
TAPER: Tiered Approach for Eliminating Redundancy in Replica
Synchronization

Navendu Jain†, Mike Dahlin†, and Renu Tewari§

†Department of Computer Sciences, University of Texas at Austin, Austin, TX, 78712
§IBM Almaden Research Center, 650 Harry Road, San Jose, CA, 95111

{nav,dahlin}@cs.utexas.edu, tewarir@us.ibm.com

Abstract

We present TAPER, a scalable data replication protocol
that synchronizes a large collection of data across multi-
ple geographically distributed replica locations. TAPER
can be applied to a broad range of systems, such as soft-
ware distribution mirrors, content distribution networks,
backup and recovery, and federated file systems. TA-
PER is designed to be bandwidth efficient, scalable and
content-based, and it does not require prior knowledge
of the replica state. To achieve these properties, TA-
PER provides: i) four pluggable redundancy elimination
phases that balance the trade-off between bandwidth sav-
ings and computation overheads, ii) a hierarchical hash
tree based directory pruning phase that quickly matches
identical data from the granularity of directory trees to
individual files, iii) a content-based similarity detection
technique using Bloom filters to identify similar files,
and iv) a combination of coarse-grained chunk matching
with finer-grained block matches to achieve bandwidth
efficiency. Through extensive experiments on various
datasets, we observe that in comparison with rsync, a
widely-used directory synchronization tool, TAPER re-
duces bandwidth by 15% to 71%, performs faster match-
ing, and scales to a larger number of replicas.

1 Introduction
In this paper we describe TAPER, a redundancy elimina-
tion protocol for replica synchronization. Our motivation
for TAPER arose from building a federated file system
using NFSv4 servers, each sharing a common system-
wide namespace [25]. In this system, data is replicated
from a master server to a collection of servers, updated
at the master, periodically synchronized to the other
servers, and read from any server via NFSv4 clients.
Synchronization in this environment requires a proto-
col that minimizes both network bandwidth consumption
and end-host overheads. Numerous applications have
similar requirements: they require replicating and syn-
chronizing a large collection of data across multiple sites,
possibly over low-bandwidth links. For example, soft-
ware distribution mirror sites, synchronizing personal

systems with a remote server, backup and restore sys-
tems, versioning systems, content distribution networks
(CDN), and federated file systems all rely on synchro-
nizing the current data at the source with older versions
of the data at remote target sites and could make use of
TAPER.

Unfortunately, existing approaches do not suit such
environments. On one hand, protocols such as delta
compression (e.g., vcdiff [14]) and snapshot differencing
(e.g., WAFL [11]) can efficiently update one site from
another, but they require a priori knowledge of which
versions are stored at each site and what changes oc-
curred between the versions. But, our environment re-
quires a universal data synchronization protocol that in-
teroperates with multi-vendor NFS implementations on
different operating systems without any knowledge of
their internal state to determine the version of the data
at the replica. On the other hand, hash-based differential
compression protocols such as rsync [2] and LBFS [20]
do not require a priori knowledge of replica state, but
they are inefficient. For example, rsync relies on path
names to identify similar files and therefore transfers
large amounts of data when a file or directory is renamed
or copied, and LBFS’s single-granularity chunking com-
promises efficiency (a) by transferring extra metadata
when redundancy spanning multiple chunks exists and
(b) by missing similarity on granularities smaller than the
chunk size.

The TAPER design focuses on providing four key
properties in order to provide speed, scalability, band-
width efficiency, and computational efficiency:

• P1: Low, re-usable computation at the source
• P2: Fast matching at the target
• P3: Find maximal common data between the source

and the target
• P4: Minimize total metadata exchanged

P1 is necessary for a scalable solution that can simulta-
neously synchronize multiple targets with a source. Sim-
ilarly, P2 is necessary to reduce the matching time and,
therefore, the total response time for synchronization. To
support P2, the matching at the target should be based on

FAST ’05: 4th USENIX Conference on File and Storage TechnologiesUSENIX Association 281

FAST ’05: 4th USENIX Conference on File and Storage Technologies

indexing to identify the matching components in O(1)
time. The last two, P3 and P4, are both indicators of
bandwidth efficiency as they determine the total amount
of data and the total metadata information (hashes etc.)
that are transferred. Balancing P3 and P4 is the key re-
quirement in order to minimize the metadata overhead
for the data transfer savings. Observe that in realizing
P3, the source and target should find common data across
all files and not just compare file pairs based on name.

To provide all of these properties, TAPER is a multi-
phase, hierarchical protocol. Each phase operates over
decreasing data granularity, starting with directories and
files, then large chunks, then smaller blocks, and fi-
nally bytes. The phases of TAPER balance the band-
width efficiency of smaller-size matching with the re-
duced computational overhead of lesser unmatched data.
The first phase of TAPER eliminates all common files
and quickly prunes directories using a content-based hi-
erarchical hash tree data structure. The next phase elim-
inates all common content-defined chunks (CDC) across
all files. The third phase operates on blocks within the
remaining unmatched chunks by applying a similarity
detection technique based on Bloom filters. Finally, the
matched and unmatched blocks remaining at the source
are further delta encoded to eliminate common bytes.

Our main contributions in this paper are: i) design of
a new hierarchical hash tree data structure for fast prun-
ing of directory trees, ii) design and analysis of a simi-
larity detection technique using CDC and Bloom filters
that compactly represent the content of a file, iii) design
of a combined CDC and sliding block technique for both
coarse-grained and fine-grained matching, iv) integrating
and implementing all the above techniques in TAPER, a
multi-phase, multi-grain protocol, that is engineered as
pluggable units. The phases of TAPER are pluggable in
that each phase uses a different mechanism correspond-
ing to data granularity, and a phase can be dropped all to-
gether to trade bandwidth savings for computation costs.
And, v) a complete prototype implementation and per-
formance evaluation of our system. Through extensive
experiments on various datasets, we observe that TAPER
reduces bandwidth by 15% to 71% over rsync for differ-
ent workloads.

The rest of the paper is organized as follows. Sec-
tion 2 provides an overview of the working of sliding
block and CDC. These operations form the basis of both
the second and third phases that lie at the core of TA-
PER. The overall TAPER protocol is described in detail
in Section 3. Similarity detection using CDC and Bloom
filters is described and analyzed in Section 4. Section 5
evaluates and compares TAPER for different workloads.
Finally, Section 6 covers related work and we conclude
with Section 7.

2 Background

C D E G HA B

src

F

Alice

home sftw

bin doc

projects

/ (Root dir) / (Root dir)

A’ G’ H’foo Fbar

sftw myprojects

doc

E

C

binAlice

home

Bob

Figure 1: Directory Tree Synchronization Problem: The
source tree is shown on the left and the target tree with mul-
tiple updates, additions, and renames, is on the right.

In synchronizing a directory tree between a source and
target (Figure 1), any approach should efficiently handle
all the common update operations on file systems. These
include: i) adding, deleting, or modifying files and direc-
tories, ii) moving files or directories to other parts of the
tree, iii) renaming files and directories, and iv) archiving
a large collection of files and directories into a single file
(e.g., tar, lib).

Although numerous tools and utilities exist for di-
rectory synchronization with no data versioning infor-
mation, the underlying techniques are either based on
matching: i) block hashes or ii) hashes of content-defined
chunks. We find that sliding block hashes (Section 2.1)
are well suited to relatively fine-grained matching be-
tween similar files, and that CDC matching (Section 2.2)
is suitable for more coarse-grained, global matching
across all files.

2.1 Fixed and Sliding Blocks
In block-based protocols, a fixed-block approach com-
putes the signature (e.g., SHA-1, MD5, or MD4 hash)
of a fixed-size block at both the source and target and
simply indexes the signatures for a quick match. Fixed-
block matching performs poorly because small modi-
fications change all subsequent block boundaries in a
file and eliminate any remaining matches. Instead, a
sliding-block approach is used in protocols like rsync
for a better match. Here, the target, T , divides a file f
into non-overlapping, contiguous, fixed-size blocks and
sends its signatures, 4-byte MD4 along with a 2-byte
rolling checksum (rsync’s implementation uses full 16
byte MD4 and 4 byte rolling checksums per-block for
large files), to the source S. If an existing file at S, say
f ′, has the same name as f , each block signature of f is
compared with a sliding-block signature of every over-
lapping fixed-size block in f ′. There are several variants
of the basic sliding-block approach, which we discuss
in Section 6, but all of them compute a separate multi-
byte checksum for each byte of data to be transferred.
Because this checksum information is large compared to
the data being stored, it would be too costly to store all
checksums for all offsets of all files in a system, so these

USENIX Association282

0

10

20

30

40

50

60

70

80

90

100

100 1000 10000 100000
0

20000

40000

60000

80000

100000

120000
N

um
be

r
of

C
hu

nk
s

M
at

ch
ed

T
ot

al
D

at
a

T
ra

ns
fe

rr
ed

(B
yt

es
R

ea
d

an
d

W
rit

te
n)

Expected Chunk Size in Bytes (Min:256 Max:65536)

Effect of Sprinkled Changes: Matched data in CDC

Matched Chunks
Data Transmitted

Figure 2: Effect of Sprinkled Changes in CDC. The x-axis
is the expected chunk size. The left y-axis, used for the bar
graphs, shows the number of matching chunks. The right
y-axis, for the line plot, shows the total data transferred
.

