
Robert Bissonnette
Linda F. Stein Gold
Henry Ford Health, lstein1@hfhs.org
David S. Rubenstein
Anna M. Tallman
April Armstrong

Follow this and additional works at: https://scholarlycommons.henryford.com/dermatology_articles

Recommended Citation

This Article is brought to you for free and open access by the Dermatology at Henry Ford Health Scholarly Commons. It has been accepted for inclusion in Dermatology Articles by an authorized administrator of Henry Ford Health Scholarly Commons.

Robert Bissonnette, MD, Linda Stein Gold, MD, David S. Rubenstein, MD, PhD, Anna M. Tallman, PharmD, April Armstrong, MD

PII: S0190-9622(20)32906-6
DOI: https://doi.org/10.1016/j.jaad.2020.10.085
Reference: YMJD 15383

To appear in: Journal of the American Academy of Dermatology

Received Date: 20 May 2020
Revised Date: 19 October 2020
Accepted Date: 29 October 2020

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier on behalf of the American Academy of Dermatology, Inc.
Proposed mechanism of action of tapinarof cream in the treatment of psoriasis
Article type: Review

Title: Tapinarof in the treatment of psoriasis: A review of the unique mechanism of action of a novel therapeutic AhR modulating agent (TAMA)

Authors: Robert Bissonnette, MD, a Linda Stein Gold, MD, b David S. Rubenstein, MD, PhD, c Anna M. Tallman, PharmD, d and April Armstrong, MD e

Author affiliations:
a Innovaderm Research Inc., Montreal, QC, Canada
b Henry Ford Health System, Detroit, MI, USA
c Dermavant Sciences, Inc., Durham, NC, USA
d Dermavant Sciences, Inc., Long Beach, CA, USA
e Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA

Author for correspondence: Dr Robert Bissonnette, MD, Innovaderm Research, 3530 St-Laurent, Suite 300, Montreal, QC H2X 2V1. Email: rbissonnette@innovaderm.com

Funding sources: Editorial and medical writing support under the guidance of the authors was provided by Yee-Man Ching, PhD, and Emily Singleton, ApotheCom, UK, and was funded by Dermavant Sciences, Inc. in accordance with Good Publication Practice (GPP3) guidelines (Ann Intern Med. 2015;163:461–464).

Conflicts of interest: Dr Robert Bissonnette is a consultant with honoraria for Bausch Health Companies Inc. and Boston Pharmaceuticals; an investigator with grants/research funding for AbbVie Inc. and Escalier Biosciences, Inc.; an advisor with honoraria and an investigator with grants/research funding for BMS, Boehringer Ingelheim, Eli Lilly and Company, and Pfizer Inc.; a consultant with honoraria and an investigator with grants/research funding for Janssen-Ortho Inc., Sienna Biopharmaceuticals, Inc., and
Valeant Pharmaceuticals North America LLC; and an advisor, a consultant with honoraria, and an investigator with grants/research funding for Dermavant Sciences, Inc.

Dr Stein Gold is an investigator, consultant, and speaker with honorarium for Leo Pharma; an investigator with honorarium for Incyte; a consultant and speaker with honorarium for Mayne Pharma and Taro Pharmaceutical Industries; an investigator and consultant for Ortho Dermatologics and Sun; and a consultant with honorarium and an investigator for Dermavant Sciences, Inc.

Dr David S. Rubenstein is an employee of Dermavant Sciences, Inc. with stock options.

Dr Anna M. Tallman is an employee of Dermavant Sciences, Inc. with stock options.

Dr April Armstrong is research investigator or consultant to Leo, AbbVie, UCB, Janssen, Lilly, Novartis, Ortho Dermatologics, Sun, Dermavant Sciences Inc., BMS, Sanofi, Regeneron, Dermira, and Modmed.

