participants are asked to tap their finger along with

metronomic stimuli and receive tap-triggered sounds (auditory

feedback; cf. Repp, 2005; Repp & Su, 2013). These sensorimo-

tor synchronization experiments present important methodolog-

ical challenges: how can auditory feedback be presented at min-

imal latencies (ideally, within a few of milliseconds of the tap;

see Aschersleben & Prinz, 1997), and how can tap times be

collected reliably (i.e., without missing taps and with accurate

millisecond timing information)?We compare standard method-

ologies to a novel solution using an Arduino microcontroller for

use in sensorimotor synchronization experiments that require

recording tapping responses and presenting auditory feedback.

Currently, several options exist for implementing sensori-

motor synchronization experiments. Predominantly, studies

have used musical instrument digital interface (MIDI) percus-

sion pads (viz. drum pads) to trigger responses, computer

software to record responses and control auditory feedback

* Benjamin G. Schultz
ben.schultz@maastrichtuniversity.nl;
benjamin.glenn.schultz@gmail.com

1 International Laboratory for Brain, Music, and Sound Research,
Université de Montréal, Département de psychologie,
Montréal, Québec, Canada

2 Department of Psychology, McGill University, Montreal, Quebec,
Canada

Behav Res (2016) 48:1591–1607

DOI 10.3758/s13428-015-0671-3

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-015-0671-3&domain=pdf


(e.g., FTAP, Finney, 2001; Max/MSP, Cycling ’74, 2014), and

a tone generator to produce auditory feedback (cf. Repp,

2005). Common problems in studies using MIDI percussion

pads are missing or superfluous responses (e.g., Mills, van der

Steen, Schultz, & Keller, 2015; Pfordresher & Dalla Bella,

2011; Repp & Knoblich, 2007). A missing response occurs

when a participant has tapped on the percussion pad but no

response was recorded by the device. A superfluous response

occurs when a participant has made a single tap on the per-

cussion pad and multiple responses are recorded by the de-

vice. These situations become more problematic when auditory

feedback is introduced because participants receive no feedback

for a missing response and extra feedback for superfluous re-

sponses. Although some controllers allow the user to adjust the

sensitivity of the drum pad and the threshold for what is con-

sidered to be a response, it is often difficult to obtain parameters

that work for a range of response styles (i.e., from a soft through

to a hard force of response). We compared the latencies of

auditory feedback using the Arduino with other options that

use a MIDI percussion pad to produce feedback through

FTAP (Finney, 2001) or Max/MSP (Cycling ’74, 2014).

The Arduino is a multipurpose, low-level microcontroller

that is low-cost (i.e., less than USD 30), contains a processor

that can receive analog and digital inputs, and can run pro-

grams written in a flavor of the C programming language.

Here, we suggest that the Arduino provides the ideal infra-

structure to implement tapping experiments because it can be

purposed as a single-use device and bypass the hardware and

software environments of standalone personal computers.

Specifically, we have designed C codes and Python scripts

to convert the Arduino into a sensorimotor synchronization

measurement tool with the goal of collecting to-the-

millisecond response times and producing low-latency audi-

tory feedback. In addition, the C code provided here has pa-

rameters that aim to reduce the frequency of missing and ad-

ditional responses regardless of the force of the response.

Several studies (e.g., D’Ausilio, 2012; Schubert,

D’Ausilio, & Canto, 2013) have shown that the Arduino can

record response latencies with less than 1-ms variability. The

Arduino uses an internal clock that can record response times

with microsecond precision. Using this clock, the Arduino can

timestamp data at a high resolution and then send this data to a

computer through USB. When exchanging data through a

USB port, delays can be introduced by the polling speed,

where the incoming information is only read periodically

(125 Hz, or once every 8 ms, is the default for most operating

systems, but some drivers are able to lower this polling speed).

Since the timing information of responses is determined by the

Arduino in real time, the polling speed of the USB is incon-

sequential to timing measurements and does not contribute

additional error or variability. Moreover, the Arduino is capa-

ble of delivering auditory feedback directly through hardware

(e.g., a headphone jack) thus removing any further delays

introduced by USB communication. Therefore, the Arduino

can be used to both collect data and produce auditory feedback

at high resolutions. The C and Python codes we provide here

can send the data from the Arduino either as a continuous time

series that reads responses at every millisecond (1-kHz sample

rate) or as response onset and offset times (with to-the-

millisecond precision). Other systems that record timestamps

in software after input is received through USB may have

lower resolutions than systems that record timestamps inter-

nally (i.e., onboard timestamps), such as the Arduino.

Two MIDI-based software packages are commonly used for

sensorimotor synchronization experiments: FTAP (Finney,

2001) and Max/MSP (Cycling ’74, 2014). FTAP is a free,

Linux-based software package that reports low latencies for pro-

viding auditory feedback when using MIDI devices. Max/MSP

is a Windows and Mac compatible software package that is free

to run, but requires purchasing a license to develop user-made

scripts (e.g., experiments). We compared the latencies of audito-

ry feedback produced by MIDI setups using FTAP and Max-

MSPwith those produced by the Arduino.We alsomeasured the

auditory feedback produced directly from a MIDI percussion

pad to identify possible delays resulting from the device itself,

although these were expected to be minimal due to reported

specifications that MIDI devices take an average of 1 ms to send

or receive a MIDI message (Casabona & Frederick, 1988). For

the Arduino, we present two options for sound output: (1) an

option were the audio output is a simple tone (sine wave or

square wave) with a user-defined duration and pitch, produced

through the Arduino’s pulse-width modulation (PWM) pin

(henceforth we refer to this option as PWM), and (2) an option

for playing any wave file that has been saved on a secure digital

card (SD card) through the Arduino wave shield (hereafter re-

ferred to as the wave shield). The first option requires less sol-

dering expertise and hardware but auditory feedback is limited to

simple sounds (e.g., pure tones and square waves). The second

option is more expensive and requires more soldering expertise

(see Adafruit, 2015), but allows the user to present any sound

file. The C code for the Arduino, Python scripts for data collec-

tion (cross-platform), and instruction manuals for hardware and

software are free to download (van Vugt & Schultz, 2015).

Experiment

We compared the performance of two Arduino-based feed-

backmethods (i.e., PWM feedback and wave shield feedback)

with two software-based feedback methods that interfaced

with the MIDI percussion pad: one that used FTAP software

and another that used Max/MSP software. In both cases, the

software (FTAP or Max/MSP) generated tap-triggered sounds

using a MIDI synthesizer (i.e., a tone generator). We tested

these various configurations by conducting a common senso-

rimotor synchronization experiment in which participants had

1592 Behav Res (2016) 48:1591–1607



to synchronize their responses to metronome clicks that oc-

curred at periodic time intervals (cf. Repp, 2005). In order to

establish the veridical onset times of responses and auditory

feedback in each setup, we recorded data from the various

devices simultaneously in a synchronized manner using an

ana log inpu t box (AIB; B ioSemi , Ams te rdam,

The Netherlands). The AIB recorded voltage readings from

a force sensitive resistor (FSR) on which participants tapped

and a vibration sensor (i.e., a piezo element) that measured

tap-related vibrations. Participants did not hear auditory feed-

back for responses, but auditory feedback from the various

devices (the Arduino, MIDI percussion pad, and MIDI sound

module) was recorded by the AIB. The behavioral results of

participants (e.g., synchrony with the metronome) are irrele-

vant to the aim of testing equipment performance and, there-

fore, are not reported.

