
Tardis: Time Traveling Coherence Algorithm for

Distributed Shared Memory

Xiangyao Yu

CSAIL, MIT

Cambridge, MA, USA

yxy@mit.edu

Srinivas Devadas

CSAIL, MIT

Cambridge, MA, USA

devadas@mit.edu

Abstract—A new memory coherence protocol, Tardis, is pro-
posed. Tardis uses timestamp counters representing logical time
as well as physical time to order memory operations and enforce
sequential consistency in any type of shared memory system.
Tardis is unique in that as compared to the widely-adopted
directory coherence protocol, and its variants, it completely
avoids multicasting and only requires O(logN) storage per
cache block for an N -core system rather than O(N) sharer
information. Tardis is simpler and easier to reason about, yet
achieves similar performance to directory protocols on a wide
range of benchmarks run on 16, 64 and 256 cores.

Index Terms—coherence; timestamp; scalability; sequential
consistency;

I. INTRODUCTION

Shared memory systems are ubiquitous in parallel com-

puting. Examples include multi-core and multi-socket pro-

cessors, and distributed shared memory systems (DSM). The

correctness of these systems is defined by the memory con-

sistency model which specifies the legitimate interleaving of

operations from different nodes (e.g., cores or processors).

The enforcement of a consistency model heavily relies on

the underlying coherence protocol. For a shared memory

system, the coherence protocol is the key component to ensure

performance and scalability.

When the data can be cached in the local memory of a

node, most large-scale shared memory systems today adopt

directory based coherence protocols [1], [2]. Examples include

many-core systems with large core count [3], [4], coherence

between multi-socket systems like Intel’s QPI [5] and AMD’s

HyperTransport [6], and coherence of distributed shared mem-

ory systems like IVY [7] and Treadmarks [8]. A well known

challenge in a directory coherence protocol is latency and

scalability. For example, these protocols keep a list of nodes

(sharers) caching each data and send invalidations to sharers

before the data is modified by some node. Waiting for all

invalidation requests to be acknowledged may take a long time

and storing the sharer information or supporting broadcasting

does not scale well as the number of nodes increases.

We propose a new coherence protocol, Tardis, which is

simpler and more scalable than the simplest directory proto-

col, but has equivalent performance. Tardis directly expresses

the memory consistency model by explicitly enforcing the

global memory order using timestamp counters that represent

logical as opposed to physical time; it does this without

requiring a globally synchronized clock unlike prior timestamp

coherence schemes (e.g., [9], [10]), and without requiring

multicast/broadcast support unlike prior directory coherence

schemes (e.g., [11], [12]). In Tardis, only the timestamps

and the owner ID need to be stored for each address for a

O(logN) cost where N is the number of processors or cores;

the O(N) sharer information of common directory protocols

is not required. The requirement of storing sharers is avoided

partly through the novel insight that a writer can instantly jump

ahead1 to a time when the sharer copies have expired and

immediately perform the write without violating sequential

consistency. A formal proof that Tardis satisfies sequential

consistency can be found in [13].2

We evaluated Tardis in the context of multi-core proces-

sors. Our experiments showed that Tardis achieves similar

performance to its directory counterpart over a wide range of

benchmarks. Due to its simplicity and excellent performance,

we believe Tardis is a competitive alternative to directory

coherence for massive-core and DSM systems.

We provide background in Section II, describe the basic

Tardis protocol in Section III, and optimizations to the basic

protocol in Section IV. We evaluate Tardis in Section VI,

discuss related work in Section VII and conclude the paper

in Section VIII.

II. BACKGROUND

In this section, we provide some background on memory

consistency and coherence.

A. Sequential Consistency

A memory consistency model defines the correctness of a

shared memory system. Specifically, it defines the legitimate

behavior of memory loads and stores. Although a large number

of consistency models exist, we will focus on sequential

consistency due to its simplicity.

Sequential consistency was first proposed and formalized by

Lamport [14]. A parallel program is sequentially consistent if

“the result of any execution is the same as if the operations

of all processors (cores) were executed in some sequential

order, and the operations of each individual processor (core)

1hence the name Tardis!
2The proof corresponds to a slightly simplified version of the protocol

presented here.

appear in this sequence in the order specified by its program”.

If we use <p and <m to denote program order and global

memory order respectively, sequential consistency requires the

following two rules to be held [15]:

Rule 1: X <p Y =⇒ X <m Y

Rule 2:

Value of L(a) = Value of Max<m{S(a)|S(a) <m L(a)}
where L(a) is a load to address a and S(a) is a store to address

a; the Max<m operator selects the most recent operation in

the global memory order.

Rule 1 says that if an operation X (a load or a store) is

before another operation Y in the program order of any core,

X must precede Y in the global memory order. Rule 2 says

that a load to an address should return the value of the most

recent store to that address with respect to the global memory

order.

B. Directory-Based Coherence

In practical systems, each core/processor has some private

local storage to exploit locality. A memory coherence protocol

is therefore used to support the consistency model.

Although both snoopy and directory protocols are used in

small systems, virtually all large-scale shared memory systems

today use some variant of the basic directory-based coherence

protocol. The directory is a software or hardware structure

tracking how the data are shared or owned by different

cores/processors. In a directory protocol, the second rule of

sequential consistency is achieved through the invalidation

mechanism; when a core/processor writes to an address that is

shared, all the shared copies need to be invalidated before the

write can happen. Future reads to that address have to send

requests to the directory which returns the value of the last

write. This mechanism essentially guarantees that reads that

happen after the last write with respect to physical time can

only observe the value of the last write (the second rule of

sequential consistency).

The directory needs to keep the sharer information of

each address in order to correctly deliver the invalidations.

If the system has N cores/processors, the canonical protocol

requires O(N) storage per address, which does not scale well

when the system gets bigger. Alternative solutions to avoid

O(N) storage do exist (cf. Section VII) but either require

broadcasting, incur significant additional complexity, or do not

perform well.

III. BASIC PROTOCOL

We present a new coherence protocol, Tardis, which only

requires O(logN) storage per cacheline and requires neither

broadcasting/multicasting support nor a globally synchronized

clock across the whole system. Tardis works for all types of

distributed shared memory systems and is compatible with

different memory consistency models.

In this paper, we present the Tardis protocol for sequential

consistency in the context of a multi-core processor with

shared last level cache (LLC). Our discussion applies equally

well to other types of shared memory systems.

A. Timestamp Ordering

In a directory protocol (cf. Section II-B), the global memory

order (<m) is enforced through the physical time order. i.e., if

X and Y are memory operations to the same address A and

one of them is a store, then

X <m Y =⇒ X <pt Y

In Tardis, we break the correlation between the global

memory order and the physical time order for write after

read (WAR) dependencies while maintaining the correlation

for write after write (WAW) and read after write (RAW)

dependencies.

S1(A) <m S2(A) =⇒ S1(A) <pt S2(A)

S(A) <m L(A) =⇒ S(A) <pt L(A)

L(A) <m S(A) 6=⇒ L(A) <pt S(A)

Tardis achieves this by explicitly assigning a timestamp to

each memory operation to indicate its global memory order.