0

50

100

150

200

250

300

100 1000 10000 100000
0

20000

40000

60000

80000

100000

120000

N
um

be
r

of
B

lo
ck

s
M

at
ch

ed

T
ot

al
D

at
a

T
ra

ns
fe

rr
ed

(B
yt

es
R

ea
d

an
d

W
rit

te
n)

Block Size in Bytes (Range: 256 to 65536)

Effect of Sprinkled Changes: Matched data in Rsync

Matched Chunks
Data Transmitted

Figure 3: Effect of Sprinkled Changes in Rsync. The x-
axis is the fixed block size. The left y-axis, used for the bar
graphs, shows the number of matching blocks. The right
y-axis, for the line plot, shows the total data transferred.

systems must do matching on a finer (e.g., per-file) gran-
ularity. As a result, these systems have three fundamental
problems. First, matching requires knowing which file f ′

at the source should be matched with the file f at the tar-
get. Rsync simply relies on file names being the same.
This approach makes rsync vulnerable to name changes
(i.e., a rename or a move of a directory tree will result
in no matches, violating property P3). Second, scala-
bility with the number of replicas is limited because the
source machine recomputes the sliding block match for
every file and for every target machine and cannot re-use
any hash computation (property P1). Finally, the match-
ing time is high as there is no indexing support for the
hashes: to determine if a block matches takes time of the
order of number of bytes in a file as the rolling hash has
to be computed over the entire file until a match occurs
(property P2). Observe that rsync [2] thus violates prop-
erties P1, P2, and P3. Although rsync is a widely used
protocol for synchronizing a single client and server, it is
not designed for large scale replica synchronization.

To highlight the problem of name-based matching in
rsync, consider, for example, the source directory of
GNU Emacs-20.7 consisting of 2086 files with total size
of 54.67 MB. Suppose we rename only the top level sub-
directories in Emacs-20.7 (or move them to another part
of the parent tree). Although no data has changed, rsync
would have sent the entire 54.67 MB of data with an ad-
ditional 41.04 KB of hash metadata (using the default
block size of 700 bytes), across the network. In con-
trast, as we describe in Section 3.1.1, TAPER alleviates
this problem by performing content-based pruning using
a hierarchical hash tree.

2.2 Content-defined Chunks
Content-defined chunking balances the fast-matching of
a fixed-block approach with the finer data matching abil-
ity of sliding-blocks. CDC has been used in LBFS [20],

Venti [21] and other systems that we discuss in Sec-
tion 6. A chunk is a variable-sized block whose bound-
aries are determined by its Rabin fingerprint matching
a pre-determined marker value [22]. The number of
bits in the Rabin fingerprint that are used to match the
marker determine the expected chunk size. For exam-
ple, given a marker 0x78 and an expected chunk size
of 2k, a rolling (overlapping sequence) 48-byte finger-
print is computed. If the lower k bits of the fingerprint
equal 0x78, a new chunk boundary is set. Since the
chunk boundaries are content-based, a file modification
should affect only neighboring chunks and not the en-
tire file. For matching, the SHA-1 hash of the chunk is
used. Matching a chunk using CDC is a simple hash ta-
ble lookup.

Clearly, the expected chunk size is critical to the per-
formance of CDC and depends on the degree of file sim-
ilarity and the locations of the file modifications. The
chunk size is a trade-off between the degree of match-
ing and the size of the metadata (hash values). Larger
chunks reduce the size of metadata but also reduce the
number of matches. Thus, for any given chunk size, the
CDC approach violates properties P3, P4, or both. Fur-
thermore, as minor modifications can affect neighboring
chunks, changes sprinkled across a file can result in few
matching chunks. The expected chunk size is manually
set in LBFS (8 KB default). Similarly, the fixed block
size is manually selected in rsync (700 byte default).

To illustrate the effect of small changes randomly dis-
tributed in a file, consider, for example, a file (say ‘bar’)
with 100 KB of data that is updated with 100 changes
of 10 bytes each (i.e., a 1% change). Figures 2 and
3 show the variations due to sprinkled changes in the
matched data for CDC and rsync, respectively. Observe
that while rsync finds more matching data than CDC for
small block sizes, CDC performs better for large chunk
sizes. For a block and expected chunk size of 768 bytes,

FAST ’05: 4th USENIX Conference on File and Storage TechnologiesUSENIX Association 283

FAST ’05: 4th USENIX Conference on File and Storage Technologies

rsync matched 51 blocks, transmitting a total of 62 KB,
while CDC matched 31 chunks, transmitting a total of
86 KB. For a larger block size of 2 KB, however, rsync
found no matches, while CDC matched 12 chunks and
transmitted 91 KB. In designing TAPER, we use this ob-
servation to apply CDC in the earlier phase with rela-
tively larger chunk sizes.

3 TAPER Algorithm
In this section, we first present the overall architecture of
the TAPER protocol and then describe each of the four
TAPER phases in detail.

3.1 TAPER Protocol Overview
TAPER is a directory tree synchronization protocol be-
tween a source and a target node that aims at minimizing
the transmission of any common data that already exists
at the target. The TAPER protocol does not assume any
knowledge of the state or the version of the data at the
target. It, therefore, builds on hash-based techniques for
data synchronization.

In general, for any hash-based synchronization proto-
col, the smaller the matching granularity the better the
match and lower the number of bytes transfered. How-
ever, fine-grained matching increases the metadata trans-
fer (hash values per block) and the computation over-
head. While systems with low bandwidth networks will
optimize on the total data transferred, those with slower
servers will optimize the computation overhead.

The intuition behind TAPER is to work in phases (Fig-
ure 4) where each phase moves from a larger to a finer
matching granularity. The protocol works in four phases:
starting from a directory tree, moving on to large chunks,
then to smaller blocks, and finally to bytes. Each phase
in TAPER uses the best matching technique for that size,
does the necessary transformations, and determines the
set of data over which the matches occur.

Specifically, the first two phases perform coarse
grained matching at the level of directory trees and large
CDC chunks (4 KB expected chunk size). Since the
initial matching is performed at a high granularity, the
corresponding hash information constitutes only a small
fraction of the total data. The SHA-1 hashes computed
in the first two phases can therefore be pre-computed
once and stored in a global and persistent database at
the source. The global database maximizes matching
by allowing any directory, file, or chunk that the source
wants to transmit to be matched against any directory,
file, or chunk that the target stores. And the persistent
database enhances computational efficiency by allowing
the source to re-use hash computations across multiple
targets. Conversely, the last two phases perform match-
ing at the level of smaller blocks (e.g., 700 bytes), so
precomputing and storing all hashes of all small blocks

would be expensive. Instead, these phases use local
matching in which they identify similar files or blocks
and compute and temporarily store summary metadata
about the specific files or blocks currently being exam-
ined. A key building block for these phases is efficient
similarity detection, which we assume as a primitive in
this section and discuss in detail in Section 4.

CDC Matching

Hierarchical
Hash Tree

gr
an

ul
ar

ity

File Similarity

Delta Encoding

on Holes
Sliding Block

Bytes

Blocks

Chunks

Files
Directory

Tree

co
m

pl
ex

ity

un
m

at
ch

ed
da

taChunk Similarity

Figure 4: The building blocks of TAPER

3.1.1 Directory Matching

The first phase, directory matching, eliminates identical
portions of the directory tree that are common in content
and structure (but may have different names) between
the source and the target. We define a hierarchical hash
tree (HHT) for this purpose to quickly find all the exact
matching subtrees progressing down from the largest to
the smallest directory match and finally matching identi-
cal individual files.

