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Abstract - The situation where the available data arise from a general linear process
with a unit root is discussed. We propose a modi�cation of the Block Bootstrap which
generates replicates of the original data and which correctly imitates the unit root
behavior and the weak dependence structure of the observed series. Validity of the
proposed method for estimating the unit root distribution is shown.
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1. INTRODUCTION

Consider time series data fX(1); X(2); : : : ; X(n)g arising from the process

X(t) = �X(t� 1) + U(t); (1)

for t = 1; 2; : : :, where X(1) = 0, � is a constant in [�1; 1], and
Assumption A fU(t); t � 1g is a stochastic process satisfying

U(t) =
1X
j=0

 j"(t� j) (2)

where  0 = 1,
P
1

j=0 jj jj < 1,
P
1

j=0  j 6= 0 and f"(t); t 2 ZZg is a sequence
of independent identically distributed random variables with mean zero and
0 < E("2(1)) <1.

We will be especially concerned with the nonstationary (integrated) case
where � = 1. Note that if  j = 0 for j > 1 we are in the case of a random
walk, i.e., (2) allows for a wide range of weak dependence of the di�erenced
process X(t)�X(t� 1).

A number of papers in the econometrics literature has dealt with model
(1); see e.g. Hamilton (1994) or Fuller (1996) and the references therein. The
traditional approach so far has been based on the Dickey and Fuller (1979)
pioneering work and consists of conducting a test of the null hypothesis that
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there is a unit root; in this connection see also Phillips and Perron (1988), and
Ferretti and Romo (1996).

Recently however, there has been some interest in the attempt to go be-
yond the simple unit root test. Stock (1991) managed to develop con�dence
intervals for � in the equation X(t) = �X(t�1)+U(t) based on `local-to-unity'
asymptotics. Hansen (1997) proposed the `grid-bootstrap' to adress this situ-
ation, and reports improved performance. Finally, Romano and Wolf (1998)
applied the general subsampling methodology of Politis and Romano (1994) to
the AR(1) model with good results; see Politis et al. (1999) for more details.

In the paper at hand, we present a di�erent approach towards inference
under the presence of a unit root; our approach is based on a modi�cation of
the Block-Bootstrap (BB) of K�unsch (1989), and |for reasons to be apparent
shortly| is termed \Continuous-Path Block-Bootstrap (CBB)". To motivate
the CBB, let us give an illustration demonstrating the failure of the BB under
the presence of a unit root.

Figure 1(a) shows a plot of (the natural logarithm of) the S&P 500 stock
series index recorded annually from year 1871 to year 1988, while Figure 1(b)
shows a realization of a BB pseudo replication of the S&P 500 series using
block size 20. It is obvious visually that the bootstrap series is quite dissim-
ilar to the original series, the most striking di�erence being the presence of
strong discontinuities (of the `jump' type) in the bootstrap series that {not
surprisingly- occur every 20 time units, i.e., where the independent bootstrap
blocks join.

Figure 1(c) suggests a way to �x this problem by forcing the bootstrap
sample path to be continuous. A simple way to do this is to shift each of the
bootstrap blocks up or down with the goal of ensuring (i) the bootstrap series
starts o� at the same point as the original series, and that (ii) the bootstrap
sample path is continuous. Notably, the bootstrap blocks used in Figure 1(c)
are the exact same blocks featuring in Figure 1(b).

At least as far as visual inspection of the plot can discern, the series in
Figure 1(c) could just as well have been generated by the same probability
mechanism that generated the original S&P 500 series. In other words, it
is plausible that a bootstrap algorithm generating series such as the one in
Figure 1(c) would be successful in mimicking important features of the orig-
inal process; thus, the \Continuous-Path Block-Bootstrap" of Figure 1(c) is
expected to `work' in this case.

Of course, the actual yearly S&P 500 data are in discrete time, and talking
about continuity is -strictly speaking- inappropriate. Nevertheless, an underly-
ing continuous-time model may always be thought to exist, and the idea of con-
tinuity of sample paths is powerful and intuitive; hence the name \Continuous-
Path Block-Bootstrap" (CBB for short) for our discrete-time methodology as
well. The CBB is described in detail in the next Section, and some of its key
properties are proven.
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Figure 1: Plot of the natural logarithm of the S&P500 stock index series (a),
of a BB realization (b) and of a CBB realization (c) with blocksize 20.