Manuscript word count: 2498

Abstract word count: 116

Capsule summary word count: 50

References: 72

Figures: 1

Tables: 1

Keywords: Antioxidant, aryl hydrocarbon receptor (AhR), cytokines, dermis, epidermis, homeostasis, immune, inflammation, ligand, psoriasis, tapinarof, T cell, therapeutic aryl hydrocarbon receptor modulating agent (TAMA), topical, transcription factor, small molecule
Abstract

Tapinarof, a novel, first-in-class small-molecule topical therapeutic aryl hydrocarbon receptor (AhR) modulating agent (TAMA), is in clinical development for the treatment of psoriasis and atopic dermatitis. The efficacy of tapinarof in psoriasis is attributed to its specific binding and activation of AhR, a ligand-dependent transcription factor, leading to the downregulation of pro-inflammatory cytokines, including interleukin-17, and regulation of skin barrier protein expression to promote skin barrier normalization. AhR signaling regulates gene expression in immune cells and skin cells, and has critical roles in the regulation of skin homeostasis. Tapinarof-mediated AhR signaling underlies the mechanistic basis for the significant efficacy and acceptable tolerability observed in early phase clinical trials of tapinarof cream in the treatment of psoriasis.
INTRODUCTION

Plaque psoriasis is a common, chronic, immune-mediated disease characterized by scaly, erythematous and pruritic well-demarcated lesions that can be painful and disfiguring. The burden of psoriasis is reported to be similar to that of other chronic conditions, such as congestive cardiac failure and chronic lung disease, and includes significant physical, psychological, and socioeconomic burdens. People with psoriasis are at increased risk of anxiety and depression, and experience an increased incidence of several comorbidities.

While the introduction of biologics and systemic agents targeting key immune pathways, such as the interleukin (IL)-23/IL-17 axis, has significantly advanced treatment particularly of more severe disease, conventional topical treatments are used by the vast majority of patients with psoriasis. Topical agents forming the mainstay of psoriasis treatment include corticosteroids, vitamin D derivatives (calcipotriene, calcitriol), vitamin A derivatives (tazarotene), anthralin, and coal tar, with topical corticosteroids and vitamin D derivatives being the most frequently prescribed. While efficacious, topical corticosteroids have restrictions regarding duration, location, and extent of use. The effectiveness of corticosteroids may also be limited by the potential for tachyphylaxis, and recurrence of symptoms associated with reduced frequency or cessation of treatment. Other topical agents, such as calcipotriene and tazarotene, have well-documented adverse events, such as skin irritation. Considering the importance of topical agents in psoriasis, few options with novel mechanisms have been introduced in recent years, and the need for more effective and well-tolerated topical therapies remains.

Tapinarof is a novel, first-in-class, small molecule topical therapeutic aryl hydrocarbon receptor (AhR) modulating agent (TAMA) currently in late-stage clinical trials for the treatment of psoriasis and atopic dermatitis. Here, the unique mechanism of action of tapinarof cream for the treatment of psoriasis is reviewed in the context of the current
understanding of AhR signaling in the skin and a growing body of clinical trials evidence on
the efficacy and safety of tapinarof cream in psoriasis18, 19 and atopic dermatitis.20-22

\section*{THE ARYL HYDROCARBON RECEPTOR}

\textbf{AhR is a ligand-dependent transcription factor}

AhR is a ligand-dependent transcription factor that regulates gene expression in a range of
cells, including immune and epithelial cells. In healthy skin, AhR signaling plays an integral
part in maintaining skin homeostasis by regulating the skin immune network, keratinocyte
differentiation, skin barrier function and pigmentation, and responses to oxidative stress.23, 24

AhR is crucial to maintaining homeostasis by mediating responses to xenobiotic and
environmental challenges and is activated by a wide range of low molecular weight ligands
found in endogenous, dietary, environmental, and microbial sources.23, 25, 26 Endogenous
AhR ligands include indigoids, heme metabolites, and arachidonic acid metabolites. Dietary
AhR ligands include flavonoids, carotenoids, and metabolites of commensal gut bacteria,26
while environmental ligands include polycyclic aromatic hydrocarbons and polychlorinated-
biphenyls.27