Design and hypotheses

The dependent variable was the asynchrony between the re-

sponse onset (i.e., taps, as measured by the FSR) and the audio

onset (i.e., auditory feedback) recorded from each device. This

asynchrony measured the latency of the auditory feedback for

each source. Five sources of auditory feedback were measured:

Arduino PWM,Arduinowave shield, percussion pad, FTAP, and

Max/MSP. These sources of feedback could not all be measured

simultaneously. Therefore, five conditions were used to measure

various combinations of feedback sources, as shown in Table 1.

In three conditions (see rows 1 to 3 in Table 1), participants

tapped on an FSR that was placed on a drum pad of the percus-

sion controller. In two conditions (see rows 4 and 5), participants

only tapped on the drum pad of the percussion controller. This

was done to ensure that the presence of the FSR did not hinder

the percussion pad in terms of feedback latencies, missed re-

sponses, or superfluous responses; we compared the asyn-

chronies of the onsets recorded by the piezo vibration sensor

and the percussion pad audio onsets in the FSR present and

absent conditions (see Table 1) to test whether the presence of

the FSR increased the percussion pad audio latency. For missed

and superfluous responses, we compared the responses recorded

by the percussion pad in the FSR absent conditions with the

responses recorded by the Arduino in the FSR present

conditions.

Because individuals may differ in their tapping style and

tapping force, we had six participants respond under three

types of tapping force instructions: soft, moderate, and hard.

To examine whether different tapping speeds affected feed-

back latency, number of missed taps, and number of double

taps, a fast (240 beats per minute; bpm) and a slow (120 bpm)

metronome rate were presented. Participants completed all

conditions in a fully within-subjects design. We hypothesized

that the Arduino conditions (PWM and wave shield) would

demonstrate significantly lower latencies than the percussion

pad, FTAP, andMax/MSP. Similarly, we hypothesized that the

Arduino conditions would demonstrate significantly lower la-

tency variability than the percussion pad, FTAP, and Max/

MSP. Finally, we hypothesized that the Arduino would miss

fewer valid responses and produce fewer superfluous re-

sponses than the percussion pad.

Method

Participants

The participants (N = 6) were four volunteers from the

Université de Montréal and Concordia University, as well as

the two experimenters. The participants had a mean age of

28.17 years (SD = 3.19, range = 23–32 years) and consisted

of three females and three males.

Materials

Four computers were used for testing. The first computer

(Intel Pentium 4, 3.00 GHz, running Windows XP) was used

to record voltages and auditory signals though ActiView soft-

ware (BioSemi, Amsterdam, The Netherlands). The second

computer (Intel Xeon 5120, 1.86 GHz, running Windows

XP) was used to present metronome stimuli (premade .wav

files) and record the data from the Arduino via Python (v2.7).

The third computer (Intel Core i7-2670QM, 2.2 GHz, running

Linux Ubuntu v3.2.0-23 using the real-time kernel) was used

to run FTAP. The fourth computer (MacBook Pro, Intel Core 2

Duo, 2.6GHz, running OS X v10.9.5) was used to produce

auditory feedback throughMax/MSP. Responses were record-

ed using a square FSR (3.81 cm, Interlink FSR 406) connected

to an Arduino UNO R3 (see Fig. 1). The Arduino was

powered via USB and also transmitted timing information

though the serial USB port. In the PWM condition, the

Arduino auditory feedback was delivered through a

Sparkfun TRRS 3.5-mm jack breakout (BOB-11570; see

Fig. 1), commonly known as a headphone jack (i.e., standard

headphone or speakers could be connected to present the

sounds to participants in an experimental setup). In the wave

Table 1 Arrangement of feedback conditions

Response Device(s) Arduino Software FSR Presence

FSR and percussion pad PWM FTAP Present

FSR and percussion pad Wave shield FTAP Present

FSR and percussion pad Wave shield Max/MSP Present

Percussion pad None FTAP Absent

Percussion pad None Max/MSP Absent

Each row represents one measurement condition in our experiment

Behav Res (2016) 48:1591–1607 1593



shield condition, the Arduino auditory feedback was delivered

by the headphone jack of an Adafruit Wave Shield version 1.1

placed above the Arduino, with the FSR arranged in the same

way as Fig. 1.

The auditory signal from each source was connected

to the 32-pin Sub-D port (similar to a parallel port) of

the AIB at a sampling rate of 2048 Hz1 (see Fig. 2).

Voltage changes caused by applying pressure to the

FSR were simultaneously recorded by the AIB to syn-

chronize participants’ responses with the auditory feed-

back. The AIB has an analog-digital converter for each

channel allowing the signals to be recorded synchronous-

ly. The FSR was placed on the bottom right drum pad of

a Roland Handsonic HPD15 MIDI percussion pad.

Voltages from the piezo vibration sensor placed on the

same drum pad were obtained as a secondary measure of

response onset time to test if the FSR increased the la-

tencies of the percussion pad.2 The audio output of the

percussion pad was connected to the AIB to test the

latency of audio being produced by the percussion pad

itself. For the FTAP setup (see red boxes and arrows in

Fig. 2), the MIDI signal from the percussion pad was

connected to the PC through an M-Audio MIDIsport 2

× 2 (Anniversary Edition) USB-MIDI Interface. FTAP

received the percussion pad MIDI signal via USB and

sent the MIDI signal to the USB–MIDI interface, which

then sent the MIDI signal to a Yamaha TX81Z MIDI

synthesizer (i.e., tone generator) to produce the audio.

The audio output from the tone generator was connected

to the AIB to test the latency of audio being produced by

FTAP. The conditions with Max/MSP were arranged in

the same way as those with FTAP, using the tone gener-

ator to produce the audio, but with Max/MSP recording

responses and controlling the auditory feedback (see the

red boxes and arrows in Fig. 2).

Stimuli

The audio produced by the PWM and wave shield were

1046.5-Hz square waves of 20-ms duration. The audio pro-

duced by the percussion pad was the R13 snare drum, and the

Fig. 1 Schematic wiring diagram for the Arduino PWM setup. The
component numbers correspond to the (1) Arduino UNO, (2) breadboard,
(3) square force-sensitive resistor (FSR), and (4) headphone jack
(3.5 mm). Electric wires are indicated by black (grounds), red (power),
green (FSR signals), and purple (audio signals). Both resistors are 10 kΩ.
Headphone jack arrangements may vary, but the two purple wires connect
to the tip and ring 1 headphone inputs (left and right audio), and the
ground (black) wire connects to the ring 2 headphone input (see the
datasheet of the headphone jack for input specifications). The wiring of
the FSR is identical in the PWM andwave shield setups, and the wiring of
the headphone jack is not necessary for the wave shield setup. This wiring
diagram will allow prospective users to precisely reproduce our setup
from the hardware components. The figure was created using the Fritzing
software (Knörig, Wettach, & Cohen, 2009)

1 Note that 2048 Hz is not an acceptable sample rate for reproducing
high-quality audio, but in this case we were simply using it to detect the
onsets of auditory signals. The sampling rate is above the Nyquist fre-
quency (double the frequency of interest) for the resolution at which we
recorded responses (1000 Hz, i.e., to the millisecond), allowing us to
detect asynchronies on the order of just below 0.5 ms.

Fig. 2 Arrangement of devices used in the experiment. Note that this
setup includes some devices that were used only in our validation
experiment (see the black arrows and boxes) and are not necessary in a
typical user setup. The red arrows and boxes represent the equipment that
is used in a typical (non-Arduino) setup with FTAP or Max/MSP, includ-
ed here for validation purposes. The blue arrows and boxes represent the
equipment that is used in the Arduino setup described here. The primary
node of the present validation experiment is the analog input box that
records the inputs from the various devices synchronously (at 2048 Hz),
so that latencies can be measured reliably. The computer numbers (1 to 4)
match those referred to in the text

2 Fittingly, piezo elements are used in receiving responses from the
HPD15 percussion pad (Smith, 2010). How these signals are filtered
and mapped onto MIDI signals, however, is not specified.

