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Abstract

Background: Experimentally determined protein structures may contain errors and require

validation. Conformational criteria based on the Ramachandran plot are mainly used to distinguish

between distorted and adequately refined models. While the readily available criteria are sufficient

to detect totally wrong structures, establishing the more subtle differences between plausible

structures remains more challenging.

Results: A new criterion, called TAP score, measuring local sequence to structure fitness based

on torsion angle propensities normalized against the global minimum and maximum is introduced.

It is shown to be more accurate than previous methods at estimating the validity of a protein model

in terms of commonly used experimental quality parameters on two test sets representing the full

PDB database and a subset of obsolete PDB structures. Highly selective TAP thresholds are derived

to recognize over 90% of the top experimental structures in the absence of experimental

information. Both a web server and an executable version of the TAP score are available at http://

protein.cribi.unipd.it/tap/.

Conclusion: A novel procedure for energy normalization (TAP) has significantly improved the

possibility to recognize the best experimental structures. It will allow the user to more reliably

isolate problematic structures in the context of automated experimental structure determination.

Background
The number of experimentally determined protein three-
dimensional (3D) structures deposited in the protein data
bank (PDB) [1] is increasing exponentially over the years
and being progressively automated. The vast majority of
such 3D structures is produced by X-ray crystallography.
In the case of limited resolution and imperfect phase
information often available to the crystallographer, build-
ing and refining such a protein model is a process that can
depend on the experimentalist. Errors are almost unavoid-
able and the quality of the refined models has to be eval-

uated in order to assess their validity [2]. Errors come in
various classes [3] and can nowadays range from mis-
traced segments of the protein to locally incorrect back-
bone and/or side chain conformations. Identification of
such errors can be achieved with a combination of exper-
imental and computational parameters.

Several quality measures based on experimental parame-
ters exist for X-ray crystallography and have been reviewed
[2]. X-ray resolution is an index of the quality of the exper-
imental data. It is related to the amount of available data,
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i.e. to the parameter-to-observation ratio [4] and is an
indirect indicator of the maximum attainable details of
the protein model. In contrast, the R-free value [5] repre-
sents a measure of the fit between the refined structure
and the electron density map, highlighting the quality of
the refinement. The relationship with resolution is not
straightforward, but it is generally assumed that higher
resolution structures will produce lower R-free values [6].
A different type of information is contained in the Luzzati
[7] and σa [8] plots. These estimate the mean positional
error for all atoms in the protein model. These parameters
require the structure factors, but yield the expected uncer-
tainty of atoms in the protein model in a single number
estimate (in Å). A simpler estimation of the mean posi-
tional error is the diffraction precision index based on R-
free (DPI), which can be computed from the readily avail-
able data contained in the PDB files [9].

A wide range of computational quality parameters have
been developed and reviewed over the years [2,10,11].
Generally speaking, it is possible to distinguish geometric,
energetic and conformational criteria. Geometric criteria
are mainly standard values for bond lengths and angles
derived from small molecule data. These form strong
restraints and are generally enforced during the refine-
ment process, so they possess little validation power.
Energetic criteria are based on evaluation of interaction
preferences or profiles [12-16]. While these methods can
provide insight into the quality of the structure, their
interpretation in experimental terms and feedback into
the refinement process is rather difficult.

The most promising validation criteria are based on con-
formational criteria. The best example is the Ramachan-
dran plot [17] of backbone (ϕ,φ) torsion angles. While
each amino acid type may, in theory, adopt a large
number of different conformations, large areas of the
Ramachandran plot are almost empty. This is due to steric
clashes deriving from the local geometry of the polypep-
tide chain. The main chain (ϕ,φ) torsion angles are usually
not restrained during refinement and this makes the Ram-
achandran plot a powerful validation tool [2,18]. Several
tools have been developed to estimate the quality of a pro-
tein model based on the Ramachandran plot [16,18-22].
Of these, PROCHECK [19] and WHAT_CHECK [16] are
perhaps the most frequently used methods for validation
in X-ray crystallography as they are used for judging struc-
tures to be deposited in the PDB, combining several stere-
ochemical checks and measures of torsion angle
compatibility. HOPPscore [22] has been recently devel-
oped to take into account higher order backbone torsion
angle maps.

