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Abstract Recently, we revealed that TAPBPR is a peptide exchange catalyst that is important for

optimal peptide selection by MHC class I molecules. Here, we asked whether any other co-factors

associate with TAPBPR, which would explain its effect on peptide selection. We identify an

interaction between TAPBPR and UDP-glucose:glycoprotein glucosyltransferase 1 (UGT1), a folding

sensor in the calnexin/calreticulin quality control cycle that is known to regenerate the

Glc1Man9GlcNAc2 moiety on glycoproteins. Our results suggest the formation of a multimeric

complex, dependent on a conserved cysteine at position 94 in TAPBPR, in which TAPBPR promotes

the association of UGT1 with peptide-receptive MHC class I molecules. We reveal that the

interaction between TAPBPR and UGT1 facilities the reglucosylation of the glycan on MHC class I

molecules, promoting their recognition by calreticulin. Our results suggest that in addition to being

a peptide editor, TAPBPR improves peptide optimisation by promoting peptide-receptive MHC

class I molecules to associate with the peptide-loading complex.

DOI: 10.7554/eLife.23049.001

Introduction
The presentation of antigenic peptides to the immune system by MHC class I molecules is crucial in

generating protective responses against infection and cancer. Central to this process is the loading

and optimisation of peptides onto MHC class I molecules within the peptide-loading complex (PLC)

in the endoplasmic reticulum (ER) by tapasin, an MHC class I-dedicated chaperone that has been the

focus of intense investigation for the past two decades (Sadasivan et al., 1996; Ortmann et al.,

1997; Williams et al., 2002). It is now well established that tapasin functions as a peptide exchange

catalyst for MHC class I molecules, a process that is important in the selection of high-affinity pepti-

des onto MHC class I molecules (Chen and Bouvier, 2007; Wearsch and Cresswell, 2007).

Recently, we revealed that TAPBPR, a second MHC class I-dedicated chaperone in the antigen pre-

sentation pathway, also functions as a peptide exchange catalyst for MHC class I molecules

(Boyle et al., 2013; Hermann et al., 2015), a finding that was subsequently verified by Margulies

and colleagues (Morozov et al., 2016). Thus, it is now clear that there are at least two MHC class

Neerincx et al. eLife 2017;6:e23049. DOI: 10.7554/eLife.23049 1 of 25

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7554/eLife.23049.001
http://dx.doi.org/10.7554/eLife.23049
https://creativecommons.org/
https://creativecommons.org/
http://elife.elifesciences.org/
http://elife.elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


I-specific chaperones in the antigen presentation pathway that are intimately involved in selecting

peptides for presentation on MHC class I molecules.

Although both tapasin and TAPBPR share the ability to optimise peptide selection in vitro, they

cannot directly compensate for each other within a cellular environment and appear to influence

peptide selection in separate yet complementary processes. In the absence of a functional tapasin

molecule, inefficient peptide loading occurs, resulting in MHC class I molecules loaded with subopti-

mal peptide ligands (Ortmann et al., 1997; Purcell et al., 2001; Williams et al., 2002). As a conse-

quence, the absence of tapasin produces thermolabile MHC class I complexes that are inefficiently

expressed on the cell surface, although different MHC class I allomorphs differ in their dependency

on tapasin (Ortmann et al., 1997; Lewis et al., 1998; Peh et al., 1998; Garbi et al., 2000;

Grandea et al., 2000; Williams et al., 2002; Rizvi et al., 2014). In contrast to our understanding of

tapasin, the precise role of TAPBPR-mediated peptide editing in the antigen presentation pathway

has yet to be fully characterised (Hermann et al., 2015; Morozov et al., 2016). TAPBPR is not

essential for the initial peptide-loading event onto MHC class I molecules (Boyle et al., 2013).

Instead, TAPBPR has a more subtle, fine-tuning effect on the peptides displayed, removing some

peptides of lower affinity and thus improving peptide selection and increasing the stability of MHC

class I molecules (Hermann et al., 2015).

We have speculated that the different effects of tapasin and TAPBPR on the peptide repertoire in

cells is due, at least in part, to the environment in which the two chaperones operate. Tapasin func-

tions within the PLC in an environment that is rich in suitable peptides for MHC class I binding

(Sadasivan et al., 1996; Li et al., 1997; Ortmann et al., 1997), which helps promote efficient pep-

tide loading onto MHC class I molecules. In contrast TAPBPR is not a component of the PLC and

therefore performs peptide editing outside this complex, potentially in a more peptide-deficient

environment (Boyle et al., 2013; Hermann et al., 2015), which may favour peptide dissociation

from MHC class I molecules. Therefore, it seems plausible that tapasin and TAPBPR have evolved to

function in distinct cellular environments. For tapasin, three regions have been identified that are

essential for its localisation and function within the PLC: its transmembrane domain is responsible for

its interaction with TAP (Petersen et al., 2005; Rufer et al., 2015); a free cysteine residue at posi-

tion C95 is essential for its association with ERp57 (Dick et al., 2002; Peaper et al., 2005); and resi-

dues in the Ig domains interact with MHC class I (Turnquist et al., 2001; Turnquist et al., 2004,

Dong et al., 2009). For TAPBPR, the only functional sites to be identified so far are those that are

responsible for its interaction with MHC class I (Hermann et al., 2013), and as yet, no association

partners that function with TAPBPR have been characterised. Our aim here was to investigate

whether any other co-factors interacted with TAPBPR in cells, which would explain the ability of

TAPBPR to optimise peptide selection.

Results

TAPBPR binds to UDP-glucose:glycoprotein glucosyltransferase 1
To identify potential cellular binding partners for TAPBPR, we transiently transfected HeLaM cells

with a construct in which the cDNA encoding amino acids 22–468 of human TAPBPR (i.e. the mature

protein) was cloned downstream of a generic ER leader sequence, two protein A cassettes and a

myc tag (ZZ-TAPBPR). This resulted in the expression of ZZ-TAPBPR at an approximately five-fold

greater level than that observed for endogenous TAPBPR in IFN-g-treated HeLaM. Affinity chroma-

tography with IgG-sepharose beads was subsequently used to isolate ZZ-TAPBPR and any associ-

ated proteins. As expected, tandem mass spectrometry (MS/MS) analysis identified the MHC class I

heavy chain and b2m in the ZZ-TAPBPR immunoprecipitate (Table 1) (Boyle et al., 2013). Interest-

ingly, UDP-glucose:glycoprotein glucosyltransferase 1 (UGT1) was also isolated in the immunopreci-

pitates from ZZ-TAPBPR-expressing cells, but not in control HeLaM cells transfected with an empty

vector (Table 1), suggesting that UGT1 could be a novel binding partner for TAPBPR. UGT1 was

ranked as the third specific hit in the ZZ-TAPBPR pulldown after the MHC class I heavy chain and

TAPBPR (Table 1). UGT1 is an ER/cis-Golgi resident enzyme that monitors glycoprotein folding

(Arnold et al., 2000; Tessier et al., 2000; Zuber et al., 2001; D’Alessio et al., 2010). In 2011,

Cresswell and colleagues showed that UGT1 plays an important role in the MHC class I antigen proc-

essing and presentation pathway (Wearsch et al., 2011; Zhang et al., 2011). Although no direct
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association was demonstrated between MHC class I and UGT1 within a cellular environment, they

found that MHC class I maturation and assembly was delayed, surface expression of MHC class I was

reduced, and there was an impairment of peptide selection in UGT1-deficient cells (Zhang et al.,

2011). Furthermore, recombinant UGT1 was found to reglucosylate MHC class I molecules associ-

ated with suboptimal ligands and permitted their re-engagement with the PLC, thus providing direct

evidence for the role of UGT1 in the antigen presentation pathway (Wearsch et al., 2011). To con-

firm that the interaction between TAPBPR and UGT1 was not an artefact of tagging or TAPBPR over-

expression, immunoprecipitation of TAPBPR was performed in IFN-g-induced HeLaM and KBM-7

cells, followed by western blotting for UGT1. An association between endogenous TAPBPR and

Table 1. Selected proteins identified in IgG-sepharose pulldowns on ZZ-TAPBPR

Affinity chromatography with IgG-sepharose was performed on HeLaM cells expressing a protein-A-tagged TAPBPR molecule (ZZ-

TAPBPR) or HeLaM cells transduced with an empty vector (control). Immunoprecipitates were analysed by in gel tryptic digest followed

by liquid chromatography-tandem mass spectrometry and data were processed using Scaffold. Identified proteins are shown with their

exclusive unique peptide count, percentage coverage, and exclusive unique spectrum count as determined by Scaffold. Rank denotes

the position when data are sorted by exclusive unique peptide count with all proteins present in the control removed. Pep: exclusive

unique peptide count; Cov: percentage coverage; Count: exclusive unique spectrum count.

Protein Gene name

Control ZZ-TAPBPR

RankPep (Cov) Count Pep (Cov) Count

Tapasin-related protein TAPBPL – – 8 (16) 11 2

HLA class 1, A-68 HLA-A – – 14 (35) 21 1

b-2-microglobulin b2M – – 1 (8.4) 1 95

UDP-glucose:glycoprotein glucosyltransferase 1 UGGT1 – – 10 (7.3) 10 3

DOI: 10.7554/eLife.23049.003
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Figure 1. TAPBPR associates with UDP-glucose:glycoprotein glucosyltransferase 1 (A and B) TAPBPR or (C) tapasin were immunoprecipitated using

PeTe4 or Pasta1, respectively, from (A) IFN-g-treated HeLaM, TAPBPR KO, tapasin KO, and double tapasin KO/TAPBPR KO HeLaM cells or (B and C)

IFN-g-treated wild-type, TAPBPR-depleted (+ shTAPBPR), and tapasin KO KBM-7 cells. In (A), immunoprecipitation with an isotype control antibody was

used as a control (labelled ’Ctrl’). Western blot analysis was performed for UGT1, TAPBPR (using R021), tapasin (Rgp48N), MHC class I HC (using

3B10.7), or calnexin as a loading control on immunoprecipitates or lysates as indicated. Note: the amounts of TAPBPR present in the lysates were below

limits of detection and were detectable after concentration via immunoprecipitation. In (C), * denotes the tapasin protein from the previous blot, while

the lower band is the MHC class I HC. The data shown are representative of three independent experiments. In (A and B), an increased association

between TAPBPR and MHC class I molecules in the absence of tapasin can be observed. While this is not immediately obvious in (A) with HeLaM cells,

a significant loss of MHC class I expression is observed in the absence of tapasin in this cell line. Therefore, a relative increase in the association

between MHC class I molecules and TAPBPR is observed in the absence of tapasin. KO: knockout; UGT1: UDP-glucose:glycoprotein glucosyltransferase

1; IP: immunoprecipitation; WB: western blot.