2. THE CONTINUOUS-PATH BLOCK-BOOTSTRAP (CBB)

Before introducing the Continuous-Path Block-Bootstrap (CBB) Method we
review K�unsch's (1989) Block-Bootstrap (BB). The BB algorithm is carried
out conditionally on the original data fX(1); X(2); : : : ; X(n)g, and thus im-
plicitly de�nes a bootstrap probability mechanism denoted by P ? that is ca-
pable of generating bootstrap pseudo-series of the type fX?(t); t = 1; 2; : : :g.
Block-Bootstrap (BB) algorithm:

1. First chose a positive integer b(< n), and let i0; i1; : : : ; ik�1 be drawn
i.i.d. with distribution uniform on the set f1; 2; : : : ; n� b+ 1g; here we
take k = [n=b], where [�] denotes the integer part, although di�erent
choices for k are also possible. The BB constructs a bootstrap pseudo-
series X?(1); X?(2); : : : ; X?(l), where l = kb, as follows.

2. For m = 0; 1; : : : ; k � 1, let

X?(mb+ j) := X(im + j � 1) for j = 1; 2; : : : ; b.
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The Continuous-Path Block-Bootstrap (CBB) algorithm is now de�ned in
the following three steps below. As before, the algorithm is carried out condi-
tionally on the original data fX(1); X(2); : : : ; X(n)g, and implicitly de�nes a
bootstrap probability mechanism denoted by P � that is capable of generating
bootstrap pseudo-series of the type fX�(t); t = 1; 2; : : :g. In the following we
denote quantities with respect to P � with an asterisk �.

Continuous-Path block-bootstrap (CBB) algorithm:

1. First calculate the centered residuals

bU(t) = X(t)�X(t� 1) � 1

n � 1

nX
t=2

(X(t)�X(t� 1))

for t = 2; 3; : : : ; n. Attention now focuses on the new variables eX(t)
de�ned as follows:

eX(t) =

8<
:
X(1) for t = 1

X(1) +
Pt
j=2

bU(j) for t = 2; 3; : : : ; n.

2. Chose a positive integer b(< n), and let i0; i1; : : : ; ik�1 be drawn i.i.d.
with distribution uniform on the set f1; 2; : : : ; n � bg; here, we take
k = [n=b] as before. The CBB constructs a bootstrap pseudo-series
X�(1); : : : ; X�(l), where l = kb, as follows.

3. Construction of the �rst bootstrap block. Let

X�(j) := X(1)+ [ eX(i0 + j � 1)� eX(i0)]

for j = 1; : : : ; b: To elaborate:

X�(1) := X(1)

X�(2) := X�(1) + [ eX(i0 + 1)� eX(i0)]

X�(3) := X�(1) + [ eX(i0 + 2)� eX(i0)]

...

X�(b) := X�(1) + [ eX(i0 + b� 1)� eX(i0)]:

4. Construction of the (m+ 1)-th bootstrap block from the m-th block for
m = 1; : : : ; k� 1. Let

X�(mb+ j) := X�(mb) + [ eX(im + j)� eX(im)]
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for j = 1; : : : ; b: To elaborate:

X�(mb+ 1) := X�(mb) + [ eX(im + 1)� eX(im)]

X�(mb+ 2) := X�(mb) + [ eX(im + 2)� eX(im)]

...

X�(mb+ b) := X�(mb) + [ eX(im + b)� eX(im)]:

An intuitive way to understand the CBB construction is based on the
discussion regarding Figure 1(c) in the Introduction and goes as follows: (i)
construct a BB pseudo-series fX�(t); t = 1; 2; : : :g based on blocks of size

equal to b+ 1 from the series eX(t); (ii) shift the �rst block (of size b+ 1) by
an amount selected such that the bootstrap series starts o� at the same point
as the original series; (iii) shift the second BB block (of size b+ 1) by another
amount selected such that the �rst observation of this new bootstrap block
matches exactly the last observation of the previous bootstrap block; (iv) join
the two blocks but delete the last observation of the previous bootstrap block
from the bootstrap series; (v) repeat parts (iii) and (iv) until all the generated
BB blocks are used up.