D (Root dir)R

DS

DBDA

DA1 DB1DS2

fu fv fwfzfyfx

fkf1 f2

DS1

DL

Directory Tree

...

...

Figure 5: Phase I: Hierarchical Hash Tree

The HHT representation encodes the directory struc-
ture and contents of a directory tree as a list of hash val-
ues for every node in the tree. The nodes consist of the
root of the directory tree, all the internal sub-directories,
leaf directories, and finally all the files. The HHT struc-
ture is recursively computed as follows. First, the hash
value of a file node fi is obtained using a standard cryp-
tographic hash algorithm (SHA-1) of the contents of the
file. Second, for a leaf directory DL, the hash value
h(DL) is the hash of all the k constituent file hashes, i.e.,
h(DL) = h(h(f1)h(f2)...h(fk)). Note that the order of
concatenating hashes of files within the same directory
is based on the hash values and not on the file names.
Third, for a non-leaf sub-directory, the hash value cap-
tures not only the content as in Merkle trees but also

USENIX Association284

1

10

100

0 2000 4000 6000 8000 10000 12000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
N

um
be

r
of

C
hu

nk
s

(L
og

S
ca

le
)

D
is

tr
ib

ut
io

n

Chunk Size in Bytes (Min:256 Expected:2048 Max:65536)

Content Defined Chunking: Chunk Size Distribution

Figure 6: Emacs-20.7 CDC Distribution (Mean = 2 KB,
Max = 64 KB). The left y-axis (log scale) corresponds to
the histogram of chunk sizes, and the right y-axis shows the
cumulative distribution.

1

10

100

1000

10000

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

N
um

be
r

of
C

hu
nk

s
(L

og
S

ca
le

)

D
is

tr
ib

ut
io

n

Chunk Size in Bytes (Min:256 Expected:2048 Max:4096)

Content Defined Chunking: Chunk Size Distribution

Figure 7: Emacs-20.7 CDC Distribution (Mean = 2KB,
Max = 4 KB). The left y-axis (log scale) corresponds to the
histogram of chunk sizes, and the right y-axis shows the
cumulative distribution.

the structure of the tree. As illustrated in Figure 5, the
hash of a sub-directory DS is computed by an in-order
traversal of all its immediate children. For example, if
DS = {DS1, DS2} then

h(DS) = h(h(DN)h(DS1)h(UP)h(DN)h(DS2)h(UP))

where “UP” and “DN” are two literals representing the
traversal of the up and down links in the tree respec-
tively. Finally, the hash of the root node, DR, of the
directory tree is computed similar to that of a subtree de-
fined above. The HHT algorithm, thus, outputs a list of
the hash values of all the nodes, in the directory tree i.e.,
h(DR), h(DA), h(DS), . . . , h(DL), . . . , h(f1)
Note that our HHT technique provides a hierarchical en-
coding of both the file content and the directory struc-
ture. This proves beneficial in eliminating directory trees
identical in content and structure at the highest level.

The target, in turn, computes the HHT hash values of
its directory tree and stores each element in a hash table.
Each element of the HHT sent by the source—starting at
the root node of the directory tree and if necessary pro-
gressing downward to the file nodes—is used to index
into the target’s hash table to see if the node matches any
node at the target. Thus, HHT finds the maximal com-
mon directory match and enables fast directory pruning
since a match at any node implies that all the descendant
nodes match as well. For example, if the root hash val-
ues match, then no further matching is done as the trees
are identical in both content and structure. At the end of
this phase, all exactly matching directory trees and files
would have been pruned.

To illustrate the advantage of HHT, consider, for ex-
ample, a rename update of the root directory of Linux
Kernel 2.4.26 source tree. Even though no content was
changed, rsync found no matching data and sent the en-
tire tree of size 161.7 MB with an additional 1.03 MB of
metadata (using the default block-size of 700 bytes). In

contrast, the HHT phase of TAPER sent 291 KB of the
HHT metadata and determined, after a single hash match
of the root node, that the entire data was identical.

The main advantages of using HHT for directory prun-
ing are that it can: i) quickly (in O(1) time) find the maxi-
mal exact match, ii) handle exact matches from the entire
tree to individual files, iii) match both structure and con-
tent, and iv) handle file or directory renames and moves.

3.1.2 Matching Chunks
Once all the common files and directories have been
eliminated, we are left with a set of unmatched files at
the source and the target. In Phase II, to capture the
data commonality across all files and further reduce the
unmatched data, we rely on content-defined chunking
(which we discussed in Section 2). During this phase,
the target sends the SHA-1 hash values of the unique
(to remove local redundancy) CDCs of all the remain-
ing files to the source. Since CDC hashes can be indexed
for fast matching, the source can quickly eliminate all the
matching chunks across all the files between the source
and target. The source stores the CDC hashes locally for
re-use when synchronizing with multiple targets.

When using CDCs, two parameters— the expected
chunk size and the maximum chunk size— have to be
selected for a given workload. LBFS [20] used an ex-
pected chunk size of 8 KB with a maximum of 64 KB.
The chunk sizes, however, could have a large variance
around the mean. Figure 6 shows the frequency and cu-
mulative distribution of chunk sizes for the Emacs-20.7
source tree using an expected chunk size value of 2 KB
with no limitation on the chunk size except for the abso-
lute maximum of 64 KB. As can be seen from the figure,
the chunk sizes have a large variance, ranging from 256
bytes to 12 KB with a relatively long tail.

The maximum chunk size limits this variance by forc-
ing a chunk to be created if the size exceeds the maxi-

FAST ’05: 4th USENIX Conference on File and Storage TechnologiesUSENIX Association 285

FAST ’05: 4th USENIX Conference on File and Storage Technologies

mum value. However, a forced split at fixed size values
makes the algorithm behave more like fixed-size block
matching with poor resilience to updates. Figure 7 shows
the distribution of chunk sizes for the same workload
and expected chunk size value of 2 KB with a maximum
value now set to 4 KB. Approximately 17% of the chunks
were created due to this limitation.

Moreover, as an update affects the neighboring
chunks, CDCs are not suited for fine-grained matches
when there are small-sized updates sprinkled throughout
the data. As we observed in Figures 2 and 3 in Section 2,
CDC performed better than sliding-block for larger sized
chunks, while rsync was better for finer-grained matches.
We, therefore, use a relatively large expected chunk size
(4 KB) in this phase to do fast, coarse-grained matching
of data across all the remaining files. At the end of the
chunk matching phase, the source has a set of files each
with a sequence of matched and unmatched regions. In
the next phase, doing finer-grained block matches, we try
to reduce the size of these unmatched regions.

3.1.3 Matching Blocks
After the completion of the second phase, each file at the
source would be in the form of a series of matched and
unmatched regions. The contiguous unmatched chunks
lying in-between two matched chunks of the same file
are merged together and are called holes. To reduce the
size of the holes, in this phase, we perform finer-grained
block matching. The sliding-block match, however, can
be applied only to a pair of files. We, therefore, need to
determine the constituent files to match a pair of holes,
i.e., we need to determine which pair of files at the source
and target are similar. The technique we use for simi-
larity detection is needed in multiple phases, hence, we
discuss it in detail in Section 4. Once we identify the
pair of similar files to compare, block matching is ap-
plied to the holes of the file at the source. We split the
unmatched holes of a file, f , at the source using relatively
smaller fixed-size blocks (700 bytes) and send the block
signatures (Rabin fingerprint for weak rolling checksum;
SHA-1 for strong checksum) to the target. At the target, a
sliding-block match is used to compare against the holes
in the corresponding file. The target then requests the set
of unmatched blocks from the source.

To enable a finer-grained match, in this phase, the
matching size of 700 bytes is selected to be a fraction
of the expected chunk size of 4 KB. The extra cost of
smaller blocks is offset by the fact that we have much
less data (holes instead of files) to work with.

3.1.4 Matching Bytes
This final phase further reduces the bytes to be sent. Af-
ter the third phase, the source has a set of unmatched
blocks remaining. The source also has the set of matched

chunks, blocks and files that matched in the first three
phases. To further reduce the bytes to be sent, the blocks
in the unmatched set are delta encoded with respect to
a similar block in the matched set. The target can then
reconstruct the block by applying the delta-bytes to the
matched block. Observe that unlike redundancy elimi-
nation techniques for storage, the source does not have
the data at the target. To determine which matched and
unmatched blocks are similar, we apply the similarity de-
tection technique at the source.