Specifically, the global memory order in Tardis is defined as

a combination of physical time and logical timestamp order,

i.e., physi-logical time order, which we will call physiological

time order for ease of pronunciation.

Definition 1 (Physiological Time Rule):

X <m Y := X <ts Y or (X =ts Y and X <pt Y)

In Definition 1 the global memory order is explicitly

expressed using timestamps. Operations without dependency

(e.g., two concurrent read operations) or with obvious relative

ordering (e.g., accesses to private data from the same core)

can share the same timestamp and their global memory order

is implicitly expressed using the physical time order.

Using the physiological time rule, Rule 1 of sequential con-

sistency becomes X <p Y ⇒ X <ts ∨(X =ts Y ∧X <pt Y).
Assuming a processor always does in-order commit, we have

X <p Y ⇒ X <pt Y . So Tardis only needs to guarantee

that X <p Y ⇒ X ≤ts Y , i.e., operations from the same

processor have monotonically increasing timestamps in the

program order. For Rule 2 of sequential consistency, Tardis

needs to guarantee that a load observes the correct store in the

global memory order as defined by Definition 1. The correct

store is the latest store – either the one with the largest logical

timestamp or the latest physical time among the stores with

the largest logical timestamp [13].

We note that the physiological timestamp here is different

from Lamport clocks [16]. In Lamport clocks, a timestamp is

incremented for each operation while a physiological times-

tamp is not incremented if the order is implicit in physical

time. That said, the physiological timestamp does share some

commonality with the Lamport clock. In a sense, Tardis

applies Lamport/physiological timestamp to distributed shared

memory systems.

TABLE I
TIMESTAMP MANAGEMENT IN THE TARDIS PROTOCOL WITHOUT PRIVATE

MEMORY

Request Type Load Request Store Request

Timestamp
Operation

pts ⇐ Max(pts,wts)
rts ⇐ Max(pts, rts)

pts ⇐ Max(pts, rts + 1)
wts ⇐ pts

rts ⇐ pts

B. Tardis without Private Cache

In Tardis, timestamps are maintained as logical counters.

Each core keeps a program timestamp (pts) which is the

timestamp of the last operation in the program order. Each

cacheline keeps a read timestamp (rts) and a write timestamp

(wts). The rts equals the largest timestamp among all the loads

of the cacheline thus far and the wts equals the timestamp of

the latest store to the cacheline. Tardis keeps the invariant

that for a cacheline, its current data must be valid between

its current wts and rts. The pts should not be confused with

the processor clock, it does not increment every cycle and is

not globally synchronized. The directory structure is replaced

with a timestamp manager. Any load or store request to the

LLC should go to the timestamp manager.

For illustrative purposes, we first show the Tardis proto-

col assuming no private cache and all data fitting in the

shared LLC. Each cacheline has a unique copy in the LLC

which serves all the memory requests. Although no coherence

protocol is required in such a system, the protocol in this

section provides necessary background in understanding the

more general Tardis protocol in Section III-C.

Table I shows one possible timestamp management policy

that obeys the two rules of sequential consistency. But other

policies also exist. Each memory request contains the core’s

pts before the current memory operation. After the request,

pts is updated to the timestamp of the current operation.

For a load request, the timestamp manager returns the value

of the last store. According to Rule 1, the load timestamp must

be no less than the current pts. According to Rule 2, the load

timestamp must be no less than wts which is the timestamp of

the last store to this cacheline. So the timestamp of the load

equals Max(pts,wts). If the final pts > rts, then rts bumps

up to this pts since the rts should be the timestamp of the last

read in the timestamp order.

For a store request, the last load of the cacheline (at rts) did

not observe the value of the current store. According to Rule

2, the timestamp of the current store must be greater than the

rts of the cacheline (the timestamp of the last load). So pts

becomes Max(pts, rts + 1). wts and rts should also bump up

to this final pts since a new version has been created.

Both Rule 1 and Rule 2 hold throughout the protocol: the

pts never decreases and a load always observes the correct

store in the timestamp order.

C. Tardis with Private Cache

With private caching, data accessed from the LLC are stored

in the private cache. The protocol introduced in Section III-B

largely remains the same. However, two extra mechanisms

need to be added.

Timestamp Reservation: Unlike the previous protocol

where a load happens at a particular timestamp, timestamp

reservation allows a load to reserve the cacheline in the private

cache for a period of logical time (i.e., the lease). The end

timestamp of the reservation is stored in rts. The cacheline

can be read until the timestamp expires (pts > rts). If the

cacheline being accessed has already expired, a request must

be sent to the timestamp manager to extend the lease.

Exclusive Ownership: Like in a directory protocol, a

modified cacheline can be exclusively cached in a private

cache. In the timestamp manager, the cacheline is in exclusive

state and the owner of the cacheline is also stored which

requires log(N) bits of storage. The data can be accessed

freely by the owner core as long as it is in the exclusive state;

and the timestamps are properly updated with each access. If

another core later accesses the same cacheline, a write back

(the owner continues to cache the line in shared state) or flush

request (the owner invalidates the line) is sent to the owner

which replies with the latest data and timestamps.

Note that in the private cache, the meanings of rts for shared

and exclusive cachelines are different. For a shared cacheline,

rts is the end timestamp of the reservation; for an exclusive

cacheline, rts is the timestamp of the last load or store. The

state transition and the timestamp management of Tardis with

private cache are shown in Table II and Table III. Table II

shows the state transition at the private cache and Table III

shows the state transition at the shared timestamp manager.

Table IV shows the network message types used in the Tardis

protocol where the suffix REQ and REP represent request and

response respectively.

In the protocol, each cacheline (denoted as D) has a write

timestamp (D.wts) and a read timestamp (D.rts). Initially, all

pts’s and mts’s are 1 and all caches are empty. Some network

messages (denoted as M or reqM) also have timestamps

associated with them. Each message requires at most two

timestamps.

We now discuss different cases of the Tardis protocol shown

in both tables.

1) State Transition in Private Cache (Table II):

Load to Private Cache (column 1, 4, 5): A load to

the private cache is considered as a hit if the cacheline is in

exclusive state or is in shared state and has not expired (pts ≤
rts). Otherwise, a SH REQ is sent to the timestamp manager

to load the data or to extend the existing lease. The request

message has the current wts of the cacheline indicating the

version of the cached data.

Store to Private Cache (column 2, 4, 5): A store to the

private cache can only happen if the cacheline is exclusively

owned by the core. Same as directory coherence, EX REQ is

sent to the timestamp manager for exclusive ownership. The

rts and wts of the private data are updated to Max(pts, rts+1)
because the old version might be loaded at timestamp rts by

another core.

Eviction (column 3): Evicting shared cachelines does

not require sending any network message. The cacheline can

simply be invalidated. Evicting exclusive cachelines is the

TABLE II
STATE TRANSITION IN PRIVATE CACHE. TM IS THE SHARED TIMESTAMP MANAGER, D IS THE DATA, M IS THE MESSAGE, reqM IS THE REQUEST

MESSAGE IF TWO MESSAGES ARE INVOLVED. TIMESTAMP TRANSITION IS HIGHLIGHTED IN RED.