1594 Behav Res (2016) 48:1591–1607



audio produced by the synthesizer was the noise shot.3 The

percussion pad pitch was set to 1046.5 Hz, all effects and

reverb were turned off, the trigger mode was set to BShot^

(short duration), the velocity curve was set to BFixed16^

(maximum volume for every trigger), pad sensitivity was set

to 16 (maximum), the pad threshold was set to 1 (minimum),

and mask time was set to 64 ms. In FTAP and Max/MSP, the

MIDI frequency was set to MIDI note C6 (frequency =

1046.5 Hz), duration was set to 20 ms, and MIDI velocity

was set to 127 (maximum).

Software

The C codes presented here perform a series of functions (van

Vugt & Schultz, 2015). The Arduino’s analog–digital converter

(ADC) interprets FSR voltage changes as 10-bit integers ranging

from 0 to 1023. First the Arduino reads the time stamp (in mil-

liseconds) and the FSR voltage. If the FSR voltage is above our

specified BON^ threshold (20 in 10-bit Arduino units; user de-

finable), then the auditory feedback is played. Another sound is

not produced until the FSR voltage decreases below our BOFF^

threshold (10; user definable) for a user-specified amount of time

(40 ms), and until a user-specified time after the onset (40 ms).

These values were chosen to prevent double taps from arising

when responding on the FSR and were arrived at (prior to

conducting the experiment) from trial and error of attempting

to induce auditory feedback without superfluous feedback or

missed feedback. Lower voltage thresholds could be implement-

ed in the Arduino code to increase the sensitivity, but the values

used here indicated an optimal trade-off between high sensitivity

and a low incidence of false alarms. When the offset is detected,

the time stamp of onset, time stamp of offset, and the maximum

FSR value are sent to the serial port in binary. The Python code

runs on a separate PC and provides a graphical user interface

(GUI) that collects data from the Arduino (through the USB)

for further analysis (van Vugt & Schultz, 2015). In particular,

the Python code reads binary data from the serial USB port and

transforms the data into integers. These values are printed to a

text file. The Python script records data until it is commanded to

terminate (via closing the program, a set time value, or upon

completion of a sound file). Note that it is not necessary to use

this Python GUI to collect data from the Arduino: Users can

write a custom script in any programming language that is capa-

ble of reading binary input from a serial USB port.

Our schematics and scripts are available online (van Vugt

& Schultz, 2015), including detailed documentation, making

this option accessible to those without much technical back-

ground. This repository shall be updated on the basis of sug-

gestions from the community, and with the addition of scripts

used in various experiments. The authors are willing to receive

any questions about the hardware configuration and scripts to

aid other researchers in using Arduino devices.

Procedure

Prior to any conditions that featured FTAP, the FTAP loop test

was performed (see Finney, 2001). The FTAP loop consistently

reported a 0.49-ms delay between output scheduling calls and

that MIDI messages, on average, were sent and received within

just over a millisecond (M = 1.01ms, SD = 1.03ms, range = 0 to

3 ms). Informed consent was obtained (CERAS-2014-15-/02-

D). Participants were instructed to tap on the FSR that was

placed on top of the percussion pad, or to tap in the center of

the bottom right drum of the percussion pad. At the beginning of

each trial, participants were instructed to tap with a soft, moder-

ate, or hard force through text on a computer screen. These

conditions were performed for all tempi (fast, slow) in a random-

ized order within each block, for five blocks. This procedure was

repeated for all five feedback conditions (see Table 1; order

counterbalanced across participants). At the end of the trial, par-

ticipants were asked whether they had produced any double taps

or hadmissed any responses after the first eightmetronome ticks.

If they responded Byes,^ the trial was repeated. Otherwise, they

proceeded to the next trial. Participants were unable to monitor

whether auditory feedbackwas being generated from any source.

There were 48metronome ticks per trial and, therefore, each trial

had a 12-s (fast tempo) or 24-s (slow tempo) duration.

Experiment sessions did not exceed 90 min. Participants were

questioned regarding which tapping force was closest to their

natural tapping force, and all six indicated that themoderate force

was most natural.

Results

Onset extraction

Onsets of voltages and audio signal were detected from the

traces recorded by the AIB using a custom-made MATLAB

script. Onsets were detected as values that surpassed an am-

plitude threshold. The onset time was then established as the

preceding point in time when the standard deviation (using ten

sample windows) returned to baseline standard deviation

levels (four times the median standard deviation of the trial).

Detected audio onset times are shown in Appendix A. Missed

responses were determined by examining the data output from

the Arduino, FTAP, and Max/MSP and comparing them with

3 We initially intended to use a square or sine wave of the same frequency
(1046.5 Hz) for the MIDI patches on the percussion pad and tone gener-
ator, for comparability. Upon inspection of the audio signal, it was
deemed that the attack times for the square- and sine-wave MIDI patches
were slower, with less discernible onsets than some other patches. A
nonexhaustive test of the available patches indicated that these two
MIDI patches produced the fastest attack times and the most easily dis-
cernible onsets and offsets.

Behav Res (2016) 48:1591–1607 1595



the number of expected responses (because participants were

instructed to repeat the trial if any responses were missed).

Only responses after the first eight metronome ticks were con-

sidered (i.e., 40 responses were expected per trial) and super-

fluous responses were first removed. Superfluous responses

were measured as any response that occurred within 125 ms

(half of the smallest interonset interval of the metronome) of

another response.

Statistical analysis

As a result of missed responses, there were unequal numbers of

data points for the asynchronies in different auditory feedback

conditions. To deal with the problem of unequal data points, we

fit a linear mixed-effects model (LMEM) that was able to cope

with missing data, inhomogeneity of dependent variable vari-

ance across factor levels, and unbalanced designs. The LMEM

was fit to the data with the fixed factors Signal (five levels:

Arduino PWM, Arduino wave shield, percussion pad audio,

FTAP, Max/MSP), Force (soft, medium, hard), and Tempo

(fast, slow), and the random factors Participant (six levels)

and Trial (five levels), where trial was nested within participant

(i.e., we used the maximal random-effects structure justified by

the experimental design, following Barr, Levy, Scheepers, &

Tily, 2013). We further allowed unequal variances across the

levels of the signal factor, which was decided on the basis of

visual observation that the residuals were heterogeneous for the

various signals, and also because some dependent variables

(e.g., missed responses for the Arduino) had a standard devia-

tion of zero. The model was fit using the lme function of the

nlme library (Pinheiro, Bates, DebRoy, Sarkar, & R

Development Core Team, 2015) for the R package of statistical

computing (R Development Core Team, 2013), and unequal

variance was implemented using the varIdent model formula

term. Pair-wise contrasts were computed using generalized lin-

ear hypothesis testing for Tukey contrasts (corrected p values

are reported), using the glht function in the multcomp library

(Hothorn, Bretz, & Westfall, 2008). The LMEM was used to

analyze all of our dependent variables (see Appendix B for the

LMEM tables, and Appendix C for examples of the R code).

Classical null-hypothesis testing statistics are not designed to

find evidence for the absence of a difference between conditions.

Therefore, we calculated the Bayes factor to test that the FSR did

not affect the performance (latency and variability) of the per-

cussion pad in conditions in which the FSR was present as

compared to when it was absent (see Table 1). To include con-

ditions in which the FSR was absent, the asynchrony between

the piezo vibration sensor onset and the audio onset of the per-

cussion pad was compared between the FSR-present and -absent

conditions. The Bayes factor quantifies the strength of evidence

in favor of the null hypothesis (when less than 1) or in favor of

the alternative hypothesis (when greater than 1; Rouder,

Speckman, Sun, Morey, & Iverson, 2009). The Bayes factor

was computed using the BayesFactor function in the

BayesFactor library (Morey, Rouder, & Jamil, 2009).