DOI: 10.7554/eLife.23049.002
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UGT1 was observed in both IFN-g-treated HeLaM and KBM-7 cells (Figure 1A and B respectively).

The association was not observed in cells that were knocked out (Figure 1A) or depleted

(Figure 1B) of TAPBPR, demonstrating that the co-precipitation of UGT1 was a direct consequence

of TAPBPR presence. Furthermore, the association between TAPBPR and UGT1 was observed in the

absence of tapasin (Figure 1A and B), suggesting that a functional PLC is not required for TAPBPR

to associate with UGT1. As shown in Figure 1A and B, we observed that the association between

TAPBPR and MHC class I was increased in the absence of tapasin, an observation that is consistent

with our previously published findings (Hermann et al., 2013). In contrast to the association

observed between TAPBPR and UGT1, no association was observed between tapasin and UGT1 in

IFN-g-induced KBM-7 cells (Figure 1C). These results confirm that UGT1 is a novel binding partner

for TAPBPR. However, as human TAPBPR lacks an N-linked glycan and UGT1 monitors glycoprotein

folding by recognising hydrophobic patches near a Man9GlcNAc2 moiety (Trombetta et al., 1989;

Caramelo et al., 2003, Caramelo et al., 2004; Ritter et al., 2005), it is highly unlikely that UGT1

functions directly in the quality control of TAPBPR.

Residue C94 in TAPBPR is not involved in an intramolecular disulphide
bond
Since the extracellular domain of TAPBPR contains seven cysteine residues (Teng et al., 2002), we

were intrigued as to the probable existence, and functional relevance, of an unpaired cysteine resi-

due. For tapasin, intramolecular disulphide bonds exist between C7 and C71 in the N-terminal

domain and C295 and C363 in the membrane proximal Ig-like domain, while C95 is known not to be

involved in an intramolecular disulphide bound, but instead forms an intermolecular disulphide bond

with C57 of ERp57 (Herberg et al., 1998; Dick et al., 2002; Dong et al., 2009)(Figure 2A and B).

Our Fold and Functional Assignment System (FFAS) model of TAPBPR (Hermann et al., 2013) now

supported by small-angle X-ray scattering (SAXS) data (Morozov et al., 2016), predicts that C18

and C101 in the N-terminal domain and C300 and C361 in the IgC domain of TAPBPR form similar

intramolecular disulphide bonds as those found in tapasin, and that C191 and C262 form an addi-

tional intramolecular disulphide bond (Figure 2C). This analysis predicts that C94 in TAPBPR is very

unlikely to be involved in an intramolecular disulphide bond (Figure 2C). To verify this, all cysteine

residues were individually changed to alanine, cloned into a lentiviral vector containing a bicistronic

GFP, and then successfully transduced into HeLaM cells (Figure 2—figure supplement 1). Mutation

of C300 or C361 in the IgC domain led to significantly reduced steady-state expression of TAPBPR

(Figure 2D), suggesting that these cysteines are essential for TAPBPR stability. Under non-reducing

conditions, TAPBPRC18A and TAPBPRC101A exhibited lower electrophoretic mobility relative to

TAPBPRWT (Figure 2D), suggesting that a disulphide bond exists between C18 and C101 that is

important for the structural integrity of the N-terminal domain. Mutation of C191 and C262 did not

significantly affect steady-state TAPBPR expression; however, a very subtle change in electrophoretic

mobility of these two mutants was observed under non-reducing conditions compared to TAPBPRWT

(Figure 2D). This may reflect disruption of a disulphide bond within a stable protein domain that

does not lead to sufficient unfolding as to be detected by electrophoresis, as is the case for MHC

class II molecules (Kaufman and Strominger, 1982, 1983). Another possibility is that, under the

conditions used, the sample was reoxidised prior to loading. In contrast, mutation of C94 in TAPBPR

did not affect steady-state protein expression or electrophoretic mobility (Figure 2D). As an addi-

tional check to determine whether TAPBPRC94A was stable and folded, this mutant was cloned into

the pHLsec expression vector and transiently transfected into HEK293F cells. As observed with

TAPBPRWT (Figure 2E) (Hermann et al., 2015), TAPBPRC94A was efficiently expressed and purified

using Ni affinity and size exclusion chromatography (Figure 2F). Using differential scanning fluorime-

try, the melting temperature of purified TAPBPRWT and TAPBPRC94A were the same, demonstrating

that mutation of C94 to alanine did not affect protein stability (Figure 2G).

C94 in TAPBPR is essential for its association with UGT1
To explore the functional importance of the unpaired cysteine at position 94, we reconstituted the

TAPBPR-knockout HeLaM cell line (HeLaMKO) we characterised previously (Hermann et al., 2015)

with either TAPBPRWT or TAPBPRC94A. First, we asked whether the interactions between TAPBPR

and other proteins were altered when C94 was mutated to alanine. Comparison of TAPBPR

Neerincx et al. eLife 2017;6:e23049. DOI: 10.7554/eLife.23049 4 of 25

Research article Cell Biology Immunology

http://dx.doi.org/10.7554/eLife.23049


Structure of Tapasin Model of TAPBPR
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Figure 2. C94 in TAPBPR is not involved in an intramolecular disulphide bond (A) Amino acid sequences of human TAPBPR (NP_060479.3) and tapasin

(AAC20076.1) were aligned using ClustalW. Cysteine residues are marked in yellow boxes, with the cysteine in tapasin that interacts with ERp57 and the

predicted unpaired cysteine in TAPBPR highlighted in red. The positions of the cysteine residues in TAPBPR and tapasin are labelled above and below,

in blue or green, respectively. (B) Structure of tapasin (Protein Data Bank ID: 3F8U), with the cysteines involved in intramolecular disulphide bonds

Figure 2 continued on next page
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immunoprecipitates from HeLaMKOTAPBPRWT and HeLaMKOTAPBPRC94A by MS/MS analysis

revealed that TAPBPR still associated with both the MHC class I heavy chain and b2m in the absence

of C94 (Table 2). However, the most striking difference between the immunoprecipitates was the

absence of UGT1 in the HeLaMKOTAPBPRC94A sample (Table 2). These findings were confirmed by

western blot analysis on TAPBPR immunoprecipitates, where the amount of UGT1 that was co-immu-

noprecipitated was drastically reduced following mutation of C94 (Figure 3A). These results suggest

that the C94 residue in TAPBPR is important for its association with UGT1. Given that all lumenal cys-

teine residues are conserved in TAPBPR from different species (Figure 3—figure supplement 1), it

is possible that the association between TAPBPR and UGT1 is conserved from humans to fish.

TAPBPR does not form a disulphide-linked dimer with UGT1
Having revealed that the association between TAPBPR and UGT1 occurred in a C94-dependent

manner, we tested whether a disulphide bond formed between the two proteins. Under non-reduc-

ing conditions, there was no evidence of a disulphide-linked heterodimer between TAPBPR and

UGT1 (Figure 3B and C). Both UGT1 and TAPBPR isolated from TAPBPR immunoprecipitates from

HeLaMKOTAPBPRWT cells resolved at the predicted size of the monomeric proteins (~175 kDa for

UGT1 and <52 kDa for TAPBPR) (Figure 3B). Furthermore, no difference in electrophoretic mobility

was observed if the cells expressed TAPBPRWT or TAPBPRC94A (Figure 3B). In addition to suggesting

that TAPBPR does not form a disulphide-linked dimer with UGT1, the results also indicate that

TAPBPR does not form a covalent bond with any other as-yet unidentified binding partner of mea-

surable size in these cells. There was also no evidence of a disulphide-linked dimer between endoge-

nously expressed TAPBPR and UGT1 in IFN-g-induced KBM-7 cells (Figure 3C). Based on our FFAS

model of TAPBPR (Hermann et al., 2013), additional residues (I83, E87, L90, H91, and D93)

Figure 2 continued

highlighted in yellow and the free cysteine C95 highlighted in red. (C) FFAS model for TAPBPR (Hermann et al., 2013), with potential disulphide

bridges highlighted in yellow and the predicted free cysteine C94 highlighted in red. (D) Lysates from a HeLaM cell panel expressing cysteine-mutant

TAPBPR molecules were resolved under non-reducing (no 2-ME) or reducing (+2-ME) conditions, then blotted for TAPBPR (using mouse anti-TAPBPR),

MHC class I heavy chain (using HC10), or calnexin as a loading control. The antibody used to detect TAPBPR was raised against the membrane distal

domain (aa 23–122); therefore, it is unlikely that the lack of detection of C300 and C361 is due to a lack of antibody recognition of these IgC domain

mutants. Data shown in (D) are representative of three independent experiments. (E and F) Size exclusion chromatogram of TAPBPRWT and

TAPBPRC94A purified from cell culture supernatant. The protein peaks were analysed by SDS-PAGE followed by Coomassie staining. (G) Differential

scanning fluorimetry of TAPBPRWT and TAPBPRC94A demonstrates equivalent thermal denaturation profiles. WT: wild-type; WB: western

blot; RFU: relative fluorescence units.