Several of these methods (e.g. WHAT_CHECK) are able to
pinpoint the really wrong structures through a detailed

analysis of different aspects of protein structures. Once a
structure falls into the range of roughly plausible folds
however the situation becomes more complicated. It is
possible to construct structures with acceptable values for
the standard criteria that are largely incompatible with the
protein sequence. In the present work we focus on this
aspect of experimental structure validation. Given roughly
plausible structures, is it possible to quantify the degree of
"nativeness" and highlight the best structures?

One possible limit to the previous methods is the diffi-
culty in establishing a quantitative correspondence scale
between different structures. I.e. how much is score X for
structure A better or worse than score Y for structure B?
The answer is not obvious, as the reference state is differ-
ent for structures A and B. One solution would be a nor-
malization procedure adapted to a particular structure. To
the best of our knowledge, this has not been done yet. For
this reason, we derive a novel measure of sequence to
structure compatibility based on the normalization of tor-
sion angle propensities including the side chain. The nor-
malization involves definition of the global minimum
and maximum of the protein sequence. The normalized
propensity (called TAP) will be shown to be more accurate
than several previous methods at quantifying the degree
of "nativeness" of a protein model in terms of commonly
used experimental quality parameters on two test sets rep-
resenting the full PDB database and obsolete PDB struc-
tures. A comparison with several energetic criteria on
standard protein decoys and theoretical models has
already been addressed elsewhere [23,24].

Results
Baseline comparison on the all PDB set

Available experimentally derived quality parameters for
the all PDB set representing 13,691 structures is summa-
rized in Table 1. While the X-ray resolution information is
available for all structures considered, some of the older
structures are lacking an R-free value. The cross-validated
Luzzati and σA plots are present only in roughly one out
of three structures, mainly because deposition was not
mandatory for a long time. While it is possible to calculate
both parameters from the structure factors, we have cho-
sen to limit our comparison only to the publicly available
cases.

The Pearson correlation coefficients (cc) between the dif-
ferent experimental quality parameters were calculated for
the available data (see Table 2). As expected, the correla-
tion between experimental parameters is usually very high
(cc > 0.8). The main exception is R-free with cc <= 0.62 to
the X-ray resolution and DPI (see also Figure 1). As infor-
mation contained in the various measures appears largely
redundant, we restrict further analysis to resolution and R-
free. R-free is not a perfect measure, but rather available
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for more structures and, perhaps, less inaccurate than the
other quality parameters.

In order to estimate the performance of available compu-
tational methods, we compare our method with PRO-
CHECK [19], WHAT_CHECK [16], HOPPscore [22] and
FRST [23]. This covers all the range from energetic to geo-
metric and conformational criteria. Table 3 shows the
Pearson correlation coefficients between computational
and experimental parameters for the all PDB set. The best
performance is seen for methods using Ramachandran
plot analysis, i.e. TAP and WC_Rama, once again confirm-
ing its utility in structure validation [2,10].

For the TAP score, the intermediate (ϕ,φ) bin size of 10
degrees shows the highest correlation (see also Figure 1).
A similar trend was already observed [24]. This probably
maximizes the tradeoff between precise transitions and
lack of data to discriminate certain sparsely populated
regions in the Ramachandran plot. Note that a larger
background distribution, e.g. covering the entire PDB, was
excluded to avoid biasing the comparison.