Finally, the remaining unmatched blocks and the delta-
bytes are further compressed using standard compression
algorithms (e.g., gzip) and sent to the target. The data at
the target is validated in the end by sending an additional
checksum per file to avoid any inconsistencies.

3.1.5 Discussion

In essence, TAPER combines the faster matching of
content-defined chunks and the finer matching of the
sliding block approach. CDC helps in finding common
data across all files, while sliding-block can find small
random changes between a pair of files. Some of the is-
sues in implementing TAPER require further discussion:

Phased refinement: The multiple phases of TAPER
result in better differential compression. By using a
coarse granularity for a larger dataset we reduce the
metadata overhead. Since the dataset size reduces in
each phase, it balances the computation and meta-
data overhead of finer granularity matching. The
TAPER phases are not just recursive application of
the same algorithm to smaller block sizes. Instead,
they use the best approach for a particular size.

Re-using Hash computation: Unlike rsync where the
source does the sliding-block match, TAPER stores
the hash values at the source both in the directory
matching and the chunk matching phase. These val-
ues need not be recomputed for different targets,
thereby, increasing the scalability of TAPER. The
hash values are computed either when the source
file system is quiesced or over a consistent copy of
the file system, and are stored in a local database.

Pluggable: The TAPER phases are pluggable in that
some can be dropped if the desired level of data re-
duction has been achieved. For example, Phase I
can be directly combined with Phase III and simi-
larity detection giving us an rsync++. Another pos-
sibility is just dropping phases III and IV.

Round-trip latency: Each phase of TAPER requires a
metadata exchange between the server and the tar-
get corresponding to one logical round-trip. This
additional round-trip latency per phase is balanced
by the fact that amount of data and metadata trans-
ferred is sufficiently reduced.

USENIX Association286

Hash collisions: In any hash-based differential com-
pression technique there is the extremely low but
non-zero probability of a hash collision [10]. In sys-
tems that use hash-based techniques to compress lo-
cal data, a collision may corrupt the source file sys-
tem. TAPER is used for replica synchronization and
hence only affects the target data. Secondly, data is
validated by a second cryptographic checksum over
the entire file. The probability of two hash colli-
sions over the same data is quadratically lower and
we ignore that possibility.

The recent attack on the SHA-1 hash func-
tion [26] raises the challenge of an attacker delib-
erately creating two files with the same content [1].
This attack can be addressed by prepending a secret,
known only to the root at the source and target, to
each chunk before computing the hash value.

4 Similarity Detection
As we discussed in Section 3, the last two phases of the
TAPER protocol rely on a mechanism for similarity de-
tection. For block and byte matching, TAPER needs to
determine which two files or chunks are similar. Simi-
larity detection for files has been extensively studied in
the WWW domain and relies on shingling [22] and super
fingerprints discussed later in Section 4.3.

In TAPER, we explore the application of Bloom filters
for file similarity detection. Bloom filters compactly rep-
resent a set of elements using a finite number of bits and
are used to answer approximate set membership queries.
Given that Bloom filters compactly represent a set, they
can also be used to approximately match two sets. Bloom
filters, however, cannot be used for exact matching as
they have a finite false-match probability, but they are
naturally suited for similarity matching. We first give a
brief overview of Bloom filters, and later present and an-
alyze the similarity detection technique.

4.1 Bloom Filters Overview
A Bloom filter is a space-efficient representation of a set.
Given a set U , the Bloom filter of U is implemented as
an array of m bits, initialized to 0 [4]. Each element
u (u ∈ U) of the set is hashed using k independent
hash functions h1, . . . , hk. Each hash function hi(u) for
1 ≤ i ≤ k returns a value between 1 and m then when
an element is added to the set, it sets k bits, each bit
corresponding to a hash function output, in the Bloom
filter array to 1. If a bit was already set it stays 1. For
set membership queries, Bloom filters may yield a false
positive, where it may appear that an element v is in U
even though it is not. From the analysis in the survey pa-
per by Broder and Mitzenmacher [8], given n = |U | and
the Bloom filter size m, the optimal value of k that min-
imizes the false positive probability, pk, where p denotes

that probability that a given bit is set in the Bloom filter,
is k = m

n ln 2.

4.2 Bloom Filters for Similarity Testing
Observe that we can view each file to be a set in Bloom
filter parlance whose elements are the CDCs that it is
composed of. Files with the same set of CDCs have
the same Bloom filter representation. Correspondingly,
files that are similar have a large number of 1s common
among their Bloom filters. For multisets, we make each
CDC unique before Bloom filter generation to differenti-
ate multiple copies of the same CDC. This is achieved by
attaching an index value of each CDC chunk to its SHA-
1 hash. The index ranges from 1 to ln r, where r is the
multiplicity of the given chunk in the file.

For finding similar files, we compare the Bloom fil-
ter of a given file at the source with that of all the files
at the replica. The file sharing the highest number of
1’s (bit-wise AND) with the source file and above a cer-
tain threshold (say 70%) is marked as the matching file.
In this case, the bit wise AND can also be perceived as
the dot product of the two bit vectors. If the 1 bits in
the Bloom filter of a file are a complete subset of that
of another filter then it is highly probable that the file is
included in the other.

Bloom filter when applied to similarity detection have
several advantages. First, the compactness of Bloom
filters is very attractive for remote replication (storage
and transmission) systems where we want to minimize
the metadata overheads. Second, Bloom filters enable
fast comparison as matching is a bitwise-AND operation.
Third, since Bloom filters are a complete representation
of a set rather than a deterministic sample (e.g., shin-
gling), they can determine inclusions effectively e.g., tar
files and libraries. Finally, as they have a low metadata
overhead they could be combined further with either slid-
ing block or CDC for narrowing the match space.

To demonstrate the effectiveness of Bloom filters
for similarity detection, consider, for example, the file
ChangeLog in the Emacs-20.7 source distribution which
we compare against all the remaining 1967 files in the
Emacs-20.1 source tree. 119 identical files out of a total
2086 files were removed in the HHT phase. The CDCs
of the files were computed using an expected and max-
imum chunk size of 1 KB and 2 KB respectively. Fig-
ure 8 shows that the corresponding ChangeLog file in the
Emacs-20.1 tree matched the most with about 90% of the
bits matching.

As another example, consider the file nt/config.nt in
Emacs-20.7 (Figure 9) which we compare against the
files of Emacs-20.1. Surprisingly, the file that matched
most was–src/config.in—a file with a different name in
a different directory tree. The CDC expected and max-
imum chunk sizes were 512 bytes and 1 KB respec-

FAST ’05: 4th USENIX Conference on File and Storage TechnologiesUSENIX Association 287

FAST ’05: 4th USENIX Conference on File and Storage Technologies

0

0.2

0.4

0.6

0.8

1

0 400 800 1200 1600 2000F
ra

ct
io

n
o

f
1

’s
m

a
tc

h
e

d
in

th
e

A
N

D
o

u
tp

u
t

Files in Emacs 20.1 Source Tree

Emacs 20.7/ChangeLog with Emacs 20.1/*

Emacs-20.1/ChangeLog

Figure 8: Bloom filter Comparison of
the file ’Emacs-20.7/ChangeLog’ with files
’Emacs-20.1/*’

0

0.2

0.4

0.6

0.8

1

0 400 800 1200 1600 2000F
ra

ct
io

n
o

f
1

’s
m

a
tc

h
e

d
in

th
e

A
N

D
o

u
tp

u
t

Files in Emacs 20.1 Source Tree

Emacs 20.7/nt/config.nt with Emacs 20.1/*

Emacs-20.1/nt/config.nt

Emacs-20.1/src/config.in

Emacs-20.1/nt/config.h

Figure 9: Bloom filter Comparison of
the file ’Emacs-20.7/nt/config.nt’ with files
’Emacs-20.1/*’

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10F
ra

ct
io

n
o

f
1

’s
m

a
tc

h
e

d
in

th
e

A
N

D
o

u
tp

u
t

foo versions

CVS Repository Benchmark

foo.1

Figure 10: Bloom filter Comparison of file
‘foo’ with later versions ‘foo.1’, ‘foo.2’,
. . . ‘foo.10’

tively. Figure 9 shows that while the file with the same
name nt/config.nt matched in 57% of the bits, the file
src/config.in matched in 66%. We further verified this
by computing the corresponding diff output of 1481 and
1172 bytes, respectively. This experiment further em-
phasizes the need for content-based similarity detection.