Note that the CBB is applied to f eX(t)g and not to fX(t)g. The rea-
son is that although the X(t) series is produced via the zero mean innova-
tions U(t), the observed �nite-sample realization of the innovations will likely
have nonzero (sample) mean; this discrepancy has an important e�ect on the
bootstrap distribution e�ectively leading to a random walk with drift in the
bootstrap world. Fortunately, there is an easy �x-up by recentering the inno-
vations; a similar necessity for residual centering has been recommended early
on even in regular linear regression |see Freedman (1981).

Note that a CBB series using block size b is associated to a BB construction
with block size b + 1. This phenomenon is only due to the fact that we are
dealing with discrete-time processes; it would not occur in a continuous-time
setting. The reason for this is our step (iv) above: although we are e�ecting
the matching of the �rst observation of a new bootstrap block to the last
observation of the previous bootstrap block, it does not seem advisable to
leave both occurrences of this common (matched) value to exist side-by-side;
one of the two must be deleted as step (iv) suggests.

3. ESTIMATION OF THE UNIT ROOT DISTRIBUTION

In this section the properties of the CBB in estimating the distribution of
the �rst order autoregressive coe�cient in the presence of a unit root are
considered. Recall that based on the observations fX(1); X(2); : : : ; X(n)g a
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common estimator of the �rst order autoregressive coe�cient � in (1) is given
by

�̂ =

TX
t=2

X(t)X(t� 1)

nX
t=2

X2(t� 1)

: (3)

The CBB version of � is given by

�̂� =

lX
t=2

X�(t)X�(t� 1)

lX
t=2

X�
2

(t� 1)

(4)

and the distribution of the statistic l(�̂��1) is used to estimate the distribution
of n(�̂� 1)

Consider �rst the basic random walk case. For this case the following result
can be established.

Theorem 1 Let X(t) = X(t� 1) + "(t), t = 1; 2; : : : where X(0) = 0, "(t) �
IID(0; �2) and E("4(1)) <1. If b!1 as n!1 such that b=

p
n! 0 then

sup
x2R

���P ��l(�̂�� 1) � x
�
� P

�
n(�̂� 1) � x

����! 0

in probability.

The asymptotic validity of the CBB for the general case where the sta-
tionary process fU(t)g satis�es Assumption A is established in the following
theorem which is our main result.

Theorem 2 Let X(t) = X(t � 1) + U(t), t = 1; 2; : : : where fU(t); t 2 ZZg
satis�es Assumption A and E("4(1)) < 1. If b ! 1 as n ! 1 such that

b=
p
n! 0 then

sup
x2R

���P ��l(�̂�� 1) � x
�
� P

�
n(�̂� 1) � x

����! 0

in probability.

It is noteworthy that, under the assumptions of Theorem 2, the asymp-
totic distribution of �̂ has a complicated form, depending on many unknown
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parameters such as the in�nite sum
P
1

j=0  j ; see Hamilton (1994) or Fuller

(1996). The CBB e�ortlessly achieves the required distribution estimation,
and provides an attractive alternative as compared to the asymptotic distri-
bution with estimated parameters. Notably, estimation of the sum

P
1

j=0  j is

tantamount to estimating the spectral density of the di�erenced series (evalu-
ated at the origin) which is a highly nontrivial problem.

4. PROOFS

Proof of Theorem 1: Recall that bU(im + s) = eX(im + s)� eX(im + s� 1).
It is easily seen that for t = 2; 3; : : : ; l

X�(t) = X(1) +

[(t�1)=b]X
m=0

BX
s=1

bU(im + s) (5)

where B = minfb� �0;m; t�mb� �0;mg, �i;j is Kronecker's delta, i.e., �i;j = 1
if i = j and zero else. Alternatively, we can write

X�(t) =

8<
:
X(1) for t = 1

X�(t� 1) + bU(im + s) for t = 2; 3; : : : ; l
(6)

where m = [(t� 1)=b] and s = t �mb� �0;m.