An important characteristic of AhR is its differential activation by this wide range of ligands.
Upon ligand binding in the cytoplasm, the activated AhR-ligand complex heterodimerizes
with the AhR nuclear translocator (ARNT), resulting in transformation of the complex into a
high-affinity DNA-binding transcription factor. The AhR-ligand/ARNT complex binds to
specific DNA recognition sites, resulting in transcriptional control of AhR-responsive
genes.28, 29 In addition to its direct effect on gene transcription, AhR can signal through other
transcription factors, such as nuclear factor kappa-B and nuclear factor erythroid 2-related
factor 2 (Nrf2), to modulate gene expression.28-30 Thus, depending on the specific ligand,
binding to AhR can result in induction or repression of different genes, causing diverse
biologic responses in numerous tissue types.31
How different ligands activate AhR to cause such diverse responses has been an area of research for numerous years. While the diverse molecular mechanisms of AhR binding and downstream signaling remain to be fully elucidated, its therapeutic potential in skin disease has become a focus of attention given growing evidence for the essential role of AhR signaling in regulating inflammatory responses and skin homeostasis.31-33

AhR signaling and psoriasis

AhR is widely expressed in immune cells, including antigen-presenting cells, T cells, fibroblasts, macrophages, mast cells, and other skin immune cells, with the expression of AhR being necessary for the functioning of antigen-presenting cells, including Langerhans cells, and cytokine expression.23 AhR signaling has been shown to regulate the terminal differentiation of CD4+ T helper (Th)17 and Th22 cells, as well as the expression of IL-17 and IL-22 cytokines.32, 34

AhR is expressed in keratinocytes, and AhR signaling regulates keratinocyte terminal differentiation, promotes skin barrier integrity, and prevents trans-epidermal water loss.35, 36 To maintain skin barrier integrity, AhR activation and signaling has been shown to upregulate barrier protein gene expression, including filaggrin.28 Additionally, AhR-mediated activation of transcription factors such as Nrf2 induce cytoprotective antioxidant responses that suppress oxidative stress and restore skin homeostasis.24, 28

The contribution of aberrant immune responses to the pathogenesis of psoriasis is well established and supported by the demonstrated efficacy and approval of biologics that selectively target cytokines, such as tumor necrosis factor α, IL-23, and IL-17A.14 The immune response in psoriasis is characterized by increased skin infiltration and activation of effector CD4+ T cells, including the upregulation of Th17 and Th22 cells.37, 38 Crosstalk between immune cells and skin cells contributes to the formation and exacerbation of psoriatic plaques and, histologically, psoriasis is characterized by aberrant differentiation and hyperproliferation of keratinocytes in the upper layers of the epidermis.2 Further, in psoriasis, abnormal epidermal differentiation and impaired skin barrier function has been associated
with downregulation of skin barrier protein expression, including filaggrin and loricrin.39 Oxidative stress has also been implicated in the pathogenesis of psoriasis, through a pathogenic effect that results in cellular damage, inflammation, and impairment of skin barrier function.40-42

Current understanding of the expression and function of AhR in the skin supports further investigation into AhR signaling as a therapeutic target in psoriasis and other inflammatory skin diseases. Non-specific modulation of AhR signaling possibly underlies the mechanism of action of coal tar, one of the oldest topical treatments in psoriasis, which contains a mixture of organic compounds including polycyclic aryl hydrocarbons that may activate AhR to exert a therapeutic effect.43, 44

A potential functional role of AhR in psoriasis has been demonstrated in AhR-deficient mice that developed exacerbated psoriasiform skin inflammation with increased IL-17 and IL-22 expression in an imiquimod-induced psoriasis model. Additionally, treatment of wild-type mice with 6-formylindolo[3,2-b]carbazole, an endogenous AhR ligand found in skin, ameliorated psoriasiform skin inflammation and pathology in an imiquimod-induced psoriasis model.45

In patients with psoriasis, dysregulated AhR expression has been demonstrated. Increased serum levels of AhR were identified in patients with psoriasis compared with healthy subjects.46 Increased AhR expression in peripheral blood mononuclear cells of patients with psoriasis was associated with increased Th22 cells and IL-22 expression compared with healthy subjects.47 Increased AhR expression has been identified in skin biopsies of patients with psoriasis,48 and treatment of skin cells with AhR ligands \textit{in vitro} resulted in the modulation of genes implicated in the pathogenesis of psoriasis, including IL-6, IL-8, and type I and II interferon pathway genes.45, 48

Taken together, these findings suggest that AhR ligation may modulate downstream effector functions of AhR signaling to impact multiple mechanisms contributing to the development of
psoriasis. The specific binding and activation of AhR by tapinarof leads to the modulation of a unique set of target genes that are dysregulated in psoriasis and includes IL-17, thus exerting therapeutic effects that are distinct from other AhR ligands. This is significant because the activity of AhR is highly ligand-dependent, and several naturally occurring and synthetic AhR ligands are known to exert differential biologic effects via the AhR transcription factor and downstream pathways.

