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Abstract 

Tarantula is an aggressive floating point machine tar- 

geted at technical scientific and bioinformatics workloads, 

originally planned as a follow-on candidate to the EV8 pro- 

cessor [6, 5]. Tarantula adds to the EV8 core a vector 

unit capable of 32 double-precision flops per cycle. The 

vector unit fetches data directly from a 16 MByte second 

level cache with a peak bandwidth of  sixty four 64-bit val- 

ues per cycle. The whole chip is backed by a memory con- 

troller capable of delivering over 64 GBytes/s of  raw band- 

width. Tarantula extends the Alpha 1SA with new vector 

instructions that operate on new architectural state. Salient 

features of  the architecture and implementation are: (1) it 

fully integrates into a virtual-memory cache-coherent sys- 

tem without changes to its coherency protocol (2) provides 

high bandwidth for non-unit stride memory accesses, (3) 

supports gather/scatter instructions e3ficiently, (4)fully in- 

tegrates with the EV8 core with a narrow, streamlined inter- 

face, rather than acting as a co-processor, (5) can achieve a 

peak of  104 operations per cycle, and (6) achieves excellent 

"real-computation "per transistor and per watt ratios. Our 

detailed simulations show that Tarantula achieves an aver- 

age speedup of 5X over EV8, out of  a peak speedup in terms 

of flops of SX. Furthermore, performance on gather/scatter 

intensive benchmarks such as Radix Sort is also remark- 

able: a speedup of almost 3X over EV8 and 15 sustained 

operations per cycle. Several benchmarks exceed 20 oper- 

ations per cycle. 

1. Introduction 

As CMOS technology progresses, we are able to inte- 
grate an ever-growing number of transistors on chip and the 
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interconnect within the die can be used to achieve massive 

amounts of bandwidth from on-chip caches. The challenge 

architects face is governing effectively this large amount of 

computation resources that CMOS makes available. 

If a large number of resources such as functional units, 
memory ports, etc. are to be controlled individually, the 

amount of real estate devoted to control structures grows 
non-linearly. The lack of control aggregation results in long, 

slow global wires that limit overall performance and hinder 

scalability. Both wide superscalar and VLIW architectures 

suffer from this problem, due to the small granularity of 
their instructions. Scalar instructions typically only encode 

one, sometimes two, operations to be performed by the pro- 

cessor (an add, an add and a memory access, a multiply-add, 

etc.). Yet, the number of control structures required to exe- 

cute each instruction is growing with processor complexity 

and frequency. 

In contrast, vector ISAs provide an efficient organi- 

zation for controlling a large amount of computation re- 
sources. Vector instructions offer a good aggregation of 

control by localizing the expression of parallelism. Fur- 

thermore, vector ISAs emphasize local communication and 

provide excellent computation/transistor ratios. These prop- 

erties translate in regular VLSI structures that require very 

simple, distributed control. Combining the parallel execu- 

tion capabilities of vector instructions with the effectiveness 

of on-chip caches, good speedups over a conventional su- 

perscalar processor can be obtained with a main memory 

bandwidth on the order of 1 byte per flop. Since increas- 

ing memory bandwidth is one of the most expensive pieces 

of a system's overall cost, maximizing the computation ca- 

pabilities attached to a given memory bandwidth seems the 

right path to follow. In particular, a large L2 cache can pro- 

vide tremendous bandwidth to a vector engine. Such an L2 

will naturally have a long latency. Nonetheless, the latency- 
tolerant properties of vector instructions offsets this down- 
side while taking advantage of the bandwidth offered. The 
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main difficulties in this mixture of  vectors and caches are 

non-unit strides and gather/scatter operations. 

Tarantula is an aggressive floating point machine tar- 

geted at technical, scientific and bioinformatics workloads, 

originally planned as a follow-on candidate to the EV8 pro- 

cessor [5, 6]. Tarantula adds to the EV8 core a vector unit 

capable of  32 double-precision flops per cycle. The vec- 

tor unit fetches data directly from a 16 MByte  second level 

cache with a peak bandwidth of sixty four 64-bit values per 

cycle. The whole chip is backed by a memory controller 

capable o f  delivering over 64 GBytes/s of  raw bandwidth. 

Tarantula's architecture and implementation have a 

number of  features worth highlighting. The vector unit 

can be tightly integrated into an aggressive out-of-order 

wide-issue superscalar core with a narrow, streamlined 

interface that consists of: instruction delivery, kill signals, 

scalar data and a handshaking protocol for  cooperative 

retirement o f  instructions. The new vector memory in- 

structions fully integrate into the Alpha virtual-memory 

cache-coherent system without changes to its coherency 

p ro toco l .  Our design shows that the vector unit can be 

easily integrated into the existing EV8 physical L2 design 

simply by duplicating some control structures and changing 

the pipeline flow slightly. An address reordering scheme 

has been devised to allow conflict-free vector requests to 
the L2. This technique provides very good bandwidth on 

both unit and non-unit strides. Tarantula also provides 

high bandwidth for gather and scatter instructions and 

smoothly integrates them into the aggressive out-of-order 

memory pipeline. The vector execution engine uses register 

renaming and out-of-order execution and supports the SMT 

paradigm [ ! 8, 19] to easily integrate with the EV8 core. 

Finally, the question of  commercial viability must also 

be addressed from two points of  view: first, the cost of  con- 

verting the installed customer base to a vector ISA and sec- 

ond, the market demand for a chip such as Tarantula. 

Despite all its advantages, a vector ISA extension does- 

n ' t  come without a cost. The major investment comes from 

software compatibility: new ,vector instructions require ap- 

plication recompilation and tuning to effectively use the on- 

chip vector unit. Compiler support to integrate tiling tech- 

niques with vectorization techniques is needed to extract 

maximum performance frgm the memory hierarchy. Also, 

our experience coding benchmarks for Tarantula shows 

that proper data prefetching is of  paramount importance to 

achieve good performance. 

Concerning market demand, we note the scientific com- 

puting segment still represents a multi-billion dollar mar- 

ket segment. Many of  the applications in this domain ex- 

hibit a large degree of  vector (data) parallelism and manip- 

ulate large volumes of  data. This vector parallelism is not 

correctly accommodated by the small first level caches of  

current off-the-shelf microprocessors: poor cache behavior 

ruins performance. We believe performance of  chip multi- 

processors on vector codes will suffer from the same diffi- 

culty: processors will compete for the L2 and contention 

will lead to poor  performance. So, although the rapidly 

growing workstation and PC market segment has oriented 

the whole computer  industry (including the server indus- 

try) towards using standard off-the-shelf microprocessors,  
we believe the time is ready again for architecture special- 

ization to better match application needs. 