DOI: 10.7554/eLife.23049.004

The following figure supplement is available for figure 2:

Figure supplement 1. Transduction efficiency of the cysteine-mutant panel into HeLaM cells

DOI: 10.7554/eLife.23049.005

Table 2. Selected proteins identified in TAPBPR co-immunoprecipitates

TAPBPR was immunuoprecipitated using PeTe4 from IFN-g-treated HeLaM-TAPBPRKO(HeLaMKO) cells reconstituted with either

TAPBPRWT or TAPBPRC94A. Immunoprecipitates were analysed by in gel tryptic digest followed by liquid chromatography-tandem

mass spectrometry and data were processed using Scaffold. Identified proteins are shown with their exclusive unique peptide count,

total percentage coverage, and exclusive unique spectrum count as determined by Scaffold. Pep: exclusive unique peptide count;

Cov: percentage coverage; Count: exclusive unique spectrum count.

Protein Gene name

TAPBPRWT TAPBPRC94A

Pep (Cov) Count Pep (Cov) Count

Tapasin-related protein TAPBPL 32 (43) 54 29 (47) 50

HLA class 1, A-68 HLA-A 50 (64) 88 41 (59) 70

b-2-microglobulin b2M 4 (46) 7 1 (8.4) 1

UDP-glucose:glycoprotein glucosyltransferase 1 UGGT1 19 (11) 25 – –

DOI: 10.7554/eLife.23049.009
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predicted to form an a-helix on the surface of TAPBPR near C94 were also anticipated to contribute

to the UGT1 interface. Mutation of these residues (UBS1: I83K, E87K, or UBS2: E87K, L90K, H91S,

and D93R) decreased the association of UGT1 with TAPBPR (Figure 3—figure supplement 2). This

suggests that the interaction of TAPBPR with UGT1 may involve an extended interface.

TAPBPR acts as a bridge between UGT1 and MHC class I heterodimers
Our results thus far suggest that distinct regions of TAPBPR are responsible for binding its interac-

tion partners, with residues in IgV and IgC domains being critical for binding MHC class I molecules

(Hermann et al., 2013) and C94 in the N-terminal domain being important for associating with

UGT1. Next, we sought to determine whether a tri-molecular complex between TAPBPR, UGT1, and

MHC class I formed in cells by turning our attention to the contribution of MHC class I to the interac-

tions. First, we asked whether an association between TAPBPR and MHC class I was required for

UGT1 to efficiently associate with TAPBPR. In TAPBPR immunoprecipitates from HeLaMKO cells

transduced with TAPBPRTN5, which is unable to bind to MHC class I molecules (Hermann et al.,

2013), the amount of UGT1 bound to TAPBPR was significantly reduced compared to cells express-

ing TAPBPRWT (Figure 3A). Interestingly, upon IFN-g treatment, which boosts MHC class I expres-

sion, TAPBPRTN5 was able to interact with MHC class I molecules, albeit weakly, and the amount of
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Figure 3. TAPBPR binds to UDP-glucose:glycoprotein glucosyltransferase 1 in a C94-dependent manner, but not via a disulphide bond and bridges

UDP-glucose:glycoprotein glucosyltransferase 1 to MHC class I molecules (A–C) TAPBPR or (A) HC10-reactive MHC class I were isolated by

immunoprecipitation from (A and B) HeLaM-TAPBPRKO cells (HeLaMKO) and HeLaMKO cells reconstituted with either TAPBPRWT, TAPBPRC94A, or

TAPBPRTN5 or (C) WT, TAPBPR-depleted (+ shTAPBPR), and tapasin KO KBM-7 cells, with or without IFN-g treatment, as indicated under (A) reducing

or (B and C) non-reducing conditions. (D) HC10 and W6/32-reactive MHC class I molecules were isolated from IFN-g-treated HeLaM and HeLaMKOcells

and resolved under reducing conditions. Western blot analysis was performed for UGT1, TAPBPR (using R021), MHC class I HC (using 3B10.7), or

calnexin as a loading control on immunoprecipitates or lysates as indicated. The lane labelled ‘none’ in (B) indicates PeTe4 antibody only, with no

cellular lysate in immunoprecipitation. All data shown are representative of three independent experiments. KO: knockout; UGT1: UDP-glucose:

glycoprotein glucosyltransferase 1; WT: wild-type; WB: western blot; IP: immunoprecipitation.

DOI: 10.7554/eLife.23049.006

The following figure supplements are available for figure 3:

Figure supplement 1. Cysteine residues are conserved in TAPBPR across different species

DOI: 10.7554/eLife.23049.007

Figure supplement 2. Residues in the helix next to C94 in TAPBPR influence UDP-glucose:glycoprotein glucosyltransferase 1 association

DOI: 10.7554/eLife.23049.008
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UGT1 bound to TAPBPRTN5 similarly increased (Figure 3A). Together, these results suggest that the

association between TAPBPR and MHC class I is important for the maximum association of UGT1

with TAPBPR, supporting the concept that a tri-molecular complex forms between TAPBPR, UGT1,

and MHC class I.

We wondered whether TAPBPR was acting as a molecular platform or intermediate between

UGT1 and MHC class I, which is likely to be peptide free or loaded with low-affinity peptides, given

recent findings (Hermann et al., 2015; Morozov et al., 2016). To test this, we determined whether

TAPBPR was required for UGT1 to associate with MHC class I. In HeLaMKO cells, we observed a

weak association between MHC class I and UGT1 (Figure 3A). However, in HeLaMKOTAPBPRWT

cells, this association was significantly enhanced (Figure 3A). No such enhancement was observed in

cells expressing the mutant forms TAPBPRC94A or TAPBPRTN5, even in the presence of IFN-g

(Figure 3A). This suggests that the association between MHC class I molecules and UGT1 is pro-

moted by TAPBPR. We also tested the requirement for TAPBPR in the association between MHC

class I molecules and UGT1 when endogenous TAPBPR was induced in HeLaM cells by IFN-g . UGT1

was found to associate weakly with both HC10- and W6/32-reactive MHC class I molecules in IFN-g-

treated HeLaM cells (Figure 3D). However, in IFN-g-treated HeLaMKO cells, a significant reduction

was observed between UGT1- and W6/32-reactive MHC class I molecules (Figure 3D). These results

are consistent with TAPBPR acting as a bridge between UGT1 and MHC class I heterodimers and

suggest that UGT1 recognition of MHC class I molecules can occur in a TAPBPR-independent man-

ner (i.e. for the majority of HC10-reactive MHC class I) or in a TAPBPR-dependent manner (i.e with

W6/32-reactive MHC class).

TAPBPRC94A still functions as a peptide editor in vitro
Recently, we and others have shown that TAPBPR is a peptide exchange catalyst that is important

for optimal peptide selection by MHC class I molecules (Hermann et al., 2015; Morozov et al.,

2016). Having identified an interaction between UGT1 and TAPBPR, we next asked how important

this association was for peptide optimisation on MHC class I molecules in a cellular environment.

First, we tested whether TAPBPRC94A was a functionally active MHC class I peptide editor in vitro.

Using fluorescence polarisation, we observed a comparable ability of TAPBPRC94A and TAPBPRWT to

enhance peptide dissociation and association on HLA-A*02:01 in vitro (Figure 4A and B). Further-

more, when we tested the ability of TAPBPRC94A to discriminate between high-affinity (the labelled

peptide FLPSDC*FPSV) and lower-affinity (NLVPMVATV) peptides for binding to HLA-A*02:01 (see

Figure 4—figure supplement 1 for a comparison of the affinity of these two peptides for HLA-A2),

in the presence of TAPBPRC94A, NLVPMVATV became a poorer competitor, as observed with

TAPBPRWT (Figure 4C) (Hermann et al., 2015). These results suggest that the peptide-editing func-

tion of TAPBPR is not altered as a direct consequence of mutation of the C94 residue.

UGT1 bound to TAPBPR helps improve peptide selection on MHC class
I molecules
When we compared the surface expression of MHC class I molecules on HeLaMKO cells reconstituted

with TAPBPRC94A or TAPBPRWT, we found that both molecules downregulated total MHC class I, as

detected by W6/32, to a similar extent (Figure 5A). However, we observed slightly lower surface

expression of HLA-A*68:02 in cells expressing TAPBPRC94A compared to TAPBPRWT (Figure 5A and

B) despite comparable levels of steady-state expression of TAPBPR in cell lines transduced with

TAPBPRWT and TAPBPRC94A (Figure 3A). Next, in order to determine the contribution that the

UGT1 bound to TAPBPR has on peptide selection in a cellular environment, we compared the MHC

class I peptide repertoire on HeLaMKOTAPBPRWT with HeLaMKOTAPBPRC94A cells, both with the

addition of IFN-g to boost MHC class I, TAP, and tapasin expression. In this system, both cell types

still contain functional UGT1 molecules and express TAPBPR molecules that remain capable of pep-

tide exchange, as shown above. Therefore, it allows for the loss of the association between TAPBPR

and UGT1 to be specifically examined. Comparison of the amino acid sequences of peptides eluted

from MHC class I molecules isolated from cells expressing TAPBPRWT and TAPBPRC94A by mass

spectrometry revealed differences in the repertoire of peptides presented. A total of 690 peptides

were shared between these two cell lines, while 500 were unique to HeLaMKOTAPBPRWT cells and

174 were unique to HeLaMKOTAPBPRC94A cells (Figure 5C). Comparison of the anchor residues
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found at the P2 and C-terminal (PW) positions of the peptides unique to TAPBPRWTcells (presumably

peptides selected by the TAPBPR:UGT1 complex) with peptides unique to TAPBPRC94Acells (pre-

sumably peptides restricted by the TAPBPR:UGT1 complex) revealed a decrease in the canonical

anchor residues in the peptides uniquely isolated from the TAPBPRC94A-expressing cells for HLA-

A*68:02 (Figure 5D). For HLA-B*15:03, no decrease in the prevalence of anchor residues was

observed (Figure 5D). These results suggest that the ability of TAPBPR to improve peptide optimi-

sation on MHC class I molecules within a cellular environment can be strongly influenced by its asso-

ciation with UGT1, as observed here for HLA-A*68:02.