It is apparent from Table 3 that some methods work sig-
nificantly better than others. The statistical potentials
(except the Ramachandran plot based TORS) and several
geometric criteria do not yield good correlation coeffi-
cients. Performance of the TAP score against R-free is par-
ticularly interesting, as the correlation coefficients for R-
free are overall lower. TAP has a higher correlation against
R-free (-0.66; see Table 3) than the X-ray resolution (0.62;
see Table 2) has. In order to evaluate the effect of the back-
ground distribution on the performance of TAP, a further
test was made using the TAP score based on NMR derived

torsion angles. The data reported in Table 3 shows that,
while the usage of high-quality data improves the per-
formance, TAP-NMR still significantly outperforms many
other methods. For the sake of simplicity, further analysis
was restricted to TAP and the most diverse parameters. As
conformational criteria we have chosen PROCHECK,
WC_Rama, WC_Chi1&2, Hopp1, Hopp2 and Hopp5. For
the energetic criteria we have restricted our analysis to
WC_Pack2, SOLV, RAPDF and TORS.

Detailed comparison on the obsolete PDB set

A set of 494 pairs of obsolete PDB structures and their
replacement was analyzed in order to evaluate the capac-
ity of the TAP score to discriminate better models for the
same protein. Figure 2 shows the number of times each
method correctly assigned a better score to the newer, and
therefore more accurate, model in the obsolete PDB set.
The results for each individual methods and the combina-
tion with TAP are shown. None of the methods discrimi-
nates all 494 structures, and the statistical potentials in
particular have difficulty recognizing the improved struc-
tures, while TAP has one of the highest single recognition
rates. Combining methods improves the overall perform-
ance, with TAP typically contributing more unique infor-
mation than the other method. Figure 3 shows a different
analysis of the data in terms of separation Z-score, i.e. the
normalized difference between the obsolete and replace-
ment structure. Here it is again apparent that the Ramach-
andran plot based methods outperform the others, with
TAP coming a close second with WC_Chi1&2 after
WC_Rama. Taken together, the Ramachandran plot based
methods (especially TAP and WC_Rama) seem able to
qualitatively discriminate improved from obsolete struc-
tures.

Quantifying absolute model accuracy

Another interesting question related to structure quality is
whether the methods under consideration are able to
quantify the difference between structures, i.e. reliably
identify the top x% structures present in the PDB. This
problem was addressed in terms of fraction enrichment
on R-free (see Materials and Methods), with results shown
in Figure 4. Unsurprisingly, the statistical potentials per-
form worse than the conformational methods. Of the lat-
ter group, it is worth noting how WC_Chi1&2, based on
side chain rotamer preferences, performs worse than

Table 2: Correlation coefficients between different experimental quality parameters on the all PDB set.

R-free σA Luzzati DPI

Resolution 0.62 0.80 0.86 0.86

R-free 0.66 0.82 0.55

σA 0.87 0.77

Luzzati 0.84

Table 1: Availability of data for the all PDB set.

Structures SCOP families

Resolution 17,330 2,502

R-free 14,208 2,435

σA 5,373 1,536

Luzzati 5,564 1,586

DPI 16,726 2,493

All PDB set 13,691 2,435
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methods using backbone preferences. The difference
between TAP and WC_Rama suggests that energy normal-
ization is improving recognition especially with the high-
est quality structures. This idea is confirmed when
comparing TAP to TORS, the torsion angle propensity
energy before normalization.

Confidence estimates

Since it can be very useful to derive TAP score threshold
levels indicating the expected quality of a model, the all
PDB set was used to derive confidence estimates. The res-
olution and R-free parameter distributions were analyzed
on the all PDB set to estimate average and standard devi-
ation (σ) (see Table 4). Three derived threshold levels are
shown in Table 5. The medium quality class is based on
commonly accepted conservative parameter settings, i.e.
resolution <= 2.5 A and R-free < 0.30, and excludes the
25% lowest quality structures. The high quality class was
defined to be just above the average for resolution and R-
free, selecting ca. the 40% top structures. The very high
quality class was defined at one σ above average and rep-

resents ca. the 10% top structures. The distribution there-
fore appears not to be truly normal, but somewhat skewed
towards lower quality structures. Similarly, TAP score
thresholds were chosen from the average to be – 1 σ
(low), 0 (medium) and + 1 σ (high).