Now, assume without loss of generality that �2 = 1. Furthermore, setbU(im+ s) � e(im+ s) and note that in the random walk case considered here
we have by the de�nition of U(im + s) that

e(im + s) = "(im + s)� 1

n� 1

n�1X
t=2

"(t): (7)

By the centering of the bU(t)'s we have
E�(e(im + s)) =

1

n� b
n�bX
t=1

"(t+ s) +
1

n � 1

nX
t=2

"(t)

= OP (b
1=2n�1):

Substituting expression (6) we get

l (�̂� � 1) =

l

lX
t=2

�
X�(t)�X�(t� 1)

�
X�(t � 1)

lX
t=2

X�
2

(t� 1)
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=
�
l�2

lX
t=2

X�
2

(t � 1)
�
�1 1

l

h b�1X
s=1

e(i0 + s)X�(s)

+
k�1X
m=1

bX
s=1

e(im + s)X�(mb+ s� 1)
i
:

Applying (5) we get after some simple algebra that

1

l

h b�1X
s=1

e(i0 + s)X�(s) +
k�1X
m=1

bX
s=1

e(im + s)X�(mb+ s � 1)
i

=
1

l
"(1)

h b�1X
s=1

e(i0 + s) +
k�1X
m=1

bX
s=1

e(im + s)
i

+
1

2l

�� b�1X
s=1

e(i0 + s) +
k�1X
m=1

bX
s=1

e(im + s)
�2

(8)

�
� b�1X
s=1

e2(i0 + s) +
k�1X
m=1

bX
s=1

e2(im + s)
��

=
1

l
"(1)

h b�1X
s=1

e(i0 + s) +
k�1X
m=1

bX
s=1

e(im + s)
i

�1

2

�
1

l

� b�1X
s=1

e2(i0 + s) +
k�1X
m=1

bX
s=1

e2(im + s)
�
� 1

�

+
1

2

�� 1p
l

� b�1X
s=1

e(i0 + s) +
k�1X
m=1

bX
s=1

e(im + s)
��2 � 1

�
: (9)

Thus

l(�̂�� 1) =
1

2

�
l�2

lX
t=2

X�
2

(t� 1)
�
�1nh 1p

l

k�1X
m=0

b��0;mX
s=1

e(im + s)
i2 � 1

o

�1

2

�
l�2

lX
t=2

X�
2

(t� 1)
�
�1h1

l

k�1X
m=0

b��0;mX
s=1

e2(im + s)� 1
i

+
1

2

�
l�2

lX
t=2

X�
2

(t� 1)
�
�1h1

l

k�1X
m=0

b��0;mX
s=1

e(im + s)"(1)
i
: (10)

Because of (10) and in order to establish the desired result we have to show
that the following three assertions are true:

T1;n �
1

l

k�1X
m=0

b��0;mX
s=1

e(im + s)"(1) = oP �(1); (11)
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���T2;n��� � ���1
l

k�1X
m=0

b��0;mX
s=1

e2(im + s) � 1
��� = oP �(1) (12)

and � 1
l2

lX
t=2

X�
2

(t � 1);
1p
l

k�1X
m=0

b��0;mX
s=1

e(im + s)
�
d�!

�
G1; G2

�
(13)

in probability, where

G1 =
1X
i=1

2iU
2
i ; G2 =

1X
i=1

p
2iUi;

i = (�1)i+12=[(2i�1)�] and fUigi=1;2;::: is a sequence of independent standard
Gaussian variables. The assertion of the Theorem follows then because under
validity of (11) to (13) and by Slutsky's theorem we get

dK

�
L
n
l(�̂�� 1)jX1; X2; : : : ; Xn

o
;L
n
(2G1)

�1(G2
2 � 1)

o�
! 0

in probability, which is the asymptotic distribution of n(�̂ � 1); cf. Fuller
(1996). Here dK denotes Kolmogorov's distance dK(P ;Q) = supx2R jP(X �
x)�Q(X � x)j between probability measures P and Q.

