
Tarantula: A Vector Extension to the Alpha Architecture

Roger Espasa, Federico Ardanaz, Joel Emer $, Stephen Felix*, Julio Gago, Roger Gramunt,
Isaac Hernandez, Toni Juan, Geoff Lowney:~, Matthew Mattina ~, Andr6 Seznec :~*

Compaq-UPC Microprocessor Lab

Universitat Polit~cnica Catalunya

Barcelona, Spain

~Alpha Development Group

Compaq Computer Corporation

Shrewsbury, MA

Abstract

Tarantula is an aggressive floating point machine tar-

geted at technical scientific and bioinformatics workloads,

originally planned as a follow-on candidate to the EV8 pro-

cessor [6, 5]. Tarantula adds to the EV8 core a vector

unit capable of 32 double-precision flops per cycle. The

vector unit fetches data directly from a 16 MByte second

level cache with a peak bandwidth of sixty four 64-bit val-

ues per cycle. The whole chip is backed by a memory con-

troller capable of delivering over 64 GBytes/s of raw band-

width. Tarantula extends the Alpha 1SA with new vector

instructions that operate on new architectural state. Salient

features of the architecture and implementation are: (1) it

fully integrates into a virtual-memory cache-coherent sys-

tem without changes to its coherency protocol (2) provides

high bandwidth for non-unit stride memory accesses, (3)

supports gather/scatter instructions e3ficiently, (4)fully in-

tegrates with the EV8 core with a narrow, streamlined inter-

face, rather than acting as a co-processor, (5) can achieve a

peak of 104 operations per cycle, and (6) achieves excellent

"real-computation "per transistor and per watt ratios. Our

detailed simulations show that Tarantula achieves an aver-

age speedup of 5X over EV8, out of a peak speedup in terms

of flops of SX. Furthermore, performance on gather/scatter

intensive benchmarks such as Radix Sort is also remark-

able: a speedup of almost 3X over EV8 and 15 sustained

operations per cycle. Several benchmarks exceed 20 oper-

ations per cycle.

1. Introduction

As CMOS technology progresses, we are able to inte-
grate an ever-growing number of transistors on chip and the

*While on sabbatical from INRIA

interconnect within the die can be used to achieve massive

amounts of bandwidth from on-chip caches. The challenge

architects face is governing effectively this large amount of

computation resources that CMOS makes available.

If a large number of resources such as functional units,
memory ports, etc. are to be controlled individually, the

amount of real estate devoted to control structures grows
non-linearly. The lack of control aggregation results in long,

slow global wires that limit overall performance and hinder

scalability. Both wide superscalar and VLIW architectures

suffer from this problem, due to the small granularity of
their instructions. Scalar instructions typically only encode

one, sometimes two, operations to be performed by the pro-

cessor (an add, an add and a memory access, a multiply-add,

etc.). Yet, the number of control structures required to exe-

cute each instruction is growing with processor complexity

and frequency.

In contrast, vector ISAs provide an efficient organi-

zation for controlling a large amount of computation re-
sources. Vector instructions offer a good aggregation of

control by localizing the expression of parallelism. Fur-

thermore, vector ISAs emphasize local communication and

provide excellent computation/transistor ratios. These prop-

erties translate in regular VLSI structures that require very

simple, distributed control. Combining the parallel execu-

tion capabilities of vector instructions with the effectiveness

of on-chip caches, good speedups over a conventional su-

perscalar processor can be obtained with a main memory

bandwidth on the order of 1 byte per flop. Since increas-

ing memory bandwidth is one of the most expensive pieces

of a system's overall cost, maximizing the computation ca-

pabilities attached to a given memory bandwidth seems the

right path to follow. In particular, a large L2 cache can pro-

vide tremendous bandwidth to a vector engine. Such an L2

will naturally have a long latency. Nonetheless, the latency-
tolerant properties of vector instructions offsets this down-
side while taking advantage of the bandwidth offered. The

1063-6897/02 $17.00 © 2002 IEEE 281

main difficulties in this mixture of vectors and caches are

non-unit strides and gather/scatter operations.

Tarantula is an aggressive floating point machine tar-

geted at technical, scientific and bioinformatics workloads,

originally planned as a follow-on candidate to the EV8 pro-

cessor [5, 6]. Tarantula adds to the EV8 core a vector unit

capable of 32 double-precision flops per cycle. The vec-

tor unit fetches data directly from a 16 MByte second level

cache with a peak bandwidth of sixty four 64-bit values per

cycle. The whole chip is backed by a memory controller

capable o f delivering over 64 GBytes/s of raw bandwidth.

Tarantula's architecture and implementation have a

number of features worth highlighting. The vector unit

can be tightly integrated into an aggressive out-of-order

wide-issue superscalar core with a narrow, streamlined

interface that consists of: instruction delivery, kill signals,

scalar data and a handshaking protocol for cooperative

retirement o f instructions. The new vector memory in-

structions fully integrate into the Alpha virtual-memory

cache-coherent system without changes to its coherency

p ro toco l . Our design shows that the vector unit can be

easily integrated into the existing EV8 physical L2 design

simply by duplicating some control structures and changing

the pipeline flow slightly. An address reordering scheme

has been devised to allow conflict-free vector requests to
the L2. This technique provides very good bandwidth on

both unit and non-unit strides. Tarantula also provides

high bandwidth for gather and scatter instructions and

smoothly integrates them into the aggressive out-of-order

memory pipeline. The vector execution engine uses register

renaming and out-of-order execution and supports the SMT

paradigm [! 8, 19] to easily integrate with the EV8 core.

Finally, the question of commercial viability must also

be addressed from two points of view: first, the cost of con-

verting the installed customer base to a vector ISA and sec-

ond, the market demand for a chip such as Tarantula.

Despite all its advantages, a vector ISA extension does-

n ' t come without a cost. The major investment comes from

software compatibility: new ,vector instructions require ap-

plication recompilation and tuning to effectively use the on-

chip vector unit. Compiler support to integrate tiling tech-

niques with vectorization techniques is needed to extract

maximum performance frgm the memory hierarchy. Also,

our experience coding benchmarks for Tarantula shows

that proper data prefetching is of paramount importance to

achieve good performance.

Concerning market demand, we note the scientific com-

puting segment still represents a multi-billion dollar mar-

ket segment. Many of the applications in this domain ex-

hibit a large degree of vector (data) parallelism and manip-

ulate large volumes of data. This vector parallelism is not

correctly accommodated by the small first level caches of

current off-the-shelf microprocessors: poor cache behavior

ruins performance. We believe performance of chip multi-

processors on vector codes will suffer from the same diffi-

culty: processors will compete for the L2 and contention

will lead to poor performance. So, although the rapidly

growing workstation and PC market segment has oriented

the whole computer industry (including the server indus-

try) towards using standard off-the-shelf microprocessors,
we believe the time is ready again for architecture special-

ization to better match application needs.