Cells expressing TAPBPRC94A have increased surface expression of
peptide-receptive HLA-A68
We also independently verified the presence of suboptimally loaded HLA-A68 on the surface of cells

expressing TAPBPRC94A compared to TAPBPRWT by comparing HLA-A68 levels on cells in the

absence and presence of exogenously added high-affinity peptides for MHC class I molecules. It is

noteworthy that these particular experiments have been performed in independently produced cell

lines in the unmodified HeLaM background (i.e. without TAPBPRKO, in the absence of IFN-g induc-

tion, and with lower transgene expression) (see Figure 5—figure supplement 4 for the association

of TAPBPR with MHC class I and UGT1 in these cell lines). On HeLaM-TAPBPRWT cells, only a slight

increase in HLA-A68 expression was observed upon incubation at 26˚C with exogenous peptide

compared to cells incubated at 37˚C without peptide (Figure 5E and F). In contrast, on HeLaM-

TAPBPRC94A cells, a significant increase in HLA-A68 expression was observed on cells incubated at
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Figure 4. TAPBPRC94A still functions as a peptide editor in vitro (A) Dissociation of the fluorescent peptide FLPSDC*FPSV from HLA-A*02:01 in the

absence or presence of TAPBPRWT or TAPBPRC94A. 500 nM HLA-A02:01 molecules (refolded with UV-labile KILGFVFjV peptide, as described previously

in Hermann et al., 2015) were exposed to 366 nm UV light at 4˚C for 20 min. The UV-exposed protein was then incubated with 17.6 nM FLPSDC*FPSV

(C* denotes 5-carboxytetramethylrhodamine ‘TAMRA’-labelled cysteine) overnight at room temperature. The FLPSDC*FPSV–HLA-A*02:01 complexes

were then split and incubated with 1000-fold molar excess NLVPMVATV with either buffer (no protein) or supplemented with either 0.125 mM

TAPBPRWT or TAPBPRC94A. The data shown are representative of three experiments. (B) Association of the fluorescent peptide FLPSDC*FPSV with HLA-

A*02:01 in the absence or presence of TAPBPRWT or TAPBPRC94A. 75 nM HLA-A02:01fos molecules (refolded with UV-labile KILGFVFjV peptide) were

mixed with 1.5 mM human b2m and exposed to 366-nm UV light at 4˚C for 20 min, and then 5.95 nM FLPSDC*FPSV was added in the absence or

presence of 0.125 mM TAPBPRWT or TAPBPRC94A immediately before fluorescence polarisation measurements were taken. One representative

experiment of three is shown. (C) Competition between peptides for binding with peptide-receptive HLA-A*02:01 molecules in the presence or

absence of TAPBPRWT or TAPBPRC94A as measured by fluorescence polarisation. 75 nM HLA-A02:01fos molecules (refolded with UV-labile KILGFVFjV

peptide) were mixed with 1.5 mM human b2m and exposed to 366-nm UV light at 4˚C for 20 min, and then incubated with 5.95 nM high-affinity peptide

FLPSDC*FPSV and various concentrations of the lower-affinity competing peptide NLVPMVATV (0–100 mM) in the presence or absence of 0.0625 mM

TAPBPRWT or TAPBPRC94A (see Figure 4—figure supplement 1 for a comparison of the affinity of FLPSDCFPSV or NLVPMVATV for HLA-A2).

Fluorescence polarisation measurements were taken after incubation overnight at 25˚C. One representative experiment of three is shown. WT: wild-

type.

DOI: 10.7554/eLife.23049.010

The following figure supplement is available for figure 4:

Figure supplement 1. Comparison of the ability of FLPSDCFPSV or NLVPMVATV to inhibit binding of FLPSDC*FPSV to peptide-receptive HLA-

A*02:01fos molecules

DOI: 10.7554/eLife.23049.011
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Figure 5. UDP-glucose:glycoprotein glucosyltransferase 1 bound to TAPBPR influences peptide selection on MHC class I molecules (A) Cytofluorimetric

analysis of W6/32-, HLA-A68-, and 4E-reactive MHC class I molecules on HeLaMKOcells (black line), HeLaMKOcells reconstituted with TAPBPRWT (blue

line) or TAPBPRC94Acells (green line). Staining of HeLaMKO cells with an isotype control is included as a negative control (black dashed histogram). (B)

Bar graphs show the MFI for cell surface HLA-A68 and for HLA-B molecules using 4E antibody from three independent experiments, as performed in

(A). Error bars represent SD. ****p<0.0001, **p<0.005, ns=not significant, based on unpaired t tests. The MFI for cell surface HLA-A68 on IFN-g-treated

equivalents can be seen in Figure 5—figure supplement 1. (C and D) Peptide–MHC class I complexes were isolated by affinity chromatography using

W6/32 from IFN-g-treated HeLaMKO, HeLaMKOTAPBPRWT, and HeLaMKOTAPBPRC94A cells. Eluted peptides were analysed using liquid chromatography

tandem mass spectrometry (for full list see Figure 5—source data 1). (C) Bar graph displaying the number of unique and shared peptides found in

IFN-g treated HeLaMKOTAPBPRWT and HeLaMKOTAPBPRC94A cells. (D) Graphs showing the prevalence of classic peptide anchors on HLA-A*68:02 (T

and V at P2, V and L at PW) and HLA-B*15:03 (Q and K at P2, Y and F at PW) for peptides unique to IFN-g treated TAPBPRWT-expressing cells (i.e.

peptides presumably permitted release by UGT1 in the context of TAPBPR) and peptides unique to IFN-g treated TAPBPRC94A-expressing cells (i.e.

peptide presumably restricted by TAPBPR:UGT1) after removal of peptides shared with IFN-g induced HeLaMKO cells. The data in (C and D) were

generated from tandem mass spectrometry analysis performed three times on one immunoprecipitate. WebLogo depictions of the peptide sequences

of 9-mers isolated from TAPBPRWT- and TAPBPRC94A-expressing cells can be found in Figure 5—figure supplement 2. Further statistical analysis on

the isolated peptides can be found in Figure 5—figure supplement 3. (E) Cytofluorimetric analysis of peptide-loaded HLA-A68 on HeLaM-TAPBPRWT,

HeLaM-TAPBPRC94A, and shUGT1-depleted HeLaM-TAPBPRWTcells after incubation at 37˚C (dashed line), 26˚C (solid line), or 26˚C supplemented with a

pool of high-affinity peptides for HLA-A and -B (an influenza virus, Epstein-Barr virus, and cytomegalovirus [FEC] peptide pool. Individual peptides were

used at a final concentration of 3 mg/ml) (filled histogram) for 90 min in media post-trypsinisation. HLA-A68 staining on non-transduced HeLaM cells

incubated at 37˚C for 90 min post-trypsinisation was included as a positive control (grey dashed line). y-axes = events normalised to mode. See

Figure 5—figure supplement 4 for associations between TAPBPR, MHC class I, and UGT1 in these independently produced cell lines. (F) Scatter dot

plot show the fold change in MFI for cell surface HLA-A68 on cells at 26˚C plus FEC peptide pool compared to incubation at 37˚C alone on three

Figure 5 continued on next page
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26˚C with exogenous peptide compared to 37˚C without peptide (Figure 5E and F). To further con-

firm that the increased expression of peptide-receptive HLA-A68 at the cell surface was a direct con-

sequence of the loss of the association between TAPBPR and UGT1, as opposed to any other

consequential effect of mutation of the C94 residue of TAPBPR, we depleted UGT1 in HeLaM-

TAPBPRWT cells. In shUGT1-depleted cells, a significant, although not complete, reduction in the

association between TAPBPRWT and UGT1 was observed, and the strong association between

TAPBPR and MHC class I was maintained (Figure 5—figure supplement 4). However, the surface

phenotype of HLA-A68 molecules now resembled that of HeLaM-TAPBPRC94A cells rather than that

of HeLaM-TAPBPRWT cells, with increased levels of peptide-receptive HLA-A68 that were stabilised

upon incubation at 26˚C with high-affinity peptide (Figure 5E and F). The expression of peptide-

receptive HLA-A68 was higher on HeLaM-TAPBPRWT/shUGT1 cells than HeLaM-TAPBPRC94A cells, per-

haps due to additional TAPBPR-independent effects of UGT1 depletion (Figure 5F). Together, these

results suggest that the loss of the association between TAPBPR and UGT1 reduces the quality con-

trol exerted on HLA-A68.

TAPBPR facilitates the reglucosylation of the glycan on MHC class
I molecules
As UGT1 has been shown to promote the reglucosylation of the N-glycan on MHC class I

molecules (Wearsch et al., 2011; Zhang et al., 2011), we next attempted to determine whether the

TAPBPR:UGT1 complex enhanced the amount of monoglucosylated oligosaccharide on MHC class I

molecules in a cellular environment. The approach we chose was a lectin pulldown using exogenous

human calreticulin (hCRT), a chaperone that specifically recognises Glc1Man9GlcNAc2 glycans

(Spiro et al., 1996), followed by blotting for the MHC class I heavy chain. In IFN-g-treated HeLaMKO-

TAPBPRWT cells, a substantial increase in the amount of MHC class I molecules recognised by GST-

hCRTWT was observed compared to IFN-g-treated HeLaMKO cells (Figure 6A). In IFN-g-treated

HeLaMKOTAPBPRC94A cells, the amount of MHC class I molecules detected by GST-hCRTWT was not

increased and was comparable to that of HeLaMKO cells (Figure 6A). To ensure glycan specificity in

these associations, pulldowns with GST-hCRTWT were compared with GST-hCRTY92A, a mutation

that disrupts glycan binding (Thomson and Williams, 2005; Del Cid et al., 2010; Wearsch et al.,

2011). No association of GST-hCRTY92A with MHC class I was observed in any of the cell lysates,

confirming the glycan specificity of the interactions observed with GST-hCRTWT (Figure 6A). These

results suggest that the UGT1 bound to TAPBPRWT is capable of reglucosylating the N-linked glycan

on MHC class I molecules, regenerating the Glc1Man9GlcNAc2 moiety, which can consequently be

recognised by calreticulin.

Upon sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), the MHC class I

heavy chains (HC) in HeLaM cells migrate at different molecular sizes; the upper HC band contains

the HLA-B HC (HLA-B15), whereas the lower HC band consists of the HLA-A HC (HLA-A68)

Figure 5 continued

independent replicates as performed in (E). Error bars represent SD. *p<0.05, based on unpaired t tests. MFI: median fluorescence intensity; KO:

knockout; WT: wild-type; UGT1: UDP-glucose:glycoprotein glucosyltransferase 1.