The results for TAP on all three experimental quality
classes are expressed in terms of accuracy and coverage
(see Materials and Methods) and shown in Table 5 for the
all PDB set. As can be expected, it becomes gradually more
difficult for TAP to discriminate the structures with
increasing quality level. At the same time, coverage drops
with increasing TAP threshold. Taking the intersection
between both, TAP recognizes ca. 90% of the medium
quality structures with 90% accuracy. These values drop to
ca. 75% for the high and 35% for the very high quality
structures. Even in the latter case it implies a significant
enrichment in discrimination with respect to a random
predictor. To the best of our knowledge, this type of anal-
ysis was not performed before. In the context of auto-
mated experimental structure determination, it will allow

TAP-10 vs. R-free scatter plot on the all PDB setFigure 1
TAP-10 vs. R-free scatter plot on the all PDB set. The distribution of TAP score vs. R-free is shown for 13,691 struc-
tures in the all PDB set, together with the corresponding linear regression (red line). The correlation coefficient is -0.652.
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the user to isolate problematic structures for manual
refinement and could prove a valid addition to the PDB
data deposition procedures.

Discussion
Database effects vs. novel approach

The Ramachandran plot, i.e. (ϕ,φ) torsion angle prefer-
ences, has been seen as a powerful tool for validating
experimental protein models for a long time [10,18-
20,22]. Usually, the Ramachandran plot is used only as a
rather qualitative tool to discriminate grossly mistraced
structures from plausible ones. PROCHECK and HOPP-
score both consider a generic Ramachandran plot for the
twenty amino acids divided in discrete classes.
WHAT_CHECK-2 uses a more sophisticated Z-score anal-
ysis of the Ramachandran plot. All of these do not appear
to discriminate effectively the compatibility between
sequence and structure, nor the subtle differences between
amino acids.

The main advantage of TAP consists in effectively measur-
ing the compatibility of the sequence with the proposed
structure in a detailed, quantitative way. Energy score nor-
malization is a novel concept which could be applied
because TAP is based on a single body potential. This is
not usually applicable to pair wise (or higher order)

potentials, where it is difficult to estimate the maximum
or minimum interaction between an amino acid and its
surroundings. The benefits of energy normalization are
apparent from the comparison between TAP and TORS,
the torsion angle potential on which it is based. Where
TORS gives rough indications, TAP (despite using similar
information) has greater accuracy.

Since torsion angles are not generally restrained in X-ray
crystallography, this compatibility is orthogonal to the
data used in refinement and should be expected to give a
good indication of the degree of "nativeness" of the pro-
tein model. To support this view, rather than a simple
improvement based on database growth, a variant of TAP
was derived from NMR data. Even in this case, where the
Ramachandran plot is on average rather blurred, TAP-
NMR still outperforms other validation tools. This sup-
ports the idea that it is capturing the relationship between
sequence and structure rather than a tighter clustering in
torsion angle space.

Perhaps the most important feature of the TAP score is
that it simultaneously combines five different torsion
angles into a single pseudo-energy value. Adding more
torsion angles was previously shown to improve the over-
all discrimination of protein decoys [24], as it captures the
subtle interplay between them. For instance, it is known
that the ω torsion angle varies slightly depending on the
(ϕ,φ) angles [10,25]. Even more widely used is the
dependence of the χ torsion angles on (ϕ,φ), which is
widely accepted in side chain modeling [26,27]. A TAP
variant based solely on the (ϕ,φ) angles performs signifi-
cantly worse, with correlation coefficients of -0.53 and -
0.42 for resolution resp. R-free. This view has been
recently reinforced by an elegant statistical and conforma-
tional analysis of the electron density of protein side
chains showing a vast majority of all residues in high res-
olution X-ray structures to have rotameric side chain posi-
tions [28]. Therefore, where HOPPscore successfully
extends the concept of Ramachandran plot to higher order
(ϕ,φ) torsion angle pairs, TAP score explores the avenue of
capturing the interplay between protein backbone and
side chain. Figure 6 shows an example of TAP score
depending on χ1 side chain conformation.