2. Instruction Set Extension

Tarantula adds to the Alpha ISA new architectural state

in the form of 32 vector registers (v 0 . . v 3 1) and their as-

sociated control registers: vector length (v l) , vector stride

(vs) , and vector mask (vm). Each vector register holds 128

64-bit values. The v l register is an 8-bit register that con-

trols the length of each vector operation. The v s register

is a 64-bit register that controls the stride between memory

locations accessed by vector memory operations. The wra

register is a 128-bit register used in instructions that operate

under mask.
To operate on this new architectural state, 45 new in-

structions (not counting data-type variations) are added to

the instruction set. The new instructions can be broadly

grouped in to five categories: vector-vector operate (VV),

vector-scalar operate (VS), strided memory access (SM),
random memory access (RM), and vector control (VC).

Figure 1 presents the semantics of a representative instruc-

tion of the first four groups. The instructions semantics are

straightforward extensions of the existing scalar Alpha in-

structions to allow operating on the vector registers.

A novel feature of the ISA is the approach to vector

mask computation. To avoid long latency data transfers

back and forth between the Vbox ALUs and the EV8 scalar

register file (a 20-cycle round-trip delay), vector compar-

isons store the resulting boolean vector in a full vector reg-

ister. This allows Coding complex if-statements without

vector-scalar communication. For example, the translation

ofA(i).ne.0.and. B(i) .gt.2wouldbe:

vloadq A(1) --> v0

vloadq B(i) --> vl

vcmpne v0, #0 --> v6

vcmpgt vl, #2 --> v7

vand v6, v7 --> v8

setvm v8 --> vm

The final setvm instruction indicates that the v 8 register

is to be copied into the vm register. Subsequent instructions

that use the "under-mask" specifier will use this vra value.

Since the vra register is renamed in the Vbox, the next mask

value can be pre-computed while using the current one and

2 8 2

Figure 1. The four major instruction groups
in Tarantula. For each group, a representative
instruction is shown and its semantics pre-
sented.

Example Semantics

W/d~DQ Va, Vb, Vc f o r {£ = O; i < v l ~ £++) [
V c [t l • V a i l] ÷ V l o l i l

)

for ~ i = wl; i • 1 2 8 ; i + *) [

V c l £] <UNPREDICTASSE>
)

VSWJLO V a , F b , V c f o r (£ = 0 ; i < v l ; t ÷ *) {

v c I i l = V a i l] * F b
)

for (i = w £ ; £ < 128; i÷÷) (
Vc I i] •UNPREDI CTABLE>

)

IrUOADQ Vc, off(Rb) S • GE~_RANDCM PERMUT(0,VL-1)
foreach i in S (
• a =
V c [t l R b = M E M [. =] + o f f + (i * ~ }

for (i = vl; i < 128; i++) (
Vc{l] = <UNPREDICTABLE>

)

VSCATQ Va, Rb, Vc S = GEN_RANDC~ PERMUT(0,UL-I)
foreach i in S {

. a = V a i l] ÷ Kb
M ~ l e a] = V e i l]

} Figure 2. Block diagram of the Tarantula pro-

compilers can interleave instructions from two separate if-

then-else statements in a loop body.

Following the Alpha tradition, register v 3 1 is hardwired

to zero. Therefore, vector prefetches, including gather and

scatter prefetches, can be trivially crafted by using v 3 1 as

the destination register. As in most Alpha implementations,

page faults and TLB misses caused by vector prefetches are

simply ignored.

Tarantula provides a precise exception model at the in-

struction level granularity. I f a vector instruction causes a

trap (TLB miss, divide-by-0, etc.), the system software will

be provided with the PC of the faulting instruction, but no

extra information on which element (or elements) within the

vector caused the fault.

3. Tarantu la Arch i tec ture

3.1. Block Diagram

Figure 2 shows a high-level block diagram of the Taran-

tula processor. The EV8 core is extended with a vector unit

(Vbox) that handles the execution of all new vector instruc-

tions. The EV8 core performs all scalar computations and

is also responsible for fetching, renaming and retiring vec-

tor instructions on behalf of the Vbox. Furthermore, EV8

also notifies the Vbox whenever instructions must be killed

due to mispredicts or faults. Vbox and the EV8 core also

cooperate for retiring vector memory writes.

Tarantula reuses the memory controller (Zbox) and the

inter-processor router (Rbox) from the EV8 design. We do

however assume that in the 2006 time frame we should be

Group

v v

cessor

L A N E 0 L A N E 7 L A N E 8 i L A N E 1 5

Figure 3. Vbox Lanes.

able to roughly quadruple main memory bandwidth from

the current 12.8 GBytes/s to over 50 GBytes/s. While

the exact memory technology to be employed is not cur-

rently known, for the purposes of this study we assumed

the Zbox would control 32 RAMBUS channels, grouped as

eight ports (roughly 64 GBytes/s raw bandwidth assuming
1066 Mhz parts).

3.2. Vector Execution Engine

The vector execution engine is organized as 16 lanes (see

Figure 3). Each lane has a slice of the vector register file,

a slice of the vector mask file, two functional units, an ad-

dress generator and a private TLB. Notice the regularity of

the overall engine: all lanes are identical and the instruction

queues are located in the middle. There is no communica-

tion across lanes, except for gather/scatters (see below).

Regularity and design simplicity are not the only advan-

tages that lanes give us. The schedulers that govern the al-

location o f this large number of functional units are very

simple too. To them, the 32 functional units appear only as

just two resources: the north and south issue ports. When an

283

instruction is launched onto one of the two ports, the sixteen

associated functional units work fully synchronously on the

instruction. Thus, the port is marked busy for [v l / 1 6] cy-

cles (typically, 8 cycles). To put it in another way: a simple

dual-issue window is able to fully utilize 32 functional units.

The fact that the full register file is sliced into sixteen

pieces is yet another advantage of the vector instruction

paradigm. The bandwidth between the vector register file

and the functional units is 64+32 operands per cycle. A

unified register file would be totally out of the question. In

contrast, the sliced register file enables that each lane only

needs 4R+2W for the functional units ~. Note that, as op-

posed to clustering techniques [11], writes into one register

file lane do not need to be made visible to other lanes.

Finally, the vector mask register file is also sliced across

the 16 lanes. The mask file is very small compared to the

vector register file (256 bits per lane, including all rename

copies per thread) and only requires three 1-bit read ports

and two 1-bit write ports.

3.3. Vbox-Core Interface

Another positive aspect of the vector extension is that the

Vbox can be integrated with the core with a relatively small

interface (see Figure 2). In Tarantula, a 3-instruction bus

carries renamed instructions from the EV8 renaming unit

(Pbox) to the Vbox. Routing space was scarce and, hence,

a larger bus seemed impractical to use. When instructions

complete in the Vbox, the vector completion unit (VCU)

sends back to the EV8 core their instruction identifiers (3x9

bits). Final instruction retirement is performed by the EV8

core, which is responsible for reporting to the system soft-

ware any exceptions occurred in the vector instruction flow.