DOI: 10.7554/eLife.23049.012

The following source data and figure supplements are available for figure 5:

Source data 1. MHC class I peptide elution from IFN-g treated HeLaMKOTAPBPRWT and HeLaMKOTAPBPRC94A

DOI: 10.7554/eLife.23049.013

Figure supplement 1. Surface expression of HLA-A68 upon IFN-g treatment

DOI: 10.7554/eLife.23049.014

Figure supplement 2. WebLogo depictions of the peptide sequences of 9-mers isolated from TAPBPRWT- and TAPBPRC94A-expressing cells WT: wild-

type.

DOI: 10.7554/eLife.23049.015

Figure supplement 3. Statistical analysis of peptides isolated from cells expressing TAPBPRWT and TAPBPRC94A

DOI: 10.7554/eLife.23049.016

Figure supplement 4. Associations between TAPBPR, MHC class I, and UDP-glucose:glycoprotein glucosyltransferase 1 in the HeLaM cell lines used to

test peptide receptivity of HLA-A68

DOI: 10.7554/eLife.23049.017
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Figure 6. The TAPBPR:UDP-glucose:glycoprotein glucosyltransferase 1 complex promotes reglucosylation of MHC

class I molecules, enhancing their association with the peptide-loading complex (A) Lysates were prepared from

IFN-g-treated HeLaM, HeLaMKO, HeLaMKOTAPBPRWT, and HeLaMKOTAPBPRC94A cells in 1% digitonin. After

preclear, pulldowns were performed with GST/6xHis-tagged exogenous WT human calreticulin (GST-CRTWT),

which specifically recognises Glc1Man9GlcNAc2 glycans, or with a CRT variant in which a tyrosine at position 92

had been mutated to alanine (GST-CRTY92A), which disrupts glycan recognition. Western blot analysis was

performed for the 6xHis tag, MHC class I HC, tapasin, and TAPBPR on pulldowns and lysates as indicated (see

Figure 6—figure supplement 1 for densitometry analysis on these blots and the Endo H-sensitivity status on the

GST-CRT-reactive MHC class I molecules). (B) TAP, tapasin, or TAPBPR were isolated by immunoprecipitation from

IFN-g-treated HeLaM, HeLaMKO, HeLaMKOTAPBPRWT, and HeLaMKOTAPBPRC94A cells with or without depletion of

UGT1 using shRNA. Western blot analysis was performed for TAP, tapasin, TAPBPR, MHC class I HC, UGT1, or

calnexin as a loading control on immunoprecipitates or lysates as indicated, resolved under reducing conditions.

(C and D) Quantitative analysis of the MHC class I molecules bound to tapasin and TAPBPR in IFN-g-treated

HeLaMKO, HeLaMKOTAPBPRWT, and HeLaMKOTAPBPRC94A cells from four independent Cy5 experiments using the

Amersham WB system (see Figure 6—figure supplement 2 for gel images and further analysis). Scatter dot plots

show (C) the ratio of HLA-A68 to HLA-B15 associated with tapasin and (B) the total amount of MHC class I

HC bound to TAPBPR as a ratio of the PeTe4 antibody light chain used in the immunoprecitation. *p<0.05, n.s.

Figure 6 continued on next page
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(Boyle et al., 2013). Intriguingly, we observed a difference in the regeneration of Glc1Man9GlcNAc2
on the HLA-A and -B molecules by the TAPBPR:UGT1 complex, finding that glucosylation of the

N-linked glycan was preferentially increased on the lower MHC class I HC band (i.e. HLA-A*68:02)

over the upper MHC class I HC band (i.e. HLA-B*15:03) in cells expressing TAPBPRWT (Figure 6A).

This is in keeping with previous findings that TAPBPR exhibits prolonged association and a higher

affinity for HLA-A molecules (Boyle et al., 2013; Hermann et al., 2015; Morozov et al., 2016). To

explore the role of endogenously expressed TAPBPR on the generation of Glc1Man9GlcNAc2 on

MHC class I molecules, we performed GST-hCRT pulldowns on IFN-g-treated HeLaM and HeLaMKO

cells. In IFN-g-induced HeLaM cells, the HLA-A68 HC band made up the majority of the MHC class I

molecules recognised by calreticulin (Figure 6A). In contrast, in IFN-g-induced HeLaMKO cells, the

amount of HLA-A68 recognised by calreticulin was reduced, and proportionally more HLA-B15 had

the Glc1Man9GlcNAc2 moiety attached (Figure 6A). These findings confirm the role of endogenous

TAPBPR in modifying the glycan on MHC class I molecules.

The TAPBPR:UGT1 complex promotes the association of MHC class I
with the PLC
As calreticulin escorts MHC class I molecules to the PLC (Sadasivan et al., 1996; Del Cid et al.,

2010; Wearsch et al., 2011), next we determined whether the TAPBPR:UGT1 complex enhanced

the association of MHC class I molecules with tapasin and TAP. In HeLaMKO cells reconstituted with

TAPBPRWT, we observed an increase in the amount of MHC class I molecules bound to both tapasin

and TAP as compared to HeLaMKOcells or cells reconstituted with TAPBPRC94A (Figure 6B). In accor-

dance with the results observed above with the calreticulin pulldowns, we specifically observed

enhanced PLC association with the lower MHC class I heavy chain band (i.e. HLA-A*68:02) in HeLaM-
KOTAPBPRWT cells (Figure 6B). The increased association of HLA-A68 with tapasin in the presence

of TAPBPRWT compared to TAPBPRC94A was independently verified via quantitative analysis

(Figure 6C), which also confirmed that the amounts of MHC class I molecules bound to TAPBPRWT

and TAPBPRC94A were similar (Figure 6D). To ensure that the enhanced association of MHC class

I with the PLC was specifically due to the association of TAPBPRWT with UGT1, we also determined

the association of MHC class I molecules with TAP and tapasin in cells depleted of UGT1 using

shRNA. In HeLaMKOTAPBPRWT cells depleted of UGT1, the amount of HLA-A68 bound to tapasin

and TAP was significantly reduced compared to its UGT1-competent counterpart HeLaMKO-

TAPBPRWT, and was now comparable to HeLaMKOTAPBPRC94A without UGT1 depletion (Figure 6B).

These results suggest that in addition to functioning as an MHC class I peptide editor in its own

right, TAPBPR can also influence peptide selection on MHC class I molecules by promoting their

association with the PLC, an effect that is dependent on its interaction with UGT1.

Discussion
Recently, we and others have shown that, like tapasin, TAPBPR can function as a peptide exchange

catalyst on MHC class I molecules in vitro (Hermann et al., 2015; Morozov et al., 2016). However,

within a cellular environment, the two related MHC class I chaperones do not appear to be func-

tional equivalents in regard to their influence on peptide selection. While tapasin influences both the

loading and optimisation of cargo on MHC class I molecules, TAPBPR appears to have a more sub-

tle, fine-tuning effect on the final peptide repertoire displayed, at least in the limited number of cell

lines tested to date. We wondered whether any other co-factors associate with TAPBPR, which

Figure 6 continued

=not significant based on Mann–Whitney non-parametric, two-tailed tests. KO: knockout; UGT1: UDP-glucose:

glycoprotein glucosyltransferase 1; WT: wild-type; IP: immunoprecipitation; WB: western blot.

DOI: 10.7554/eLife.23049.018

The following figure supplements are available for figure 6:

Figure supplement 1. MHC class I molecules associated with GST-CRT

DOI: 10.7554/eLife.23049.019

Figure supplement 2. – Densitometry on the MHC class I molecules bound to tapasin and TAPBPR

DOI: 10.7554/eLife.23049.020
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would explain its refining effect on peptide selection in a cellular environment. Here, we identify a

novel association between TAPBPR and UGT1, an ER/cis-Golgi-resident enzyme that recognises

hydrophobic patches near Man9GlcNAc2 moieties in incompletely folded or unassembled glycopro-

teins and transfers a glucose residue from UDP-glucose in order to regenerate Glc1Man9GlcNAc2,

restoring recognition by the calnexin/calreticulin pathway (Trombetta et al., 1989;

Hammond et al., 1994; Ware et al., 1995; Arnold et al., 2000; Tessier et al., 2000; Zuber et al.,

2001; Caramelo et al., 2003, Caramelo et al., 2004; Ritter et al., 2005; D’Alessio et al., 2010).

Human TAPBPR has no N-linked glycan and therefore cannot be reglucosylated by UGT1. Thus, it is

highly unlikely that UGT1 functions directly on human TAPBPR. In some species, TAPBPR may con-

tain an N-linked glycan due to the presence of an NxS or NxT motif. However, these are generally

found in the IgV domain and therefore might not affect the association with or be effected by UGT1.

In 2011, Cresswell and colleagues first identified a role for UGT1 in the MHC class I pathway

(Wearsch et al., 2011; Zhang et al., 2011). UGT1 was shown to reglucosylate MHC class I molecules

associated with suboptimal peptide, thereby permitting re-engagement with the PLC

(Wearsch et al., 2011). Furthermore, in UGT1-deficient mouse cells, maturation of MHC class I was

delayed, surface expression of MHC class I molecules was reduced, and the peptide repertoire pre-

sented on MHC class I was impaired (Zhang et al., 2011). These studies demonstrate that UGT1

provides a unique level of quality control in the MHC class I presentation pathway, acting as a sensor

for the quality of the MHC class I-associated peptide cargo (Wearsch et al., 2011; Zhang et al.,

2011). Our findings here suggest that as well as UGT1 recognising a population of MHC class I mol-

ecules in a TAPBPR-independent manner, it can also recognise MHC class I molecules bound to

TAPBPR. In this scenario, TAPBPR most likely acts as a platform or bridge between UGT1 and MHC

class I. As the MHC class I molecules bound to TAPBPR are in a peptide-receptive state

(Hermann et al., 2015; Morozov et al., 2016), we propose that TAPBPR permits UGT1 to regluco-

sylate empty or suboptimally loaded MHC class I molecules, thus providing an important quality con-

trol checkpoint in the antigen presentation pathway. It is possible that UGT1 senses different

conformational perturbations in MHC class I molecules when functioning in a TAPBPR-dependent

versus a TAPBPR-independent manner.