2. Instruction Set Extension 

Tarantula adds to the Alpha ISA new architectural state 

in the form of  32 vector registers ( v 0 . . v 3 1 )  and their as- 

sociated control registers: vector length ( v l ) ,  vector stride 

(vs ) ,  and vector mask (vm). Each vector register holds 128 

64-bit values. The v l  register is an 8-bit register that con- 

trols the length of  each vector operation. The v s  register 

is a 64-bit register that controls the stride between memory 

locations accessed by vector memory operations. The wra 

register is a 128-bit register used in instructions that operate 

under mask. 
To operate on this new architectural state, 45 new in- 

structions (not counting data-type variations) are added to 

the instruction set. The new instructions can be broadly 

grouped in to  five categories: vector-vector operate (VV), 

vector-scalar operate (VS), strided memory access (SM), 
random memory access (RM), and vector control (VC). 

Figure 1 presents the semantics of a representative instruc- 

tion of  the first four groups. The instructions semantics are 

straightforward extensions of  the existing scalar Alpha in- 

structions to allow operating on the vector registers. 

A novel feature of  the ISA is the approach to vector 

mask computation. To avoid long latency data transfers 

back and forth between the Vbox ALUs and the EV8 scalar 

register file (a 20-cycle round-trip delay), vector compar- 

isons store the resulting boolean vector in a full vector reg- 

ister. This allows Coding complex if-statements without 

vector-scalar communication. For example, the translation 

ofA(i).ne.0.and. B(i) .gt.2wouldbe: 

vloadq A(1) --> v0 

vloadq B(i) --> vl 

vcmpne v0, #0 --> v6 

vcmpgt vl, #2 --> v7 

vand v6, v7 --> v8 

setvm v8 --> vm 

The final setvm instruction indicates that the v 8  register 

is to be copied into the vm register. Subsequent instructions 

that use the "under-mask" specifier will use this vra value. 

Since the vra register is renamed in the Vbox, the next mask 

value can be pre-computed while using the current one and 
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Figure 1. The four major instruction groups 
in Tarantula. For each group, a representative 
instruction is shown and its semantics pre- 
sented. 

Example Semantics 

W/d~DQ Va,  Vb,  Vc  f o r  {£ = O; i < v l ~  £++) [ 
V c [ t l  • V a i l ]  ÷ V l o l i l  

) 

for ~ i  = wl; i • 1 2 8 ;  i + * )  [ 

V c l £ ]  <UNPREDICTASSE> 
) 

VSWJLO V a ,  F b ,  V c  f o r  (£  = 0 ;  i < v l ;  t ÷ * )  { 

v c I i l  = V a i l ]  * F b  
) 

for (i = w £ ;  £ < 128; i÷÷) ( 
Vc I i ] •UNPREDI CTABLE> 

) 

IrUOADQ Vc, off(Rb) S • GE~_RANDCM PERMUT(0,VL-1) 
foreach i in S ( 
• a = 
V c [ t l  R b  = M E M [ . = ]  + o f f  + ( i  * ~ }  

for (i = vl; i < 128; i++) ( 
Vc{l] = <UNPREDICTABLE> 

) 

VSCATQ Va, Rb, Vc S = GEN_RANDC~ PERMUT(0,UL-I) 
foreach i in S { 

. a  = V a i l ]  ÷ Kb 
M ~ l e a ]  = V e i l ]  

} Figure 2. Block diagram of the Tarantula pro- 

compilers can interleave instructions from two separate if- 

then-else statements in a loop body. 

Following the Alpha tradition, register v 3 1  is hardwired 

to zero. Therefore,  vector prefetches, including gather and 

scatter prefetches, can be trivially crafted by using v 3 1  as 

the destination register. As in most  Alpha implementations,  

page faults and TLB misses caused by vector prefetches are 

simply ignored. 

Tarantula provides a precise exception model at the in- 

struction level granularity. I f  a vector instruction causes a 

trap (TLB miss, divide-by-0, etc.), the system software will 

be provided with the PC of  the faulting instruction, but no 

extra information on which element (or elements) within the 

vector caused the fault. 

3. Tarantu la  Arch i tec ture  

3.1. Block Diagram 

Figure 2 shows a high-level block diagram of  the Taran- 

tula processor. The EV8 core is extended with a vector unit 

(Vbox) that handles the execution of  all new vector instruc- 

tions. The EV8 core performs all scalar computations and 

is also responsible for fetching, renaming and retiring vec- 

tor instructions on behalf  of  the Vbox. Furthermore, EV8 

also notifies the Vbox whenever instructions must be killed 

due to mispredicts or faults. Vbox and the EV8 core also 

cooperate for retiring vector memory  writes. 

Tarantula reuses the memory  controller (Zbox) and the 

inter-processor router (Rbox) from the EV8 design. We do 

however assume that in the 2006 time frame we should be 
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Figure 3. Vbox Lanes. 

able to roughly quadruple main memory  bandwidth from 

the current 12.8 GBytes/s to over 50 GBytes/s. While 

the exact memory  technology to be employed is not cur- 

rently known, for the purposes of  this study we assumed 

the Zbox would control 32 RAMBUS channels, grouped as 

eight ports (roughly 64 GBytes/s  raw bandwidth assuming 
1066 Mhz parts). 

3.2. Vector Execution Engine 

The vector execution engine is organized as 16 lanes (see 

Figure 3). Each lane has a slice of  the vector register file, 

a slice of  the vector mask file, two functional units, an ad- 

dress generator and a private TLB. Notice the regularity of  

the overall engine: all lanes are identical and the instruction 

queues are located in the middle. There is no communica-  

tion across lanes, except for gather/scatters (see below). 

Regularity and design simplicity are not the only advan- 

tages that lanes give us. The schedulers that govern the al- 

location o f  this large number  of  functional units are very 

simple too. To them, the 32 functional units appear only as 

just two resources: the north and south issue ports. When an 
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instruction is launched onto one of the two ports, the sixteen 

associated functional units work fully synchronously on the 

instruction. Thus, the port is marked busy for [ v l / 1 6 ]  cy- 

cles (typically, 8 cycles). To put it in another way: a simple 

dual-issue window is able to fully utilize 32 functional units. 

The fact that the full register file is sliced into sixteen 

pieces is yet another advantage of the vector instruction 

paradigm. The bandwidth between the vector register file 

and the functional units is 64+32 operands per cycle. A 

unified register file would be totally out of  the question. In 

contrast, the sliced register file enables that each lane only 

needs 4R+2W for the functional units ~. Note that, as op- 

posed to clustering techniques [ 11], writes into one register 

file lane do not need to be made visible to other lanes. 