The other major interface is a double bus to carry two 64-

bit values from the EV8 register file to the Vbox. We note

that all vector instructions except those of the VV group

require a scalar operand as a source operand. These two

buses are used to supply this data. Finally, the EV8 core

must also provide a kill signal, so that the vector unit can

squash misspeculated instructions. O f course, tightly cou-

pling to EV8 also imposed some constraints: for example, to

avoid excessive burden onto the operating system, the Vbox

was also multithreaded. This decision forced using a much

larger register file.

3.4. Vector Memory System

The Tarantula processor was targeted as a replacement

for EV8 in Compaq ' s mid-to-high end range servers and

had to be a board-compatible replacement for EV8. Conse-

quently, Tarantula had to integrate seamlessly into the Al-

pha virtual memory and the cache coherency architecture

IThere are also 2R+2W ports to support stores and loads.

of EV8. Of course, these requirements completely ruled out

exotic packaging technologies from vector supercomputers

that provide more than 10,000 pins per cpu. Vector memory

accesses had to be satisfied from the on-chip caches. We

faced several important challenges to meet these require-

ments.

First, load/store bandwidth into the vector register file

had to be an adequate match to the 32 flops of the vector

engine. In Tarantula, we set our design goal to a 1:1 ra-

tio between flops and bandwidth to the cache for unit stride

cache accesses (i.e., a 64-bit datum for every flop). Attach-

ing the vector engine to the L1 cache did not seem a very

promising avenue. Typical L1 sizes are too small to hold the

working sets of common engineering, scientific and bioin-

formatics applications. Moreover, re-designing EV8's L I

cache to provide sixteen independent ports to support non-

unit strides was out of the question. We were left with the

obvious choice of having the Vbox communicate directly to

the L2 cache (as already proposed in [15]).

Second, dealing with non-unit strides was a central prob-

lem in the design. Despite unit-strides being very common,

they only account for around 80% of all vector memory

accesses. Large non-unit strides account roughly for an-

other 10%, while stride-2, the next most common case, ac-

counts for a 4% [20, 14]. Cache lines and non-unit strides

clearly don ' t blend together very well. Previous research

on the topic either focused on providing good bandwidth

only for unit stride vector accesses [15, 8] or simply went

for a classical cache-less design [1, 22]. The Cray SV 1 sys-

tem sidestepped the problem by using single-word cache

lines [4]. In Tarantula, we developed an address reorder-

ing scheme, described below, that enabled a 1:2 ratio be-

tween flops and cache accesses for non-unit stride instruc-

tions (i.e., sixteen independent 64-bit words per cycle from

the cache).

Third, we had to integrate gather/scatter instructions

smoothly into the pipeline. Gather/scatter instructions

contain random addressing patterns to which the reorder-

ing scheme can not be applied. Tarantula employs a

conflict-resolution unit, also described below, that sorts

gather/scatter addresses into bank conflict-free buckets.

Then, these sorted addresses can be sent as normal vector

requests to the L2 cache.

Reusing EV8's L2 design

Analyzing EV8's L2 physical design we realized it already

contained an enormous number of independent banks each

with its own address decoder: EV8's 4 Mbyte cache was

physically laid out as 128 independent banks (8 ways times

16 banks per way). In addition, the design called for cycling

eight banks in parallel on an L2 access, and then selecting

the correct way.

284

Thus, both from a structural and a power perspective,

EV8's L2 could easily accommodate reading 16 indepen-

dent cache lines and then selecting one quadword 2 from

each cache line provided each cache line was located on

a different physical bank. The problem of delivering high

bandwidth to non-unit stride requests reduced then to gener-

ating groups of 16 addresses that were cache-bank conflict-

free. This is a variation of an old problem in vector memory

design for supercomputers [20, 21], and next section de-

scribes the particular solution employed in Tarantula.

Confl ict-free Address Genera t ion

As discussed in the previous section, the key to high perfor-

mance is the ability to read in parallel sixteen cache lines

from the sixteen L2 cache banks. Two conditions must

hold to allow this parallel read: first, the addresses must be

tag-bank and data-bank conflict free (since both arrays are

equally banked', these two conditions are equivalent). Sec-

ond, once the sixteen data items have been read from the

L2, they must be written into the sixteen lanes of the vector

register file without conflicts. That is, each lane can only

accept one quadword from the memory system per cycle.

We proved that, for any 128 consecutive elements of any

vector with stride S = a × 2 s with cr odd and s LS 4, there

exists a requesting order that can group these 128 elements

into 8 groups (each with 16 addresses) which are both L2-

bank conflict free and register-lane conflict-free. This or-

der can be implemented using a ROM distributed across

the lanes that contains 2.1 Kbytes of information and a spe-

cialized 64-by-7 multiplier in each lane that uses the ROM

contents to compute the starting address for each address
generator.

The downside of our algorithm is that, as elements in the

vectors are accessed out-of-order, we must wait for the full

128 elements to come back from the L2 before chaining

a dependent operation. Consequently, vector instructions

with vector length below 128 still pay the full eight cycles to

generate all their addresses. The detailed address reordering

algorithm is further described and analyzed in [16].

A group of 16 conflict-free addresses is called a "slice".

Note that a slice need not be fully populated. Some of the

addresses in it may have the valid bit clear (due to v3_ being

less than 128 or due to a masked memory operation). All the

vector memory pipeline is built around the concept of slices.

Each slice is tagged with a slice identifier when it is created

in the address generators and this tag is used throughout the
memory pipeline to track it.

2A quadword (abbrv. "qw") is defined in the Alpha Architecture Ref-
erence Manual to be a 64-bit object.

I : Bank 0 I 0

Pump 0

Is

:y

Qe

Figure 4. Pump structure used to accelerate
stride-1 reads and writes.

Stride-1 D o u b l e Bandwidth M o d e

Stride-1 instructions are treated specially to take advantage

of their spatial locality. I f properly aligned, the 128 quad-

words requested by a stride-I instruction are contained in

exactly 16 cache lines (17 if the base address is not aligned

to a cache line boundary). Rather than generating 8 slices,

each with 16 addresses, we changed the address generation

control to produce the starting address of each of the six-

teen cache lines required instead. We then set the "pump"
bit on the resulting slice 3.

The PUMP, shown in Figure 4, is a new structure located

at the output of each bank in the L2 data array dedicated

to accelerate both read and write stride-1 requests. Strides

marked with the "pump" bit read out 16 cache lines from

the data array just like any other slice does. But, as opposed

to normal slices, the sixteen full cache lines are latched into

one of the four registers (16x512 bits each) of the PUMP

structure. From there, a sequencer in each bank reads two

quadwords per cycle and sends them to the Vbox. The write

path works similarly: the Vbox sends 32 quadwords worth

of data every cycle, which get written into the accumulator

register (to the left on Figure 4). When all 128 quadwords

have been received (i.e., four cycles later), the PUMP will

ECC the full register and write it in a single cycle into the

data array. We note that using the PUMP, we can sustain a

bandwidth of 64 qw/cycle (32 from a stride-1 read and 32
from a stride-1 write).