Precisely how C94 in TAPBPR permits its binding to UGT1 remains unclear at present. Our evi-

dence does not support a disulphide-mediated interaction between the two proteins. However, per-

haps within the environment of the ER and cis-Golgi, a covalent association does indeed exist, but is

susceptible in the conditions used to isolate this complex, as was initially observed for the disul-

phide-mediated bond between tapasin and ERp57, which was found to be extremely labile in the

absence of pre-treatment with N-ethymaleimide (NEM) (Hughes and Cresswell, 1998; Dick et al.,

2002). Alternatively, the association between TAPBPR and UGT1 may be dependent on a post-

translational modification of C94, such as S-nitrosylation (Hess et al., 2005). We have attempted to

determine whether C94 is post-translationally modified via mass spectrometry, but we were unable

to identify peptides covering C94 when digested with trypsin or chymotrypsin. Interestingly, we

found additional residues predicted to form an a-helix on the surface of TAPBPR also influenced its

association with UGT1 (Figure 3—figure supplement 2), suggesting that C94 may be part of an

extended interface. In this capacity, C94 may help stabilise the a-helix as a UGT1 binding site.

We found that the TAPBPR:UGT1 complex promotes the glucosylation of the glycan on MHC

class I, regenerating the Glc1Man9GlcNAc2 moiety in order to restore recognition by calreticulin,

which subsequently results in enhanced association of the MHC class I molecules with the PLC.

Therefore, in addition to functioning as a peptide editor in its own right (Hermann et al., 2015;

Morozov et al., 2016), it is now apparent that TAPBPR can also influence peptide selection by pro-

moting peptide-receptive MHC class I molecules to associate with the PLC. Our discoveries here

shed light on our previously unexplained observations, namely that, in HeLa cells, fewer HLA-A68

molecules were associated with TAP in TAPBPR-depleted cells compared to their TAPBPR-compe-

tent counterparts (Boyle et al., 2013). In this previous work, we suggested that the HLA-A68 mole-

cules dissociated faster from the PLC in the absence of TAPBPR, but it now appears that this

phenotype is more likely to be explained by a lack of recycling of the HLA-A68 molecules back to

the PLC in the absence of TAPBPR due to the lack of reglucosylation of the MHC class I glycan. Our

findings here also help to further explain why TAPBPR expression slows down the ER export of MHC

class I molecules and enhances their association with tapasin; findings that earlier led us to speculate
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that TAPBPR was a second quality control checkpoint in the MHC class I antigen presentation path-

way (Boyle et al., 2013; Hermann et al., 2013).

Although UGT1 is not required for TAPBPR to function as an MHC class I peptide editor, the

TAPBPR:UGT1 complex is clearly important for MHC class I peptide optimisation. This is evidenced

by the decrease observed in canonical anchor residue prevalence for peptides associated with HLA-

A68 in cells expressing TAPBPRC94A, a mutant that retains peptide-editing function, but cannot bind

UGT1. These results demonstrate that TAPBPR and UGT1 work together to provide a novel quality

control checkpoint in the antigen presentation pathway that influences the final peptide repertoire

displayed. We propose the following working model (Figure 7): in the PLC, MHC class I molecules

are loaded with peptides of relatively optimal affinity via tapasin (step 1). However, some MHC class

I molecules can also self-assemble with peptides in a tapasin-independent manner, resulting in com-

plexes associated with cargoes of variable quality (step 2). Following glucosidase II-mediated

removal of the terminal glucose on the glycan (step 3), some MHC class I molecules can be recog-

nised and reglucosylated directly by UGT1 in a TAPBPR-independent manner (step 4). However, in

order to proceed to the cell surface, MHC class I molecules need to pass through the TAPBPR-medi-

ated quality control checkpoint (step 5). MHC class I molecules loaded with high-affinity peptides

transit through quickly. However, MHC class I molecules associated with cargoes of low or medium

affinity are captured by TAPBPR for a subsequent editing step that favours peptide dissociation. The

resultant MHC class I molecule that is devoid of peptide is now reglucosylated by UGT1 associated

with TAPBPR (step 6); a modification that sends the MHC class I molecule back into the calnexin/cal-

reticulin pathway, and consequently back to the PLC (step 1) for another attempt at peptide loading.

While the reason for TAPBPR preferentially mediating reglucosylation of HLA-A68 over HLA-B15 in

HeLaM cells is currently unexplained, it is tempting to speculate that TAPBPR may favour binding to

molecules that are initially associated with peptide in a tapasin-independent manner, as has been

observed for many HLA-A allomorphs (Greenwood et al., 1994), and may be due to the lower affin-

ities of their cargoes.

To conclude, a potential analogous function for unpaired cysteine residues interacting with crucial

association partners has been investigated in TAPBPR and tapasin. For tapasin, the free cysteine res-

idue at position C95 is essential for its association with ERp57 in mammals (Dick et al., 2002;

Dong et al., 2009). TapasinC95A molecules exhibit an impaired ability to load and edit peptides,

resulting in poorly loaded MHC class I molecules that escape to the cell surface, where they are

unstable (Dick et al., 2002). For TAPBPR, its free cysteine residue at position C94 is important for its

association with UGT1. TAPBPRC94A molecules exhibit an impaired ability to reglucosylate MHC class

I molecules and exhibit a reduction in the ability to optimise peptide selection due to a failure to

recycle MHC class I molecules back to the PLC. Thus, the unpaired cysteine residues in both tapasin

and TAPBPR in mammals have evolved to perform roles that prevent the release of MHC class I mol-

ecules loaded with unsuitable peptides. As a result of functioning as peptide exchange catalysts

within distinct cellular environments and their unique association partners, it is becoming evident

that tapasin and TAPBPR have evolved to uniquely shape the peptides bound to MHC class I mole-

cules in distinct yet intertwined ways that ultimately determine the final peptide repertoire pre-

sented on the surface of cells.

Materials and methods

Constructs
The production of full-length TAPBPRWT and TAPBPRTN5 in the lentiviral vector pHRSIN-C56W-

UbEM, which produces TAPBPR under the control of the spleen focus-forming virus (SFFV) promoter

and the GFP derivative emerald under the control of a ubiquitin promoter, has been previously

described (Boyle et al., 2013; Hermann et al., 2013). To mutate individual cysteine residues in

TAPBPR, site-directed mutagenesis was performed on untagged TAPBPR in pCR-Blunt II-TOPO

(Thermo Fisher Scientific, UK) using Quik-Change site-directed mutagenesis (Stratagene, La Jolla,

California) together with the primers specified in Table 3. All TAPBPR variants were subsequently

cloned into pHRSIN-C56W-UbEM. A variant of pHRSIN-C56W-UbEM containing a generic N-termi-

nal leader sequence, two protein A cassettes (ZZ), a tobacco etch virus (TEV) protease cleavage site,

and a myc tag followed by an insertion site was produced. cDNA encoding amino acids 22–468 of
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human TAPBPR (i.e. TAPBPR minus its own signal sequence) was cloned into this vector downstream

of a GAGA linker sequence. This produces a protein product termed ZZ-TAPBPR, in which the

mature TAPBPR protein is tagged at the N-terminus with two protein A tags (Boyle et al., 2013).
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Figure 7. Working model of the TAPBPR:UDP-glucose:glycoprotein glucosyltransferase 1 complex in the MHC class I presentation pathway. In addition

to (1) the loading and editing of peptides (shown in blue) via tapasin in the peptide-rich milieu of the peptide-loading complex (PLC), an environment

that favours MHC class I molecules associating with a broad range of optimal peptides, (2) some MHC class I molecules can also self-assemble with

peptides with a wide range of affinities (shown in red) in the endoplasmic reticulum (ER) in a tapasin-independent manner. (3) Regardless of the folding

state or affinity/source of the cargo occupying the peptide binding groove (reflected here as a quartered circle to signify a broad range of peptide

affinity from various sources of loading), GlsII will mediate removal of the terminal glucose on the glycan in the absence of protection by calnexin/

calreticulin. (4) Some conformations of MHC class I molecules will be recognised and reglucosylated by UGT1 in a TAPBPR-independent manner. (5) In

order to be exported to the cell surface, MHC class I molecules need to pass through the TAPBPR-mediated quality control checkpoint. If a high-affinity

peptide is bound to the MHC class I molecule, TAPBPR either does not bind to the MHC class I molecule or associates transiently and is quickly

released, permitting the MHC class I molecule to proceed through the secretory pathway. If the MHC class I molecule is associated with a cargo of low

or medium affinity, TAPBPR-mediated peptide editing occurs. In contrast to tapasin-mediated peptide editing in the PLC, this second TAPBPR-

mediated editing step favours peptide dissociation either as a consequence of occurring in more peptide-restrictive areas of the ER, cis-Golgi, and

medial Golgi or due to a distinct functionality of TAPBPR. (6) MHC class I molecules devoid of peptide are now recognised and reglucosylated by UGT1

associated with TAPBPR. (7) This modification on the N-linked glycan sends the MHC class I molecule back into the calnexin/calreticulin pathway, and

consequently back to the PLC (1) for another attempt at peptide loading. In this scenario, TAPBPR may exhibit preferential binding to MHC class I

molecules that associate with peptides in a tapasin-independent manner, as has been observed for many HLA-A allomorphs. GlsII: glucosidase II;

UGT1: UDP-glucose:glycoprotein glucosyltransferase 1.
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The luminal domains of TAPBPRC94A were also cloned into pHLsec to produce a secreted form of

this TAPBPR variant containing a C-terminal His tag in a mammalian expression system

(Aricescu et al., 2006). For shRNA-mediated depletion of TAPBPR, the V2LHS_135531 plasmid (GE

Healthcare, UK) was used (mature antisense sequence: ATTCCTACCATTAAACTGG). For shRNA-

mediated knockdown of human UGT1 expression, hairpin oligonucleotides shUGT1-1-for (5’- GA

TCCGCAGTAAAGGCCGACTCAAATTCAAGAGATTTGAGTCGGCCTTTACTGTTTTTTG-3’) and

shUGT1-1-rev (5’-AATTCAAAAAACAGTAAAGGCCGACTCAAATCTCTTGAATTTGAGTCGGCC

TTTACTGCG-3’) were annealed and cloned into the pHR-SIREN/Puro lentiviral vector (a kind gift

from Professor Greg Towers, University College London, UK) cut with BamHI and EcoRI, and

sequence verified. For knockout of TAPBPR and tapasin, sgRNAs were chosen using the CRISPR

design tool (http://crispr.mit.edu), cloned into pSpCas9(BB)�2A-puro and transfected as previously

described (Ran et al., 2013; Hermann et al., 2015). sgRNA-Crispr7 (GCGAAGGACGG

TGCGCACCG) and sgRNA-TAPA8 (GGTGCACTGCTGTTGCGCCA) were used to bind to exon 2 of

TAPBPR and tapasin, respectively.