FSR-aligned audio mean asynchrony

For asynchronies, we found significant main effects of signal

and force (ps < .001), and no significant main effect of tempo

(p = .11). All interactions reached significance (ps < .001). To

test the hypothesis that audio onsets produced by the PWM

and wave shield have lower latencies than other audio signals,

pair-wise contrasts were conducted between signals. All sig-

nals were significantly different from one another (ps < .001)

in the following order, from lowest to highest asynchrony:

PWM, wave shield, percussion pad, FTAP, and Max/MSP

(see Fig. 3). Pair-wise contrasts investigating the three-way

interaction between signal, force, and tempo confirmed that

the PWM, wave shield, and percussion pad were significantly

different from each other and from FTAP andMax/MSP under

all conditions. However, in some conditions FTAP and Max/

MSP were not significantly different (e.g., soft × fast condi-

tion, p = 1.0), likely due to the high variability of the onset

timings for these audio signals (see Fig. 3).

For the PWM and wave shield signals, there were signifi-

cant differences between all force conditions (ps < .001), in-

dicating that the asynchrony increased as force increased (see

Fig. 4). For the percussion pad, FTAP, and Max/MSP signals,

significant differences emerged between force conditions (ps

< .02), but the asynchrony decreased as force increased. The

PWM only demonstrated a significant difference between

tempi for the soft force condition (p < .001), in which asyn-

chrony was greater for the fast than for the slow tempo. The

wave shield did not demonstrate significant differences be-

tween tempi for any force condition (ps > .83). The percussion

pad and FTAP only demonstrated significant differences be-

tween tempi for the hard force (ps < .001); asynchronies for

the fast tempo were greater than those for the slow tempo for

the percussion pad, and the reverse trend was observed for

FTAP. For Max/MSP, asynchronies were significantly greater

for the slow than for the fast tempo for all force conditions (ps

< .001).

FSR-aligned audio asynchrony variability

To compare the variability of the feedback signals, we com-

puted the standard deviation of the asynchronies for each par-

ticipant, signal, tempo, and force. These standard deviation

estimates were corrected for biases arising from differences

in the numbers of underlying data points using the c4 coeffi-

cient [see Eq. 1, where n = sample size, Γ = gamma function,

Γ(n) = (n – 1)!; see Cureton, 1968]. These variability estimates

were then subjected to an LMEM with the same design as

above, with asynchrony variability as the dependent variable.

Trial was no longer included as a random effect, because at

1596 Behav Res (2016) 48:1591–1607



most one data point was available for each combination of

participant and condition.

c4 nð Þ ¼

ffiffiffiffiffiffiffiffi

2

n−1

r

*
Γ

n

2

� �

Γ
n−1

2

� � ð1Þ

For asynchrony variability, we observed a significant main

effect of signal (p < .001) and a significant interaction between

signal and tempo (p = .003). No other main effects or interac-

tions reached significance (ps > .19). To test the hypothesis

that audio onsets produced by the PWM and wave shield have

lower variability than the other audio signals, pair-wise

contrasts were conducted between signals. Signal variabilities

were generally significantly different from one another (ps <

.02), with the exception of nonsignificant differences between

the PWM and wave shield (p = 1.0) and between FTAP and

Max/MSP (p = .13), and there were statistical trends for dif-

ferences between the PWM and percussion pad (p = .06) and

the wave shield and percussion pad (p = .08). As is shown in

Fig. 5, the interaction between signal and tempo indicated that

the percussion pad was significantly less variable than Max/

MSP for the fast condition (p < .01) but not for the slow

condition (p = .23). Moreover, a significant main effect of

tempo emerged for Max/MSP (p < .001), indicating that the

fast tempo was more variable than the slow tempo. It is pos-

sible that this tempo effect was driven by difficulties for Max/

MSP to produce consistent timing of auditory feedback under

high load—that is, when responses were more frequent—as

compared to a slower response schedule. Overall, our results

support the hypothesis that the PWM and wave shield provide

less variable auditory feedback onsets than FTAP and Max/

MSP. The PWM and wave shield showed near-significant

trends for being less variable than the percussion pad.

FSR present versus absent comparison of percussion pad

asynchronies

In this analysis, we included only the percussion pad audio

asynchrony data, since the other signals (the tone generator

output through FTAP or Max/MSP) occurred much later and

were subject to additional temporal noise (probably due to the

MIDI–USB and USB–MIDI conversions) and this noise is, by

design, independent of whether an FSR was present or not.

The LMEM was fit to the data with fixed factors Force,

Tempo, and FSR Presence (two levels: present or absent; see

Fig. 4 Mean asynchrony relative to the FSR for audio signals in the tempo (fast, slow) and force (soft, moderate, hard) conditions. Whiskers represent
standard errors of the means

Fig. 3 Histogram of audio onset asynchronies relative to FSR onsets

Behav Res (2016) 48:1591–1607 1597



Table 1), and the random factors Participant (six levels) and

Trial (five levels), where trial was nested within participant.

The dependent variables were the asynchrony of the drum

audio relative to the piezo vibration sensor onset (in millisec-

onds), and the variability of asynchrony.

All main effects and interaction effects reached signifi-

cance (ps < .003), except for the three-way interaction be-

tween FSR presence, force, and tempo (p = .60). Tukey con-

trasts investigating the interaction between FSR presence and

tempo revealed that percussion pad asynchronies demonstrat-

ed significantly lower latencies with the FSR present versus

absent for the fast and slow tempi (ps < .001). Contrasts be-

tween FSR presence and force conditions demonstrated sig-

nificantly lower latencies for the FSR-present than for the

FSR-absent condition for hard and soft force (ps < .002), but

not for moderate force (p = .10). These results indicate that the

FSR presence generally decreased the asynchrony relative to

conditions in which the FSR was absent. Since this indicates

that the presence of the FSR produced a decrease in latencies,

the Bayes factor was not calculated. The decreased latencies

for FSR present as compared to absent may be attributed to the

increased surface area provided by the FSR. The surface area

of an adult human fingertip is approximately 2–3.2 cm2

(Dandekar, Raju, & Srinivasan, 2003), and the square FSR

has a surface area of 14.5 cm2. The FSR may have spread

out the tapping force over a larger area, thus improving the

percussion pad’s speed in detecting responses and, in turn,

producing the audio signal more quickly.

The same analysis was conducted on the variances of the

percussion pad audio asynchronies relative to the piezo vibration

sensor, using the standard deviation of the onsets for each par-

ticipant, trial, FSR presence condition, tempo, and force. We

found no significant main effect of FSR presence and no signif-

icant interactions between FSR presence and force or FSR

presence and tempo (ps > .29). We calculated the Bayes factor

(Bf) to establish whether the FSR had no influence on the vari-

ability of the percussion pad.Whenwe compared themodel with

participant as a random variable, there was evidence against

including FSR presence in the model (Bf = 0.001), suggesting

a low probability (odds = 1,000 to 1) that the presence of the FSR

influenced the variability of the percussion pad.

Captured and superfluous responses

For the proportions of captured responses per trial (out of 40)

and superfluous responses, we compared the numbers of re-

sponses captured by the Arduino in the FSR conditions with

those by the percussion pad in the no-FSR conditions (see

Table 1). The analysis on the proportions of captured responses

demonstrated significant main effects of device (Arduino, per-

cussion pad) and force (ps < .001), and a significant interaction

between device and force (p < .001). The main effect for tempo

and the other interactions did not reach significance (ps > .21).