Gather /Scat ters and Self-Confl ict ing Strides

Gather and scatter instructions do not use a stride value to

generate their addresses. Rather, the programmer supplies

a vector register that contains arbitrary addresses. Con-

sequently, addresses do not form an arithmetic series and

our reordering algorithm does not apply. However, in order

3For misaligned stride-I cases, the address generators will be forced to
generate two slices, both with the pump bit set.

285

to integrate them into the memory pipeline, we must pack

these random addresses into slices.

Our solution is to take the 128 addresses of a

gather/scatter and feed them to a piece of logic, the

conflict resolution box (CR), whose goal is to sort the

addresses into buckets corresponding to the sixteen cache

banks. As a group of sixteen addresses comes out of the

address generators, their bank identifiers (bits < 9 : 6 > of

each address) are sent to the CR box. The CR box compares

all sixteen bank identifiers with each other and selects the

largest subset that are conflict-free. The resulting subset

is packed into a slice and sent down the memory pipe

for further processing. As new addresses (rather, bank

identifiers) become available, the CR box will run again a

selection tournament across whatever addresses where left

f rom the previous round and as many new bank identifiers

up to a limit of sixteen. By repeating this tournament

procedure, eventually all addresses of the gather/scatter

instruction will be packed into slices (worst case, when

all addresses map to the same bank, an instruction may

generate 128 different slices).

Self-conflicting strides are those strides that cause all ad-

dresses to map to only a handful of banks. More formally,

strides S = ~r x 2 s with ~r odd and s > 4 are considered

self-conflicting. Any instruction with such a stride is treated

exactly like a gather/scatter and run through the CR box (in-

stead of applying the reordering algorithm).

Virtual Memory

To keep the large number of functional units in the Vbox

busy, it is important to avoid TLB misses. Piggy-backing on

other work developed at Compaq to support large pages, the

Tarantula architecture adopted a 512 Mbyte virtual memory

page size [2, 3, 9].

The vector TLB is a parallel array of sixteen 32-entry

fully associative TLBs, one TLB per lane. Each TLB is

devoted to mapping the addresses generated by the address

generator in its lane. Whenever a slice experiences a TLB

miss, control is transferred to system software to initiate a

TLB refill. System software may follow two strategies to

refill the missing mappings: (1) it may simply look at the

missing translations and refill those lanes where the miss

has occurred, or (2) PALcode may peek at the v s value and

refill the TLBs with all the mappings that might be needed

by the offending instruction.

While we would rather use sixteen direct-mapped TLBs

from a cost and power perspective, we note that a com-

plication appears with some very large strides: a program-

mer could easily craft a stride that referenced 128 different

pages which mapped onto the same TLB index (even with

512 Mbyte pages). Consequently, each TLB must be at least

8-way set-associative to guarantee that forward progress is

possible on instructions with such strides. Given this re-

striction, a CAM-based implementation seemed more ef-

fective and we compensated the extra power consumption

by choosing a small TLB per lane (32 entries only).

Servicing Vector Misses

Another interesting challenge appears when a vector mem-

ory instruction experiences a cache miss: The Vbox has sent

a read slice to the L2 cache and several of its sixteen ad-

dresses miss in the lookup stage. How do we deal with this

vector miss?

Our solution was to treat the slice as an atomic entity.

I f one of the addresses in a slice experiences one or more

misses, the slice waits in the L2 cache (in the Miss Ad-

dress File, MAF) until the corresponding system requests

are made and all the missing cache lines are received f rom

their home nodes. The slice is "put to sleep" in the M A F

and a "waiting" bit is set for each of its sixteen addresses

that missed. As each individual cache line arrives to the

L2 f rom the system, it searches the MAF for matching ad-

dresses. For each matching address, its "wait ing" bit is

cleared. When all "waiting" bits are clear, the slice wakes

up and goes to the Retry Queue (a structure within the L2

cache itself). From there, the slice will retry, walk down

the L2 pipe again and lookup the tag array a second time.

The hope is this second time the slice will succeed in read-

ing/writing its data. To avoid the potential livelock we intro-

duced a replay threshold value. I f a slice replays more times

than the threshold, the M A F enters "panic mode" and starts

NACKing all L 1, Vbox and interprocessor requests that may

prevent forward progress for that slice. Only when the slice

is finally serviced, the M A F resumes normal operation.

Scalar-Vector Coherency

Coherency problems appear in Tarantula because the EV8

core is reading and writing f rom the L I cache and the Vbox

is reading/writing into the L2 cache behind its back. We

must ensure that the data read/written both by EV8 and the

Vbox are the same as if both where writing sequentially into

the same memory space.

The protocol used to achieve the desired scalar-vector

coherency is based on the ideas presented in [15]. Each

tag in the L2 cache is extended with a "presence" bit (P-

bit). The presence bit indicates whether the cache line was

loaded into the L2 due to a request from the EV8 core or

not. In essence, the P-bit is like a soft-ownership bit and

is set whenever the EV8 core touches a cache line. The P-

bit is used whenever the Vbox is checking the L2 tags to

know whether there is the danger that the cache lines being

read/written might also be in the L1 cache. I f the P-bit is

set, then invalidate commands must be sent to the L1 to syn-

chronize the state of both caches. The invalidate commands

286

t . , i w m ~ u ~ w ~ v t ~ m n w t .

!

N1
- - Q 1 = = = F

H

Figure 5. Tarantula fioorplan.

ei ther r emove the line f rom the L1 i f it is c lean, or force a

wr i te - th rough o f the l ine to L2 i f i t 's dirty. Also , when a l ine

is ev ic ted f rom the L2, if i t ' s P-bi t is set, it wil l a lso cause

an Inval ida te c o m m a n d to be sent to the EV8 core.

The P-bi t so lves mos t o f the cohe rency p r o b l e m s that

arise due to the ou t -o f -o rde r execut ion o f vec tor and scalar

read /wr i te instruct ions. However , one case is not covered

and requi res p r o g r a m m e r in tervent ion: a sca lar wri te fol-

lowed by a vec tor read 4. In EV8, a scalar s tore sits in the

store queue, po ten t ia l ly with its assoc ia ted data, until it re-

tires. At that t ime, it moves f rom the store queue into the

write buffer without informing ei ther the L I cache or the

L2 cache. A y o u n g e r vector read go ing out to the L2 has

no v is ib i l i ty into e i ther the wri te buffer or the store queue.