To further illustrate that Bloom filters can differenti-
ate between multiple similar files, we extracted a techni-
cal documentation file ‘foo’ (say) (of size 175 KB) in-
crementally from a CVS archive, generating 10 differ-
ent versions, with ‘foo’ being the original, ‘foo.1’ be-
ing the first version (with a change of 4154 bytes from
‘foo’) and ‘foo.10’ being the last. The CDC chunk sizes
were chosen as in the ChangeLog file example above. As
shown in Figure 10, the Bloom filter for ’foo’ matched
the most (98%) with the closest version ‘foo.1’ and the
least (58%) with the latest version ‘foo.10’.

4.2.1 Analysis

The main consideration when using Bloom filters for
similarity detection is the false match probability of the
above algorithm as a function of similarity between the
source and a candidate file. Extending the analysis
for membership testing [4] to similarity detection, we
proceed to determine the expected number of inferred
matches between the two sets. Let A and B be the two
sets being compared for similarity. Let m denote the
number of bits (size) in the Bloom filter. For simplicity,
assume that both sets have the same number of elements.
Let n denote the number of elements in both sets A and
B i.e., |A| = |B| = n. As before, k denotes the number
of hash functions. The probability that a bit is set by a
hash function hi for 1 ≤ i ≤ k is 1

m . A bit can be set by
any of the k hash functions for each of the n elements.
Therefore, the probability that a bit is not set by any hash
function for any element is (1 − 1

m)nk. Thus, the proba-
bility, p, that a given bit is set in the Bloom filter of A is
given by:

p =
(
1 −

(
1 − 1

m

)nk)
≈ 1 − e−

nk
m (1)

For an element to be considered a member of the set,
all the corresponding k bits should be set. Thus, the
probability of a false match, i.e., an outside element is
inferred as being in set A, is pk. Let C denote the inter-
section of sets A and B and c denote its cardinality, i.e.,
C = A ∩ B and |C| = c.

For similarity comparison, let us take each element in
set B and check if it belongs to the Bloom filter of the
given set A. We should find that the c common elements
will definitely match and a few of the other (n − c) may
also match due to the false match probability. By Linear-
ity of Expectation, the expected number of elements of
B inferred to have matched with A is

E[# of inferred matches] = (c) + (n − c)pk

To minimize the false matches, this expected number
should be as close to c as possible. For that (n − c)pk

should be close to 0, i.e., pk should approach 0. This
happens to be the same as minimizing the probability
of a false positive. Expanding p and under asymptotic
analysis, it reduces to minimizing (1 − e−

nk
m)k. Us-

ing the same analysis for minimizing the false positive
rate [8], the minima obtained after differentiation is when
k = m

n ln 2. Thus, the expected number of inferred
matches for this value of k becomes

E[# of inferred matches] = c + (n − c)(0.6185)
m
n

Thus, the expected number of bits set corresponding
to inferred matches is

E[# of matched bits] = m
[
1 −

(
1 − 1

m

)k
(
c + (n−c)(0.6185)

m
n

)

Under the assumption of perfectly random hash func-
tions, the expected number of total bits set in the Bloom
filter of the source set A, is mp. The ratio, then, of the ex-
pected number of matched bits corresponding to inferred
matches in A∩B to the expected total number of bits set
in the Bloom filter of A is:

E[# of matched bits]
E[# total bits set]

=

(
1 − e−

k
m (c + (n−c)(0.6185)

m
n)

)

(
1 − e−

nk
m

)

USENIX Association288

0

0.2

0.4

0.6

0.8

1

0 400 800 1200 1600 2000

F
ra

ct
io

n
o

f
C

D
C

’s
m

a
tc

h
e

d

Files in Emacs 20.1 Source Tree

Emacs 20.7/ChangeLog with Emacs 20.1/*

Emacs-20.1/ChangeLog

Figure 11: CDC comparison of the
file ’Emacs-20.7/ChangeLog’ with files
’Emacs-20.1/*’

0

0.2

0.4

0.6

0.8

1

0 400 800 1200 1600 2000

F
ra

ct
io

n
o

f
C

D
C

’s
m

a
tc

h
e

d

Files in Emacs 20.1 Source Tree

Emacs 20.7/nt/config.nt with Emacs 20.1/*

Emacs-20.1/nt/config.nt

Emacs-20.1/src/config.in

Emacs-20.1/nt/config.h

Figure 12: CDC comparison of the
file ’Emacs-20.7/nt/config.nt’ with files
’Emacs-20.1/*’

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

F
ra

ct
io

n
o

f
C

D
C

’s
m

a
tc

h
e

d

foo versions

CVS Repository Benchmark

foo.1

Figure 13: CDC Comparison of file ‘foo’
with later versions ‘foo.1’, ‘foo.2’, . . .

‘foo.10’

Observe that this ratio equals 1 when all the elements
match, i.e., c = n. If there are no matching elements, i.e.,

c = 0, the ratio = 2(1− (0.5)(0.6185)
m
n). For m = n, this

evaluates to 0.6973, i.e., 69% of matching bits may be
false. For larger values, m = 2n, 4n, 8n, 10n, 11n, the
corresponding ratios are 0.4658, 0.1929, 0.0295, 0.0113,
0.0070 respectively. Thus, for m = 11n, on an average,
less than 1% of the bits set may match incorrectly. The
expected ratio of matching bits is highly correlated to the
expected ratio of matching elements. Thus, if a large
fraction of the bits match, then it’s highly likely that a
large fraction of the elements are common.

Although the above analysis was done based on ex-
pected values, we show in an extended technical re-
port [13] that under the assumption that the difference
between p and (1− e−

nk
m) is very small, the actual num-

ber of matched bits is highly concentrated around the ex-
pected number of matched bits with small variance [18].

Given that the number of bits in the Bloom filter
should be larger than the number of elements in the set
we need large filters for large files. One approach is to
select a new filter size when the file size doubles and only
compare the files represented with the same filter size. To
support subset matching, however, the filter size for all
the files should be identical and therefore all files need to
have a filter size equal to size required for the largest file.

4.2.2 Size of the Bloom Filter

As discussed in the analysis, the fraction of bits matching
incorrectly depends on the size of the Bloom filter. For
a 97% accurate match, the number of bits in the Bloom
filter should be 8x the number of elements (chunks) in
the set (file). For a file of size 128 KB, an expected and
maximum chunk size of 4 KB and 64 KB, respectively
results in around 32 chunks. The Bloom filter is set to be
8x this value i.e., 256 bits. For small files, we can set the
expected chunk size to 256 bytes. Therefore, the Bloom
filter size is set to 8x the expected number of chunks (32
for 8 KB file) i.e., 256 bits, which is a 0.39% and 0.02%
overhead for file size of 8 KB and 128 KB, respectively.

4.3 Comparison with Shingling

Previous work on file similarity has mostly been based
on shingling or super fingerprints. Using this method, for
each object, all the k consecutive words of a file (called
k-shingles) are hashed using Rabin fingerprint [22] to
create a set of fingerprints (also called features or pre-
images). These fingerprints are then sampled to com-
pute a super-fingerprint of the file. Many variants have
been proposed that use different techniques on how the
shingle fingerprints are sampled (min-hashing, Modm,
Mins, etc.) and matched [5–7]. While Modm selects
all fingerprints whose value modulo m is zero; Mins

selects the set of s fingerprints with the smallest value.
The min-hashing approach further refines the sampling
to be the min values of say 84 random min-wise inde-
pendent permutations (or hashes) of the set of all shin-
gle fingerprints. This results in a fixed size sample of
84 fingerprints that is the resulting feature vector. To
further simplify matching, these 84 fingerprints can be
grouped as 6 “super-shingles” by concatenating 14 ad-
jacent fingerprints [9]. In REBL [15] these are called
super-fingerprints. A pair of objects are then considered
similar if either all or a large fraction of the values in the
super-fingerprints match.