TAPINAROF AS A TREATMENT FOR PSORIASIS

Tapinarof discovery

The discovery of tapinarof (DMVT-505; previously known as WBI-1001 and GSK2894512) was a fortuitous outcome of investigations into the secondary metabolites of *Photorhabdus luminescens*, a bioluminescent, gram-negative bacillus, which lives symbiotically within parasitic, soil-living entomopathogenic nematodes of the genus *Heterorhabditis*. *P. luminescens* is essential to the reproduction of the nematode, as the worm carries the symbiont in its intestines and, upon entering a host insect, releases the bacilli, which help to preserve insect tissue in optimal conditions for nematode growth.

In 1959, Dutky first noted that insects infected by the nematode did not putrefy once dead, in contrast to the rapid decay seen in the absence of the nematode. It was therefore postulated that *P. luminescens* was producing metabolites with antimicrobial and other properties responsible for the observed biologic effect. One such metabolite was purified and identified as 3,5-dihydroxy-4-isopropylstilbene, a small molecule with a low molecular weight (254 g/mol). Pharmaceutical development of 3,5-dihydroxy-4-isopropylstilbene (tapinarof) identified the compound to have anti-inflammatory properties. The mechanism of action of tapinarof was elucidated by profiling against more than 800 potential cellular targets, including a diverse array of kinases and other intracellular enzymes, nuclear receptors, transcription factors, and mediators of epigenetic signaling, where the most potent interactions were observed with AhR. Tapinarof was found to bind directly to AhR, resulting
in downregulation of inflammatory cytokines, regulation of skin barrier protein expression, and antioxidant activity.33, 49

Tapinarof-modulated AhR signaling in immunomodulation

One of the proposed mechanisms for the observed clinical effect of tapinarof in patients with psoriasis is via the suppression of key Th17/Th22 cytokines, IL-17, and IL-22. In a T-cell polarization assay, tapinarof markedly inhibited T-cell expansion and Th17-cell differentiation, and reduced the production of IL-17,33 while also reducing IL-17A and IL-17F levels in a CD4+ T-cell assay.33 In a mouse model of psoriasis, tapinarof treatment downregulated inflammatory cytokine expression in skin tissue, including \textit{IL17A}, \textit{IL17F}, \textit{IL19}, \textit{IL22}, \textit{IL23A}, and \textit{IL1β} gene expression.33 The downregulation of cytokines by tapinarof was not observed in AhR-deficient mice, supporting the conclusion that tapinarof has an anti-inflammatory role mediated via AhR signaling \textit{in vivo}.33

Tapinarof-modulated AhR signaling in regulating keratinocyte function

The regulation of skin barrier protein expression and normalization of skin cell differentiation via modulation of the AhR signaling pathway both provide a mechanistic rationale for the therapeutic effects of tapinarof observed in clinical trials of psoriasis and atopic dermatitis.18, 21 Tapinarof has been shown to induce expression of skin barrier genes related to keratinocyte differentiation33 that are downregulated in psoriasis, including filaggrin and loricrin.56 The role of tapinarof in restoring epidermal function to promote normalization of skin barrier mechanisms is also supported by the finding that AhR-deficient keratinocytes are hyper-responsive to pro-inflammatory cytokines, exhibit increased production of inflammatory mediators, and develop psoriatic pathology.57, 58

Tapinarof-modulated AhR signaling in reduction of oxidative stress

In patients with psoriasis, increased circulating reactive oxygen species (ROS) and decreased antioxidant levels are associated with increased disease severity.59 Tapinarof is a stilbene molecule containing two phenol groups that directly scavenge ROS, including superoxide anions and hydroxyl radicals, demonstrating intrinsic antioxidant activity.33
Tapinarof also induces the AhR-Nrf2 transcription factor pathway leading to expression of antioxidant enzyme genes, such as NAD(P)H, quinone oxidoreductase 1, and heme oxygenase-1, to reduce ROS.24, 33 AhR-mediated antioxidant activity and subsequent ROS reduction has been demonstrated to reduce inflammatory responses, including decreasing keratinocyte IL-8 expression.60 Thus, the combined antioxidant response through the Nrf2 pathway and direct ROS scavenging by tapinarof may together reduce epidermal oxidative stress known to cause significant cellular damage to skin in the pathogenesis of psoriasis.