It m a y well be that no P-bi t is set in the L2. Therefore ,

the vec tor load has no way o f knowing i t ' s r ead ing stale

data. The p r o g r a m m e r / c o m p i l e r mus t insert a special mem-

ory bar r ie r ca l led DrainM to so lve this p rob lem. When

DrainM is about to retire, it sends a purge c o m m a n d to the

wri te buffer. This purge forces all p rev ious s tores out o f the

store queue and into the cache h ierarchy, and a lso updates

thei r a s soc ia ted L2 P-bits . W h e n the purge is comple te , the

DrainM ret i res and causes a replay trap on the fo l lowing

inst ruct ion. Thus, all ins t ruct ions y o u n g e r than the Dra inM

are k i l led and re- fe tched, ensur ing correc t behavior .

4A scalar write followed by a vector write is correctly handled by hav-
ing all scalar writes write-through to the L2 before actually letting the vec-
tor write proceed. This behavior is only forced for those threads that have
vector instructions.

Circuitry

Core
10 Drivers
IO logic
L2 cache
R/Z Box
Vbox
Other
Total (+20%)

Die Area
Peak Gflops
Gflops/Watt

CMP-EV8

Area Power
(%) (w)
42 54,3

26,5
14 6,6
33 5,1
5 6,3

6 7,9
128,0

250 m m z

20
0,16

Tarantula

Area Power
(%) (W)

15 22,2
26,5

8 4,3
43 7,6

7 10,1
15 30,9
12 18,2

143,7

286 rnm ~

80
0,55

Table 1. Power and area estimates for a CMP-

EV8 processor and for Tarantula. The "Total"

line includes a 20% extra power attributed to
leakage.

4. Floorplan

The current Tarantula f loorplan is shown in F igure 5. A s

it can be seen, the f loorplan is h igh ly symmet r i c . The cache

is loca ted at the outer corners o f the die. The cache ho lds

a total o f 16 M B y t e s and is spl i t into four quadrants , in-

dexed by bits < 7 : 6 > o f the address . Each quadran t holds 4

cache lanes, se lec ted by bits < 9 : 8 > , for a total o f 16 lanes.

Each cache lane ho lds 48 s tacked banks, over which run

512 wires to read /wr i te the cache line data. The wir ing uses

a coarse - l eve l meta l because the d is tance to the centra l bus

area is ra ther large.

The centra l bus area imp lemen t s the c rossbar be tween

the cache lanes and the Vbox lanes. As a l ready d iscussed ,

a q u a d w o r d f rom any o f the cache lanes m a y have to go to

any o f the Vbox lanes. We take advan tage o f the fact that bits

f lowing f rom the quadran t s have to " take two turns" on their

path to the Vbox. This means that the po in t were the nor th-

south wires have to be connec t ed to the eas t -wes t wires is

an ideal p lace to put the d i f ferent c rossbar connec t ions . The

centra l bus i t se l f carr ies 4096 bits, but is fo lded onto i t se l f

by us ing a l ternate Eas t -Wes t meta l layers , so that it uses an

area equ iva len t to a 2048-b i t bus.

The f loorplan also i l lus t ra tes how the d i f ferent Vbox

lanes are o rgan ized in four g roups o f four lanes. Each lane

shows a shaded area in the midd le , the regis ter file, and

a north and south func t iona l unit. The inst ruct ion queue

is r ep l i ca ted and loca ted in be tween the lanes to m i n i m i z e

wi r ing de lays . In each lane, one can see an address genera -

tor. The a l i gnmen t o f the address genera tors with the lanes

i s fundamen ta l to ease the wir ing for the sca t te r /ga ther ad-

dresses . Aga in , the load and store queues are loca ted at the

cen te r o f the address genera tors to equa l ize delays . The C R

box is also loca ted at the cen te r of all address genera tors .

287

Benchmark I Description Inputs Comments Pref? DrainM? [Vect. %

MicroKernels
STREAMS [12] Copy, Scale, Add, Triadd Kernels Reference Padding=65856 bytes
RndCopy B(i) = A(index(i)) A,B=4096000 elements Prefetched into L2
RndMemScale B(index(i)) = B(index(i)) + 1 B=512000 elements All data from memory

SpecFP2000
swim Shallow Water Model Reference Tiled following [17]
art Image Recognition/Neural Networks Reference
sixtrack High Energy Nuclear Physics Reference

Algebra

99.5
yes 99.9
yes 99.9

yes 99.3
93.7

dgemm
dtrmm
Sparse MxV
fft
lu

LinpacklO0
LinpackTPP

Dense, Tiled, Matrix Multiply
Triangular matrix multiply
Sparse matrix-vector product
Radix-4 Fast Fourier Transform
Lower-Upper Matrix decomposition.
Dense Linear Equation Solver
Dense Linear Equation Solver

640x640
519x603
24696x24696
5120FFTs
519x603
100xl00
1000xl000

yes
Dense, Tiled yes
887937 non-zeroes yes
1024 elements per FFT yes
Tiled Version
No code reorganization
Tiled

yes
yes
yes

99.0
98.9
99.3
98.7
98.6
85.5
96.5

Bioinformat ics

m o l d y n I Molecular Dynamics 500 molecule system I 99.5
Integer

c c r a d i x] Tiled Integer Sort 2000000 elements From [10] [98.0

Table 2. Benchmark descriptions. Co lumns "Prefetch" and "Dra inM" indicate whether the benchamrk

uses those features.

The C R box needs the bank in format ion f rom each address

genera to r to sort the addresses into conf l ic t - f ree sl ices.

5. Power Est imates

We es t ima ted the power o f the Tarantula proces so r by

sca l ing EV7's p o w e r and area es t imates down to 65 nm

technology . Table 1 presents a b r e a k d o w n o f p o w e r and

area es t ima tes a s suming a vo l tage s l ight ly under I V and a

c lock f requency o f 2.5 Ghz. The table presents e s t ima tes for

two d i f ferent archi tec tures : a C M P - s t y l e p roces so r based on

two EV8 cores 5 and the Tarantula proces so r desc r ibed so

far. Both p rocesso r s use the same L2 cache and m e m o r y

subsys tem. The p o w e r consumpt ion o f the Vbox is ex t rap-

o la ted us ing the power -dens i ty o f the f loat ing po in t units o f

EV7, and thus should be cons ide red a lower bound, s ince

the T L B s and address genera t ion logic are not p rope r ly ac-

coun ted for.

Our es t ima tes show that Tarantula is 3 .4X bet te r in te rms

o f Gf lops /Wat t than a C M P solu t ion based on rep l i ca t ing

two EV8 cores . We note that add ing f loat ing po in t mu l t i p ly -

accumula t e units (F M A C) to Tarantula, this rate cou ld be

d o u b l e d with very l i t t le extra c o m p l e x i t y and power. In con-

Wast, add ing F M A C ins t ruct ions that requi re an ex t ra third

ope rand to EV8 w o u l d requi re an expens ive r ework of EV8's

ins t ruct ion queue and r enaming units.

5 Notice that in the Tarantula floorplan, a Vbox or an EV8 core could be
used interchangeably, and yet keep the same memory system.