Cell culture
HeLaM cells, a variant HeLa cell line that is more responsive to IFN (Tiwari et al., 1987) (a kind gift

from Paul Lehner, University of Cambridge, UK), their modified variants, and HEK-293T (from Paul

Lehner, University of Cambridge, UK) were maintained in Dulbecco’s Modified Eagle’s

medium (DMEM; Sigma-Aldrich, UK), while the near-haploid human chronic myeloid leukaemia cell

line KBM-7 (Kotecki et al., 1999) and its variants (Duncan et al., 2012) (kind gifts from Lidia Duncan

and Paul Lehner, University of Cambridge, UK) were cultured in Iscove’s Modified Dulbecco’s

Medium (IMDM) media (Gibco, Thermo Fisher Scientific, UK), both supplemented with 10% fetal calf

serum (Gibco, Thermo Fisher Scientific), 100 U/ml penicillin and 100 mg/ml streptomycin (Gibco,

Thermo Fisher Scientific) at 37˚C with 5% CO2. All cells were confirmed to be mycoplasma negative

(MycoAlert, Lonza, UK). Although cell line authentication using short tandem repeat profiling was

not undertaken for this work, the authenticity of HeLaM and KBM-7 cells was verified by the continu-

ous confirmation that these cell lines had the expected HLA class I tissue type monitored by both

staining with specific HLA antibodies and by mass spectrometry. To induce/up-regulate TAPBPR

expression and other components of the MHC class I antigen processing and presentation pathway,

HeLaM and KBM-7 cells were treated with 100 U/ml IFN-g (Peprotech, UK) where indicated for 48–

72 h.

Table 3. Primer sequences used for the mutation of individual cysteine residues to alanine in TAPBPR

Name Primers used for site-directed mutagenesis Predicted TAPBPR domain

C18A 5’-CAGTGGACGTGGTCCTAGACGCTTTCCTGGTGAAGGACGGTG-3’
5’-CACCGTCCTTCACCAGGAAAGCGTCTAGGACCACGTCCACGT-3’

Unique N-terminal

C94A 5’-GAGGCCTTGCTCCATGCTGACGCCAGTGGGAAGGAGGTGACCTG-3’
5’-CAGGTCACCTCCTTCCCACTGGCGTCAGCATGGAGCAAGGCCTC-3’

C101A 5’-CTGCAGTGGGAAGGAGGTGACCGCTGAGATCTCCCGCTACTTTCTC-3’
5’-GAGAAAGATGCGGGAGATCTCAGCGGTCACCTCCTTCCCACTGCAG-3’

C191A 5’-GGTCCTCAGCCTCCTTGGACGCTGGCTTCTCCATGGCACCGG-3’
5’-CCGGTGCCATGGAGAAGCCAGCGTCCAAGGAGGCTGAGGACC-3’

IgV domain

C262A 5’-CAGGACGAGGGGACCTACATTGCCCAGATCACCACCTCTCTGTAC-3’
5’-GTACAGAGAGGTGGTGATCTGGGCAATGTAGGTCCCCTCGTCCTG-3’

C300A 5’-GCTCTGCTGCCCACCCTCATCGCCGACATTGCTGGCTATTACC-3’
5’-GGTAATAGCCAGCAATGTCGGCGATGAGGGTGGGCAGCAGAGC-3’

IgC domain

C361A 5’-CTGCAGGTGCAACTTACACCGCCCAGGTCACACACATCTCTC-3’
5’-GAGAGATGTGTGTGACCTGGGCGGTGTAAGTGGCACCTGCAG-3’

C427A 5’-GAACGCTGGGAGACCACTTCCGCTGCTGACACACAGAGCTCCC-3’
5’-GGGAGCTCTGTGTGTCAGCAGCGGAAGTGGTCTCCCAGCGTTC-3’

Cytoplasmic tail

DOI: 10.7554/eLife.23049.022
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Lentiviral transductions and transfections
Lentivirus was produced by transfecting HEK-293T cells with lentiviral vectors along with the packag-

ing vector pCMVDR8.91 and the envelope vector pMD.G using TransIT-293 (Mirus, Madison, WI).

Viral supernatant was collected at 48 and 72 h and used to transduce HeLaM cells. shTAPBPR- or

shUGT1-depleted cells were selected, and subsequently maintained, in medium containing puromy-

cin. A HeLaM TAPBPR-knockout cell line (HeLaMKO) was generated using the CRISPR-Cas9 system

as previously described (Hermann et al., 2015). TAPBPRWT, TAPBPRC94A, and TAPBPRTN5 were

reconstituted in the HeLaMKO cells via transduction.

Antibodies
The following TAPBPR-specific antibodies were used: PeTe4, a mouse monoclonal antibody (mAb)

specific for the native conformation of TAPBPR raised against amino acids 22–406 of human TAPBPR

(Boyle et al., 2013) that does not cross-react with tapasin (Hermann et al., 2013); R021, a rabbit

polyclonal raised against the cytoplasmic tail of human TAPBPR (Hermann et al., 2013); and

ab57411, a mouse mAb raised against amino acids 23–122 of TAPBPR that is reactive to denatured

TAPBPR (Abcam, UK).

The following MHC class I-specific antibodies were used: W6/32, a pan-MHC class I mAb that rec-

ognises a conformation-specific epitope on the MHC class I a2 domain in a manner that is depen-

dent on b2m and peptide (Barnstable et al., 1978); HC10, a MHC class I-specific mAb that

recognises HLA-A, -B, and -C molecules containing a PxxWDR motif at amino acids 57–62 in the a1

domain (Stam et al., 1986; Perosa et al., 2003); 3B10.7, a rat mAb with broad specificity for HLA I

independent of conformation (Lutz and Cresswell, 1987); anti-HLA-A68-reactive mAb, specific for

HLA-A2 and -A68 heavy chain/b2m heterodimers (One Lambda, Thermo Fisher Scientific, Canoga

Park, CA); and 4E, a mouse mAb reactive against HLA-B as well as a limited number of HLA-A mole-

cules (A29, Aw30, Aw31, and Aw32) (Yang et al., 1984).

Other antibodies used were: Pasta-1, the tapasin-specific mAb (Dick et al., 2002); R.gp48N, a

rabbit polyclonal antibody to tapasin (Sadasivan et al., 1996); rabbit anti-calnexin (Enzo Life Scien-

ces, UK); rabbit mAb to UGT1 (ab124879, Abcam); and Ring4C, a rabbit anti-peptide antibody

raised to the C-terminal region of TAP1 (Ortmann et al., 1994; Meyer et al., 1994). Isotype control

antibodies (Dako, UK), horseradish peroxidase (HRP)-conjugated species-specific secondaries (Dako

and Rockland Immunochemicals Inc., Limerick, PA), and species-specific Alexa-Fluor secondary anti-

bodies (Invitrogen Molecular Probes Thermo Fisher Scientific) were also used.

Immunoprecipitation, gel electrophoresis, and western blotting
Cells were harvested then washed in phosphate-buffered saline (PBS) supplemented with 10 mM

NEM (Sigma-Aldrich, UK). For TAPBPR and MHC class I immunoprecipitation experiments, cells

were lysed in 1% digitonin (Merck Millipore, Germany), Tris-buffered saline (TBS) (20 mM Tris-HCl,

150 mM NaCl, 5 mM MgCl2, 1 mM EDTA) supplemented with 10 mM NEM, 1 mM phenylmethylsul-

fonyl fluoride (PMSF) (Sigma-Aldrich), and protease inhibitor cocktail (Roche, UK) for 30 min at 4˚C.
For pulldown experiments using recombinant GST-tagged hCRTWT or hCRTY92A (both kind gifts

from Najla Arshad and Peter Creswell, Yale University School of Medicine, New Haven, CT)

(Wearsch et al., 2011) or tapasin and TAP immunoprecipitations, cells were lysed in 1% digitonin

TBS in which 5 mM MgCl2 and EDTA were omitted and replaced with 2.5 mM CaCl2. Nuclei and cell

debris were pelleted by centrifugation at 13,000 � g for 10 min and supernatants were pre-cleared

on IgG-sepharose (GE Healthcare) and protein A sepharose (Generon, UK) for 1 h at 4˚C with rota-

tion. Immunoprecipitation was performed with the indicated antibody and protein A sepharose or

recombinant calreticulin with glutathione sepharose (GE Healthcare) for 2–3 h at 4˚C with rotation.