States
Core Event Network Event

Load Store Eviction SH REP or

EX REP

RENEW REP or

UPGRADE REP

FLUSH REQ or

WB REQ

Invalid send SH REQ to TM

M.wts⇐0,

M.pts⇐pts

send EX REQ to TM

M.wts⇐0

Fill in data

SH REP

D.wts⇐M.wts

D.rts⇐M.rts

state⇐Shared

EX REP

D.wts⇐M.wts

D.rts⇐M.rts

state⇐Excl.

Shared

pts ≤ rts

Hit

pts⇐Max(pts,

D.wts)

send EX REQ to TM

M.wts⇐D.wts

state⇐Invalid

No msg sent.

RENEW REP

D.rts⇐M.rts

UPGRADE REP

D.rts⇐M.rts

state⇐Excl.

Shared

pts > rts

send SH REQ to TM

M.wts⇐D.wts,

M.pts⇐pts

Exclusive Hit

pts⇐Max(pts,

D.wts)

D.rts⇐Max(pts,

D.rts)

Hit

pts⇐Max(pts,

D.rts+1)

D.wts⇐pts

D.rts⇐pts

state⇐Invalid

send FLUSH REP

to TM

M.wts⇐D.wts,

M.rts⇐D.rts

FLUSH REQ

M.wts⇐D.wts

M.rts⇐D.rts

send FLUSH REP to TM

state⇐Invalid

WB REQ

D.rts⇐Max(D.rts,

D.wts+lease, reqM.rts)

M.wts⇐D.wts

M.rts⇐D.rts

send WB REP to TM

state⇐Shared

TABLE III
STATE TRANSITION IN TIMESTAMP MANAGER.

States SH REQ EX REQ Eviction DRAM REP FLUSH REP or

WB REP

Invalid Load from DRAM Fill in data

D.wts⇐mts

D.rts⇐mts

state⇐Shared

Shared D.rts⇐Max(D.rts,

D.wts+lease, reqM.pts+lease)

if reqM.wts=D.wts

send RENEW REP to requester

M.rts⇐D.rts

else

send SH REP to requester

M.wts⇐D.wts

M.rts⇐D.rts

M.rts⇐D.rts

state⇐Excl.

if reqM.wts=D.wts

send UPGRADE REP to

requester

else

M.wts⇐D.wts

send EX REP to requester

mts⇐Max(mts,

D.rts)

Store data to

DRAM if dirty

state⇐Invalid

Exclusive send WB REQ to the owner

M.rts⇐reqM.pts+lease

send FLUSH REQ to the owner Fill in data

D.wts⇐M.wts,

D.rts⇐M.rts

state⇐Shared

same as in directory coherence; the data is returned to the

timestamp manager (through a FLUSH REP message) and the

cacheline is invalidated.

Flush or Write Back (column 6): Exclusive cachelines in

the private cache may receive flush or write back requests from

the timestamp manager if the cacheline is evicted from the

LLC or accessed by other cores. A flush is handled similarly to

an eviction where the data is returned and the line invalidated.

For a write back request, the data is returned but the line

becomes shared.

2) State Transition in Timestamp Manager (Table III):

Shared Request to Timestamp Manager (column 1): If

the cacheline is invalid in LLC, it must be loaded from DRAM.

If it is exclusively owned by another core, then a write back

request is sent to the owner. When the cacheline is in the

Shared state, it is reserved for a period of logical time by

setting the rts to be the end timestamp of the reservation, and

the line can only be read from wts to rts in the private cache.

If the wts of the request equals the wts of the cacheline

in the timestamp manager, the data in the private cache must

be the same as the data in the LLC. So a RENEW REP is

sent back to the requester without the data payload. Otherwise

SH REP is sent back with the data.

Exclusive Request to Timestamp Manager (column 2):

An exclusive request can be either an exclusive load or

exclusive store. Similar to a directory protocol, if the cacheline

is invalid, it should be loaded from DRAM; if the line is

exclusively owned by another core, a flush request should be

sent to the owner.

If the requested cacheline is in shared state, however, no

invalidation messages need to be sent. The timestamp manager

can immediately give exclusive ownership to the requesting

core which bumps up its local pts to be the current rts + 1 when

it writes to the cacheline, i.e., jumps ahead in time. Other cores

can still read their local copies of the cacheline if they have

not expired. This does not violate sequential consistency since

the read operations in the sharing cores are ordered before the

write operation in physiological time though not necessarily

A

B

Core 0, pts=1 Core 1, pts=0

0 0 0 B

Core 1, pts=0

0 11 0

A 1 1 1

Owner = C0 A

B

Core 0, pts=0 Core 1, pts=0

0 0 0

0 0 0

Core 0, pts=1

A 1 1 1

B 0 11 0

A

B

Core 1, pts=12

Owner = C1

Core 0, pts=1

A 1 1 1

B 0 11 0

(1) A = 1 @ Core 0 (2) load B @ core 0 (3) B = 1 @ core 1

B 12 12 1

A

B

Core 1, pts=12

1 22 1

Owner = C1

Core 0, pts=1

A 1 22 1

B 0 11 0

(4) load A @ core 1

B 12 12 1

A Owner = C0 Owner = C0

A 1 22 1

(0) Initial State

Time Cacheline Format: wts rts data

Fig. 1. An example program running with Tardis (lease= 10). Cachelines in private caches and LLC are shown. The cacheline format is at the top of the
figure.

TABLE IV
NETWORK MESSAGES. THE CHECK MARKS INDICATE WHAT

COMPONENTS THE MESSAGE CONTAINS.

Message Type pts rts wts data

SH REQ
√ √

EX REQ
√

FLUSH REQ

WB REQ
√

SH REP
√ √ √

EX REP
√ √ √

UPGRADE REP
√

RENEW REP
√

FLUSH REP
√ √ √

WB REP
√ √ √

DRAM ST REQ
√

DRAM LD REQ

DRAM LD REP
√

in physical time. If the cacheline expires in the sharing cores,

they will send requests to renew the line at which point they

get the latest version of the data.

If the wts of the request equals the wts of the cacheline

in the timestamp manager, the data is not returned and an

UPGRADE REP is sent to the requester.

Evictions (column 3): Evicting a cacheline in exclusive

state is the same as in directory protocols, i.e., a flush

request is sent to the owner before the line is invalidated. For

shared cachelines, however, no invalidation messages are sent.

Sharing cores can still read their local copies until they expire

– this does not violate timestamp ordering.

DRAM (column 3, 4): Tardis only stores timestamps

on chip but not in DRAM. The memory timestamp (mts) is

used to maintain coherence for DRAM data. mts is stored per

timestamp manager. It indicates the maximal read timestamp

of all the cachelines mapped to this timestamp manager but

evicted to DRAM. For each cacheline evicted from the LLC,

mts is updated to be Max(rts,mts). When a cacheline is

loaded from DRAM, both its wts and rts are assigned to be

mts. This guarantees that accesses to previously cached data

with the same address are ordered before the accesses to the

cacheline just loaded from DRAM. This takes care of the case

when a cacheline is evicted from the LLC but is still cached

in some core’s private cache. Note that multiple mts’s can be

stored per timestamp manager for different ranges of cacheline

addresses. In this paper, we only consider a single mts per

timestamp manager for simplicity.