Finally, the vector mask register file is also sliced across 

the 16 lanes. The mask file is very small compared to the 

vector register file (256 bits per lane, including all rename 

copies per thread) and only requires three 1-bit read ports 

and two 1-bit write ports. 

3.3. Vbox-Core Interface 

Another positive aspect of  the vector extension is that the 

Vbox can be integrated with the core with a relatively small 

interface (see Figure 2). In Tarantula, a 3-instruction bus 

carries renamed instructions from the EV8 renaming unit 

(Pbox) to the Vbox. Routing space was scarce and, hence, 

a larger bus seemed impractical to use. When instructions 

complete in the Vbox, the vector completion unit (VCU) 

sends back to the EV8 core their instruction identifiers (3x9 

bits). Final instruction retirement is performed by the EV8 

core, which is responsible for reporting to the system soft- 

ware any exceptions occurred in the vector instruction flow. 

The other major interface is a double bus to carry two 64- 

bit values from the EV8 register file to the Vbox. We note 

that all vector instructions except those of  the VV group 

require a scalar operand as a source operand. These two 

buses are used to supply this data. Finally, the EV8 core 

must also provide a kill signal, so that the vector unit can 

squash misspeculated instructions. O f  course, tightly cou- 

pling to EV8 also imposed some constraints: for example, to 

avoid excessive burden onto the operating system, the Vbox 

was also multithreaded. This decision forced using a much 

larger register file. 

3.4. Vector Memory System 

The Tarantula processor was targeted as a replacement 

for EV8 in Compaq ' s  mid-to-high end range servers and 

had to be a board-compatible replacement for EV8. Conse- 

quently, Tarantula had to integrate seamlessly into the Al- 

pha virtual memory  and the cache coherency architecture 

IThere are also 2R+2W ports to support stores and loads. 

of  EV8. Of  course, these requirements completely ruled out 

exotic packaging technologies from vector supercomputers 

that provide more than 10,000 pins per cpu. Vector memory  

accesses had to be satisfied from the on-chip caches. We 

faced several important challenges to meet  these require- 

ments. 

First, load/store bandwidth into the vector register file 

had to be an adequate match to the 32 flops of  the vector 

engine. In Tarantula, we set our design goal to a 1:1 ra- 

tio between flops and bandwidth to the cache for unit stride 

cache accesses (i.e., a 64-bit datum for every flop). Attach- 

ing the vector engine to the L1 cache did not seem a very 

promising avenue. Typical L1 sizes are too small to hold the 

working sets of  common engineering, scientific and bioin- 

formatics applications. Moreover, re-designing EV8's L I  

cache to provide sixteen independent ports to support non- 

unit strides was out of  the question. We were left with the 

obvious choice of  having the Vbox communicate  directly to 

the L2 cache (as already proposed in [15]). 

Second, dealing with non-unit strides was a central prob- 

lem in the design. Despite unit-strides being very common,  

they only account for around 80% of  all vector memory  

accesses. Large non-unit strides account roughly for an- 

other 10%, while stride-2, the next most  common case, ac- 

counts for a 4% [20, 14]. Cache lines and non-unit strides 

clearly don ' t  blend together very well. Previous research 

on the topic either focused on providing good bandwidth 

only for unit stride vector accesses [15, 8] or simply went 

for a classical cache-less design [ 1, 22]. The Cray SV 1 sys- 

tem sidestepped the problem by using single-word cache 

lines [4]. In Tarantula, we developed an address reorder- 

ing scheme, described below, that enabled a 1:2 ratio be- 

tween flops and cache accesses for non-unit stride instruc- 

tions (i.e., sixteen independent 64-bit words per cycle from 

the cache). 

Third, we had to integrate gather/scatter instructions 

smoothly into the pipeline. Gather/scatter instructions 

contain random addressing patterns to which the reorder- 

ing scheme can not be applied. Tarantula employs a 

conflict-resolution unit, also described below, that sorts 

gather/scatter addresses into bank conflict-free buckets. 

Then, these sorted addresses can be sent as normal vector 

requests to the L2 cache. 

Reusing EV8's L2 design 

Analyzing EV8's L2 physical design we realized it already 

contained an enormous number  of  independent banks each 

with its own address decoder: EV8's 4 Mbyte cache was 

physically laid out as 128 independent banks (8 ways times 

16 banks per way). In addition, the design called for cycling 

eight banks in parallel on an L2 access, and then selecting 

the correct way. 
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Thus, both from a structural and a power perspective, 

EV8's L2 could easily accommodate  reading 16 indepen- 

dent cache lines and then selecting one quadword 2 from 

each cache line provided each cache line was located on 

a different physical bank. The problem of  delivering high 

bandwidth to non-unit stride requests reduced then to gener- 

ating groups of  16 addresses that were cache-bank conflict- 

free. This is a variation of an old problem in vector memory 

design for supercomputers [20, 21], and next section de- 

scribes the particular solution employed in Tarantula. 

Confl ict-free Address  Genera t ion  

As discussed in the previous section, the key to high perfor- 

mance is the ability to read in parallel sixteen cache lines 

from the sixteen L2 cache banks. Two conditions must 

hold to allow this parallel read: first, the addresses must be 

tag-bank and data-bank conflict free (since both arrays are 

equally banked', these two conditions are equivalent). Sec- 

ond, once the sixteen data items have been read from the 

L2, they must be written into the sixteen lanes of  the vector 

register file without conflicts. That is, each lane can only 

accept one quadword from the memory  system per cycle. 

We proved that, for any 128 consecutive elements of  any 

vector with stride S = a × 2 s with cr odd and s LS 4, there 

exists a requesting order that can group these 128 elements 

into 8 groups (each with 16 addresses) which are both L2- 

bank conflict free and register-lane conflict-free. This or- 

der can be implemented using a ROM distributed across 

the lanes that contains 2.1 Kbytes of  information and a spe- 

cialized 64-by-7 multiplier in each lane that uses the ROM 

contents to compute the starting address for each address 
generator. 

The downside of our algorithm is that, as elements in the 

vectors are accessed out-of-order, we must wait for the full 

128 elements to come back from the L2 before chaining 

a dependent operation. Consequently, vector instructions 

with vector length below 128 still pay the full eight cycles to 

generate all their addresses. The detailed address reordering 

algorithm is further described and analyzed in [ 16]. 

A group of 16 conflict-free addresses is called a "slice". 

Note that a slice need not be fully populated. Some of the 

addresses in it may have the valid bit clear (due to v3_ being 

less than 128 or due to a masked memory  operation). All the 

vector memory  pipeline is built around the concept of  slices. 

Each slice is tagged with a slice identifier when it is created 

in the address generators and this tag is used throughout the 
memory  pipeline to track it. 