The main limit of the TAP score approach is the independ-
ence of subsequent residues in the calculation of the glo-
bal minimum and maximum for normalization. These
minimum and maximum are likely to be overestimated,
as compatibility along the polypeptide chain is not guar-
anteed. This may result in impossibly "knotted" structures
having the best pseudo-energy and the native structure
being lower in normalized score. In principle, adding
information about the preceding residue's (ϕ,φ) torsion
angles would alleviate this situation and has been shown

Table 3: Correlation coefficients for the computational 

parameters on the all PDB set.

Resolution R-free

TAP -0.720 -0.652

TAP-20 -0.693 -0.640

TAP-5 -0.678 -0.609

TAP-NMR -0.557 -0.530

PROCHECK -0.092 -0.135

FRST 0.503 0.360

RAPDF 0.069 -0.060

SOLV 0.054 -0.030

HYDB -0.044 -0.001

TORS 0.550 0.476

WC_Qual -0.524 -0.441

WC_Tors -0.373 -0.343

WC_Rama -0.714 -0.596

WC_Chir -0.073 -0.108

WC_Back -0.135 -0.113

WC_Rot -0.104 -0.134

WC_Chi1&2 -0.613 -0.567

WC_Pack1 -0.295 -0.257

WC_Pack2 -0.331 -0.281

Hopp5 -0.539 -0.410

Hopp4 -0.467 -0.361

Hopp3 -0.523 -0.421

Hopp2 -0.602 -0.503

Hopp1 -0.586 -0.478
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to yield more discriminative pseudo-energies [24]. How-
ever, it is only possible to calculate the global optimum
for normalization precisely because it is a single body
potential. Adding a dependence on the preceding residue
would transform it into a two-body potential, making the
estimation of the global optimum problematic. Calculat-
ing the global optimum on such a two-body potential is
an optimization problem in itself.

The discriminative power of torsion angle propensities
has implications for the accuracy of empirical force fields
such as AMBER [29] or CHARMM [30]. Torsion angle pro-
pensities derive from the subtle interactions between
neighboring residues which cannot be captured very pre-
cisely by currently available physico-chemical models
[31]. This knowledge is one of the reasons for the success
of modern de novo folding methods based on assembly
of short peptide fragments [31-34].

Small changes in the AMBER torsion angle parameter
between param94 and param96 have drastic effects on the
energy landscape [35]. It may be argued that addition of a
Ramachandran plot propensity parameter could improve
the capacity of a force field to capture the local geometric
details more precisely. This approach is frequently
selected in loop modelling [36-38] where it is important
to reconcile the structural restraints with sequence prefer-
ence. The method of Fiser and co-workers [38] in particu-
lar uses the CHARMM bonded potential augmented by a
Ramachandran plot propensity term and statistical non-
bonded potential to generate loop conformations by min-
imization. Adding a properly calibrated (ϕ,φ) torsion
angle propensity term to a force field may therefore help
to improve convergence in energy minimization for
molecular mechanics simulations. The option to calculate
such values for every single residue also opens up the
interesting possibility to use the TAP score as a valuable

Histogram of correctly recognized improved structures on the obsolete PDB set for TAP and ten previous methodsFigure 2
Histogram of correctly recognized improved structures on the obsolete PDB set for TAP and ten previous 
methods. The number of correct predictions by both methods (blue), TAP only (green) and only the second method (red). 
The total height corresponds to the performance of combining TAP and the other method. Individual performance of each 
method (except TAP) is the sum of the first two terms (i.e. red and blue).
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tool during refinement of a crystallographic model, in
addition to the already available geometric validation
tools.