Tapinarof in psoriasis clinical trials

Initial clinical proof-of-concept studies were conducted using a different formulation of tapinarof cream, WBI-1001. A phase 2 study demonstrated that WBI-1001 1% concentration cream applied twice daily (BID) for 12 weeks significantly improved Physician Global Assessment (PGA) scores compared with vehicle in patients with mild to moderate plaque psoriasis. Adverse drug reactions, mostly at application sites, were more frequent with active treatment than with vehicle, but all were mild or moderate in intensity.55 WBI-1001 was later reformulated to enhance the drug product’s stability and delivery, resulting in the current formulation of tapinarof cream in clinical development, which was evaluated in a phase 2b dose-ranging study in patients with mild to severe plaque psoriasis. In this study, patients were randomized to tapinarof cream 0.5% or 1% once daily (QD) or BID, or vehicle QD or BID for 12 weeks with a 4-week treatment-free follow-up. The primary endpoint was PGA score 0 or 1 and ≥2-grade improvement at week 12. The proportion of patients achieving the primary endpoint was significantly higher in all tapinarof cream groups than in vehicle groups (65% [1%BID], 56% [1%QD], 46% [0.5%BID], and 36% [0.5%QD] versus 11% [vehicle BID] and 5% [vehicle QD]), and was maintained for 4 weeks after the end of treatment through Week 16 in all tapinarof groups except for the 0.5%BID group. Clinically meaningful improvements in psoriasis outcomes were observed as early as 2 weeks of treatment with tapinarof cream, and significant improvements were maintained for 4 weeks after treatment discontinuation. Tapinarof was generally well tolerated and most treatment-emergent
adverse events were mild or moderate in severity. The safety and efficacy of tapinarof 1% cream QD is being evaluated in a pivotal phase 3 psoriasis clinical program, which comprises two randomized controlled trials in adults with plaque psoriasis, with expected completion in 2020 (NCT02564042 and NCT03983980).

Evidence thus far demonstrates that tapinarof-mediated AhR activation has the potential to exert multiple mechanistic effects in psoriasis from immune modulation to the regulation of skin barrier function, which is supported by the potential of AhR to control gene transcription directly or indirectly through other transcription factors, and its wide expression in different cell types and tissues (Fig 1). In psoriasis, the totality of in vitro, ex vivo, and in vivo data support an anti-inflammatory mechanism in which tapinarof/AhR/ARNT complexes directly bind to the IL17A promoter and suppress IL17A transcription. Additionally, the observation that methylation of the IL17A promoter is increased in response to tapinarof provides further support for an anti-inflammatory effect mediated by decreased expression of IL-17A upon treatment (Dermavant Sciences, Inc. Unpublished data); the latter epigenetic modification of the IL17A promoter may explain, in part, the durability of therapeutic effect in the phase 2b clinical trial where significant improvements were maintained for 4 weeks after discontinuation of tapinarof in patients with psoriasis.

Further studies will contribute to a more precise mechanistic understanding of how AhR activation by tapinarof leads to downstream effector functions and is an opportunity for future study with tapinarof cream to further support the translation of its mechanistic effects to clinical outcomes in patients with psoriasis.

CONCLUSIONS

The efficacy of tapinarof in psoriasis is attributed to its activation of AhR, a ligand-dependent transcription factor, which modulates gene expression of IL-17 and skin barrier proteins to exert an anti-inflammatory effect and promote skin barrier normalization, respectively, in addition to its antioxidant activity. Tapinarof binds to a specific site on AhR, leading to
unique biologic outcomes that manifest clinically as significant therapeutic efficacy for a
topical agent in the treatment of inflammatory skin diseases. Tapinarof has been effective
and generally well tolerated in clinical trials to date, and the positive phase 2 findings have
led to progression to a pivotal phase 3 clinical trial program. Further data from those clinical
trials will provide a greater understanding of the benefits and safety and tolerability profile of
tapinarof in the management of psoriasis.
Acknowledgements

Editorial and medical writing support under the guidance of the authors was provided by Yee-Man Ching, PhD, and Emily Singleton, ApotheCom, UK, and was funded by Dermavant Sciences, Inc. in accordance with Good Publication Practice (GPP3) guidelines (Ann Intern Med. 2015;163:461–464).