We proceed to show that (11) to (13) are true.
To see (11) note that

T1;n =
1

l

k�1X
m=0

b��0;mX
s=1

e(im + s)"(1)

= "(1)
1

l

k�1X
m=0

b��0;mX
s=1

"(im + s) + OP (n
�1=2)

= eT1;n + OP (n
�1=2):

Note that eT1;n is a block bootstrap estimator of the mean E("t) based on the
i.i.d. sample "(2); "(3); : : : ; "(n). Thus assertion (11) follows because

E�( eT1;n)! 0 and V ar�( eT1;n) = OP (l
�1):

To establish (12) verify �rst using

E�
�
l�1

k�1X
m=1

bX
s=1

"(im + s)
�

= OP ((n� b)�1=2);

and

E�
�
l�1

k�1X
m=1

bX
s=1

"(im + s)
�2

= OP ((n� b)�1)
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that

1

l

k�1X
m=0

b��0;mX
s=1

e2(im + s) =
1

l

k�1X
m=0

b��0;mX
s=1

"2(im + s) + OP �(n�1=2(n� b)�1=2):

The desired result follows then by recognizing that the �rst term on the right
hand side of the above equation is a block bootstrap estimator of E("2(1)) = 1
based on blocks from the i.i.d. sequence "(2); "(2); : : : ; "(n).

Consider (13). Let ei0 = (e(i0 + 1); e(i0 + 2); : : : ; e(i0 + b � 1)), eim =
(e(im+1); e(im+2); : : : ; e(im+b)) form = 1; 2; : : : ; k�2 and eik�1

= (e(ik�1+
1); e(ik�1+ 2); : : : ; e(ik�1+ b� 1)). Denote by e be the l-dimensional random
vector

e = ("(1); ei0 ; ei1 ; : : : ; eik�1
)
0

(14)

and by Al the (l� 1)� (l � 1) matrix given by Al =
Pl�1
s=1 Is where Is is the

(l � 1)� (l � 1) matrix with (i; j)th element equal to one if 1 � i; j � s and

zero else. Note thatAl = Ql�lQ
0

l where the (i; j)th element of the orthogonal

matrix Ql is given by qi;j = 2(2l� 1)�1=2 cos[(4l� 2)�1(2j � 1)(2i� 1)�] and
the i-th element of the diagonal matrix �l = diag(�1;l; �2;l; : : : ; �l�1;l) is given

by �i;l = 0:25sec2[(l� i)(2l� 1)�]; cf. Fuller (1996). Using this decomposition
of the matrix Al we have

1

l2

lX
t=2

X�
2

(t� 1) =
1

l2
e
0

Al e

=
1

l2

l�1X
i=1

�i;l U
�
2

i

where the random variable U�i is given by

U�i = qi1"(1) +
k�1X
m=0

V �i;m;

and

V �i;m =

b��0;m��k�1;mX
s=1

qi;mb+s+�0;me(im + s)

=

b��0;m��k�1;mX
s=1

qi;mb+s+�0;m"(im + s) +OP �(b1=2k�1=2n�1=2):

Therefore, E�(V �i;m) = OP (b
1=2k�1=2n�1=2) for i = 1; 2; : : : ; l � 1 and m =

0; 1; 2; : : : ; k � 1 and E�(U�i ) = Op(k
�1=2).
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Let Jl be the (l� 1)-dimensional vector Jl = (1; 1; : : : ; 1)
0

. Using the fact

that (U�1 ; U
�

2 ; : : : ; U
�

l�1)
0

= Qle we have

l�1=2
k�1X
m=0

b��0;mX
s=1

e(im + s) = l�1=2J
0

le

=
l�1X
i=1

ki;lU
�

i

where ki;l = l�1=2J
0

lQ
�1
l 1i and 1i is the (l � 1)� 1 vector with one in the ith

position and zero elsewhere. Thus we have for the term on the left hand side
of (13) that

(l�2
l�1X
t=2

X�
2

(t � 1); l�1=2
k�1X
m=0

b��0;mX
s=1

e(im + s)) = (
l�1X
i=1

l�2�i;lU
�

i ;

l�1X
i=1

ki;lU
�

i ):

To establish the desired asymptotic distribution consider �rst the asymp-
totic behavior of the bootstrap variable U�i . Since