Flush or write back response (column 5): Finally, the

flush response and write back response are handled in the same

way as in directory protocols. Note that when a cacheline is

exclusively owned by a core, only the owner has the latest rts

and wts; the rts and wts in the timestamp manager are invalid

and the bits can be reused to store the ID of the owner core.

3) An Example Program: We use an example to show how

Tardis works with a parallel program. Fig. 1 shows how the

simple program in Listing 1 runs with the Tardis protocol. In

the example, we assume a lease of 10 and that the instructions

from Core 0 are executed before the instructions in Core 1.

Listing 1. Example Program
initially A = B = 0

[Core 0] [Core 1]

A = 1 B = 1

print B print A

Step 1 : The store to A misses in Core 0’s private cache

and an EX REQ is sent to the timestamp manager. The store

operation should happen at pts = Max(pts, A.rts + 1) = 1
and the A.rts and A.wts in the private cache should also be

1. The timestamp manager marks A as exclusively owned by

Core 0.

Step 2 : The load of B misses in Core 0’s private cache.

After Step 1, Core 0’s pts becomes 1. So the reservation end

timestamp should be Max(rts, wts+lease, pts+lease) = 11.

Step 3 : The store to B misses in Core 1’s private cache.

At the timestamp manager, the exclusive ownership of B is

immediately given to Core 1 at pts = rts + 1 = 12. Note that

two different versions of B exist in the private caches of core

0 and core 1 (marked in red circles). In core 0, B = 0 but

is valid when 0 ≤ timestamp ≤ 11; in Core 1, B = 1 and

is only valid when timestamp ≥ 12. This does not violate

sequential consistency since the loads of B at core 0 will be

logically ordered before the loads of B at core 1, even if they

may happen the other way around with respect to the physical

time.

Step 4 : Finally the load of A misses in Core 1’s private

cache. The timestamp manager sends a WB REQ to the owner

(Core 0) which updates its own timestamps and writes back

the data. Both cores will have the same data with the same

range of valid timestamps.

With Tardis on sequential consistency, it is impossible for

the example program above to output 0 for both A and B,

even for out-of-order execution. The reason will be discussed

in Section III-D.

D. Out-of-Order Execution

So far we have assumed in-order cores, i.e., a second

instruction is executed only after the first instruction commits

and updates the pts. For out-of-order cores, a memory instruc-

tion can be executed before previous instructions finish and

thus the current pts is not known. However, with sequential

consistency, all instructions must commit in the program order.

Tardis therefore enforces timestamp order at the commit time.

1) Timestamp Checking: In the re-order buffer (ROB) of an

out-of-order core, instructions commit in order. We slightly

change the meaning of pts to mean the timestamp of the

last committed instruction. For sequential consistency, pts still

increases monotonically. Before committing an instruction, the

timestamps are checked. Specifically, the following cases may

happen for shared and exclusive cachelines, respectively.

A shared cacheline can be accessed by load requests. And

there are two possible cases.

1) pts ≤ rts. The instruction commits. pts ⇐ Max(wts, pts).
2) pts > rts. The instruction aborts and is restarted with the

latest pts. Re-execution will trigger a renew request.

An exclusive cacheline can be accessed by both load

and store requests. And the accessing instruction can always

commit with pts ⇐ Max(pts,wts) for a load operation and

pts ⇐ Max(pts, rts + 1) for a store operation.

There are two possible outcomes of a restarted load. If the

cacheline is successfully renewed, the contents of the cacheline

do not change. Otherwise, the load returns a different version

of data and all the depending instructions in the ROB need

to abort and be restarted. This hurts performance and wastes

energy. However, the same flushing operation is also required

for an OoO core on a baseline directory protocol under the

same scenario [17]. If an invalidation happens to a cacheline

after it is executed but before it commits, the load is also

restarted and the ROB flushed. In this case, the renewal failure

in Tardis serves as similar functionality to an invalidation in

directory protocols.

2) Out-of-Order Example: If the example program in Sec-

tion III-C3 runs on an out-of-order core, both loads may be

scheduled before the corresponding stores making the program

print A = B = 0. In this section, we show how this scenario

can be detected by the timestamp checking at commit time and

thus never happens. For the program to output A = B = 0
in Tardis, both loads are executed before the corresponding

stores in the timestamp order.

L(A) <ts S(A), L(B) <ts S(B)

For the instruction sequence to pass the timestamp checking,

we have

S(A) ≤ts L(B), S(B) ≤ts L(A)

Putting them together leads to the following contradiction.

L(A) <ts S(A) ≤ts L(B) <ts S(B) ≤ts L(A)

This means that at least at one core, the timestamp checking

will fail. The load at that core is restarted with the updated

pts. The restarted load will not renew the lease but return the

latest value (i.e., 1). So at least at one core, the output value

is 1 and A = B = 0 can never happen.

E. Avoiding Livelock

Although Tardis strictly follows sequential consistency, it

may generate livelock due to deferred update propagation. In

directory coherence, a write is quickly observed by all the

cores through the invalidation mechanism. In Tardis, however,

a core may still read the old cached data even if another core

has updated it, as long as the cacheline has not expired. In

other words, the update to the locally cached data is deferred.

In the worst case when deferment becomes indefinite, livelock

occurs. For example, if a core spins on a variable which is set

by another core, the pts of the spinning core does not increase

and thus the old data never expires. As a result, the core may

spin forever without observing the updated data.

We propose a very simple solution to handle this livelock

problem. To guarantee forward progress, we only need to make

sure that an update is eventually observed by following loads,

that is, the update becomes globally visible within some finite

physical time. This is achieved by occasionally incrementing

the pts in each core so that the old data in the private cache

eventually expires and the latest update becomes visible. The

self increment can be periodic or based on more intelligent

heuristics. We restrict ourselves to periodic increments in this

paper.

F. Tardis vs. Directory Coherence

In this section, we compare Tardis to the directory coherence

protocol.

1) Protocol Messages: In Table II and Table III, the ad-

vantages and disadvantages of Tardis compared to directory

protocols are shaded in light green and light red, respectively.

Both schemes have similar behavior and performance in the

other state transitions (the white cells).

Invalidation: In a directory protocol, when the direc-

tory receives an exclusive request to a Shared cacheline,

the directory sends invalidations to all the cores sharing the

cacheline and waits for acknowledgements. This usually incurs

significant latency which may hurt performance. In Tardis,

however, no invalidation happens (cf. Section III-C) and the

exclusive ownership can be immediately returned without

waiting. The timestamps guarantee that sequential consistency

is maintained. The elimination of invalidations makes Tardis

much simpler to implement and reason about.

Eviction: In a directory protocol, when a shared cacheline

is evicted from the private cache, a message is sent to the

directory where the sharer information is stored. Similarly,

when a shared cacheline is evicted from the LLC, all the

copies in the private caches should be invalidated. In Tardis,

correctness does not require maintaining sharer information

and thus no such invalidations are required. When a cacheline

is evicted from the LLC, the copies in the private caches can

still exist and be accessed.