2A quadword (abbrv. "qw") is defined in the Alpha Architecture Ref- 
erence Manual to be a 64-bit object. 

I : Bank 0 I 0 

Pump 0 

Is 

:y 

Qe 

Figure 4. Pump structure used to accelerate 
stride-1 reads and writes. 

Stride-1 D o u b l e  Bandwidth  M o d e  

Stride-1 instructions are treated specially to take advantage 

of their spatial locality. I f  properly aligned, the 128 quad- 

words requested by a stride-I instruction are contained in 

exactly 16 cache lines (17 if the base address is not aligned 

to a cache line boundary). Rather than generating 8 slices, 

each with 16 addresses, we changed the address generation 

control to produce the starting address of each of the six- 

teen cache lines required instead. We then set the "pump" 
bit on the resulting slice 3. 

The PUMP, shown in Figure 4, is a new structure located 

at the output of  each bank in the L2 data array dedicated 

to accelerate both read and write stride-1 requests. Strides 

marked with the "pump" bit read out 16 cache lines from 

the data array just like any other slice does. But, as opposed 

to normal slices, the sixteen full cache lines are latched into 

one of  the four registers (16x512 bits each) of  the PUMP 

structure. From there, a sequencer in each bank reads two 

quadwords per cycle and sends them to the Vbox. The write 

path works similarly: the Vbox sends 32 quadwords worth 

of  data every cycle, which get written into the accumulator 

register (to the left on Figure 4). When all 128 quadwords 

have been received (i.e., four cycles later), the PUMP will 

ECC the full register and write it in a single cycle into the 

data array. We note that using the PUMP, we can sustain a 

bandwidth of 64 qw/cycle (32 from a stride-1 read and 32 
from a stride-1 write). 

Gather /Scat ters  and Self-Confl ict ing Strides 

Gather and scatter instructions do not use a stride value to 

generate their addresses. Rather, the programmer  supplies 

a vector register that contains arbitrary addresses. Con- 

sequently, addresses do not form an arithmetic series and 

our reordering algorithm does not apply. However, in order 

3For misaligned stride-I cases, the address generators will be forced to 
generate two slices, both with the pump bit set. 
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to integrate them into the memory  pipeline, we must pack 

these random addresses into slices. 

Our solution is to take the 128 addresses of  a 

gather/scatter and feed them to a piece of  logic, the 

conflict resolution box (CR), whose goal is to sort the 

addresses into buckets corresponding to the sixteen cache 

banks. As a group of sixteen addresses comes  out of  the 

address generators, their bank identifiers (bits < 9 : 6 >  of  

each address) are sent to the CR box. The CR box compares  

all sixteen bank identifiers with each other and selects the 

largest subset that are conflict-free. The resulting subset 

is packed into a slice and sent down the memory  pipe 

for further processing. As new addresses (rather, bank 

identifiers) become available, the CR box will run again a 

selection tournament across whatever addresses where left 

f rom the previous round and as many new bank identifiers 

up to a limit of  sixteen. By repeating this tournament 

procedure, eventually all addresses of  the gather/scatter 

instruction will be packed into slices (worst case, when 

all addresses map to the same bank, an instruction may 

generate 128 different slices). 

Self-conflicting strides are those strides that cause all ad- 

dresses to map to only a handful of  banks. More  formally, 

strides S = ~r x 2 s with ~r odd and s > 4 are considered 

self-conflicting. Any instruction with such a stride is treated 

exactly like a gather/scatter and run through the CR box (in- 

stead of  applying the reordering algorithm). 

Virtual Memory 

To keep the large number  of  functional units in the Vbox 

busy, it is important to avoid TLB misses. Piggy-backing on 

other work developed at Compaq to support  large pages, the 

Tarantula architecture adopted a 512 Mbyte  virtual memory  

page size [2, 3, 9]. 

The vector TLB is a parallel array of sixteen 32-entry 

fully associative TLBs, one TLB per lane. Each TLB is 

devoted to mapping the addresses generated by the address 

generator in its lane. Whenever  a slice experiences a TLB 

miss, control is transferred to system software to initiate a 

TLB refill. System software may follow two strategies to 

refill the missing mappings: (1) it may simply look at the 

missing translations and refill those lanes where the miss 

has occurred, or (2) PALcode may peek at the v s  value and 

refill the TLBs  with all the mappings that might  be needed 

by the offending instruction. 

While we would rather use sixteen direct-mapped TLBs  

from a cost and power perspective, we note that a com- 

plication appears with some very large strides: a program- 

mer  could easily craft a stride that referenced 128 different 

pages which mapped onto the same TLB index (even with 

512 Mbyte pages). Consequently, each TLB must be at least 

8-way set-associative to guarantee that forward progress is 

possible on instructions with such strides. Given this re- 

striction, a CAM-based  implementation seemed more  ef- 

fective and we compensated the extra power consumption 

by choosing a small TLB per lane (32 entries only). 

Servicing Vector Misses 

Another interesting challenge appears when a vector mem-  

ory instruction experiences a cache miss: The Vbox has sent 

a read slice to the L2 cache and several of  its sixteen ad- 

dresses miss in the lookup stage. How do we deal with this 

vector miss? 

Our solution was to treat the slice as an atomic entity. 

I f  one of  the addresses in a slice experiences one or more 

misses, the slice waits in the L2 cache (in the Miss Ad- 

dress File, MAF)  until the corresponding system requests 

are made and all the missing cache lines are received f rom 

their home nodes. The slice is "put to sleep" in the M A F  

and a "waiting" bit is set for each of  its sixteen addresses 

that missed. As each individual cache line arrives to the 

L2 f rom the system, it searches the MAF for matching ad- 

dresses. For each matching address, its "wait ing" bit is 

cleared. When all "waiting" bits are clear, the slice wakes 

up and goes to the Retry Queue (a structure within the L2 

cache itself). From there, the slice will retry, walk down 

the L2 pipe again and lookup the tag array a second time. 

The hope is this second time the slice will succeed in read- 

ing/writing its data. To avoid the potential livelock we intro- 

duced a replay threshold value. I f  a slice replays more  times 

than the threshold, the M A F  enters "panic mode"  and starts 

NACKing all L 1, Vbox and interprocessor requests that may  

prevent forward progress for that slice. Only when the slice 

is finally serviced, the M A F  resumes normal operation. 

Scalar-Vector Coherency 

Coherency problems appear in Tarantula because the EV8 

core is reading and writing f rom the L I  cache and the Vbox 

is reading/writing into the L2 cache behind its back. We 

must ensure that the data read/written both by EV8 and the 

Vbox are the same as if  both where writing sequentially into 

the same memory  space. 