An interesting question is why some crystal structures
exhibit higher TAP scores than others. A cursory analysis
reveals that the highest scoring structures are short helical
bundles, e.g. Hemoglobin. The lowest scoring structures
are diverse and contain any combination of α-helices and
β-sheets. Even in the TOP500H database used for deriving
the propensities, the TAP scores vary between 0.781 and
0.907 (avg = 0.847; σ = 0.017). This is comparable to the
TAP score of very high experimental quality structures var-
ying between 0.754 and 0.889 (avg = 0.822; σ = 0.017).
This may be caused by the rough approximation of the
global optimum overestimating some folds more than
others due to some intrinsic feature, e.g. higher contact
order or lower degree of flexibility. A better way to calcu-
late the global optimum would be needed to exclude this
possibility. As local interactions appear to impose the
selection of certain amino acids at each structural position
in the fold [39], it will however be worth investigating
whether proteins whose native structure lies closer to the

global optimum could perhaps also have a better
sequence to structure compatibility.

Conclusion
We have presented a novel method for the evaluation of
the quality of protein models determined by X-ray crystal-
lography, demonstrated both on a large-scale dataset and
a set of obsolete PDB structures. The TAP score is based on
a relative pseudo-energy calculated simultaneously from
the backbone and side chain torsion angle propensities,
normalized against the global minimum and maximum
for the protein sequence under consideration. Our results
show a quantitative relationship between TAP score and
the overall quality of experimental structures as expressed
in terms of sequence to structure compatibility. TAP score
can improve the confidence in quality validation of pro-
tein models derived from automated experimental proce-
dures.

Methods
Torsion angle potential

The torsion angle potential was developed as part of the
FRST scoring function [23] for model quality estimation
which later has been extended [24]. It is a statistical poten-

Histogram of separation Z-score on the obsolete PDB set for TAP and ten previous methodsFigure 3
Histogram of separation Z-score on the obsolete PDB set for TAP and ten previous methods.
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tial [40] based on torsion angle propensities calculated in
analogy to the one defined by Shortle [41]. If x describes
a discrete torsion angle combination and A is a particular
amino acid type, a propensity P can be defined as the frac-
tion of two probabilities:

Where NA,x is the number of amino acid type A with tor-
sion angle combination x, NA the total number of amino
acids of type A, Nx the number of amino acids with torsion
angle combination x and Ntotal the total number of amino
acids. The three terms NA, Nx and Ntotal can be derived
from a background distribution of native structures, while
NA,x is the observed state in the model being evaluated.
Since the background distribution shows sharp transi-
tions between highly populated and disallowed regions,
no pseudo counts are used. Where needed, Nx is set to a
single count to avoid division by zero. A pseudo-energy
scoring function E for a protein composed of n residues
can be defined as:

The torsion angle pseudo-energy score Ei for the i-th resi-
due A of a protein is thus a measure of the log propensity
that amino acid type A(i) will have torsion angle combi-
nation x(i). Ei < 0 indicates that A(i) is favoured relative to
the mean of all 20 amino acids, whereas Ei > 0 indicates
that it is disfavoured. In order to be applied, both the
background distribution and the relevant torsion angles
have to be defined.

The Top500H database [42] was chosen to derive the
background distribution in order to have a representative
subset of high quality structures that is small enough to
allow unbiased large-scale benchmarking of the PDB. It is
a non-redundant, hand-picked set of 500 high-resolution
X-ray crystallographic protein structures resolved to 1.8 Å
or better resolution with no obvious errors and less than
60% sequence identity. In order to assess the effect of the
background distribution quality, an alternative ensemble
of 609 NMR structures (9,578 models) was also used. As
the Ramachandran plot of NMR structures is largely deter-
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Fraction enrichment plot for TAP and ten previous methods on the all PDB setFigure 4
Fraction enrichment plot for TAP and ten previous methods on the all PDB set.