E�
� bX
s=1

qi;mb+se(im + s)
�2

=
1

n� b

n�bX
t=1

bX
s1;s2=1

qi;mb+s1qi;mb+s2e(t+ s1)e(t+ s2)

=
1

n� b

n�bX
t=1

bX
s1;s2=1

qi;mb+s1qi;mb+s2"(t+ s1)"(t+ s2)

+OP (bk
�1(n� b)�1=2n�1=2)

we get using E�(V �i;m) = OP (b
1=2k�1=2n�1=2) that

V ar�(U�i ) =
1

n � b
n�bX
t=1

k�1X
m=0

b��0;m��k�1;mX
s1;s2=1

qi;mb+s1+�0;mqi;mb+s2+�0;m

�"(t + s1)"(t+ s2) +Op(b(n� b)�1=2n�1=2)

= V ar("1)
l�1X
r=2

q2i;r + op(1)

= V ar("1) + op(1):

The last equality above follows since b=n ! 0,
Pl�1
r=1 q

2
i;r = 1 and qi;r =

O(l�1=2) uniformly in r. Furthermore, and because E(U�i ) = OP (k
�1=2) we

have Cov�(U�i ; U
�

j ) = E�(U�i U
�

j ) + OP (k
�1) and by the independence of the
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V �i;m

E�(U�i U
�

j ) =
k�1X
m=0

E�(V �i;mV
�

j;m) + oP (1)

=
1

n� b

n�bX
t=1

k�1X
m=0

b��0;m��k�1;mX
s1;s2=1

qi;mb+s1+�0;mqj;mb+s2+�0;m

�"(t + s1)"(t+ s2) +OP (b
3=2n�3=2):

Using

(n� b)�1
n�bX
t=1

"2(t+ s)! V ar("(1))

and

(n� b)�1
n�bX
t=1

"(t + s1)"(t+ s2) = OP ((n� b)�1=2)

for s1 6= s2 uniformly in s1 and s2, we get by the property
Pl�1
r=1 qi;rqj;r = 0

for i 6= j that

E�(U�i U
�

j ) = V ar("1)
lX

r=2

qi;rqj;r + OP (b(n� b)�1=2)

= O(l�1) +OP (b(n� b)�1=2):
Thus, Cov�(U�i ; U

�

j )! 0 in probability for i 6= j.
Consider next the asymptotic distribution of the U�i 's and recall that

U�i =
Pk�1
m=0 V

�

i;m + oP �(1) where the V �i;m are independent (but not identi-

cally distributed) zero mean random variables. Applying a CLT for triangu-
lar arrays of independent random variables (see Corollary of Sering (1981,
p. 32)) we can show that dK(L(U�i );L(Z)) ! 0 in probability as n ! 1,
where Z denotes a standard Gaussian distributed random variables. To elab-
orate and because jPk�1

m=0 V ar
�(V �i;m) � 1j = oP (1) it su�ces to show thatPk�1

m=0E
�jV �i;mj� = oP (1) for some � > 2. This, however, follows since

E�jV �i;mj� =
1

n� b

n�bX
t=1

��� bX
s=1

qi;mb+s+�0;m"(t + s)
���� + o(1)

= OP (b
�=2l��=2)

and therefore,
Pk�1
m=0E

�jV �i;mj�=2 = OP (k
1��=2) ! 0. Therefore, and because

Cov�(U�i ; U
�

j )! 0 in probability we get that for 0 < N < l �xed

�
U�1 ; U

�

2 ; : : : ; U
�

N

�0
d�!

�
U1; U2; : : : ; UN

�0
(15)
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in probability as n ! 1, where (U1; U2; : : : ; UN)
0

is a random vector having
a N -dimensional Gaussian N(0; IN) distribution and IN is the N � N unity
matrix.