The protocol used to achieve the desired scalar-vector 

coherency is based on the ideas presented in [15]. Each 

tag in the L2 cache is extended with a "presence" bit (P- 

bit). The presence bit indicates whether the cache line was 

loaded into the L2 due to a request from the EV8 core or 

not. In essence, the P-bit is like a soft-ownership bit and 

is set whenever the EV8 core touches a cache line. The P- 

bit is used whenever the Vbox is checking the L2 tags to 

know whether there is the danger that the cache lines being 

read/written might  also be in the L1 cache. I f  the P-bit is 

set, then invalidate commands  must  be sent to the L1 to syn- 

chronize the state of  both caches. The invalidate commands  
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Figure 5. Tarantula fioorplan. 

ei ther  r emove  the line f rom the L1 i f  it is c lean,  or  force  a 

wr i te - th rough  o f  the l ine to L2 i f  i t 's  dirty. Also ,  when a l ine 

is ev ic ted  f rom the L2,  if  i t ' s  P-bi t  is set, it wil l  a lso  cause  

an Inval ida te  c o m m a n d  to be sent  to the EV8 core.  

The  P-bi t  so lves  mos t  o f  the cohe rency  p r o b l e m s  that 

arise due to the ou t -o f -o rde r  execut ion  o f  vec tor  and scalar  

read /wr i te  instruct ions.  However ,  one  case  is not  covered  

and requi res  p r o g r a m m e r  in tervent ion:  a sca lar  wri te  fol- 

lowed  by a vec tor  read  4. In EV8, a scalar  s tore  sits in the 

store queue,  po ten t ia l ly  with its assoc ia ted  data,  until  it re- 

tires. At  that t ime,  it moves  f rom the store queue  into the 

write  buffer  without  informing ei ther  the L I  cache  or the 

L2 cache.  A y o u n g e r  vector  read go ing  out to the L2 has 

no v is ib i l i ty  into e i ther  the wri te  buffer  or  the store queue.  

It m a y  well  be that no P-bi t  is set in the L2. Therefore ,  

the vec tor  load  has no way  o f  knowing  i t ' s  r ead ing  stale 

data.  The  p r o g r a m m e r / c o m p i l e r  mus t  insert  a special  mem-  

ory  bar r ie r  ca l led  DrainM to so lve  this p rob lem.  When  

DrainM is about  to retire, it sends  a purge  c o m m a n d  to the 

wri te  buffer. This  purge forces  all p rev ious  s tores  out  o f  the 

store queue  and into the cache  h ierarchy,  and a lso  updates  

thei r  a s soc ia ted  L2 P-bits .  W h e n  the purge  is comple te ,  the 

DrainM ret i res  and causes  a replay trap on the fo l lowing  

inst ruct ion.  Thus,  all ins t ruct ions  y o u n g e r  than the Dra inM 

are  k i l led  and re- fe tched,  ensur ing  correc t  behavior .  

4A scalar write followed by a vector write is correctly handled by hav- 
ing all scalar writes write-through to the L2 before actually letting the vec- 
tor write proceed. This behavior is only forced for those threads that have 
vector instructions. 

Circuitry 

Core 
10 Drivers 
IO logic 
L2 cache 
R/Z Box 
Vbox 
Other 
Total (+20%) 

Die Area 
Peak Gflops 
Gflops/Watt 

CMP-EV8 

Area Power 
(%) (w) 
42 54,3 

26,5 
14 6,6 
33 5,1 
5 6,3 

6 7,9 
128,0 

250 m m  z 

20 
0,16 

Tarantula 

Area Power 
(%) (W) 

15 22,2 
26,5 

8 4,3 
43 7,6 

7 10,1 
15 30,9 
12 18,2 

143,7 

286 rnm ~ 

80 
0,55 

Table 1. Power and area estimates for a CMP- 

EV8 processor and for Tarantula. The "Total" 

line includes a 20% extra power attributed to 
leakage. 

4. Floorplan 

The  current  Tarantula f loorplan  is shown in F igure  5. A s  

it can be  seen,  the f loorplan  is h igh ly  symmet r i c .  The  cache  

is loca ted  at the outer  corners  o f  the die.  The  cache  ho lds  

a total  o f  16 M B y t e s  and is spl i t  into four  quadrants ,  in- 

dexed  by bits  < 7 : 6 >  o f  the address .  Each  quadran t  holds  4 

cache  lanes,  se lec ted  by bits  < 9 : 8 > ,  for  a total o f  16 lanes.  

Each  cache  lane ho lds  48 s tacked banks,  over  which  run 

512 wires  to read /wr i te  the cache  line data. The  wir ing  uses 

a coarse - l eve l  meta l  because  the d is tance  to the centra l  bus 

area  is ra ther  large.  

The  centra l  bus area  imp lemen t s  the c rossbar  be tween  

the cache  lanes  and the Vbox lanes. As  a l ready  d iscussed ,  

a q u a d w o r d  f rom any o f  the cache  lanes  m a y  have to go to 

any o f  the Vbox lanes.  We take advan tage  o f  the fact that bits  

f lowing f rom the quadran t s  have to " take two turns"  on their  

path  to the Vbox. This  means  that the po in t  were  the nor th-  

south wires  have to be connec t ed  to the eas t -wes t  wires  is 

an ideal  p lace  to put  the d i f ferent  c rossbar  connec t ions .  The  

centra l  bus i t se l f  carr ies  4096  bits, but  is fo lded  onto  i t se l f  

by  us ing a l ternate  Eas t -Wes t  meta l  layers ,  so that it uses an 

area  equ iva len t  to a 2048-b i t  bus. 

The  f loorplan  also i l lus t ra tes  how the d i f ferent  Vbox 

lanes  are o rgan ized  in four  g roups  o f  four  lanes. Each  lane 

shows  a shaded  area  in the midd le ,  the regis ter  file, and 

a north and south func t iona l  unit. The  inst ruct ion queue  

is r ep l i ca ted  and loca ted  in be tween  the lanes to m i n i m i z e  

wi r ing  de lays .  In each  lane, one can see an address  genera -  

tor. The  a l i gnmen t  o f  the address  genera tors  with the lanes  

i s  fundamen ta l  to ease  the wir ing  for  the sca t te r /ga ther  ad-  

dresses .  Aga in ,  the load  and store queues  are loca ted  at the 

cen te r  o f  the address  genera tors  to equa l ize  delays .  The  C R  

box is also loca ted  at the cen te r  of  all address  genera tors .  
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Benchmark I Description Inputs Comments Pref? DrainM? [ Vect. % 

MicroKernels 
STREAMS [12] Copy, Scale, Add, Triadd Kernels Reference Padding=65856 bytes 
RndCopy B(i) = A(index(i)) A,B=4096000 elements Prefetched into L2 
RndMemScale B(index(i)) = B(index(i)) + 1 B=512000 elements All data from memory 