As is shown in Fig. 6, the Arduino recorded significantly more

responses than the percussion pad in all force conditions (ps <

.001; see Appendix D for the force profiles recorded by the

Arduino). The percussion pad captured more responses in the

moderate and hard force conditions than in the soft force con-

dition (ps < .001), and the moderate and hard conditions did not

significantly differ (p = .41).

For the number of superfluous responses, we observed main

effects of device, force, and tempo (ps < .05) and a significant

interaction between device and force (p < .001). The interaction

between device and tempo approached significance (p= .06), but

other interactions did not reach (ps > .20). As is shown in Fig. 7,

the Arduino recorded significantly fewer superfluous responses

than the percussion pad overall (ps < .001), but did not demon-

strate significant differences when delineated by force condition

Fig. 5 Mean asynchrony variability (with standard deviations) for audio signals in the tempo (fast, slow) and force (soft, moderate, hard) conditions.
Whiskers represent standard errors of the means

1598 Behav Res (2016) 48:1591–1607



(ps > .11), possibly due to the high variability in the number of

superfluous responses for the percussion pad. However, the

Arduino recorded significantly fewer superfluous responses than

the percussion pad for the slow tempo (p = .002), and demon-

strated a statistical trend toward fewer superfluous responses for

the fast tempo (p = .05).

Discussion

We demonstrated that the Arduino can be used as an effective

way to implement sensorimotor synchronization experiments

in which participants receive auditory feedback triggered by

their taps. We validated the proposed setup by comparing the

latencies and variability of the onset of auditory feedback and

missed and superfluous recorded responses between the

Arduino and two commonly used MIDI setups. The Arduino

option was able to deliver auditory feedback with low latency

and variability, which is considerably faster and less variable

than the MIDI percussion pad, FTAP, and Max/MSP.

Furthermore, the Arduino had fewer missed and superfluous

responses than the percussion pad. These results, coupled with

fact that the Arduino is less expensive than a MIDI percussion

pad, make the Arduino a compelling option for sensorimotor

synchronization experiments. We further showed that the

Fig. 7 Mean frequencies of superfluous responses captured by the percussion pad and Arduino in the soft, moderate, and hard force conditions for fast
and slow tempi. Whiskers represent standard errors of the means

Fig. 6 Proportions of responses captured by the percussion pad and the
Arduino in the force (soft, moderate, hard) and tempo (fast, slow)
conditions. The Arduino registered 100 % of the produced taps,

whereas the percussion pad missed taps, and more so when the tapping
force was softer. Whiskers represent standard errors of the means

Behav Res (2016) 48:1591–1607 1599



percussion pad was highly sensitive to varying tapping force

levels; softer taps caused larger latencies and more missed

taps. This poses an important problem for sensorimotor syn-

chronization experiments using percussion pads, because par-

ticipants may knowingly or unknowingly modulate their tap-

ping force or tap in an unnatural manner to yield auditory

feedback. All participants in our study reported that the mod-

erate force was the most natural tapping force and might re-

flect the tapping force that participants in other experiments

assume unless instructed otherwise. Our proposed Arduino

setup was not affected by these force modulations, making it

a more reliable instrument to measure sensorimotor tapping

responses. Moreover, the Arduino allows the flexibility to

tailor the parameters to the expected timeframe and force of

responses.

There are several reasons larger latencies would have

emerged in the MIDI-based setups (FTAP and Max/

MSP). The percussion pad itself must detect responses

using real-time signal processing to record responses

and tap forces. Percussion pad manufacturers do not

release the signal processing algorithms to the consumer

so it is difficult to divine precisely how this is per-

formed. It is also difficult to know when the MIDI

signal is sent through the MIDI out port relative to

the production of the audio on board the percussion

pad. If one assumes that the MIDI signal and percussion

pad audio are produced somewhat synchronously, then it

appears that the percussion pad is accountable for the

majority of the latency (see Fig. 3). The other sources

of latency include the MIDI–USB conversion (and vice

versa), the computer processing of the MIDI inputs and

outputs, and the generation of the audio with the tone

generator. FTAP and Max/MSP might actually contrib-

ute negligibly to the latencies of auditory feedback.

However, the number of separate devices and connec-

tions that are required to implement these setups in-

creases the latency of auditory feedback and is unavoid-

able for interfacing MIDI devices with FTAP and Max/

MSP.4 The benefit of using the Arduino is fewer con-

nections between the devices that record responses and

generate auditory feedback. Moreover, the performance

of the Arduino is completely independent of the com-

puter that is reading data from the Arduino, increasing

reproducibility between different labs and experiments.

We acknowledge that other computer systems and hard-

ware configurations might decrease the latencies observed

in FTAP and Max/MSP—for example, by using a conven-

tional peripheral component interconnect (PCI) MIDI

sound card (see Nelson & Thom, 2004). Such configura-

tions, however, would neither circumvent the latencies and

variability introduced by the percussion pad, nor decrease

the number of missed and superfluous responses resulting

from the percussion pad. Furthermore, none of the pub-

lished articles that have used FTAP of Max/MSP have

reported using configurations that opt for a PCI MIDI

sound card or the use of a joystick controller port5 (i.e.,

a serial game port, as suggested in Finney, 2001). Other

MIDI percussion pads may not produce as many missed

responses but some papers have reported unrecorded re-

sponses with other devices (e.g., Pfordresher & Dalla

Bella, 2011; Repp & Knoblich, 2007). As the present

study shows, the Tap Arduino setup detected 100 % of

taps and produced a total of two superfluous taps through-

out the experiment. Therefore, we demonstrated that the

Tap Arduino is a reliable tool for recording responses.

Although there are other software (e.g., MatTAP;

Elliott, Welchman, & Wing, 2009) and hardware (e.g.,

button boxes as used in Snyder et al., 2006) options, the

latencies and variability of these alternatives are often un-

tested or unreported. Here, we tested two of the most

common configurations using MIDI controllers; other op-

tions generally require external devices (e.g., data

acquisition cards, as in Elliott et al., 2009) that are more

expensive than the Arduino configurations described here.

The cost of the Arduino microcontroller and associated

equipment is a fraction of the cost of most MIDI percus-

sion controllers and MIDI samplers that do the same task.

The total cost of the PWM setup is approximately USD

65.00, and the wave shield setup costs approximately

USD 110.00. This is can be compared to the MIDI per-

cussion controllers (and dependent devices such as MIDI

samplers and MIDI-to-USB cables), which can cost any-

where from USD 600.00 to over USD 1,500.00 for a full

system.

One issue that has not been addressed is how best to

synchronize the timing of responses with an external

auditory stimulus (e.g., a metronome pacing sequence).

Although other systems claim high timing resolutions

for synchronizing responses with external stimuli (e.g.,

StimSync, Rorden & Hanayik, 2014; MatTAP, Elliott

et al., 2009) many other commercially available setups

are not subjected to peer-review and the veridical

4 Max/MSP also provides a virtual MIDI synthesizer that can produce
auditory feedback through the computer’s audio and headphone ports.We
attempted to test the virtual MIDI synthesizer inMax/MSP but the latency
in auditory feedback was noticeably larger and, therefore, we proceeded
to only test the arrangement reported here.

5 Steve Finney (e.g., Finney, 2001) and Peter Pfordresher (Pfordresher,
personal communication, June 23, 2015) have used the joystick controller
port in their experiments that use FTAP and, although this is not specified,
other studies may have used a similar MIDI interface device.