The rest of the proof proceeds along the lines of the proof of Theorem

10.1.1 of Fuller (1996, p. 550). Briey, since liml!1

Pl�1
i=1 jl�2�i;l � 2i j = 0

we get that

(
l�1X
i=1

�i;lU
�
2

i ;

l�1X
i=1

ki;lU
�

i ) = (
NX
i=1

iU
�
2

i ;

NX
i=1

p
2iU

�

i )

+(
l�1X

i=N+1

iU
�
2

i ;

l�1X
i=N+1

p
2iU

�

i ) + oP �(1)

= M1;l +M2;l + oP �(1)

with an obvious notation for M1;l and M2;l. Now, by the summability of the

sequence f2i g we have that M2;L = oP (1) as N ! 1 uniformly in l. From
this, equation (15) and Lemma 6.3.1 of Fuller (1996) we then get

� l�1X
i=1

�i;lU
�
2

i ;

l�1X
i=1

ki;lU
�

i

�
d�!

�
G1; G2

�

in probability which concludes the proof of (13) and of the theorem. 2

Proof of Theorem 2: We only give a sketch of the proof. We �rst show
that

l�2
lX

t=2

X�
2

(t � 1) =  2(1)l�2
lX

t=2

� [(t�1)=b]X
m=0

MX
s=1

e(im + s)
�2

+ oP �(1) (16)

and

1

l

lX
t=2

X�(t� 1)(X�(t)�X�(t� 1)) =
 2(1)

2

h� 1p
l

k�1X
m=0

b��0;mX
s=1

e(im + s)
�2

��2
1X
j=0

 2
j = 

2(1)
i
+ oP �(1); (17)

where e(im + s) is de�ned in (7). To see this let C =
P
1

j=0  j and note that

by assumption A and using a Beveridge-Nelson decomposition (cf. Hamilton
(1994), Proposition 17.2),

Pn
t=2U(t) can be written in the form

nX
t=2

U(t) = C 

nX
t=2

"(t) + �(n)� �(1)
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where �(t) =
P
1

j=0 �j"(t� j) and �j = �P1

i=j+1  i. Since
P
1

j=0 j�j j <1 we
have

(n� 1)�1
nX
t=2

U(t) = C (n� 1)�1
nX
t=2

"(t) + OP (n
�1): (18)

Furthermore, a same type of decomposition can be applied for the observations
within each bootstrap block, i.e.,

bX
s=1

U(im + s) = C 

bX
s=1

"(im + s) + �(im + b)� �(im): (19)

Now, using (5), (18) and (19) we get

X�(t) = X(1)+

[(t�1)=b]X
m=0

�
C 

BX
s=1

e(im+s)+(�(im+B)��(im))+OP (n�1)
�
(20)

for t = 2; 3; : : : ; l where B = minfb� �0;m; t �mb � �0;mg. Substituting the

above expression forX�(t) in l�2
Pl
t=2X

�
2

(t), assertion (16) follows after some
straightforward calculations.

To see (17) note �rst that using arguments identical to those in (8) we
have

1

l

lX
t=2

X�(t � 1)(X�(t)�X�(t� 1)) =
1

l
U(1)

k�1X
m=0

b��0;mX
s=1

bU(im + s)

�1

2

�1
l

k�1X
m=0

b��0;mX
s=1

bU2(im + s)� �2
1X
j=0

 2
j

�

+
1

2

h� 1p
l

k�1X
m=0

b��0;mX
s=1

bU(im + s)
�2 � �2 1X

j=0

 2
j

i

=
1

2

h� 1p
l

k�1X
m=0

b��0;mX
s=1

bU(im + s)
�2 � �2

1X
j=0

 2
j

i
+ oP �(1):

(17) follows then using (20) and

1

l

� k�1X
m=0

b��0;mX
s=1

bU(im + s)
�2

=
1

l
X�

2

(l) + op(1):

Under validity of (16) and (17) and along the same lines as in the proof of
Theorem 1 it follows that�

l�2
lX

t=2

X�
2

(t� 1); l�1
lX
t=2

X�(t � 1)(X�(t)�X�(t� 1))
�

d�!
�
�2 2(1)G1; 2�1�2 2(1)[G2

2 �
1X
j=0

 2
j = 

2(1)]
�
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in probability. Now, since

n(�̂� 1) !
�
2G1

�
�1�

G2
2 �

1X
j=0

 2
j= 

2(1)
�

in distribution as n ! 1 (cf. Fuller (1996), Hamilton (1994)), the proof of
the theorem is concluded by applying Slutsky's theorem. 2
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