BMC Bioinformatics 2007, 8:155 http://www.biomedcentral.com/1471-2105/8/155

Page 9 of 13

(page number not for citation purposes)

mined by the force field used in refinement, this alterna-
tive ensemble contains blurred transitions and serves to
highlight the effect of the background distribution on TAP
score accuracy (see discussion).

Two free parameters, the choice of torsion angles to repre-
sent and the discretization of the data, have to be chosen
in order to define the measured torsion angle combina-
tions. The (ϕ,φ) angles were discretized as either 5, 10 or
20 degree bins. Since other torsion angles are less inform-
ative, but still important, a limited number of bins was
used to represent the additional torsion angles [24]. Three
bins were defined for the ω angle, distinguishing values [-
180°, -150°], [+150°, +180°] and the rest. This was
found to model the distribution of ω angles, where the cis
(0°) state is very rare (except for proline) and the trans
state preference is somewhat influenced by the Ramach-
andran plot [25] and has a slightly bimodal distribution
around 180° (data not shown). Both the χ1 and χ2 tor-
sion angles were discretized in eight bins centered on the
canonical rotamer preferences. The total number of data
points, i.e. non-terminal residues with all torsion angles
available from the TOP500H is 100,245.

The torsion angle potential is a single body potential, rep-
resenting the local structural preferences coded by each
single residue in a polypeptide chain. Unlike other con-
ventional statistical potentials, which are typically based
on two-body interactions, it is therefore straightforward to
calculate the global minimum E>min and maximum Emax
for a given protein sequence of length n:

where Emin (Emax) is the sum of the lowest (highest)
pseudo-energy, i.e. highest (lowest) propensity, torsion
angle combination for a residue of type i. Note that this
definition makes no assumption about the physical plau-
sibility of the overall conformation. Indeed, it is entirely
possible that a sequence of minimal (or maximal) states
would produce an impossibly "knotted" structure.

Given Emin and Emax of a protein sequence, it is possible to
normalize the torsion angle potential score E as follows:

The normalized torsion angle propensity TAP gives a
rough indication of the degree of "nativeness" of a protein
model. The value will be close to 1 for the native structure
and close to 0 for structures with largely incompatible
sequences. It is therefore a measure of compatibility
between sequence and structure.

Data sets

In order to evaluate the method for structure quality esti-
mation on a large set, we downloaded the ASTRAL data-
base [43] version 1.69 (December 2005) containing
68,057 domain sequences for 24,978 PDB structures [1]
in 2,844 SCOP families [44]. Of these, we considered only
17,685 structures determined by X-ray crystallography. To
avoid bias towards the background distribution used to
derive the torsion angle potential, we remove 355 struc-
tures belonging to the same SCOP families as the
TOP500H structures. The programs failed to load ca. 1–
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Table 5: Threshold levels used to define the experimental quality classes on the all PDB set.

Medium High Very High

Resolution <= 2.5 <= 2.2 <= 1.7

R-free <= 0.3 <= 0.25 <= 0.22

Relative frequency 76.7% 42.2% 8.7%

# Cases 10,771 5,926 1,222

Table 4: Distribution of parameters for the all PDB set. Minimum, maximum, average and standard deviation are shown.

Resolution R-free TAP

Min 0.88 0.096 0.633

Max 6.21 0.465 0.890

Avg 2.17 0.249 0.792

SD 0.46 0.036 0.032
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2% of the structures, containing anomalous data usually
from very old PDB files. The all PDB set is composed of
13,691 structures with both valid resolution and R-free
values and results for all tested methods (see below). For
protein complexes in this set, the scores are calculated for
every chain and averaged. Luzzati and σA values were only
used when derived from cross-validated data, in analogy
to R-free. The DPI values were calculated from the PDB
structures according to the published formula [9]. Table 1
summarizes the available structures.

The second data set is based on obsolete PDB entries. A list
containing pairs of PDB codes of PDB entries rendered
obsolete since January 1990 and their replacement was
downloaded from the PDB site. This resulted in a set of
494 pairs of PDB codes for which all methods tested pro-
duced valid output. The details for both data sets are avail-
able as supplementary material.