Our Bloom filter based similarity detection differs
from the shingling technique in several ways. It should
be noted, however, that the variants of shingling dis-
cussed above improve upon the original approach and
we provide a comparison of our technique with these
variants wherever applicable. First, shingling (Modm,
Mins) computes file similarity using the intersection of
the two feature sets. In our approach, it requires only
the bit-wise AND of the two Bloom filters (e.g., two 128
bit vectors). Next, shingling has a higher computational
overhead as it first segments the file into k-word shin-
gles (k = 5 in [9]) resulting in shingle set size of about
S − k + 1, where S is the file size. Later, it computes
the image (value) of each shingle by applying set (say
H) of min-wise independent hash functions (|H|=84 [9])
and then for each function, selecting the shingle corre-

FAST ’05: 4th USENIX Conference on File and Storage TechnologiesUSENIX Association 289

FAST ’05: 4th USENIX Conference on File and Storage Technologies

sponding to the minimum image. On the other hand, we
apply a set of independent hash functions (typically less
than 8) to the chunk set of size on average dS

c e where c
is the expected chunk size (e.g., c=256 bytes for S=8 KB
file). Third, the size of the feature set (number of shin-
gles) depends on the sampling technique in shingling.
For example, in Modm, even some large files might have
very few features whereas small files might have zero
features. Some shingling variants (e.g., Mins, Mod2i)
aim to select roughly a constant number of features. Our
CDC based approach only varies the chunk size c, to de-
termine the number of chunks as a trade-off between per-
formance and fine-grained matching. We leave the em-
pirical comparison with shingling as future work. In gen-
eral, a compact Bloom filter is easier to attach as a file tag
and is compared simply by matching the bits.

4.4 Direct Chunk Matching for Similarity
The chunk-based matching in the second phase, can be
directly used to simultaneously detect similar files be-
tween the source and target. When matching the chunk
hashes belonging to a file, we create a list of candi-
date files that have a common chunk with the file. The
file with the maximum number of matching chunks is
marked as the similar file. Thus the matching complexity
of direct chunk matching is O(Number of Chunks).
This direct matching technique can also be used in con-
junction with other similarity detection techniques for
validation. While the Bloom filter technique is gen-
eral and can be applied even when a database of all file
chunks is not maintained, direct matching is a simple ex-
tension of the chunk matching phase.

To evaluate the effectiveness of similarity detection
using CDC, we perform the same set of experiments
as discussed in Section 4.2 for Bloom filters. The re-
sults, as expected, were identical to the Bloom filter ap-
proach. Figures 11, 12, and 13 show the corresponding
plots for matching the files ’ChangeLog’, ’nt/config.nt’
and ’foo’, respectively. Direct matching is more ex-
act as there is no probability of false matching. The
Emacs-20.1/ChangeLog file matched with the Emacs-
20.7/ChangeLog file in 112 out of 128 CDCs (88%).
Similarly, the Emacs-20.7/nt/config.nt file had a non-
zero match with only three Emacs-20.1/* files with 8
(46%), 9 (53%), 5 (29%) matches out of 17 correspond-
ing to the files nt/config.nt, src/config.in and nt/config.h,
resp. The file ’foo’ matched ’foo.1’ in 99% of the CDCs.

5 Experimental Evaluation
In this section, we evaluate TAPER using several work-
loads, analyze the behavior of the various phases of the
protocol and compare the bandwidth efficiency, compu-
tation overhead, and response times with tar+gzip, rsync,
and CDC.

5.1 Methodology

We have implemented a prototype of TAPER in C and
Perl. The chunk matching in Phase II uses code from the
CDC implementation of LBFS [20] and uses the Sleep-
yCat software’s BerkeleyDB database package for pro-
viding hash based indexing. The delta-compression of
Phase IV was implemented using vcdiff [14]. The ex-
perimental testbed used two 933 MHz Intel Pentium III
workstations with 512 MB of RAM running Linux ker-
nel 2.4.22 connected by full-duplex 100 Mbit Ethernet.

Software Sources (Size KB)
Workload No. of Files Total Size

linux-src (2.4.26) 13235 161,973
AIX-src (5.3) 36007 874,579
emacs (20.7) 2086 54,667
gcc (3.4.1) 22834 172,310

rsync (2.6.2) 250 7,479
Object Binaries (Size MB)

linux-bin (Fedora) 38387 1,339
AIX-bin (5.3) 61527 3,704

Web Data (Size MB)
CNN 13534 247
Yahoo 12167 208
IBM 9223 248

Google Groups 16284 251

Table 1: Characteristics of the different Datasets

For our analysis, we used three different kinds of work-
loads: i) software distribution sources, ii) operating sys-
tem object binaries, and iii) web content. Table 1 details
the different workload characteristics giving the total un-
compressed size and the number of files for the newer
version of the data at the source.

Workload linux-src AIX-src emacs gcc
Versions 2.4.26 - 2.4.22 5.3 - 5.2 20.7 - 20.1 3.4.1 - 3.3.1
Size KB 161,973 874,579 54,667 172,310
Phase I 62,804 809,514 47,954 153,649
Phase II 24,321 302,529 30,718 98,428
Phase III 20,689 212,351 27,895 82,952
Phase IV 18,127 189,528 26,126 73,263

Diff Output 10,260 158,463 14,362 60,215

Table 2: Evaluation of TAPER Phases. The numbers denote
the unmatched data in KB remaining at the end of a phase.

Software distributions sources For the software dis-
tribution workload, we consider the source trees of the
gcc compiler, the emacs editor, rsync, the Linux kernel,
and the AIX kernel. The data in the source trees consists
of only ASCII text files. The gcc workload represents
the source tree for GNU gcc versions 3.3.1 at the targets
and version 3.4.1 at the source. The emacs dataset con-

USENIX Association290

sists of the source code for GNU Emacs versions 20.1
and 20.7. Similarly, the rsync dataset denotes the source
code for the rsync software versions 2.5.1 and 2.6.2, with
the addition that 2.6.2 also includes the object code bina-
ries of the source. The two kernel workloads, linux-src
and AIX-src, comprise the source tree of the Linux ker-
nel versions 2.4.22 and 2.4.26 and the source tree for the
AIX operating system versions 5.2 and 5.3, respectively.

Object binaries Another type of data widely upgraded
and replicated is code binaries. Binary files have differ-
ent characteristics compared to ASCII files. To capture
a tree of code binaries, we used the operating system bi-
naries of Linux and AIX. We scanned the entire contents
of the directory trees /usr/bin, /usr/X11R6 and /usr/lib in
RedHat 7.3 and RedHat Fedora Core I distributions, de-
noted by linux-bin dataset. The majority of data in these
trees comprises of system binaries and software libraries
containing many object files. The AIX-bin dataset con-
sists of object binaries and libraries in /usr, /etc, /var, and
/sbin directories of AIX versions 5.2 and 5.3.

Web content Web data is a rich collection of text, im-
ages, video, binaries, and various other document for-
mats. To get a representative sample of web content that
can be replicated at mirror sites and CDNs, we used a
web crawler to crawl a number of large web servers.
For this, we used the wget 1.8.2 crawler to retrieve the
web pages and all the files linked from them, recursively
for an unlimited depth. However, we limited the size of
the downloaded content to be 250 MB and restricted the
crawler to remain within the website’s domain.

The four datasets, CNN, Yahoo, IBM
and Google Groups, denote the content of
www.cnn.com, www.yahoo.com, www.ibm.com,
and groups.google.com websites that was downloaded
every day from 15 Sep. to 10 Oct., 2004. CNN is a news
and current affairs site wherein the top-level web pages
change significantly over a period of about a day. Yahoo,
a popular portal on the Internet, represents multiple
pages which have small changes corresponding to daily
updates. IBM is the company’s corporate homepage
providing information about its products and services.
Here, again the top-level pages change with announce-
ments of product launches and technology events,
while the others relating to technical specifications are
unchanged. For the Google Groups data set, most pages
have numerous changes due to new user postings and
updates corresponding to feedback and replies.

5.2 Evaluating TAPER Phases
As we described earlier, TAPER is a multi-phase proto-
col where each phase operates at a different granularity.
In this section, we evaluate the behavior of each phase
on different workloads. For each dataset, we upgrade the

Workload linux-src AIX-src emacs gcc
Phase I 291 792 46 502
Phase II 317 3,968 241 762
Phase III 297 3,681 381 1,204

Table 3: Uncompressed Metadata overhead in KB of the first
three TAPER phases.