Following immunoprecipitation, beads were washed thoroughly in 0.1% detergent-TBS to remove

unbound protein. Samples for separation by gel electrophoresis were heated at 94˚C for 10 min in

sample buffer (125 mM Tris-HCl pH 6.8, 4% SDS, 20% glycerol, 0.04% bromophenol blue). For

reducing SDS-PAGE, sample buffer was supplemented with 100 mM b-mercaptoethanol. For sam-

ples to be analysed by western blotting, proteins were transferred onto an Immobilon transfer mem-

brane (Merck Millipore). Membranes were blocked using 5% (w/v) dried milk and 0.1% (v/v) Tween

20 in PBS for 30 min, followed by incubation with the indicated primary antibody for 1–16 h. After

washing, membranes were incubated with species-specific HRP-conjugated secondary antibodies,
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washed, and detected by enhanced chemiluminescence using Western Lightning (Perkin Elmer, UK)

and Super RX film (Fujifilm, UK). Films were scanned on a CanoScan8800F using MX Navigator Soft-

ware (Canon, UK). For comparative analysis, the pixel densities of three independent scans were ana-

lysed using ImageJ. The background was determined and subtracted by using two random locations

on the scanned film.

Quantification of MHC class I molecules associated with tapasin and
TAPBPR
Tapasin and TAPBPR immunoprecipitates were pre-labelled with Cy5 fluorescent dye (GE Health-

care) and subjected to electrophoresis using the Amersham WB system. Cy5 total protein images

from four separate electrophoresis experiments were analysed by ImageJ. Densitometry graphs

from relevant tracks were subsequently analysed in MATLAB. For the tapasin immunoprecipitate, a

MATLAB script was developed (see Source code 1) and applied in order to calculate the densities

of the A68 and B15 bands.

Affinity chromatography using IgG-sepharose
To identify association partners for TAPBPR, affinity chromatography using IgG-sephorose was per-

formed on HeLaM cells transiently transfected with ZZ-TAPBPR-pHRSIN-C56W-UbEM. As a control,

HeLaM cells transiently transfected with an empty pHRSIN-C56W-UbEM were used. Cells were lysed

at 4˚C in 1% digitonin in TBS plus 1 mM PMSF, 10 mM NEM, and protease inhibitor cocktail; nuclei

and cell debris were removed by centrifugation at 17,000 � g for 10 min at 4˚C, and then superna-

tants were pre-cleared on sepharose beads (GE Healthcare). ZZ-TAPBPR and associated proteins

were immunoprecipitated by incubating with IgG-sepharose beads (GE Healthcare) for 2 h at 4˚C,
followed by thorough washing in 0.1% digitonin TBS.

Protein identification by mass spectrometry
Immunoprecipitated samples were run a short distance into a pre-cast 4–12% polyacrylamide gel

and each lane was cut into four approximately equally sized slices. Proteins were digested in gel and

the tryptic peptides were eluted for analysis using an Orbitrap XL (Thermo) coupled to a NanoAcq-

uity Ultra Performance Liquid Chromatography (Waters, UK). Peptides were eluted using a gradient

rising from 8% to 25% acetonitrile (MeCN) for 27 min and 40% MeCN for 35 min. Mass spectra were

acquired at 60,000 fwhm at between 300 and 2000 m/z, with MS/MS spectra acquired by top 6 colli-

sion-induced dissociations. Raw files were searched against a human Uniprot database (download

041113, 68,896 entries) using the Mascot search engine, with carbamidomethyl cysteine as a fixed

modification and acetyl N-terminus and oxidised methionine as variable modifications. Scaffold (ver-

sion Scaffold_4.3.2, Proteome Software, Inc., Portland, OR) was used to validate MS/MS-based pep-

tide and protein identifications. Peptide identifications were accepted if they could be established at

greater than 90.0% probability. Peptide Probabilities from X! Tandem were assigned by the Scaffold

Local false discovery rate algorithm. Peptide Probabilities from Mascot were assigned by the Pep-

tide Prophet algorithm (Keller et al., 2002) with Scaffold d-mass correction. Protein identifications

were accepted if they could be established at greater than 95.0% probability. Protein probabilities

were assigned by the Protein Prophet algorithm (Nesvizhskii et al., 2003). Proteins that contained

similar peptides and could not be differentiated based on MS/MS analysis alone were grouped in

order to satisfy the principles of parsimony.

Expression and purification of TAPBPR proteins
The luminal domains of TAPBPRWT and TAPBPRC94A were cloned into pHLsec, expressed in

HEK293F cells (Invitrogen, Thermo Fisher Scientific, UK), purified using Ni-NTA affinity chromatogra-

phy (Invitrogen, Thermo Fisher Scientific), and separated by size exclusion chromatography as previ-

ously described (Hermann et al., 2015). Protein-containing fractions were analysed by SDS-PAGE

followed by Coomassie staining, pooled, and further concentrated. The concentrate was snap frozen

in liquid nitrogen and stored at �80˚C.
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Differential scanning fluorimetry
Differential scanning fluorimetry (DSF) experiments on purified TAPBPRWT and TAPBPRC94A were

performed as previously described (Hermann et al., 2015). The protein melting temperature (Tm)

was taken as the inflexion point of the sigmoidal melting curve, obtained by curve fitting using DSF

scripts (Niesen et al., 2007).

MHC class I binding peptides
The following MHC class I-specific peptides were used: FEC peptide pool (repository reference:

ARP7099); a panel of 32 high-affinity HLA-A and -B binding peptides derived from

influenza, Epstein–Barr virus (EBV), and cytomegalovirus (CMV) viral proteins (Currier et al., 2002)

(from the National Institute for Biological Standards and Control, Potters Bar, UK); HLA-A2 binding

peptide NLVPMVATV (from Peptide Synthetics, UK); UV-labile peptide KILGFVFjV (where j denotes

3-amino-3-[2-nitro] phenyl-propionic acid) (from Peptide Synthetics); and the fluorescent peptide

FLPSDC*FPSV (C* denotes 5-carboxytetramethylrhodaime [TAMRA]-labelled cysteine) (from GL Bio-

chem Ltd, Shanghai, China).

Fluorescence polarization experiments
HLA-A*02:01 or HLA-A*02:01fos heavy chains were refolded with human b2m and KILGFVFjV as pre-

viously described (Hermann et al., 2015). To measure the peptide dissociation rate, peptide-recep-

tive HLA-A*02:01 was obtained by exposing 500 nM monomeric HLA-A*02:01 complexes to 366-nm

light for 20 min at 4˚C (‘UV-exposed’ hereafter). UV-exposed HLA-A*02:01 molecules were allowed

to bind 17.6 nM of the fluorescent peptide FLPSDC*FPSV overnight at room temperature. Dissocia-

tion of FLPSDC*FPSV was subsequently followed after the addition of 1000-fold molar excess non-

labelled NLVPMVATV competitor peptide in the absence or presence of 0.125 mM TAPBPRWT or

TAPBPRC94A. Fluorescence polarisation measurements were taken using an I3x (Molecular

Devices, Sunnyvale, CA) with a rhodamine detection cartridge or an Analyst AD (Molecular Devices).

All experiments were conducted at room temperature (using the Analyst AD) or 25˚C (using the I3x)

and used PBS supplemented with 0.5 mg/ml bovine g-globulin (Sigma-Aldrich) in a volume of 60 ml.

Binding of TAMRA-labelled peptides is reported in millipolarisation units (mP) and is obtained from

the equation mP = 1000 � (S – G � P) / (S + G � P), where S and P are background subtracted fluo-

rescence count rates (S = polarisation emission filter is parallel to the excitation filter; P = polarisa-

tion emission filter is perpendicular to the excitation filter) and G (grating) is an instrument- and

assay-dependent factor. To measure the association rate of the peptides, 75 nM HLA-A02:01fos

molecules were mixed with 1.5 mM human b2m and exposed to 366-nm UV light at 4˚C for 20 min,

and then 5.95 nM FLPSDC*FPSV was added in the absence or presence of 0.125 mM TAPBPRWT or

TAPBPRC94A immediately before fluorescence polarisation measurements were taken. For peptide

competition experiments, 75 nM HLA-A02:01fos molecules were mixed with 1.5 mM human b2m and

exposed to 366-nm UV light at 4˚C for 20 min, and then incubated with 5.95 nM high-affinity peptide

FLPSDC*FPSV and various concentrations of the lower-affinity competing peptide NLVPMVATV (0–

100 mM) in the presence or absence of 0.0625 mM TAPBPRWT or TAPBPRC94A. Fluorescence polarisa-

tion measurements were taken after incubation overnight at 25˚C.

Flow cytometry
Following trypsinisation, cells were allowed to recover in complete media at 37˚C or 26˚C for 90 min

supplemented with or without 100 mM FEC peptide pool (resulting in individual peptides present at

a final concentration of 3 mg/ml), as indicated. Following washing in 1� PBS at 4˚C, cells were

stained at 4˚C for 25 min in 1% bovine serum albumin/PBS with MHC class I-specific antibodies or

with an isotype control antibody. After washing the cells to remove excess unbound antibody, pri-

mary antibodies bound to the cells were subsequently detected by incubation at 4˚C for 25 min with

goat anti-mouse Alexa-Fluor 647 (Invitrogen Molecular Probes, Thermo Fisher Scientific). Fluores-

cence was detected after washing using a BD FACScan analyser with Cytek modifications and ana-

lysed using FlowJo (FlowJo, LLC, Ashland, OR).
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MHC class I peptide analysis
HLA ligands from 5 � 108 IFN-g-treated HeLaMKO, HeLaMKOTAPBPRWT, and HeLaKOTAPBPRC94A

cells were isolated by immunoaffinity chromatography using W6/32, eluted, and analysed by MS/MS

analysis in a LTQ Orbitrap XL instrument (ThermoFisher Scientific, Bremen, Germany) as previously

described (Hermann et al., 2015).

Graphs and statistical analysis
GraphPad Prism (GraphPad Software, La Jolla, CA, www.graphpad.com) was used to generate

graphs and for statistical analysis.
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Rufer E, Kägebein D, Leonhardt RM, Knittler MR. 2015. Hydrophobic interactions are key to drive the
Association of Tapasin with peptide transporter subunit TAP2. The Journal of Immunology 195:5482–5494.
doi: 10.4049/jimmunol.1500246, PMID: 26519531

Sadasivan B, Lehner PJ, Ortmann B, Spies T, Cresswell P. 1996. Roles for calreticulin and a novel glycoprotein,
tapasin, in the interaction of MHC class I molecules with TAP. Immunity 5:103–114. doi: 10.1016/S1074-7613
(00)80487-2, PMID: 8769474
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