6. P e r f o r m a n c e Eva lua t ion

Evaluation Methodology

The Tarantula proces so r is t a rge ted at scientif ic, eng i -

neer ing and b io in fo rma t i c s app l ica t ions . Consequent ly , we

se lec ted a n u m b e r o f app l i ca t ions and p rog ra m kerne ls f rom

these areas to use them as our work load . Unfor tuna te ly , no

vec tor iz ing c o m p i l e r that cou ld genera te the new Tarantula

ins t ruct ions was avai lable . Hence , we used prof i l ing to de-

t e rmine the ho t rou t ines o f each b e n c h m a r k and, then, these

were c o d e d in vec to r a s s e m b l y by hand. Al l p r o g r a m s were

c o m p i l e d us ing e i ther C o m p a q ' s C or For t ran , vers ions 5.9

and 5.2 respect ive ly . The b e n c h m a r k s chosen are desc r ibed

in Table 2.

For our s imula t ions , we used the A S I M infras t ructure [7]

deve loped by C o m p a q ' s V S S A D group. Inc luded in the

A S I M f r a m e w o r k is a cyc l e - accu ra t e EV8 s imula tor , that

is va l ida ted aga ins t the EV8 RTL descr ip t ion . We m o d i f i e d

this base code to der ive the Tarantula s imulator , by h o o k i n g

up the Vbox to it and m o d i f y i n g the Cbox mode l to accep t

vec tor requests . N o changes were m a d e to the in ternals o f

the Zbox or Rbox (except , o f course , add ing more ports) .

Al l our s imula t ions run in s ing le - thread , s i ng l e -p roces so r

mode .

The Tarantula a rch i t ec tu re ' s ma in pa rame te r s are shown

in Table 3. The o the r a rch i tec tures under s tudy are also in-

c luded: EV8 is the base l ine aga ins t which we c o m p a r e the

Tarantula processor . EV8+ is an EV8 processo r e q u i p p e d

with Tarantula's m e m o r y sys tem. Fina l ly , we inc lude a lso

Tarantula4, an aggres s ive ly c loc ke d Tarantula processor .

288

Symbol
Core Speed (Ghz)
Ops per Cycle:

Core Issue
Vbox Issue

Peak Int/FP
Peak Ld+St

EVS- Vbox latency
L 1 assoc
LI line (bytes)
L2 size (x2 TM)
L2 assoc
L2 line (bytes)
L2 BW (GB/s)
L2 Load-to-use lat.

Scalar Req
Vector Stride- 1

Vector Odd stride

EV8 EVS+ T T4
2.13 2.13 2.13 4.8

8 8 8 8

- - 3 3

8/4 8/4 32 32
2+2 2+2 32+32 32+32

- - 10 10
2 2 2 2

64 64 64 64
4 16 16 16
8 8 8 8

64 64 64 64
273 273 1091 2457

12 12 28 28
- - 34 34
- - 3 8 3 8

RAMBUS:
Ports 2 8 8 8

Speed (Mhz) 1066 1066 1066 1200
BW (GB/s) 16.6 66.6 66.6 75.0

Table 3. Characteristics of the four architec-

tures under study. Note that the L2 BW refers
to maximum sustainable bandwidth: for EVS,
both a line read and a line write can proceed

in parallel. For Tarantula, in stride-1 mode, 16
lines can be read every 4 cycles and, in par-

allel, 16 lines can be written every 4 cycles.
Latencies are given in cycles.

The f requency for each p rocesso r is der ived f rom the cor-

r e spond ing R A M B U S f requency by using e i ther a 1:2 rat io

or a 1:4 ratio.

M e m o r y S y s t e m M i c r o b e n c h m a r k s

Table 4 presen ts the pe r fo rmance o f the three mi-

c r o b e n c h m a r k s targeted at measur ing m e m o r y sys tem

behav io r runn ing on Tarantula.

To unders tand the copy loop bandwid th , note that out

o f a peak raw bandwid th o f 66.625 GB/s (8 channe ls at

1066 Mhz) , 1/3 is c o n s u m e d by d i rec tory updates . The loop

kernel is c o m p o s e d o f a m e m o r y read, a wh64 ins t ruct ion

that genera tes a d i rec to ry t ransi t ion f rom Inval id to Dir ty

(i.e., a read f rom R A M B U S) , and the store that even tua l ly

causes a m e m o r y write. Thus, 2/3 are "usefu l" bandwid th .

Out o f this peak, r ead- to -wr i t e t ransi t ions on the R A M B U S

bus l imi t our ach ieved bandwid th to 90%, or 40.3 GB/s . As

a reference , the top S T R E A M S copy bandwid th for a sin-

gle cpu, as o f Oct 31 St, 2001 [12], co r r e sponds to the N E C

SX/5 [13] with a value o f 42.5 GB/s. The best s ing le -cpu

non-vec to r resul t is a Pen t ium4 1.5 Ghz sys tem manufac -

tured by Fuj i t su with a copy bandwid th c lose to 2.4 GB/s .

The RndCopy microkerne l tests our ga ther / sca t te r band-

STREAMS Streams BW Raw BW
Copy 42983 64475
S c a l e 41689 62492
Add 43097 57463
Triadd 47970 63960

RndCopy 73456 NA
RndMemScale 7512 50106

Table 4. Sustained bandwidth in MBytes/s on

Tarantula for several microkernels. The "Raw"

column includes all memory transactions per-
formed at the RAMBUS controller, including

those necessary to update the directory infor-

mation. The "Streams" column reports use-
ful read/write bandwidth using the STREAMS
method without accounting for directory traf-

fic.

width f rom L2 cache (no TLB misses and no L2 cache

misses) . Here, the l imi ta t ion are the bank confl icts encoun-

tered by the C R box when dea l ing with a r andom address

s t ream. The bandwid th de l ive red co r r e sponds to an address

genera t ion bandwid th o f a round 4.3 addresses /cyc le .

The R n d N e r a S c a l e mic roke rne l tests the random band-

width achievable f rom R A M B U S . Here, the l imitat ion is

not only the address genera t ion , but the fact that r andomly

touching R A M B U S "pages" causes an extra amount o f

"open ing" and "c los ing" o f m e m o r y pages: c o m p a r e d to

S T R E A M S Copy, RndMemScale per fo rms 2.5X more

row activates and 2X m o r e row precharges per m e m o r y re-

quest.

B e n c h m a r k P e r f o r m a n c e

We turn now to the pe r fo rmance o f the remain ing bench-

marks . The resul ts o f our s imula t ions are shown in F igure 6.

For each benchmark , we presen t the number o f sus ta ined

"opera t ions pe r cyc l e " (OPC) b roken into three categor ies :

f lops per cyc le (FPC), m e m o r y ope ra t ions per cyc le (MPC)

and o ther (inc luding in teger a r i thmet ic and scalar instruc-

t ions).