Data Renewal: In directory coherence, a load hit only

requires the cacheline to exist in the private cache. In Tardis,

however, a cacheline in the private cache may have expired and

cannot be accessed. In this case, a renew request is sent to the

timestamp manager which incurs extra latency and network

traffic. In Section IV-A, we present techniques to reduce the

overhead of data renewal.

2) Scalability: A key advantage of Tardis over directory

coherence protocols is scalability. Tardis only requires the

storage of timestamps for each cacheline and the owner ID

for each LLC cacheline (O(logN), where N is the number of

cores). In practice, the same hardware bits can be used for both

timestamps and owner ID in the LLC; because when the owner

ID needs to be stored, the cacheline is exclusively owned and

the timestamp manager does not maintain the timestamps.

On the contrary, a canonical directory coherence protocol

maintains the list of cores sharing a cacheline which requires

O(N) storage overhead. Previous works proposed techniques

to improve the scalability of directory protocols by introducing

broadcast or other complexity. They are discussed in Sec-

tion VII-B.

3) Simplicity: Another advantage of Tardis is its conceptual

simplicity and elegance. Tardis is directly derived from the def-

inition of sequential consistency and the timestamps explicitly

express the global memory order. This makes it easier to argue

the correctness of the protocol. Concretely, given that Tardis

does not have to multicast/broadcast invalidations and collect

acknowledgements, the number of transient states in Tardis is

smaller than that of a directory protocol.

IV. OPTIMIZATIONS AND EXTENSIONS

We introduce several optimizations in the Tardis protocol in

this section, which were enabled during our evaluation. The

evaluation of the extensions described here is deferred to future

work.

A. Speculative Execution

As discussed in Section III-F, the main disadvantage of

Tardis compared to directory coherence protocol is the renew

request. In a pathological case, the pts of a core may rapidly in-

crease since some cachelines are frequently read-write shared

by different cores. Meanwhile, the read-only cachelines will

frequently expire and a large number of renew requests are

generated incurring both latency and network traffic. Observe,

however, that most renew requests will successfully extend the

lease and the renew response does not transfer the data. This

significantly reduces the network traffic of renewals. More

important, this means that the data in the expired cacheline

is actually valid and we could have used the value without

stalling the pipeline of the core. Based on this observation, we

propose the use of speculation to hide renew latency. When a

core reads a cacheline which has expired in the private cache,

instead of stalling and waiting for the renew response, the core

reads the current value and continues executing speculatively.

If the renewal fails and the latest cacheline is returned, the

core rolls back by discarding the speculative computation that

depends on the load. The rollback process is almost the same

as a branch misprediction which has already been implemented

in most processors.

For processors that can buffer multiple uncommitted instruc-

tions, successful renewals (which is the common case) do not

hurt performance. Speculation failure does incur performance

overhead since we have to rollback and rerun the instruc-

tions speculatively executed. However, if the same instruction

sequence is executed in a directory protocol, the expired

cacheline should not be in the private cache in the first place;

the update from another core should have already invalidated

this cacheline and a cache miss should happen. As a result,

in both Tardis and directory coherence, the value of the load

should be returned at the same time incurring the same latency

and network traffic. Tardis still has some extra overhead as it

needs to discard the speculated computation, but this overhead

is relatively small.

Speculation successfully hides renew latency in most cases.

The renew messages, however, may still increase the on-chip

network traffic. This is especially problematic if the private

caches have a large number of shared cachelines that all expire

when the pts jumps ahead due to a write or self increment.

This is a fundamental disadvantage of Tardis compared to

directory coherence protocols. According to our evaluations

in Section VI, however, Tardis has good performance and

acceptable network overhead on real benchmarks even with

this disadvantage. We leave solutions to pathologically bad

cases to future work.

B. Timestamp Compression

In Tardis, all the timestamps increase monotonically and

may roll over. One simple solution is to use 64-bit timestamps

which never roll over in practice. This requires 128 extra bits

to be stored per cacheline, which is a significant overhead.

Observe, however, that the higher bits in a timestamp change

infrequently and are usually the same across most of the times-

tamps. We exploit this observation and propose to compress

this redundant information using a base-delta compression

scheme.

In each cache, a base timestamp (bts) stores the common

high bits of wts and rts. In each cacheline, only the delta

timestamps (delta ts) are stored (delta wts = wts − bts and

delta rts = rts − bts). The actual timestamp is the sum of the

bts and the corresponding delta ts. The bts is 64 bits to prevent

rollover; and there is only one bts per cache. The per cacheline

delta ts is much shorter to reduce the storage overhead.

When any delta ts in the cache rolls over, we will rebase

where the local bts is increased and all the delta ts in the cache

are decreased by the same amount, i.e., half of the maximum

delta ts. For simplicity, we assume that the cache does not

serve any request during the rebase operation.

Note that increasing the bts in a cache may end up with

some delta ts being negative. In this case, we just set the

delta ts to 0. This effectively increases the wts and rts in

the cacheline but it does not violate the consistency model.

Consider a shared LLC cacheline or an exclusive private

cacheline – the wts and rts can be safely increased. Increasing

the wts corresponds to writing the same data to the line at

a later logical time, and increasing the rts corresponds to a

hypothetical read at a later logical time. Neither operation

violates the rules of sequential consistency. Similarly, for

a shared cacheline in the private cache, wts can be safely

increased as long as it is smaller than rts. However, rts can

not be increased without coordinating with the timestamp

manager. So if delta rts goes negative in a shared line in a

private cache, we simply invalidate the line from the cache.

The last possible case is an exclusive cacheline in the LLC.

No special operation is required since the timestamp manager

neither has the timestamps nor the data in this case.

The key advantage of this base-delta compression scheme

is that all computation is local to each cache without coordi-

nation between different caches. This makes the scheme very

scalable.

It is possible to extend the base-delta scheme to wts and

rts to further compress the timestamp storage. Specifically,

wts can be treated as the bts and we only need to store the

delta rts = rts−wts which can be even shorter than rts−bts.

We defer an evaluation of this extension to future work.

The scheme discussed here does not compress the times-

tamps over the network and we assume that the network mes-

sages still use 64-bit timestamps. It is possible to reduce this

overhead by extending the base-delta scheme over the network

but this requires coordination amongst multiple caches. We

did not implement this extension in order to keep the basic

protocol simple and straightforward.

C. Private Write

According to Table II, writing to a cacheline in exclusive

state updates both wts and pts to Max(pts, rts+1). If the core

keeps writing to the same address, the pts will keep increasing

causing other cachelines to expire. If the updated cacheline is

completely private to the updating thread, however, there is

actually no need to increase the timestamps in order to achieve

sequential consistency. According to our definition of global

memory order (Definition 1), we can use physical time to order

these operations implicitly without increasing the pts.

Specifically, when a core writes to a cacheline, the modified

bit will be set. For future writes to the same cacheline, if the

bit is set, then the pts, wts and rts are just set to Max(pts, rts).
This means that pts will not increase if the line is repeatedly

written to. The optimization will significantly reduce the rate

at which timestamps increase if most of the accesses from a

core are to thread private data.

This optimization does not violate sequential consistency

because these writes with the same timestamp are ordered

correctly in the physical time order and thus they are properly

ordered in the global memory order.