Abbreviations used:

AhR: aryl hydrocarbon receptor
ARNT: AhR nuclear translocator
BID: twice daily
IL: interleukin
Nrf2: nuclear factor erythroid 2-related factor 2
PGA: Physician Global Assessment
QD: once daily
ROS: reactive oxygen species
TAMA: therapeutic AhR modulating agent
References

Fig 1. Potential mechanisms of action of tapinarof in the treatment of psoriasis.

Tapinarof activation of the aryl hydrocarbon receptor modulates gene expression that leads to significant reduction of Th17 cytokines implicated in plaque psoriasis, including IL-17A and IL-17F*; increase in antioxidant response through the Nrf2 pathway, as well as direct ROS scavenging by tapinarof*; and regulation of skin barrier protein expression, including filaggrin and loricrin.*

*Demonstrated in vitro. †Demonstrated ex vivo; ‡Demonstrated in mouse models.

AhR, Aryl hydrocarbon receptor; ARNT, aryl hydrocarbon receptor nuclear translocator; FLG, filaggrin; IL, interleukin; LOR, loricrin; Nrf2, nuclear factor erythroid 2-related factor 2; ROS, reactive oxygen species; TAP, tapinarof.
Table I: Tapinarof* and FDA-approved topical monotherapy for the treatment of plaque psoriasis