SpecFP2000 
swim Shallow Water Model Reference Tiled following [ 17] 
art Image Recognition/Neural Networks Reference 
sixtrack High Energy Nuclear Physics Reference 

Algebra 

99.5 
yes 99.9 
yes 99.9 

yes 99.3 
93.7 

dgemm 
dtrmm 
Sparse MxV 
fft 
lu 

LinpacklO0 
LinpackTPP 

Dense, Tiled, Matrix Multiply 
Triangular matrix multiply 
Sparse matrix-vector product 
Radix-4 Fast Fourier Transform 
Lower-Upper Matrix decomposition. 
Dense Linear Equation Solver 
Dense Linear Equation Solver 

640x640 
519x603 
24696x24696 
5120FFTs 
519x603 
100xl00 
1000xl000 

yes 
Dense, Tiled yes 
887937 non-zeroes yes 
1024 elements per FFT yes 
Tiled Version 
No code reorganization 
Tiled 

yes 
yes 
yes 

99.0 
98.9 
99.3 
98.7 
98.6 
85.5 
96.5 

Bioinformat ics  

m o l d y n  I Molecular Dynamics 500 molecule system I 99.5 
Integer 

c c r a d i x  ] Tiled Integer Sort 2000000 elements From [ 10] [ 98.0 

Table 2. Benchmark  descriptions. Co lumns "Prefetch" and "Dra inM" indicate whether  the benchamrk 

uses those features. 

The  C R  box  needs  the bank  in format ion  f rom each address  

genera to r  to sort  the addresses  into conf l ic t - f ree  sl ices.  

5. Power  Est imates  

We es t ima ted  the power  o f  the Tarantula proces so r  by 

sca l ing  EV7's p o w e r  and area  es t imates  down  to 65 nm 

technology .  Table  1 presents  a b r e a k d o w n  o f  p o w e r  and 

area  es t ima tes  a s suming  a vo l tage  s l ight ly  under  I V  and a 

c lock  f requency  o f  2.5 Ghz.  The  table  presents  e s t ima tes  for  

two d i f ferent  archi tec tures :  a C M P - s t y l e  p roces so r  based  on 

two EV8 cores  5 and the Tarantula proces so r  desc r ibed  so 

far. Both  p rocesso r s  use the same  L2 cache  and m e m o r y  

subsys tem.  The  p o w e r  consumpt ion  o f  the Vbox is ex t rap-  

o la ted  us ing the power -dens i ty  o f  the f loat ing po in t  units o f  

EV7, and thus should  be cons ide red  a lower  bound,  s ince  

the T L B s  and address  genera t ion  logic  are  not  p rope r ly  ac-  

coun ted  for. 

Our  es t ima tes  show that  Tarantula is 3 .4X bet te r  in te rms 

o f  Gf lops /Wat t  than a C M P  solu t ion  based  on rep l i ca t ing  

two EV8 cores .  We  note  that add ing  f loat ing po in t  mu l t i p ly -  

accumula t e  units ( F M A C )  to Tarantula, this rate cou ld  be 

d o u b l e d  with  very  l i t t le extra  c o m p l e x i t y  and power.  In con-  

Wast, add ing  F M A C  ins t ruct ions  that  requi re  an ex t ra  third 

ope rand  to EV8 w o u l d  requi re  an expens ive  r ework  of EV8's 

ins t ruct ion  queue  and r enaming  units.  

5 Notice that in the Tarantula floorplan, a Vbox or an EV8 core could be 
used interchangeably, and yet keep the same memory system. 

6. P e r f o r m a n c e  Eva lua t ion  

Evaluation Methodology 

The  Tarantula proces so r  is t a rge ted  at scientif ic,  eng i -  

neer ing  and b io in fo rma t i c s  app l ica t ions .  Consequent ly ,  we 

se lec ted  a n u m b e r  o f  app l i ca t ions  and p rog ra m kerne ls  f rom 

these areas  to use them as our  work load .  Unfor tuna te ly ,  no 

vec tor iz ing  c o m p i l e r  that  cou ld  genera te  the new Tarantula 

ins t ruct ions  was  avai lable .  Hence ,  we used prof i l ing  to de-  

t e rmine  the ho t  rou t ines  o f  each  b e n c h m a r k  and,  then,  these  

were  c o d e d  in vec to r  a s s e m b l y  by hand.  Al l  p r o g r a m s  were  

c o m p i l e d  us ing  e i ther  C o m p a q ' s  C or  For t ran ,  vers ions  5.9 

and 5.2 respect ive ly .  The  b e n c h m a r k s  chosen  are desc r ibed  

in Table  2. 

For  our  s imula t ions ,  we used the A S I M  infras t ructure  [7] 

deve loped  by  C o m p a q ' s  V S S A D  group.  Inc luded  in the 

A S I M  f r a m e w o r k  is a cyc l e - accu ra t e  EV8 s imula tor ,  that  

is va l ida ted  aga ins t  the EV8 RTL descr ip t ion .  We m o d i f i e d  

this base  code  to der ive  the Tarantula s imulator ,  by h o o k i n g  

up the Vbox to it  and m o d i f y i n g  the Cbox mode l  to accep t  

vec tor  requests .  N o  changes  were  m a d e  to the in ternals  o f  

the Zbox or  Rbox (except ,  o f  course ,  add ing  more  ports) .  

Al l  our  s imula t ions  run in s ing le - thread ,  s i ng l e -p roces so r  

mode .  

The Tarantula a rch i t ec tu re ' s  ma in  pa rame te r s  are shown 

in Table  3. The  o the r  a rch i tec tures  under  s tudy are also in- 

c luded:  EV8 is the base l ine  aga ins t  which  we c o m p a r e  the 

Tarantula processor .  EV8+ is an EV8 processo r  e q u i p p e d  

with Tarantula's m e m o r y  sys tem.  Fina l ly ,  we inc lude  a lso  

Tarantula4, an aggres s ive ly  c loc ke d  Tarantula processor .  
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Symbol 
Core Speed (Ghz) 
Ops per Cycle: 

Core Issue 
Vbox Issue 

Peak Int/FP 
Peak Ld+St 

EVS- Vbox latency 
L 1 assoc 
LI line (bytes) 
L2 size (x2 TM) 
L2 assoc 
L2 line (bytes) 
L2 BW (GB/s) 
L2 Load-to-use lat. 