1600 Behav Res (2016) 48:1591–1607



response-stimulus asynchronies associated with such

software packages are unknown. We have included a

beta script in our software package for syncing an au-

ditory wave (.wav) file with Arduino responses

(BTapArduinoSound.py^) but the actual asynchrony be-

tween the Arduino responses and onset of computer-

generated audio remains to be tested on multiple sys-

tems. This is a problem for experiment setups in general

and, until this matter is resolved, the expensive options

such as data acquisition cards and AIBs remain the

most temporally precise methods for synchronizing re-

sponses and stimuli.

There are some limitations of the Tap Arduino package.

First, unlike FTAP and Max/MSP, Tap Arduino cannot inter-

face with MIDI devices such as piano keyboards. Second, the

arrangement of the Tap Arduino presented here is incompati-

ble with the MIDI protocol and, therefore, cannot take advan-

tage of the library of MIDI sounds. Third, the Tap Arduino

cannot dynamically change the intensity of auditory feedback

as a result of changes in tapping force. However, a strength of

the Tap Arduino package is that is can play any sound that can

fit on an SD card as a wave file. We have also included codes

that can alter auditory feedback in terms of temporal delay

(i.e., delayed auditory feedback), frequency (i.e., pitch), tim-

bre, and intensity (i.e., loudness). Another benefit of the

Arduino microcontroller more generally is that it is expand-

able and can be programmed to communicate with a large

range of devices that read serial protocol. A user is not limited

to using an FSR as used in the present study but may, instead,

use a piezo element to record tap vibrations, a circular poten-

tiometer for circle drawing, or a simple button similar to a

computer keyboard key (see Schubert et al., 2013). The drum

pads used in videogames, such as Rock Band, and the percus-

sion pad tested here use the piezo elements to record onsets.

Through the Arduino, it is possible to have fine control over

the thresholds and sensitivity that allows onsets to trigger au-

ditory feedback.

Now that we have benchmark measurements for the

latencies and variability of feedback using the Arduino

and MIDI options, future research could determine the

implications of having delayed or variable feedback in

behavioral experiments. Aschersleben and Prinz (1997)

have shown that increasing the latency of auditory feed-

back as much as 30 ms can increase the mean negative

asynchrony of responses (relative to metronome ticks)

from –20 ms to less than –40 ms. These results indicate

that unwanted delays in auditory feedback (resulting from

the experimental hardware used) influence behavior in sen-

sorimotor synchronization experiments. The Tap Arduino

circumvents this problem by presenting auditory feedback

within milliseconds and could therefore be used to find

the threshold at which behavior is influenced by delayed

auditory feedback. It is possible that delays observed in

FTAP and Max/MSP are inconsequential for performance

in sensorimotor synchronization experiments, particularly

given that people may adapt to them (Aschersleben &

Prinz, 1997). However, it is likely that the variability

would make it difficult to habituate to delays in auditory

feedback, an assertion that is yet to be tested empirically.

Similarly, the impact of missing and superfluous responses

in experiments that present auditory feedback for pairs or

individuals in sensorimotor synchronization remains un-

known. This could be investigated using the Tap

Arduino package that is sensitive enough not to miss re-

sponses and frugal enough not to record superfluous

responses.

Conclusion

We have presented C codes and Python scripts for using

an Arduino microcontroller as a tool for measuring re-

sponses at high resolutions and presenting low-latency

auditory feedback in sensorimotor synchronization ex-

periments. The Arduino was able to collect responses

with high precision (i.e., without missing responses)

while minimizing false alarms (i.e., superfluous re-

sponses). Our codes, scripts, and hardware instructions

are freely available online (van Vugt & Schultz, 2015).

The PWM auditory feedback option is faster and re-

quires purchasing less hardware, but can only present

simple sounds such as pure tones or square waves.

The wave shield auditory feedback option allows the

presentation of any sound file, but it has a slightly

higher latency, is more expensive, and it requires a

higher level of soldering ability (see Adafruit, 2015).

Both of the Arduino options demonstrated lower, and

less variable, auditory feedback latencies than FTAP

and Max/MSP. On the basis of these results, we suggest

that the Tap Arduino provides powerful tools for senso-

rimotor synchronization experiments, because it is high-

ly precise and resistant to false alarms, produces low-

latency feedback, and is portable and more affordable

than existing solutions.

Acknowledgments The authors thank Marcello Wanderley for use of
the HPD15 percussion pad, Joseph Malloch for use of the Yamaha
TX81Z synthesizer, James O’Callaghan for aiding in the construction
of the Max/MSP script, Alexander Demos for comments on the experi-
ment design and analysis, and the participants who volunteered their time.

Behav Res (2016) 48:1591–1607 1601



Appendix A

Fig. 8 Audio onsets detected by the custom-made MATLAB script. The
vertical dashed lines represent the detected time of onset (zero). The solid
blue lines represent the mean amplitude of each signal over time (in all

conditions), and the shaded regions represent the minimum and maxi-
mum amplitudes of each signal

1602 Behav Res (2016) 48:1591–1607



Table 2 Linear mixed-effects model for auditory feedback asynchronies, and asynchrony variability, relative to the force sensitive resistor (FSR)

FSR Asynchronies FSR Asynchrony Variability

Estimate SE Estimate SE

Fixed Effects

(Intercept) 0.68*** 0.04 0.26 0.33

Signal: Arduino wave shield 2.01*** 0.01 0.05 0.40

Signal: Percussion pad 8.01*** 0.02 0.98* 0.40

Signal: FTAP 13.45*** 0.04 2.16*** 0.40

Signal: Max/MSP 13.92*** 0.10 3.07*** 0.42

Force: Moderate –0.08*** 0.01 –0.01 0.40

Force: Soft –0.20*** 0.01 –0.01 0.40

Tempo: 120 BPM 0.01 0.01 0.00 0.40

Signal: Arduino Wave Shield × Force: Moderate 0.016 0.01 –0.06 0.57

Signal: Percussion Pad × Force: Moderate 0.58*** 0.04 0.14 0.57

Signal: FTAP × Force: Moderate 0.39*** 0.06 –0.52 0.57

Signal: Max/MSP × Force: Moderate 1.07*** 0.15 0.15 0.60

Signal: Arduino Wave Shield × Force: Soft 0.001 0.01 –0.05 0.57

Signal: Percussion pad × Force: Soft 1.77*** 0.05 0.49 0.57

Signal: FTAP × Force: Soft 1.77*** 0.08 –0.29 0.57

Signal: Max/MSP × Force: Soft 1.38*** 0.25 –0.04 0.65

Signal: Arduino Wave Shield × Tempo: 120 BPM –0.01 0.01 –0.06 0.57

Signal: Percussion pad × Tempo: 120 BPM –0.14** 0.03 –0.04 0.57

Signal: FTAP × Tempo: 120 BPM 0.30*** 0.06 0.24 0.57

Signal: Max/MSP × Tempo: 120 BPM 1.27*** 0.14 –1.13 0.60

Force: Moderate × Tempo: 120 BPM 0.004 0.01 0.01 0.57

Force: Soft × Tempo: 120 BPM –0.06*** 0.01 0.00 0.57

Signal: Arduino Wave Shield × Force: Moderate × Tempo: 120 BPM 0.003 0.01 0.06 0.81

Signal: Percussion pad × Force: Moderate × Tempo: 120 BPM 0.14** 0.05 0.08 0.81

Signal: FTAP × Force: Moderate × Tempo: 120 BPM –0.16* 0.08 0.02 0.81

Signal: Max/MSP × Force: Moderate × Tempo: 120 BPM 0.06 0.21 –0.14 0.85

Signal: Arduino Wave Shield × Force: Soft × Tempo: 120 BPM 0.06*** 0.01 0.06 0.81