D. Extension: Exclusive and Owned States

In this paper, MSI has been used as the baseline directory

coherence protocol. MSI is the simplest protocol and optimized

ones require E (Exclusive) and/or O (Owned) states. The

resulting protocols are MESI, MOSI and MOESI. In this

section, we show that Tardis is compatible with both E and O

states.

Similar to the M state, the E state allows the cacheline to

be exclusively cached upon a SH REQ if no other sharers

exist. The core having the cacheline can update the data

silently without notifying the directory. In the directory, M

or E cachelines are handled in the same way; an invalidation

is sent to the core exclusively caching the line if another core

requests it. In Tardis, we can support the E state by always

returning a cacheline in exclusive state if no other cores seem

to be caching it. Note that even if other cores are sharing

the line, it can still be returned to the requester in exclusive

state. The argument for this is similar to the write after shared

argument in Section III-C2; i.e., the lines shared and the line

exclusively cached have different ranges of valid timestamps.

However, this may not be best for performance. Therefore,

we would like to return a cacheline in exclusive state only if

the cacheline seems to be private. We can add an extra bit

for each cacheline indicating whether any core has accessed

it since it was put into the LLC. And if the bit is unset, the

requesting core gets the line in exclusive state, else in shared

state. E states will reduce the number of renewals required

since cachelines in E state will not expire.

The O state allows a cacheline to be dirty but shared in the

private caches. Upon receiving the WB REQ request, instead

of writing the data back to the LLC or DRAM, the core can

change the cacheline to O state and directly forward the data

to the requesting core. In Tardis, the O state can also be

supported by keeping track of the owner at the timestamp

manager. SH REQs to the timestamp manager are forwarded

to the owner which does cache-to-cache data transfers. Similar

to the basic Tardis protocol, when the owner is evicted from

the private cache, the cacheline is written back to the LLC or

the DRAM and its state in the timestamp manager is changed

to Shared or Invalid.

E. Extension: Remote Word Access

Traditionally, a core loads a cacheline into the private cache

before accessing the data. But it is also possible to access the

data remotely without caching it. Remote word access has

been studied in the context of locality-aware directory coher-

ence [18]. Remote atomic operation has been implemented

on Tilera processors [19], [20]. Allowing data accesses or

computations to happen remotely can reduce the coherence

messages and thus improve performance [21].

However, it is not easy to maintain the performance gain of

these remote operations with directory coherence under TSO

or sequential consistency. For a remote load operation (which

might be part of a remote atomic operation), it is not very easy

to determine its global memory order since it is hard to know

the physical time when the load operation actually happens. As

a result, integration of remote access with directory coherence

is possible but fairly involved [22].

Consider the example program in Listing 1 where all

memory requests are remote accesses. If all requests are issued

simultaneously, then both loads may be executed before both

stores and the program outputs A = B = 0. It is not easy

to detect this violation in a directory protocol since we do

not know when each memory operation happens. As a result,

INV(A) Resp

A

B

0

0

S

state
data

Core 0 Core 1

L(B) Req nop

A

B

A

B

L(B) Resp

B 0S

S(B) Req

A

B

B 0S

S(A) Req

A

B

S(A) resp

S(B) ReqFL(B) Req FL(B) Resp S(B) Req

A 1E

A

B

L(A) hit
S(B) Resp

A 1E

B 2E

A

B

L(B) req

A 1E

B 2E

L(A) Req

A

B

A 1E

B 2E

L(A) ReqL(B) Req

WB(B) ReqWB(A) Req

A

B

A 1S

B 2S

L(A) ReqL(B) Req

WB(A) Resp WB(B) Resp

A

B

A 1S

B 2S

L(A) RespL(B) Resp

B 2S

A 1S

A

B

A 1S

B 2SB 2S

A 1S

S(A) req S(B) Req

A

B

A 1S

B 2SB 2S

A 1S

INV(A) Req

S(B) ReqS(A) Req

INV(B) Req

A

B

A 1S

B 2S

S(B) ReqS(A) Req

INV(B) Resp

A 3E

B 4E

UP(B) RespUP(A) Resp

A

B

S

sharer/owner

0S

0S

0S

0S 0

0S

0S 0

E

0S

0n/a

n/a

n/a

n/a

n/a n/a

n/a

n/a

E

n/aE

0

1

n/a E

n/aE

0

1

n/a E

n/aE

0

1

n/a S

2S

0

1

1 S

2S

0,1

0,1

1

S

2S

0,1

0,1

1 S

2S

0,1

0,1

1 S

2S

0

1

1 E

n/aE

0

1

n/a

Initial State Cycle 1 Cycle 2 Cycle 3 Cycle 4

Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Cycle 10 Cycle 11 Cycle 12 Cycle 13

Fig. 2. Execution of the case study program with a directory coherence protocol.

A

B

pts=0 pts=0

0 00

state wts data

S

0 00S

rts

A

B

pts=0 pts=0

0 00S

0 00S

Core 0 Core 1

L(B) Req nop

A

B

pts=0 pts=0

0 00S

0 010S

L(B) Resp
S(B) Req

B 0 010S

A

B

pts=0 pts=11

0 00S

owner=1E

S(A) Req
S(B) Resp

B 0 010S B 11 211E

A

B

pts=1 pts=11

owner=0E

owner=1E

L(A) Req

B 0 010S B 11 211E

S(A) resp

A 1 11E

A

B

pts=1 pts=11

owner=0E

owner=1E

L(A) Req

B 0 010S B 11 211E

L(A) hit

A 1 121S

WB(A) Req A

B

pts=1 pts=11

owner=1E

L(A) Req

B 0 010S B 11 211E

L(B) hit

A 1 121S

WB(A) Resp
1 121S A

B

pts=1 pts=11

owner=1E

B 0 010S B 11 211E

S(A) Req

A 1 121S

1 121S

L(A) Resp

A 1 121S

A

B

pts=22 pts=11

owner=1E

B 0 010S B 11 411E

A 22 322E

S(B) Hit

A 1 121S

UP(A) Resp

owner=0E

Initial State Cycle 1 Cycle 2 Cycle 3 Cycle 4

Cycle 5 Cycle 6 Cycle 7 Cycle 8

Fig. 3. Execution of the case study program with Tardis protocol.

either the remote accesses are sequentially issued or additional

mechanisms need to be added [22].

In Tardis, however, memory operations are ordered through

timestamps. It is very easy to determine the memory order

for a remote access since it is simply the timestamp of the

operation. In Tardis, multiple remote accesses can be issued

in parallel and the order can be checked after they return. If

any load violates the memory order, it can be reissued with the

updated timestamp information (similar to timestamp checking

in an out-of-order core).

F. Other Extensions

Atomic operations in Tardis can be implemented the same

way as in directory protocols. Tardis can be extended to

relaxed consistency models such as Total Store Order (TSO)

implemented in Intel x86 processors [23]. Tardis can work

with both private Last Level Cache (LLC) or shared LLC.

V. CASE STUDY

In this section, we use an example parallel program as a

case study to compare Tardis with an MSI directory protocol.

A. Example

Listing 2 shows the parallel program we use for the case

study. In this program, the two cores issue loads and stores to

addresses A and B. The nop in Core 1 means that the core

spends that cycle without accessing the memory subsystem.