Scalar Req 
Vector Stride- 1 

Vector Odd stride 

EV8 EVS+ T T4 
2.13 2.13 2.13 4.8 

8 8 8 8 

- - 3 3 

8/4 8/4 32 32 
2+2 2+2 32+32  32+32 

- - 10 10 
2 2 2 2 

64 64 64 64 
4 16 16 16 
8 8 8 8 

64 64 64 64 
273 273 1091 2457 

12 12 28 28 
- - 34 34 
- - 3 8  3 8  

RAMBUS: 
Ports 2 8 8 8 

Speed (Mhz) 1066 1066 1066 1200 
BW (GB/s) 16.6 66.6 66.6 75.0 

Table 3. Characteristics of the four architec- 

tures under study. Note that the L2 BW refers 
to maximum sustainable bandwidth: for EVS, 
both a line read and a line write can proceed 

in parallel. For Tarantula, in stride-1 mode, 16 
lines can be read every 4 cycles and, in par- 

allel, 16 lines can be written every 4 cycles. 
Latencies are given in cycles. 

The f requency  for  each  p rocesso r  is der ived  f rom the cor-  

r e spond ing  R A M B U S  f requency  by using e i ther  a 1:2 rat io  

or  a 1:4 ratio.  

M e m o r y  S y s t e m  M i c r o b e n c h m a r k s  

Table 4 presen ts  the pe r fo rmance  o f  the three mi-  

c r o b e n c h m a r k s  targeted at measur ing  m e m o r y  sys tem 

behav io r  runn ing  on Tarantula. 

To unders tand  the copy  loop  bandwid th ,  note  that out  

o f  a peak  raw bandwid th  o f  66.625 GB/s  (8 channe ls  at 

1066 Mhz) ,  1/3 is c o n s u m e d  by d i rec tory  updates .  The  loop  

kernel  is c o m p o s e d  o f  a m e m o r y  read, a wh64 ins t ruct ion 

that genera tes  a d i rec to ry  t ransi t ion f rom Inval id  to Dir ty  

(i.e., a read f rom R A M B U S ) ,  and the store that even tua l ly  

causes  a m e m o r y  write. Thus,  2/3 are "usefu l"  bandwid th .  

Out  o f  this peak,  r ead- to -wr i t e  t ransi t ions  on the R A M B U S  

bus l imi t  our  ach ieved  bandwid th  to 90%, or  40.3 GB/s .  As  

a reference ,  the top S T R E A M S  copy  bandwid th  for  a sin- 

gle  cpu,  as o f  Oct  31 St, 2001 [12], co r r e sponds  to the N E C  

SX/5 [13] with a value o f  42.5 GB/s.  The  best  s ing le -cpu  

non-vec to r  resul t  is a Pen t ium4 1.5 Ghz  sys tem manufac -  

tured by  Fuj i t su  with a copy  bandwid th  c lose  to 2.4 GB/s .  

The RndCopy microkerne l  tests our  ga ther / sca t te r  band-  

STREAMS Streams BW Raw BW 
Copy 42983 64475 
S c a l e  41689 62492 
Add 43097 57463 
Triadd 47970 63960 

RndCopy 73456 NA 
RndMemScale 7512 50106 

Table 4. Sustained bandwidth in MBytes/s on 

Tarantula for several microkernels. The "Raw" 

column includes all memory transactions per- 
formed at the RAMBUS controller, including 

those necessary to update the directory infor- 

mation. The "Streams" column reports use- 
ful read/write bandwidth using the STREAMS 
method without accounting for directory traf- 

fic. 

width f rom L2 cache  (no TLB misses  and no L2 cache  

misses) .  Here,  the l imi ta t ion  are the bank  confl icts  encoun-  

tered by the C R  box when dea l ing  with a r andom address  

s t ream. The  bandwid th  de l ive red  co r r e sponds  to an address  

genera t ion  bandwid th  o f  a round  4.3 addresses /cyc le .  

The  R n d N e r a S c a l e  mic roke rne l  tests the random band-  

width  achievable  f rom R A M B U S .  Here,  the l imitat ion is 

not only  the address  genera t ion ,  but the fact that r andomly  

touching  R A M B U S  "pages"  causes  an extra  amount  o f  

"open ing"  and "c los ing"  o f  m e m o r y  pages:  c o m p a r e d  to 

S T R E A M S  Copy, RndMemScale per fo rms  2.5X more  

row activates and 2X m o r e  row precharges  per  m e m o r y  re- 

quest.  

B e n c h m a r k  P e r f o r m a n c e  

We turn now to the pe r fo rmance  o f  the remain ing  bench-  

marks .  The resul ts  o f  our  s imula t ions  are shown in F igure  6. 

For  each benchmark ,  we presen t  the number  o f  sus ta ined 

"opera t ions  pe r  cyc l e "  (OPC)  b roken  into three categor ies :  

f lops per  cyc le  (FPC),  m e m o r y  ope ra t ions  per  cyc le  (MPC)  

and o ther  ( inc luding  in teger  a r i thmet ic  and scalar  instruc- 

t ions).  

The  resul ts  show that for  mos t  benchmarks ,  Taran- 

tula sustains  over  10 ope ra t ions  per  cycle ,  and i t 's  not 

u n c o m m o n  to exceed  20 ope ra t ions  per  cycle.  The  

benchmarks  with less pa ra l l e l i sm are, not surpr is ingly,  

those where  ga ther / sca t te r  opera t ions  domina te :  the sparse  

ma t r ix -vec to r  mul t ip ly  and the two vers ions  o f  radix  sort. 

A l so  note how short  vec tor  length also impac ts  perfor-  

mance :  i inpacklO 0 is s igni f icant ly  s lower  than the TPP 

counterpar t .  

As  opposed  to a conven t iona l  cache- less  vec tor  machine ,  

Tarantula, l ike any conven t iona l  supersca la r  or  C M P  de- 

sign, must  pay  careful  at tent ion to exp lo i t ing  da ta  reuse  at 
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Figure  7. S p e e d u p  of EV8+ and  Tarantula over  

EV8. 

the memory  hierarchy level. Consequently, all our bench- 

marks are either cache-friendly or have been turned into 

cache-friendly codes by using standard tiling techniques. 

To stress the importance of  tiling for the memory  hierarchy 

in Tarantula, we also run a "naive" non-tiled versions of  

s w i m  (not shown in the graph). The slowdown was signif- 

icant: the non-tiled version was almost 2X slower. Also, 

benchmarks LU and LinpackTPP perform very similar 

tasks, yet L i n p a c k T P P  shows 50% more operations per 

cycle. The reason is that we performed register tiling for 

LU but not for L i n p a c k T P P ,  thus reducing LU's memory  

demands. 