Rsync

Total

HHT

TAPER
+CDC

Size

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

T
ra

ns
m

itt
ed

D
at

a
V

ol
um

e

linux−src emacsaix−src gcc linux−binrsync aix−bin

Figure 14: Normalized transmitted data volume (uncom-
pressed) by Rsync, HHT+CDC, TAPER on Software distribu-
tion and Object binaries. The results are normalized against the
total size of the dataset.

older version to the newer version, e.g., Linux version
2.4.22 to 2.4.26. For each phase, we measure the total
size of unmatched data that remains for the next phase
and the total metadata that was exchanged between the
source and the target. The parameters used for expected
and max chunk size in Phase II was 4 KB and 64 KB,
respectively. For Phase III, the block size parameter was
700 bytes. The data for Phase IV represents the final un-
matched data that includes the delta-bytes. In practice,
this data would then be compressed using gzip and sent to
the target. We do not present the final compressed num-
bers here as we want to focus on the contribution of TA-
PER and not gzip. For comparison, we show the size of
the output of “diff -r”. Table 2 shows the total unmatched
data that remains after the completion of a phase for the
workloads linux-src, AIX-src, emacs and gcc. Addition-
ally, Table 3 shows the metadata that was transmitted for
each phase for the same workloads. The table shows that
the data reduction in terms of uncompressed bytes trans-
mitted range from 88.8% for the linux-src and 78.3% for
the AIX-src to 52.2% for emacs and 58% for gcc. On the
other hand, the overhead (compared to the original data)
of metadata transmission ranged from 0.5% for linux-src
and 0.9% for AIX-src to 1.2% for emacs and 1.4% for
gcc. Observe that the metadata in Phase II and III is in
the same ball park although the matching granularity is
reduced by an order of magnitude. This is due to the
unmatched data reduction per phase. The metadata over-
head of Phase I is relatively high. This is partly due to
the strong 20-byte hash SHA-1 hash that is used. Note
that the unmatched data at the end of Phase IV is in the

FAST ’05: 4th USENIX Conference on File and Storage TechnologiesUSENIX Association 291

FAST ’05: 4th USENIX Conference on File and Storage Technologies

0

20

40

60

80

100

120

140

16Sep 20Sep 25Sep 30Sep 05Oct 10Oct

T
ot

al
T

ra
ns

m
itt

ed
D

at
a

(M
B

yt
es

)

Time

Web Dataset Synchronization (Workload: CNN)

Rsync
TAPER

Figure 15: Rsync, TAPER Comparison on CNN web dataset

0

20

40

60

80

100

120

140

16Sep 20Sep 25Sep 30Sep 05Oct 10Oct

T
ot

al
T

ra
ns

m
itt

ed
D

at
a

(M
B

yt
es

)

Time

Web Dataset Synchronization (Workload: Yahoo)

Rsync
TAPER

Figure 16: Rsync, TAPER Comparison on Yahoo web dataset

same ball park as the diff output between the new and old
data version but that computing the latter requires a node
to have a copy of both versions and so is not a viable
solution to our problem.

5.3 Comparing Bandwidth Efficiency

In this section, we compare the bandwidth efficiency
of TAPER (in terms of total data and metadata trans-
ferred) with tar+gzip, rsync, and HHT+CDC.To differ-
entiate bandwidth savings due to TAPER from data com-
pression (gzip), we first illustrate TAPER’s contribution
to bandwidth savings without gzip for software sources
and object binaries workloads. Figure 14 shows the nor-
malized transmitted data volume by TAPER, rsync, and
HHT+CDC for the given datasets. The transmitted data
volume is normalized against the total size of the dataset.
For the gcc, AIX-src, and linux-bin datasets, rsync trans-
mitted about 102 MB, 332 MB, and 1.17 GB, respec-
tively. In comparison, TAPER sent about 73 MB, 189
MB, and 896 MB corresponding to bandwidth savings of
29%, 43% and 24%, respectively for these three datasets.
Overall, we observe that TAPER’s improvement over
rsync ranged from 15% to 43% for software sources and
24% to 58% for object binaries workload.

Using gzip compression, we compare TAPER and
rsync with the baseline technique of tar+gzip. For the
linux-src and AIX-bin data-sets, the compressed tarball
(tar+gzip) of the directory trees, Linux 2.4.26 and AIX
5.3, are about 38 MB and 1.26 GB, respectively. TA-
PER (with compression in the last phase) sent about 5
MB and 542 MB of difference data, i.e., a performance
gain of 86% and 57% respectively over the compressed
tar output. Compared to rsync, TAPER’s improvement
ranged from 18% to 25% for software sources and 32%
to 39% for object binaries datasets.

For web datasets, we marked the data crawled on Sep.
15, 2004 as the base set and the six additional versions
corresponding to the data gathered after 1, 5, 10, 15, 20

and 25 days. We examined the bandwidth cost of updat-
ing the base set to each of the updated versions without
compression. Figures 15, 16, 17, 18 show the total data
transmitted (without compression) by TAPER and rsync
to update the base version for the web datasets. For the
CNN workload, the data transmitted by TAPER across
the different days ranged from 14 MB to 67 MB, while
that by rsync ranged from 44 MB to 133 MB. For this
dataset, TAPER improved over rsync from 54% to 71%
without compression and 21% to 43% with compression.
Similarly, for the Yahoo, IBM and Google groups work-
load, TAPER’s improvement over rsync without com-
pression ranged 44-62%, 26-56%, and 10-32%, respec-
tively. With compression, the corresponding bandwidth
savings by TAPER for these three workloads ranged 31-
57%, 23-38%, and 12-19%, respectively.

5.4 Comparing Computational Overhead
In this section, we evaluate the overall computation
overhead at the source machine. Micro-benchmark ex-
periments to analyze the performance of the individual
phases are given in Section 5.5. Intuitively, a higher com-
putational load at the source would limit its scalability.

For the emacs dataset, the compressed tarball takes
10.4s of user and 0.64s of system CPU time. The cor-
responding CPU times for rsync are 14.32s and 1.51s.
Recall that the first two phases of TAPER need only to be
computed once and stored. The total CPU times for the
first two phases are 13.66s (user) and 0.88s (system). The
corresponding total times for all four phases are 23.64s
and 4.31s. Thus, the target specific computation only
requires roughly 13.5s which is roughly same as rsync.
Due to space constraints, we omit these results for the
other data sets, but the comparisons between rsync and
TAPER are qualitatively similar for all experiments.

5.5 Analyzing Response Times
In this section, we analyze the response times for the
various phases of TAPER. Since the phases of TAPER

USENIX Association292

0

20

40

60

80

100

120

140

16Sep 20Sep 25Sep 30Sep 05Oct 10Oct

T
ot

al
T

ra
ns

m
itt

ed
D

at
a

(M
B

yt
es

)

Time

Web Dataset Synchronization (Workload: IBM)

Rsync
TAPER

Figure 17: Rsync, TAPER Comparison on IBM web dataset

0

20

40

60

80

100

120

140

16Sep 20Sep 25Sep 30Sep 05Oct 10Oct

T
ot

al
T

ra
ns

m
itt

ed
D

at
a

(M
B

yt
es

)

Time

Web Dataset Synchronization (Workload: Google Groups)

Rsync
TAPER

Figure 18: Rsync, TAPER Comparison on Google Groups web
dataset

Chunk Sizes 256 Bytes 512 Bytes 2 KB 8 KB
File Size (ms) (ms) (ms) (ms)

100 KB 4 3 3 2
1 MB 29 27 26 24

10 MB 405 321 267 259

Table 4: CDC hash computation time for different files and
expected chunk sizes

include sliding-block and CDC, the same analysis holds
for rsync and any CDC-based system. The total response
time includes the time for i) hash-computation, ii) match-
ing, iii) metadata exchange, and iv) final data transmis-
sion. In the previous discussion on bandwidth efficiency,
the total metadata exchange and data transmission byte
values are a good indicator of the time spent in these
two components. The other two components of hash-
computation and matching are what we compare next.

The hash-computation time for a single block, used in
the sliding-block phase, to compute a 2-byte checksum
and a 4-byte MD4 hash for block sizes of 512 bytes, 2
KB, and 8 KB, are 5.37µs, 19.77µs, and 77.71µs, re-
spectively. Each value is an average of 1000 runs of
the experiment. For CDC, the hash-computation time
includes detecting the chunk boundary, computing the
20-byte SHA-1 signature and populating the database for
indexing. Table 4 shows the CDC computation times for
different file sizes of 100 KB, 1 MB, and 10 MB, using
different expected chunk sizes of 256 bytes, 512 bytes, 2
KB, and 8 KB, respectively. The Bloom filter generation
time for a 100 KB file (309 CDCs) takes 118ms, 120ms,
and 126ms for 2, 4, and 8 hash functions, respectively.