The program we use here is a contrived example to highlight

the difference between Tardis and a directory coherence pro-

tocol.

Listing 2. The case study parallel program
[Core 0] [Core 1]

L(B) nop

A = 1 B = 2

L(A) L(A)

L(B) B = 4

A = 3

Fig. 2 shows the execution of the program on a directory

coherence protocol and Fig. 3 shows how it is executed on

Tardis. A cacheline is either in shared (S) or exclusive (E)

state. For Tardis, a static lease of 10 is used. Initially, all private

caches are empty and all timestamps are 0. We will explain

step by step how Tardis executes the program and highlight

the differences between Tardis and the directory protocol.

Cycle 1 and 2: Core 0 sends a shared request to address B in

cycle 1, and receives the response in cycle 2. The cacheline is

reserved till timestamp 10. Core 1 sends an exclusive request

to address B at cycle 2. In these two cycles, both the directory

protocol and Tardis have the same network messages sent and

received.

Cycle 3: In Tardis, the exclusive request from core 1 sees

that address B is shared till timestamp 10. The exclusive

ownership is instantly returned and the store is performed at

timestamp 11. In the directory protocol, however, an invali-

dation must be sent to Core 0 to invalidate address B. As a

result, the exclusive response is delayed to cycle 5. At this

cycle, core 0 sends an exclusive request to address A.

Cycle 4: In both Tardis and the directory protocol, address

A’s exclusive ownership can be instantly returned to core 0

since no core is sharing it. The pts of core 0 becomes 1

after performing the store. Core 1 performs a shared request

to address A which needs to get the latest data from core 0

through write back. So the shared response returns in cycle 7.

The same L(A) instruction in the directory protocol incurs the

same latency and network traffic from cycle 6 to 9.

Cycle 5 and 6: In cycle 5, the L(A) instruction in core 0 hits

in the private cache and thus no request is sent. Also in core

0, the write back request increases address A’s rts to 21 since

the requester’s (core 1) pts is 11 and the lease is 10. In cycle

6, the L(B) instruction in core 0 hits in the private cache since

the pts is 1 and the cached address B is valid till timestamp

10. In the directory protocol, the same L(B) instruction is also

issued at cycle 6. However, it misses in the private cache since

the cacheline was already invalidated by core 1 at cycle 4. So

a write back request to core 1 needs to be sent and the shared

response returns at cycle 9.

Cycle 7 and 8: At cycle 7, core 0 sends an exclusive

request to address A and core 1 gets the shared response to

address A. At cycle 8, the exclusive ownership of address

A is instantly returned to core 0 and the store happens at

timestamp 22 (because addresss A has been reserved for

reading until timestamp 21). In the directory protocol, the same

S(A) instruction happens at cycle 10 and the shared copy in

core 1 must be invalidated before exclusive ownership is given.

Therefore, the exclusive response is returned at cycle 13. Also

in cycle 8 in Tardis, core 1 stores to address B. The store hits

in the private cache. In the directory protocol, the same store

instruction happens at cycle 10. Since core 0 has a shared copy

of address B, an invalidation must be sent and the exclusive

response is returned at cycle 13.

B. Discussion

In this case study, the cycle saving of Tardis mainly comes

from the removal of invalidations. While a directory protocol

requires that only one version of an address exist at any point

in time across all caches, Tardis allows multiple versions to

coexist as long as they are accessed at different timestamps.

The pts in each core shows how Tardis orders the memory

operations. At cycle 3, core 1’s pts jumps to 11. Later at cycle

4, core 0’s pts jumps to 1. Although the operation from core 0

happens later than the operation from core 1 in physical time,

it is the opposite in global memory and physiological time

order. Later at cycle 8, core 0’s pts jumps to 22 and becomes

bigger than core 1’s pts.

In Tardis, a load may still return a old version of an address

after it is updated by a different core, as long as sequential

consistency is not violated. As a result, Tardis may produce

a different instruction interleaving than a directory protocol.

Listings 3 and 4 show the instruction interleaving of the

directory protocol and Tardis, respectively, on our example

program.

Listing 3. Instruction interleaving
in directory protocol

[Core 0] [Core 1]

L(B)

A = 1 B = 2

L(A) L(A)

L(B) B = 4

A = 3

WAR

RA
W

WAR W
A
R

Listing 4. Instruction interleaving
in Tardis

[Core 0] [Core 1]

L(B)

A = 1 B = 2

L(A) L(A)

L(B) B = 4

A = 3

WAR

WA
R

W
A
R

In the directory protocol, the second L(B) instruction from

core 0 is between the two stores to address B from core 1

in the global memory order. In Tardis, however, the same

L(B) instruction is ordered before both stores. Such reordering

is possible because Tardis enforces sequential consistency in

physiological time order which can be different from physical

time order.

VI. EVALUATION

We now evaluate the performance of Tardis in the context

of multi-core processors.

A. Methodology

We use the Graphite [24] multi-core simulator for our

experiments. The default hardware parameters are listed in

Table V. The simplest directory protocol MSI is used as the

baseline in this section.3 This baseline keeps the full sharer

information for each cacheline and thus incurs non-scalable

storage overhead. To model a more scalable protocol, we use

the Ackwise [11] protocol which keeps a limited number of

3Other states, e.g., O (Owner) and E (Exclusive) can be added to an MSI
protocol to improve performance; such states can be added to Tardis as well
to improve performance as described in Section IV-D.

TABLE V
SYSTEM CONFIGURATION.

System Configuration

Number of Cores N = 64 @ 1 GHz

Core Model In-order, Single-issue

Memory Subsystem

Cacheline Size 64 bytes

L1 I Cache 16 KB, 4-way

L1 D Cache 32 KB, 4-way

Shared L2 Cache per Core 256 KB, 8-way

DRAM Bandwidth 8 MCs, 10 GB/s per MC

DRAM Latency 100 ns

2-D Mesh with XY Routing

Hop Latency 2 cycles (1-router, 1-link)

Flit Width 128 bits

Tardis Parameters

Lease 10

Self Increment Period 100 cache accesses

Delta Timestamp Size 20 bits

L1 Rebase Overhead 128 ns

L2 Rebase Overhead 1024 ns

FMM
BARNES

CHOLESKY

VOLREND
OCEAN-C

OCEAN-NC FFT
RADIX LU-C

LU-NC

WATER-NSQ

WATER-SP
AVG

0.7

0.8

0.9

1.0

1.1

No
rm

. T
hr

pu
t.

0

1

2

3

4

No
rm

. T
ra

ffi
c

Ackwise TARDIS w/o Speculation TARDIS

Fig. 4. Performance of Tardis at 64 cores. Both throughput (bars) and network
traffic (dots) are normalized to baseline MSI.

sharers and broadcasts invalidations to all cores when the

number of sharers exceeds the limit.

In our simulation mode, Graphite includes functional cor-

rectness checks, where the simulation fails, e.g., if wrong

values are read. All the benchmarks we evaluated in this

section completed which corresponds to a level of validation

of Tardis and its Graphite implementation. Formal verification

of Tardis can be found in [13].