Figure 7 presents the speedup of  the Tarantula proces- 

sor over EV8. As a reference, the speedup of  EV8+ is also 

included. The speedup results show that, typically, Taran- 

tula achieves a speedup of  at least 5X over EV8. Given that 

these are floating point applications, the nominal speedup 

based on raw floating point bandwidth is 8X. Thus, Taran- 

tula delivers a very good fraction of  its promised peak per- 

formance. Furthermore,  as the EV8+ results show, this 

performance advantage can not be attributed to the bigger 

cache and better memory  system alone: it 's the use of  vector 

instructions that enables squeezing m ax i m um  performance 

from this improved memory  system. 

Interestingly, six applications exceed this 8X speedup 

factor. There are a number  of  reasons for this: First, Taran- 

tula has a better f lop:mem ratio than EV8 (32:64 versus 4:4) 

for those programs that use mostly stride 1. Second, Taran- 

tula has many more registers available, which turns into 

more data reuse and less memory  operations when tiling the 

iteration space. Third, all these programs have been hand 

vectorized and hand tuned. To be fair to EV8, the same care 

should be applied optimizing the scalar inner loops. More- 

over, the EV8 versions are compiled using an EV6 sched- 

uler because no EV8 scheduler was yet available. This 

is specially significant in dgemm where EV8 only reaches 

2.5 flops/cycle. Scheduling specifically targeted to EV8 

would most  likely increase the flop rate to the peak and, 

consequently, reduce Tarantula's speedup. Fourth, vector- 

ization provides advantages because it reduces the impact  

of  branches and pointer-maintenance instructions. For pro- 

grams like f f t ,  where lots of  ILP are available, if EV8 

used all issue slots to execute 4 flops and 4 memo ry  op- 

erations, none would be left to execute loop-related con- 

trol instructions. Vector masks  are also a significant source 

of speedup in m o l d y n :  by executing under mask,  Taran- 

tula avoids hard-to-predict branches and obtains some ex- 

tra speedup. Finally, the Tarantula versions use aggressive 

prefetching techniques: note that a single vector load with a 

stride of  64 bytes can preload a total o f  128 cache lines, or 

8 KB worth of  data. In comparison,  EV8 needs a separate 

prefetch instruction for every cache line it wants to preload. 

A similar argument  explains the speedup of  s p a r s e m x v :  

Driving an eight-channel RAMBUS m e m o r y  controller is 

quite difficult for a superscalar machine that can generate 

at most  64 misses before stalling. In contrast, a handful of  

gather instructions can easily generate 1024 distinct cache 

line misses, and, consequently, drive the RAMBUS array to 

full usage. 

S c a l a b i l i t y  

We also explored how well per formance  scales as fre- 

quency increases. Figure 8 presents the results. The main 

consequence of  increasing frequency is that the processor- 

to-Rambus ratio grows very fast. Hence,  m e m o r y  opera- 

tions take substantially longer to complete  and performance 

will only scale if  (a) the program is working mostly f rom 

cache or (b) there 's  enough parallelism and prefetching ca- 

pabilities to cover  up for the increased latency. 

Our simulations show that, as expected, those programs 

290 



03 

4-'2. 
o.ll!n, ° ,i I,l,I ° " " ° i[,] Ii,] I1] I,[ |,[ |[ i .  

T 

T4 

o TIO 

Figure 8. Performance Scaling when Frequency is increased to 4.8Ghz (T4) and to 10.6Ghz (T10). The 

latter frequency results from a 1:8 ratio to a RAMBUS chip running at 1333Mhz. 

0.) 
¢..9 
c-- 

E 
o 

'1::: 
(D 

D_ 

o > 
. m  

c~ 
o 

r r  

I . O "  

0.8 - 

0 .6 -  

0.4 - 

m i [ I ,  

m 

[] , J 

\ - ) : - A  "~" "%/_ %°°% 

Figure 9. Slowdown due to disabling the 
stride-1 double-bandwidth mode. 

that mostly access the L2 cache scale very well. In contrast, 

s p a r s e m x v  barely reaches speedups of 1.6 and 1.8 when 

scaling the frequency by 2.2X and 5X respectively. The re- 

sulls are encouraging, as they show that a Tarantula core 

could have a very long life by shrinking and, thus, the de- 

sign cost could be amortized over multiple technology gen- 
erations. 

S t r i d e - 1  D o u b l e  B a n d w i d t h  m o d e  

The final experiment we present is a set of  simulations 

that measure the effect of  using the PUMP structure to ac- 

celerate stride- 1 requests. The simulation results are shown 
in Figure 9. 

Naturally, the programs that did not have their itera- 

tion space tiled suffer the most when stride-I bandwidth 

is dropped from thirty-two 64-bit words per cycle down to 

sixteen. A second effect that must be taken into account 

is that the pressure on the MAF grows by a factor of  8X, 

since, without the pump, each stride-1 request now c o n -  

sumes eight MAF slots for its eight slices as opposed to 

a single slot with the PUMP scheme. Note the performance 

of  s p a r s e m x v  drops significantly without the pump. This 

may appear surprising, but the algorithm we tested makes  

good use of  stride-1 performance.  Also, one would expect 

c c r a d S _ ×  to be dominated by gather/scatters, but stride-1 

performance is important here as well. 

7. Conc lus ions  

There still exist a wide number of applications where a 

vector processor is the most efficient way of achieving high 

performance.  In this paper we have presented Tarantula, a 

vector extension to the Alpha architecture that can achieve 

up to 104 operations per cycle (96 vector operations; 32 in- 

teger or floating point arithmetic operations, 32 loads and 

32 stores; and 8 scalar instructions). Tarantula is the proof  

that the vector paradigm can be fully exploited in a real mi- 

croprocessor environment. 

The huge bandwidth required to feed the 32 functional 

units of  Tarantula can only be provided from a large L2 

cache. Given the restrictions of  a microprocessor design, 

the main challenges that had to be solved to achieve the 

target performance are: (1) integration into the existing Al- 

pha vir tual-memory cache-coherent system, (2) good per- 

formance for non-unit strides, (3) support for gather and 

scatter instructions, and (4) reuse as much as possible the 

EV8 core to reduce design and development time. 

Our performance studies are very promising. The sus- 

tained number of  operations per cycle ranges from 10 to al- 

most 50. This performance translates into speedups from 2 

to 20 over EV8 (an aggressive high performance superscalar 

microprocessor that could execute up to 8 instructions per 

cycle). Also, when coupling our performance results with 

the initial power estimates, we believe the performance-per-  

watt would hardly be achievable by any other kind of archi- 
tecture, 
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Generat ing the right code for Tarantula is fundamental  to 

fully benefit from the L2 cache bandwidth.  Our  experience 

in hand coding the benchmarks  studied indicates that both 

tiling and aggressive prefetching are fundamental  to achieve 

the per formance  levels achieved. 
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