<table>
<thead>
<tr>
<th>Active principle, vehicle, concentration, dosing frequency,</th>
<th>FDA plaque psoriasis indication, initial approval year</th>
<th>Efficacy outcomes and duration of response/follow-up; active vs vehicle</th>
<th>Duration of use</th>
<th>Common adverse events (≥1%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corticosteroids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clobetasol propionate</td>
<td>Plaque psoriasis</td>
<td>Week 2, IGA = 0/1: 47–55% vs 0–2%</td>
<td>≤4 weeks; >2 weeks is limited to localized moderate/severe lesions that insufficiently improve</td>
<td>Application site: burning (40%), pruritus (3%), dryness (2%), irritation (1%), pain (1%), pigmentation changes (1%)</td>
</tr>
<tr>
<td>0.05% spray BID<sup>62</sup></td>
<td>Moderate-severe, affecting ≤20% BSA</td>
<td>PASI = NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age ≥18 years</td>
<td></td>
<td>Follow-up = NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.025% cream BID<sup>63</sup></td>
<td>Plaque psoriasis</td>
<td>Week 2, IGA = 0/1+≥2-GI: 30% vs 9–10%</td>
<td>≤2 weeks</td>
<td>Application-site discoloration (2%)</td>
</tr>
<tr>
<td>Moderate-severe</td>
<td></td>
<td>PASI = NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age ≥18 years</td>
<td></td>
<td>Follow-up = NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Halobetasol propionate</td>
<td>Plaque psoriasis</td>
<td>Week 2, IGA = 0/1+≥2-GI: 45% vs 6–7%</td>
<td>≤2 weeks</td>
<td>Application-site atrophy (1%)</td>
</tr>
<tr>
<td>0.05% lotion BID<sup>64</sup></td>
<td>Moderate-severe, Age ≥18 years</td>
<td>PASI = NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
<td>Follow-up = NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01% lotion QD<sup>65</sup></td>
<td>Plaque psoriasis</td>
<td>Week 8, IGA = 0/1+≥2-GI: 37–38% vs 8–12%</td>
<td>≤8 weeks</td>
<td>URTI (2%)</td>
</tr>
<tr>
<td>Age ≥18 years</td>
<td></td>
<td>PASI = NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
<td>Follow-up = ≤12 weeks (4 weeks after stopping therapy) superior to vehicle</td>
<td></td>
<td>Application-site dermatitis (1%)</td>
</tr>
<tr>
<td>Desoximetasone</td>
<td>Plaque psoriasis</td>
<td>Week 4, PGA=0/1: 31–53% vs 5–18%</td>
<td>≤4 weeks</td>
<td>Application site: dryness (2.7%), irritation (2.7%), pruritus (2%)</td>
</tr>
<tr>
<td>0.25% spray BID<sup>66</sup></td>
<td>Age ≥18 years</td>
<td>PASI = NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td></td>
<td>Follow-up = NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betamethasone dipropionate</td>
<td>Plaque psoriasis</td>
<td>Week 2, IGA = 0/1+≥2-GI: 19–22% vs 2–7%</td>
<td>≤4 weeks</td>
<td>Application site: pruritus (6%), burning/stinging (4.5%), pain (2.3%), atrophy (1.1%)</td>
</tr>
<tr>
<td>0.05% spray BID<sup>67</sup></td>
<td>Mild-moderate</td>
<td>PASI = NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age ≥18 years</td>
<td></td>
<td>Follow-up = NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1975</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin D analogs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcitriol</td>
<td>Plaque psoriasis</td>
<td>Week 8, IGA = 0/1+≥2-GI: 21–23% vs 7–14%</td>
<td>≤52 weeks</td>
<td>Hypercalcemia (24%)</td>
</tr>
<tr>
<td>3 mcg/g ointment BID<sup>68</sup></td>
<td>Mild-moderate</td>
<td>PASI = NA</td>
<td></td>
<td>Lab test abnormality (8%)</td>
</tr>
<tr>
<td>Age ≥18 years</td>
<td></td>
<td>Follow-up = NA</td>
<td></td>
<td>Hypercalcium (3%)</td>
</tr>
<tr>
<td>1978</td>
<td></td>
<td></td>
<td></td>
<td>Skin discomfort (3%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pruritus (1–3%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Urine abnormality (4%)</td>
</tr>
<tr>
<td>Drug / Class</td>
<td>Formulation</td>
<td>Indication</td>
<td>Age</td>
<td>Year</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>Calcipotriene</td>
<td>0.005% foam BID</td>
<td>Plaque psoriasis</td>
<td>Age ≥18 years</td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>0.005% cream BID</td>
<td>Plaque psoriasis</td>
<td>Age ≥18 years</td>
<td>1997</td>
</tr>
<tr>
<td>Retinoids</td>
<td>Tazarotene</td>
<td>Plaque psoriasis</td>
<td>Age ≥12 years</td>
<td>1997</td>
</tr>
<tr>
<td>Therapeutic aryl hydrocarbon receptor modulating agents</td>
<td>Tapinarof*</td>
<td>Plaque psoriasis</td>
<td>Mild-severe</td>
<td>TBD – pending phase 3 data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Age ≥18 years</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TBD – pending phase 3 data</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*BID, Twice daily; BSA, body surface area; FDA, Food and Drug Administration; GI, grade improvement; ISGA, Investigator’s Static Global Assessment; IGA, Investigator’s Global Assessment; NA, not available; PASI, Psoriasis Area and Severity Index; PASI75, ≤75% improvement in Psoriasis Area and Severity Index; PASI90, ≤90% improvement in Psoriasis Area and Severity Index; PGA, Physician Global Assessment; QD, once daily; TBD, to be decided; URTI, upper respiratory tract infections.

Table presents registration trial data extracted from FDA labels; comparisons between agents are not recommended in the absence of head-to-head trial data.

†Tapinarof is an investigational drug, data are from a phase 2b randomized controlled trial.18, 19, 72 Two phase 3 trials, PSOARING 1 (NCT03956355) and PSOARING 2 (NCT03983980) are expected to report in 2020.

‡Restrictions regarding duration of use with tapinarof are not anticipated; more information will be available following completion of a phase 3 long-term extension trial, PSOARING 3 (NCT04053387).
Capsule summary

- Tapinarof is a topical therapeutic aryl hydrocarbon receptor modulating agent (TAMA) that downregulates IL-17 and promotes skin barrier normalization, with antioxidant activity.
- Efficacy and tolerability of tapinarof in psoriasis clinical trials is attributed to its unique mechanism of action, representing an important potential advance in the development of topical medicine.