The resul ts show that for mos t benchmarks , Taran-

tula sustains over 10 ope ra t ions per cycle , and i t 's not

u n c o m m o n to exceed 20 ope ra t ions per cycle. The

benchmarks with less pa ra l l e l i sm are, not surpr is ingly,

those where ga ther / sca t te r opera t ions domina te : the sparse

ma t r ix -vec to r mul t ip ly and the two vers ions o f radix sort.

A l so note how short vec tor length also impac ts perfor-

mance : i inpacklO 0 is s igni f icant ly s lower than the TPP

counterpar t .

As opposed to a conven t iona l cache- less vec tor machine ,

Tarantula, l ike any conven t iona l supersca la r or C M P de-

sign, must pay careful at tent ion to exp lo i t ing da ta reuse at

289

o
Q..
O

40-

30-

20-

10-

0-"

III

%.%
%

!!! °

I I I I I I I I

• O t h e r

• n FPC

m M P C

Figure 6. O p e r a t i o n s per cycle s u s t a i n e d in

Tarantula. Each bar is broken d o w n into F lops

per cycle (FPC) , M e m o r y O p e r a t i o n s per Cy-

cle (M P C) and Other (wh ich inc ludes in teger

and scalar opera t ions) .

1 5 -

m 10
" O

I1)

5

0

. | , I

] 'j
I I I I I I • • ' ; 1 1 ~

I I I I I I I I I I I I

• EV8+

mT

Figure 7. S p e e d u p of EV8+ and Tarantula over

EV8.

the memory hierarchy level. Consequently, all our bench-

marks are either cache-friendly or have been turned into

cache-friendly codes by using standard tiling techniques.

To stress the importance of tiling for the memory hierarchy

in Tarantula, we also run a "naive" non-tiled versions of

s w i m (not shown in the graph). The slowdown was signif-

icant: the non-tiled version was almost 2X slower. Also,

benchmarks LU and LinpackTPP perform very similar

tasks, yet L i n p a c k T P P shows 50% more operations per

cycle. The reason is that we performed register tiling for

LU but not for L i n p a c k T P P , thus reducing LU's memory

demands.

Figure 7 presents the speedup of the Tarantula proces-

sor over EV8. As a reference, the speedup of EV8+ is also

included. The speedup results show that, typically, Taran-

tula achieves a speedup of at least 5X over EV8. Given that

these are floating point applications, the nominal speedup

based on raw floating point bandwidth is 8X. Thus, Taran-

tula delivers a very good fraction of its promised peak per-

formance. Furthermore, as the EV8+ results show, this

performance advantage can not be attributed to the bigger

cache and better memory system alone: it 's the use of vector

instructions that enables squeezing m ax i m um performance

from this improved memory system.

Interestingly, six applications exceed this 8X speedup

factor. There are a number of reasons for this: First, Taran-

tula has a better f lop:mem ratio than EV8 (32:64 versus 4:4)

for those programs that use mostly stride 1. Second, Taran-

tula has many more registers available, which turns into

more data reuse and less memory operations when tiling the

iteration space. Third, all these programs have been hand

vectorized and hand tuned. To be fair to EV8, the same care

should be applied optimizing the scalar inner loops. More-

over, the EV8 versions are compiled using an EV6 sched-

uler because no EV8 scheduler was yet available. This

is specially significant in dgemm where EV8 only reaches

2.5 flops/cycle. Scheduling specifically targeted to EV8

would most likely increase the flop rate to the peak and,

consequently, reduce Tarantula's speedup. Fourth, vector-

ization provides advantages because it reduces the impact

of branches and pointer-maintenance instructions. For pro-

grams like f f t , where lots of ILP are available, if EV8

used all issue slots to execute 4 flops and 4 memo ry op-

erations, none would be left to execute loop-related con-

trol instructions. Vector masks are also a significant source

of speedup in m o l d y n : by executing under mask, Taran-

tula avoids hard-to-predict branches and obtains some ex-

tra speedup. Finally, the Tarantula versions use aggressive

prefetching techniques: note that a single vector load with a

stride of 64 bytes can preload a total o f 128 cache lines, or

8 KB worth of data. In comparison, EV8 needs a separate

prefetch instruction for every cache line it wants to preload.

A similar argument explains the speedup of s p a r s e m x v :

Driving an eight-channel RAMBUS m e m o r y controller is

quite difficult for a superscalar machine that can generate

at most 64 misses before stalling. In contrast, a handful of

gather instructions can easily generate 1024 distinct cache

line misses, and, consequently, drive the RAMBUS array to

full usage.

S c a l a b i l i t y

We also explored how well per formance scales as fre-

quency increases. Figure 8 presents the results. The main

consequence of increasing frequency is that the processor-

to-Rambus ratio grows very fast. Hence, m e m o r y opera-

tions take substantially longer to complete and performance

will only scale if (a) the program is working mostly f rom

cache or (b) there 's enough parallelism and prefetching ca-

pabilities to cover up for the increased latency.

Our simulations show that, as expected, those programs

290

03

4-'2.
o.ll!n, ° ,i I,l,I ° " " ° i[,] Ii,] I1] I,[|,[|[i .

T

T4

o TIO

Figure 8. Performance Scaling when Frequency is increased to 4.8Ghz (T4) and to 10.6Ghz (T10). The

latter frequency results from a 1:8 ratio to a RAMBUS chip running at 1333Mhz.

0.)
¢..9
c--

E
o

'1:::
(D

D_

o >
. m

c~
o

r r

I . O "

0.8 -

0 .6 -

0.4 -

m i [I ,

m

[] , J

\ -) : - A "~" "%/_ %°°%

Figure 9. Slowdown due to disabling the
stride-1 double-bandwidth mode.

that mostly access the L2 cache scale very well. In contrast,

s p a r s e m x v barely reaches speedups of 1.6 and 1.8 when

scaling the frequency by 2.2X and 5X respectively. The re-

sulls are encouraging, as they show that a Tarantula core

could have a very long life by shrinking and, thus, the de-

sign cost could be amortized over multiple technology gen-
erations.

S t r i d e - 1 D o u b l e B a n d w i d t h m o d e

The final experiment we present is a set of simulations

that measure the effect of using the PUMP structure to ac-

celerate stride- 1 requests. The simulation results are shown
in Figure 9.

Naturally, the programs that did not have their itera-

tion space tiled suffer the most when stride-I bandwidth

is dropped from thirty-two 64-bit words per cycle down to

sixteen. A second effect that must be taken into account

is that the pressure on the MAF grows by a factor of 8X,

since, without the pump, each stride-1 request now c o n -

sumes eight MAF slots for its eight slices as opposed to

a single slot with the PUMP scheme. Note the performance

of s p a r s e m x v drops significantly without the pump. This

may appear surprising, but the algorithm we tested makes

good use of stride-1 performance. Also, one would expect

c c r a d S _ × to be dominated by gather/scatters, but stride-1

performance is important here as well.