Signal: Percussion pad × Force: Soft × Tempo: 120 BPM 0.28*** 0.08 0.21 0.81

Signal: FTAP × Force: Soft × Tempo: 120 BPM –0.25* 0.12 –0.35 0.81

Signal: Max/MSP × Force: Soft × Tempo: 120 BPM 0.46 0.35 0.04 0.92

Random Factors

Participant 0.10 0.35

Trial (within Participant) 0.01 N/A

Residual 0.28 0.64

Goodness of Fit

Log Likelihood –129,155.6 –170.9

AIC 258,385.2 405.7

BIC 258,735.5 506.1

*** p < .001, ** p < .01, * p < .05

Appendix B

Behav Res (2016) 48:1591–1607 1603



Table 3 Linear mixed-effects model for auditory feedback asynchronies, and asynchrony variability, relative to the Piezo vibration sensor

Piezo Asynchronies Piezo Asynchrony Variability

Estimate SE Estimate SE

Fixed Effects

(Intercept) 8.09*** 1.15 2.05** 0.72

Force: Moderate 1.69*** 0.05 0.76 0.61

Force: Soft 4.66*** 0.08 1.13 0.61

Tempo: 120 BPM –0.42*** 0.05 –0.40 0.61

FSR: absent 0.28*** 0.07 –0.37 0.61

Force: Moderate × Tempo: 120 BPM 0.14 0.07 0.12 0.86

Force: Soft × Tempo: 120 BPM 0.72*** 0.11 0.44 0.86

Force: Moderate × FSR: absent –0.26* 0.10 –0.17 0.88

Force: Soft × FSR: absent 0.22 0.15 0.41 0.88

Tempo: 120 BPM × FSR: absent 0.38*** 0.09 0.44 0.86

Force: Moderate × Tempo: 120 BPM × FSR: absent –0.01 0.14 –0.27 1.23

Force: Soft × Tempo: 120 BPM × FSR: absent –0.22 0.22 –0.58 1.24

Random Factors SD Estimate SD Estimate

Participant 2.81 1.30

Residual 2.83 0.96

Goodness of Fit

Log Likelihood –94,096.58 –104.03

AIC 188,221.20 236.06

BIC 188,340.90 267.33

*** p < .001, ** p < .01, * p < .05

Table 4 Linear mixed-effects model for the proportion of captured responses and number of superfluous responses

Proportion of Captured Responses Superfluous Responses

Estimate SE Estimate SE

Fixed Effects

(Intercept) 1.00*** 0.03 0.00 1.60

Device: Percussion Pad –0.11*** 0.03 3.22 2.19

Force: Moderate 0.00 0.02 0.00 2.19

Force: Soft 0.00 0.02 0.00 2.19

Tempo: 120 BPM 0.00 0.02 0.01 2.19

Device: Percussion Pad × Force: Moderate –0.21*** 0.04 –3.10 3.10

Device: Percussion Pad × Force: Soft –0.61*** 0.04 –2.65 3.10

Device: Percussion Pad × Tempo: 120 BPM 0.01 0.04 3.83 3.10

Force: Moderate × Tempo: 120 BPM 0.00 0.03 –0.01 3.10

Force: Soft × Tempo: 120 BPM 0.00 0.03 0.00 3.10

Device: Percussion Pad × Force: Moderate × Tempo: 120 BPM 0.02 0.05 –3.51 4.38

Device: Percussion Pad × Force: Soft × Tempo: 120 BPM –0.09 0.05 –4.20 4.38

Random Factors SD Estimate SD Estimate

Participant 0.05 0.90

Residual 0.17 3.46

Goodness of Fit

Log likelihood 404.67 –193.33

AIC –781.34 414.67

BIC –710.08 446.54

*** p < .001, ** p < .01, * p < .05

1604 Behav Res (2016) 48:1591–1607



Appendix C: R code for linear mixed-effects model

# Linear mixed-effects model

fsr.lme <- lme(Asynchrony ~ Signal*Force*Tempo, ran-

dom = ~1|Participant/Trial, data = fsr_data,

method = "ML", weights = varIdent(form =

~1|Signal))

# Check estimates and coefficients summary(fsr.lme)

# View main effects and interactions

# (note: this function is NOT an analysis of variance but is

# an analogous function for LMEM) anova(fsr.lme)

# Example: Planned comparisons for main effect of Signal

summary(glht(fsr.lme,

linfct = mcp(Signal = "Tukey")))

# Above, "Signal" can be replaced by "Force" or "Tempo" to

obtain planned comparisons

#Example: Interactions betweenSignal and Force fsr_dataSigFor

<- factor(interaction(fsrdataSignal,fsr_data$Force))

fsr.tmp.lme <- lme(Asynchrony ~SigFor*Tempo, random

= ~1|Participant/Trial,

data = fsr_data, method = "ML", weights =

varIdent(form = ~1|Signal))

summary(glht(fsr.tmp.lme,linfct = mcp(SigFor = "Tukey")))

# Above, "Signal" and "Force" can be swapped with "Tempo"

to obtain planned comparisons

# Three-way inte rac t ionsfsr_da taSig forTemp <-

interaction(fsrdataSignal,fsr_dataForce, fsrdataTempo)

fsr.comb.lme <- lme(Asynchrony~SigForTemp, random =

~1|Participant/Trial,

data = fsr_data, method = "ML",

weights = varIdent(form = ~1|Signal))

summary(glht(fsr.comb.lme,linfct =

mcp(SigForTemp = "Tukey")))

# Linear mixed-effects model

fsr.lme <- lme(Asynchrony ~ Signal*Force*Tempo, random = ~1|Participant/Trial,

data = fsr_data, method = "ML", weights = varIdent(form = ~1|Signal))

# Check estimates and coefficients

summary(fsr.lme)

# View main effects and interactions

# (note: this function is NOT an analysis of variance but is

# an analogous function for LMEM)

anova(fsr.lme)

# Example: Planned comparisons for main effect of Signal

summary(glht(fsr.lme,

linfct = mcp(Signal = "Tukey")))

# Above, "Signal" can be replaced by "Force" or "Tempo" to obtain planned comparisons

# Example: Interactions between Signal and Force

fsr_data$SigFor <- factor(interaction(fsrdata$Signal,fsr_data$Force))

fsr.tmp.lme <- lme(Asynchrony ~SigFor*Tempo, random = ~1|Participant/Trial,

data = fsr_data, method = "ML", weights = varIdent(form = ~1|Signal))

summary(glht(fsr.tmp.lme,linfct = mcp(SigFor = "Tukey")))

# Above, "Signal" and "Force" can be swapped with "Tempo" to obtain planned comparisons

# Three-way interactions

fsr_data$SigforTemp <- interaction(fsrdata$Signal,fsr_data$Force, fsrdata$Tempo)

fsr.comb.lme <- lme(Asynchrony~SigForTemp, random = ~1|Participant/Trial,

data = fsr_data, method = "ML", weights = varIdent(form = ~1|Signal))

summary(glht(fsr.comb.lme,linfct = mcp(SigForTemp = "Tukey")))

Behav Res (2016) 48:1591–1607 1605



Appendix D

Arduino force analysis

The maximum force value between the onset and offset of the

tap was recorded for each tap. The mean maximum force

value for each trial was recorded and analyzed in a 2

(tempo) by 3 (force) repeated measures analysis of variance

with Participant and Trial as random factors. We found a sig-

nificant main effect of force [F(2, 10) = 82.42, p < .001, ηp
2 =

.94], indicating that the hard instruction (M = 782.2, SD =

82.37) resulted in a significantly greater force than did the soft

(M = 501.1, SD = 99.20; p < .001) and moderate (M = 665.0,

SD = 77.67; p < .001) instructions, and the moderate instruc-

tion resulted in a significantly greater force than the soft in-

struction (p < .001). There was no significant main effect of

tempo (p = .64), and the force by tempo interaction

approached significance (p = .06). The near-significant inter-

action between force and tempo reflected that the slow tempo

resulted in significantly greater force than the fast tempo for

the hard force instruction (p < .001), but not for the soft or

moderate force instructions (ps > .27)

References

Adafruit. (2015). Adafruit wave shield for Arduino kit. Retrieved 19
June, 2015, from www.adafruit.com/product/94

Aschersleben, G., & Prinz, W. (1997). Delayed auditory feedback in
synchronization. Journal of Motor Behavior, 29, 35–46.