Methods used for comparison

The comparison with published methods is based on
PROCHECK [19], WHAT_CHECK [16], HOPPscore [22]
and FRST [23]. All three programs were either down-

loaded from the author's website or directly requested
(HOPPscore). For PROCHECK, the overall G-factor was
used. WHAT_CHECK analysis is based on nine overall
quality indicators available from the Pdbfinder2 database
[45]. These are: overall quality (WC_Qual) expressed as a
sum of various terms, torsion angles (WC_Tors), Ramach-
andran plot appearance (WC_Rama), chirality
(WC_Chir), backbone conformation (WC_Back), rotamer
normality (WC_Rot), χ-1/χ-2 rotamer normality
(WC_Chi1&2) and 1st and 2nd generation packing quality
(WC_pack1 and WC_pack2). It should be noted that
WC_Pack1 and WC_Pack2 are measures based on contact
analysis. For HOPPscore, the five (Hopp-5) through sin-
gle residue (Hopp-1) scores were calculated with default
parameters. FRST is a linear combination of four different
statistical potentials [23]: a pairwise potential (RAPDF),
solvation potential (SOLV), a simplified count of main
chain hydrogen bonds (HYDB) and the torsion angle
potential (TORS) on which TAP is built. All five (partial)
potentials were used for analysis. The PROCHECK,
WC_Rama, Hopp1 and TORS scores essentially represent
a quantification of the structural fit with the Ramachan-
dran plot.

Accuracy and coverage plot for TAP score on the all PDB setFigure 5
Accuracy and coverage plot for TAP score on the all PDB set. Accuracy (acc) and coverage (cov) are plotted for three 
experimental quality classes (medium, high, very high) as a function of TAP score threshold.
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Ramachandran plot of valine (a) and serine (b) residuesFigure 6
Ramachandran plot of valine (a) and serine (b) residues. In each plot, the χ1 torsion angle is fixed at a rotamer position 
(trans, g-, g+) and the (φ,ϕ) TAP score landscape (resolution 5° × 5°) is plotted from white to black. Darker colours represent 
higher (i.e. better) TAP scores. Note that the less favoured regions are those where a given residue is less frequently present 
than the average of the twenty types.
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Evaluation criteria

Analysis of the results is based on several criteria. For the
obsolete PDB set, let Snew and Sold denote the score of the
new resp. old structure. The first criterion is the number of
pairs in which the scoring function correctly recognizes
the improved structure, i.e. Snew > Sold. The separation Z-
score z is defined as:

where σold is the standard deviation calculated over all Sold

for that particular method.

The experimental and computational parameters are ana-
lyzed in terms of Pearson correlation coefficient cc over
the all PDB set. Fraction enrichment FE measures the per-
centage of good structures recognized at a threshold level
t by each method [23]. The structures are first ranked by R-
free and by each method. FE at threshold t measures the
percentage of structures in common between the top x
percent of both lists. For the present work, the FE thresh-
old is plotted in discrete steps of 5% from 5% to 50%.
Intuitively, it becomes progressively easier for methods to
have higher FE values at higher threshold levels. E.g. a
good, but not perfect, method will be able to detect most
of the good structures at t = 50%, but mostly fail at t = 5%.

Last but not least, confidence estimates were derived for
TAP using accuracy (acc) and coverage (cov):

where TP are the true positive predictions, i.e. where TAP
correctly predicts a structure to be of a given quality class.
(TP+FN) are all predictions made by TAP and (TP+FP) are
all structures having a given quality class.

Availability and requirements
The TAP software is freely accessibile as a web server at
http://protein.cribi.unipd.it/tap/. An executable version,
written in ANSI C++ and precompiled for Linux
machines, is also freely available for academic usage from
http://protein.cribi.unipd.it/tap/download.shtml. Please
contact the author for obtaining the source code and/or
for commercial usage.
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