Figure 19 shows the match time for sliding-block and
CDC for the 3 file sizes (10 KB, 1 MB and 10 MB) and
3 block sizes (512 bytes, 2 KB, 8 KB). Although the
fixed-block hash generation is 2 to 4 times faster than
CDC chunk hash-computation, the time for CDC match-
ing is 10 to a 100 times faster. The hash-computation
time can be amortized over multiple targets as the results

are stored in a database and re-used. Since the matching
time is much faster for CDC we use it in Phase II where
it is used to match all the chunks over all the files.

0.01

0.1

1

10

100

1000

10000

File Size = 10MBytesFile Size = 1MBytesFile Size = 100 KBytes

M
ea

n
C

om
pa

ris
on

T
im

e(
m

s)

File Size

S
LB

51
2

C
D

C
51

2
S

LB
20

48
C

D
C

20
48

S
LB

81
92

C
D

C
81

92

S
LB

51
2

S
LB

51
2

C
D

C
51

2
S

LB
20

48
C

D
C

20
48

S
LB

81
92

C
D

C
81

92

S
LB

51
2

S
LB

51
2

C
D

C
51

2
S

LB
20

48
C

D
C

20
48

S
LB

81
92

C
D

C
81

92

S
LB

51
2

Figure 19: Matching times for CDC and sliding-block (SLB).

6 Related Work
Our work is closely related to two previous hash-based
techniques: sliding block used in rsync [2], and CDC in-
troduced in LBFS [20]. As discussed in Section 2, the
sliding-block technique works well only under certain
conditions: small file content updates but no directory
structure changes (renames, moves, etc.). Rsync uses
sliding block only and thus performs poorly in name-
resilience, scalability, and matching time. TAPER, how-
ever, uses sliding block in the third phase when these
conditions hold. The CDC approach, in turn, is sen-
sitive to the chunk size parameter: small size leads to
fine-grained matching but high metadata whereas large
chunk size results in lower metadata but fewer matches.
Some recent studies have proposed multiresolution par-
titioning of data blocks to address the problem of the
optimal block-size both in the context of rsync [16] and
CDC [12]. This results in a trade-off between bandwidth

FAST ’05: 4th USENIX Conference on File and Storage TechnologiesUSENIX Association 293

FAST ’05: 4th USENIX Conference on File and Storage Technologies

savings and the number of network round-trips.
Previous efforts have also explored hash-based

schemes based on sliding block and CDC for duplicate
data suppression in different contexts. Mogul et al. use
MD5 checksums over web payloads to eliminate redun-
dant data transfers over HTTP links [19]. Rhea et al.
describe a CDC based technique that removes duplicate
payload transfers at finer granularities [23] compared to
Mogul’s approach. Venti [21] uses cryptographic hashes
on CDCs to reduce duplication in an archival storage sys-
tem. Farsite [3], a secure, scalable distributed file system,
employs file level hashing to reclaim storage space from
duplicate files. You et al. examine whole-file hashing
and CDCs to suppress duplicate data in the Deepstore
archival storage system [27]. Sapuntzakis et al. compute
SHA-1 hashes of files to reduce data transferred during
the migration of appliance states between machines [24].

For similarity detection, Manber [17] originally pro-
posed the shingling technique to find similar files in a
large file system. Broder refined Manber’s technique by
first using a deterministic sample of the hash values (e.g.,
min-hashing) and then coalescing multiple sampled fin-
gerprints into super-fingerprints [5–7]. In contrast, TA-
PER uses Bloom filters [4] which compactly encode the
CDCs of a given file to save bandwidth and performs fast
bit-wise AND of Bloom filters for similarity detection.
Bloom filters have been proposed to estimate the cardi-
nality of set intersection [8] but have never been applied
for near-duplicate elimination in file systems. Further
improvements on Bloom filters can be achieved by using
compressed Bloom filters [18], which reduce the number
of bits transmitted over the network at the cost of increas-
ing storage and computation costs.

7 Conclusion
In this paper we present TAPER, a scalable data repli-
cation protocol for replica synchronization that provides
four redundancy elimination phases to balance the trade-
off between bandwidth savings and computation over-
heads. Experimental results show that in comparison
with rsync, TAPER reduces bandwidth savings by 15%
to 71%, performs faster matching, and scales to a larger
number of replicas. In future work, instead of synchro-
nizing data on a per-client basis, TAPER can (a) use
multicast to transfer the common updates to majority of
the clients, and later (b) use cooperative synchronization
where clients exchange small updates among themselves
for the remaining individual differences.

8 Acknowledgments
We thank Rezaul Chowdhury, Greg Plaxton, Sridhar Ra-
jagopalan, Madhukar Korupolu, and the anonymous re-
viewers for their insightful comments. This work was
done while the first author was an intern at IBM Almaden
Research Center. This work was supported in part by the

NSF (CNS-0411026), the Texas Advanced Technology
Program (003658-0503-2003), and an IBM Faculty Re-
search Award.

References
[1] http://th.informatik.uni-mannheim.de/people/lucks/hashcollisions/.
[2] Rsync http://rsync.samba.org.
[3] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R.

Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P. Watten-
hofer. FARSITE: Federated, available, and reliable storage for an
incompletely trusted environment. In OSDI, Dec. 2002.

[4] B. H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Commun. ACM, 13(7):422–426, 1970.

[5] A. Z. Broder. On the resemblance and containment of documents.
In SEQUENCES, 1997.

[6] A. Z. Broder. Identifying and filtering near-duplicate documents.
In COM, pages 1–10, 2000.

[7] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig.
Syntactic clustering of the web. In WWW, 1997.

[8] A. Z. Broder and M. Mitzenmacher. Network applications of
Bloom filters: A survey. In Allerton, 2002.

[9] D. Fetterly, M. Manasse, and M. Najork. On the evolution of
clusters of near-duplicate web pages. In LA-WEB, 2003.

[10] V. Henson. An analysis of compare-by-hash. In HotOS IX, 2003.
[11] D. Hitz, J. Lau, and M. Malcolm. File system design for an NFS

file server appliance. Technical Report TR-3002, Network Appli-
ance Inc.

[12] U. Irmak and T. Suel. Hierarchical substring caching for efficient
content distribution to low-bandwidth clients. In WWW, 2005.

[13] N. Jain, M. Dahlin, and R. Tewari. TAPER: Tiered approach
for eliminating redundancy in replica synchronization. Technical
Report TR-05-42, Dept. of Comp. Sc., Univ. of Texas at Austin.

[14] D. G. Korn and K.-P. Vo. Engineering a differencing and com-
pression data format. In USENIX Annual Technical Conference,
General Track, pages 219–228, 2002.

[15] P. Kulkarni, F. Douglis, J. D. LaVoie, and J. M. Tracey. Redun-
dancy elimination within large collections of files. In USENIX
Annual Technical Conference, General Track, pages 59–72, 2004.

[16] J. Langford. Multiround rsync. Unpublished manuscript.
http://www-2.cs.cmu.edu/˜jcl/research/mrsync/mrsync.ps.

[17] U. Manber. Finding similar files in a large file system. In USENIX
Winter Technical Conference, 1994.

[18] M. Mitzenmacher. Compressed Bloom filters. IEEE/ACM Trans.
Netw., 10(5):604–612, 2002.

[19] J. C. Mogul, Y.-M. Chan, and T. Kelly. Design, implementation,
and evaluation of duplicate transfer detection in HTTP. In NSDI,
2004.

[20] A. Muthitacharoen, B. Chen, and D. Mazieres. A low-bandwidth
network file system. In SOSP, 2001.

[21] S. Quinlan and S. Dorward. Venti: a new approach to archival
storage. In FAST, 2002.

[22] M. O. Rabin. Fingerprinting by random polynomials. Technical
Report TR-15-81, Harvard University, 1981.

[23] S. C. Rhea, K. Liang, and E. Brewer. Value-based web caching.
In WWW, pages 619–628, 2003.

[24] C. P. Sapuntzakis, R. Chandra, B. Pfaff, J. Chow, M. S. Lam, and
M. Rosenblum. Optimizing the migration of virtual computers.
In OSDI, Dec. 2002.

[25] R. Thurlow. A server-to-server replication/migration protocol.
IETF Draft May 2003.

[26] X. Wang, Y. Yin, and H. Yu. Finding collisions in the full SHA1.
In Crypto, 2005.

[27] L. You, K. Pollack, and D. D. E. Long. Deep store: an archival
storage system architecture. In ICDE, pages 804–815, 2005.

USENIX Association294