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects

structure for confirmatory hypothesis testing: keep it maximal.
Journal of Memory and Language, 68, 255–278. doi:10.1016/j.
jml.2012.11.001

Casabona, H., & Frederick, D. (1988). Advanced MIDI applications.
New York: Alfred Music.

Cureton, E. E. (1968). Unbiased estimation of the standard deviation. The

American Statistician, 22, 22.

Cycling ’74. (2014). Max/MSP 7.0, jitter 1.2.3 graphical audio and video
environment [Computer program]. Retrieved 12August, 2014, from
www.cycling74.com

D’Ausilio, A. (2012). Arduino: a low-cost multipurpose lab equipment.
Behavior Research Methods, 44, 305–313. doi:10.3758/s13428-
011-0163-z

Dandekar, K., Raju, B. I., & Srinivasan, M. A. (2003). 3-D finite-element
models of human and monkey fingertips to investigate the mechan-
ics of tactile sense. Journal of Biomechanical Engineering, 125,
682–691.

Fig. 9 Mean force values recorded from by the Arduino for the fast and
slow tempi under conditions of soft, moderate, and hard tapping
instructions. The unit of force is a 10-bit integer ranging from 0 to

1023, representing the resistance to the force placed on the FSR. The
shaded areas represent the standard deviations

1606 Behav Res (2016) 48:1591–1607

http://www.adafruit.com/product/94
http://dx.doi.org/10.1016/j.jml.2012.11.001
http://dx.doi.org/10.1016/j.jml.2012.11.001
http://www.cycling74.com/
http://dx.doi.org/10.3758/s13428-011-0163-z
http://dx.doi.org/10.3758/s13428-011-0163-z


Development Core Team, R. (2013). R: A language and environment for

statistical computing. Vienna: R Foundation for Statistical
Computing. Retrieved from www.R-project.org/

Elliott, M. T., Welchman, A. E., & Wing, A. M. (2009). MatTAP: a
MATLAB toolbox for the control and analysis of movement syn-

chronisation experiments. Journal of Neuroscience Methods, 177,

250–257.
Finney, S. A. (2001). FTAP: a Linux-based program for tapping and

music experiments. Behavior Research Methods, Instruments, &

Computers, 33, 65–72.
Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in

general parametric models. Biometrical Journal, 50, 346–363.
Knörig, A., Wettach, R., & Cohen, J. (2009). Fritzing: A tool for advanc-

ing electronic prototyping for designers. In Proceedings of the 3rd

International Conference on Tangible and Embedded Interaction

(pp. 351–358). New York: ACM Press.
Mills, P. F., van der Steen, M. C., Schultz, B. G., & Keller, P. E. (2015).

Individual differences in temporal anticipation and adaptation dur-
ing sensorimotor synchronization. Timing & Time Perception, 3,

13–31. doi:10.1163/22134468-03002040
Morey, R. D., Rouder, J. N., & Jamil, T. (2009). BayesFactor: An R

package for Bayesian data analysis (R package version 09.10-2).
Retrieved from http://bayesfactorpcl.r-forge.r-project.org/

Nelson, M., & Thom, B. (2004). A survey of real-time MIDI perfor-
mance. In Proceedings of the 2004 conference on New interfaces

for musical expression (pp. 35–38). Singapore: National University
of Singapore.

Pfordresher, P. Q., & Dalla Bella, S. (2011). Delayed auditory feedback
and movement. Journal of Experimental Psychology: Human

Perception and Performance, 37, 566–579.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Development Core

Team. (2015). nlme: Linear and nonlinear mixed effects models (R

package version 3.1-120). Retrieved from http://CRAN.R-project.

org/package=nlme
Repp, B. H. (2005). Sensorimotor synchronization: a review of the tap-

ping literature. Psychonomic Bulletin & Review, 12, 969–992. doi:
10.3758/BF03206433

Repp, B. H., & Knoblich, G. (2007). Toward a psychophysics of
agency: detecting gain and loss of control over auditory ac-
tion effects. Journal of Experimental Psychology: Human

Perception and Performance, 33, 469–482. doi:10.1037/

0096-1523.33.2.469
Repp, B. H., & Su, Y. H. (2013). Sensorimotor synchronization: a review

of recent research (2006–2012). Psychonomic Bulletin & Review,

20, 403–452. doi:10.3758/s13423-012-0371-2

Rorden, C., & Hanayik, T. (2014). StimSync: open-source hardware for
behavioral and MRI experiments. Journal of Neuroscience
Methods, 227, 90–99.

Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G.

(2009). Bayesian t tests for accepting and rejecting the null hypoth-
esis. Psychonomic Bulletin & Review, 16, 225–237. doi:10.3758/
PBR.16.2.225

Schubert, T. W., D’Ausilio, A., & Canto, R. (2013). Using Arduino mi-

crocontroller boards to measure response latencies. Behavior
Research Methods, 45, 1332–1346.

Smith, F. (2010, November 20). Inside a drum synth/Radioscopy of a
Handsonic HPD-15 [Blog post]. Retrieved February 21, 2015, from

http://francksmith.blogspot.ca/2010/11/inside-drum-synth-
radioscopy-of.html

Snyder, J. S., Hannon, E. E., Large, E. W., & Christiansen, M. H. (2006).
Synchronization and continuation tapping to complexmeters.Music

Perception, 24, 135–146.
van Vugt, F., & Schultz, B. G. (2015). Taparduino v1.01. Zenodo, 16178.

doi:10.5281/zenodo.16178

Behav Res (2016) 48:1591–1607 1607

http://www.r-project.org/
http://dx.doi.org/10.1163/22134468-03002040
http://bayesfactorpcl.r-forge.r-project.org/
http://cran.r-project.org/package=nlme
http://cran.r-project.org/package=nlme
http://dx.doi.org/10.3758/BF03206433
http://dx.doi.org/10.1037/0096-1523.33.2.469
http://dx.doi.org/10.1037/0096-1523.33.2.469
http://dx.doi.org/10.3758/s13423-012-0371-2
http://dx.doi.org/10.3758/PBR.16.2.225
http://dx.doi.org/10.3758/PBR.16.2.225
http://francksmith.blogspot.ca/2010/11/inside-drum-synth-radioscopy-of.html
http://francksmith.blogspot.ca/2010/11/inside-drum-synth-radioscopy-of.html
http://dx.doi.org/10.5281/zenodo.16178

	Tap Arduino: An Arduino microcontroller for low-latency auditory feedback in sensorimotor synchronization experiments
	Abstract
	Experiment
	Design and hypotheses

	Method
	Participants
	Materials
	Stimuli
	Software
	Procedure

	Results
	Onset extraction
	Statistical analysis
	FSR-aligned audio mean asynchrony
	FSR-aligned audio asynchrony variability
	FSR present versus absent comparison of percussion pad asynchronies
	Captured and superfluous responses

	Discussion
	Conclusion

	Appendix A
	Appendix C: R code for linear mixed-effects model
	Appendix D
	Arduino force analysis
	References