7. Conc lus ions

There still exist a wide number of applications where a

vector processor is the most efficient way of achieving high

performance. In this paper we have presented Tarantula, a

vector extension to the Alpha architecture that can achieve

up to 104 operations per cycle (96 vector operations; 32 in-

teger or floating point arithmetic operations, 32 loads and

32 stores; and 8 scalar instructions). Tarantula is the proof

that the vector paradigm can be fully exploited in a real mi-

croprocessor environment.

The huge bandwidth required to feed the 32 functional

units of Tarantula can only be provided from a large L2

cache. Given the restrictions of a microprocessor design,

the main challenges that had to be solved to achieve the

target performance are: (1) integration into the existing Al-

pha vir tual-memory cache-coherent system, (2) good per-

formance for non-unit strides, (3) support for gather and

scatter instructions, and (4) reuse as much as possible the

EV8 core to reduce design and development time.

Our performance studies are very promising. The sus-

tained number of operations per cycle ranges from 10 to al-

most 50. This performance translates into speedups from 2

to 20 over EV8 (an aggressive high performance superscalar

microprocessor that could execute up to 8 instructions per

cycle). Also, when coupling our performance results with

the initial power estimates, we believe the performance-per-

watt would hardly be achievable by any other kind of archi-
tecture,

291

Generat ing the right code for Tarantula is fundamental to

fully benefit from the L2 cache bandwidth. Our experience

in hand coding the benchmarks studied indicates that both

tiling and aggressive prefetching are fundamental to achieve

the per formance levels achieved.

Credits and Acknowledgments

G. Lowney and J. Emer have pushed this project for-

ward from its creation up to the momen t the Alpha team

was transferred to Intel. Without their encouragement and

technical insights, the project would have not been possible.

The core Tarantula team is: R. Espasa: Lead Architect.

E Ardanaz: CR box, benchmarking. S. Felix: floorplan,

wireplan and power estimates. J. Gago: Cbox, benchmark-

ing. R. Gramunt: Vbox, masks, benchmarking. I. Hernan-

dez: Zbox, benchmarking. T. Juan: floorplan, quad-cache

proposal. M. Mattina: Cbox. A. Seznec: m e m o r y accessing

scheme, memory coherency.

We would like to give very special thanks to the A S I M

team, for a terrific model ing envi ronment that made this

project so much easier: J. Emer, P. Ahuja, N. Binkert,

E. Borch, R. Espasa, T. Juan, A. Klauser, C.K. Luk,

S. Manne, S. Mukherjee, H. Patil, and Steven Wallace.

Also, thanks to M. Jim6nez for tiling most o f our bench-

marks and J. Corbal for the Rambus model.

Finally we would also like to thank the fol lowing in-

dividuals for their valuable input: T. Fossum, P. Bannon,

S. Root, J. Leonard, B.J. Jung, R. Foster, G. Chrysos,

S. Samudrala, R. Weiss, B. Noyce, J. Piper, B. Hanek, and

the G E M compi ler team.

References

[1] K. Asanovic, J. Beck, B. lrissou, B. Kingsbury, N. Morgan,
and J. Wawrzynek. The TO Vector Microprocessor. in Hot

Chips VI1, pages 187-196, August 1995.
[2] P. Bannon. Alpha 21364: A Scalable Single-chip SMP. in

Microprocessor Forum, October 1998.
[3] P. Bannon. EV7. In Microprocessor Forwn, October 2001.
[4] Cray, Inc. Cray SVI. In

http://www.cra):com/products/systems/svl/, 2001.
[5] K. Diefendorff. Compaq Chooses SMT for Alpha. Micro-

processor Report, 13 (16): 5-11, December 1999.
[6] J. Emer. Simultaneous multithreading: Multiplying alpha's

performance. In Microprocessor Forum, October 1999.
[7] J. Emer, P. Ahuja, N. Binkert, E. Borch, R. Espasa, T. Juan,

A. Klauser, C.-K. Luk, S. Manne, S. S. Mukherjee, H. Patil,
and S. Wallace. Asim: A Performance Model Framework.
IEEE Computer, 35(2):68-76, February 2002.

[8] R. Espasa and M. Valero. Exploiting Instruction- and Data-
Level Parallelism. IEEE Micro, pages 20--27, Septem-

ber/October 1997.
[9] L. Gwennap. Alpha 21364 to Ease Memory Bottlenck. Mi-

croprocessor Report, 12(16): 12-15, October 1998.

[10] D. Jimenez-Gonzalez, J. J. Navarro, and J. Larriba-Pey. The
effect of local sort on parallel sorting algorithms. In lOth

Euromicro Workshop on Parallel, Distributed and Network-

based Processing, January 2002.
[11] J. Keller. The 21264: A Superscalar Alpha Processor with

Out-of-Order Execution. In Microprocessor Forum, October

1996.
[12] J. D. McCalpin. Memory Bandwidth and Machine Bal-

ance in Current High Performance Computers. IEEE TCCA

Newsletter; see also http://www.cs.virginia.edl~/stream, De-

cember 1995.
[13] NEC, Inc. NEC SX5, Vector Technology. In

http://www.nec.com.awqlpcsd/vectol:htm, 2001.
[14] F. Quintana. Vector Accelerators for Superscalar Proces-

sors. PhD thesis, Universidad de las Palmas de Gran Ca-
naria, 2001.

[15] F. Quintana, J. Corbal, R. Espasa, and M. Valero. Adding
a Vector Unit to a Superscalar Processor. In blter~Tatiotza/

Conference on S,percomputing (ICS). ACM Computer So-
ciety Press, 1999.

[16] A. Seznec and R. Espasa. Conflict free accesses to strided
vectors on a banked cache. In Pteparation.

[17] Y. Song and Z. Li. New tiling techniques to improve cache
temporal locality. In SIGPLAN Confelence on Program-

ruing Language Design and bnplementation, pages 215-

228, 1999.
[18] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L.

Lo, and R. L. Stature. Exploiting choice: Instruction fetch
and issue on an implementable simultaneous multithreading
processor. In ISCA, pages 392-403, 1995.

[19] D. M. Tullsen, S. J. Eggers, and H. M. Levy. Simultaneous
multithreading: Maximizing on-chip parallelism. In ISCA,

pages 191-202. ACM Press, May 1996.
[20] M. Valero, T. Lang, J. Llaberia, M. Peiron, and J. Navarro.

Increasing the number of strides for conflict-free vector ac-
cess. b~ternational Symposium on Computer Architecture,

pages 372-381, 1992.
[21] M. Valero, T. Lang, M. Peiron, and E. Ayguad6. Conflict-

Free Access for Streams in Multimodule Memories. IEEE

Transactions on Computers, 44(5):634-646, May 1995.
[22] J. Wawrzynek, K. Asanovic, B. Kingsbury, D..Johnson,

J. Beck, and N. Morgan. Spert-tl: A vector microprocessor
system. Computer, 29(3):79-86, 1996.

292