Splash-2 [25] benchmarks are used for performance evalu-

ation. For each experiment, we report both the throughput (in

bars) and network traffic (in red dots).

1) Tardis Configurations: Table V also shows the default

Tardis configuration. For load requests, a static lease of 10

has been chosen. The pts at each core self increments by

one for every 100 cache accesses (self increment period). The

Base-delta compression scheme is applied with 20-bit delta

timestamp size and 64-bit base timestamp size. When the

timestamp rolls over, the rebase overhead is 128 ns in L1

and 1024 ns in an LLC slice.

Static lease and self increment period are chosen in this

paper for simplicity – both parameters can be dynamically

changed for better performance based on the data access

pattern. Exploration of such techniques is left for future work.

B. Main Results

1) Throughput: Fig. 4 shows the throughput of Ackwise

and Tardis on 64 in-order cores, normalized to baseline MSI.

For Tardis, we also show the performance with speculation

turned off. For most benchmarks, Tardis achieves similar

performance compared to the directory baselines. On average,

the performance of Tardis is within 0.5% of the baseline MSI

and Ackwise.

FMM
BARNES

CHOLESKY

VOLREND
OCEAN-C

OCEAN-NC FFT
RADIX LU-C

LU-NC

WATER-NSQ

WATER-SP
AVG

10-6
10-5
10-4
10-3
10-2
10-1
100 Renew Rate Misspeculation Rate

Fig. 5. Renew and misspeculation rate of Tardis at 64 cores. Y-axis is in
log scale.

If the speculation is turned off, Tardis’s performance be-

comes 7% worse than MSI. In this case, the core stalls while

waiting for the renewal, in contrast to the default Tardis where

the core reads the value speculatively and continues execu-

tion. Since most renewals are successful, speculation hides a

significant amount of latency and makes a big difference in

performance.

2) Network Traffic: The red dots in Fig. 4 show the network

traffic of Ackwise and Tardis normalized to the baseline MSI.

On average, Tardis with and without speculation incurs 19.4%

and 21.2% more network traffic. Most of this traffic comes

from renewals. Fig. 5 shows the percentage of renew requests

and missspeculations out of all LLC accesses. Note that the

y-axis is in log scale.

In benchmarks with lots of synchronizations (e.g.,

CHOLESKY, VOLREND), cachelines in the private cache fre-

quently expire generating a large number of renewals. In

VOLREND, for example, 65.8% of LLC requests are renew

requests which is 2× of normal LLC requests. As discussed

in Section III-F, a successful renewal only requires a single flit

message which is cheaper than a normal LLC access. So the

relative network traffic overhead is small (36.9% in VOLREND

compared to baseline MSI).

An outlier is WATER-SP, where Tardis increases the net-

work traffic by 3×. This benchmark has very low L1 miss

rate and thus very low network utilization. Even though Tardis

incurs 3× more traffic, the absolute amount of traffic is still

very small.

In many other benchmarks (e.g., BARNES, WATER-NSQ,

etc.), Tardis has less network traffic than baseline MSI. The

traffic reduction comes from the elimination of invalidation

and cache eviction traffic.

From Fig. 5, we see that the misspeculation rate for Tardis

is very low, less than 1% renewals failed on average. A

speculative load is considered a miss if the renew fails and a

new version of data is returned. Having a low misspeculation

rate indicates that the vast majority of renewals are successful.

3) Timestamp Discussion: Table VI shows how fast the pts

in a core increases, in terms of the average number of cycles

to increase the pts by 1. Table VI also shows the percentage

of pts increasing caused by self increment (cf. Section III-E).

Over all the benchmarks, pts is incremented by 1 every 263

cycles. For a delta timestamp size of 20 bits, it rolls over

every 0.28 seconds. In comparison, the rebase overhead (128

ns in L1 and 1 µs in L2) becomes negligible. This result also

indicates that timestamps in Tardis increase very slowly. This

is because they can only be increased from accessing shared

read/write cachelines or self increment.

On average, 26.6% of timestamp increasing is caused by self

TABLE VI
TIMESTAMP STATISTICS

Benchmarks Ts. Incr. Rate Self Incr. Perc.

(cycle / timestamp)

FMM 322 22.5%

BARNES 155 33.7%

CHOLESKY 146 35.6%

VOLREND 121 23.6%

OCEAN-C 81 7.0%

OCEAN-NC 85 5.6%

FFT 699 88.5%

RADIX 639 59.3%

LU-C 422 1.4%

LU-NC 61 0.1%

WATER-NSQ 73 12.8%

WATER-SP 363 29.1%

AVG 263 26.6%

FMM
BARNES

CHOLESKY

VOLREND
OCEAN-C

OCEAN-NC FFT
RADIX LU-C

LU-NC

WATER-NSQ

WATER-SP
AVG

0.7

0.8

0.9

1.0

1.1

No
rm

. T
hr

pu
t.

0

1

2

3

4

No
rm

. T
ra

ffi
c

Ackwise TARDIS w/o Speculation TARDIS

Fig. 6. Performance of Tardis on 64 out-of-order cores.

increment and the percentage can be as high as 88.5% (FFT).

This has negative impact on performance and network traffic

since unnecessarily increasing timestamps causes increased

expiration and renewals. Better livelock avoidance algorithms

can resolve this issue; we leave this for future work.

C. Sensitivity Study

1) In-order vs. Out-of-Order Core: Fig. 6 shows the per-

formance of Tardis on out-of-order cores. Compared to in-

order cores (Fig. 4), the performance impact of speculation is

much smaller. When a renew request is outstanding, an out-of-

order core is able to execute independent instructions even if it

does not speculate. As a result, the renewal’s latency can still

be hidden. On average, Tardis with and without speculation

is 0.2% and 1.2% within the performance of baseline MSI

respectively.

The normalized traffic of Tardis on out-of-order cores is

not much different from in-order cores. This is because both

core models follow sequential consistency and the timestamps

assigned to the memory operations are virtually identical. As

a result, the same amount of renewals is generated.

2) Self Increment Period: As discussed in Section III-E, we

periodically increment the pts at each core to avoid livelock.

The self increment period specifies the number of data cache

accesses before self incrementing the pts by one. If the

period is too small, the pts increases too fast causing more

expirations; more renewals will be generated which increases

network traffic and hurts performance. Fast growing pts’s also

overflow the wts and rts more frequently (cf. Section VI-C4)

which also hurts performance. If the period is too large,

however, an update at a remote core may not be observed

locally quickly enough, which degrades performance.

Fig. 7 shows the performance of Tardis with different

self increment period. The performance of most benchmarks

is not sensitive to this parameter. In FMM and CHOLESKY,

performance goes down when the period is 1000. This is

FMM
BARNES

CHOLESKY

VOLREND
OCEAN-C

OCEAN-NC FFT
RADIX LU-C

LU-NC

WATER-NSQ

WATER-SP
AVG

0.4
0.6
0.8
1.0
1.2
1.4

No
rm

. T
hr

pu
t.

0
1
2
3
4
5

No
rm

. T
ra

ffi
c

period=10 period=100 period=1000

Fig. 7. Performance of Tardis with different self increment period.

FMM
BARNES

CHOLESKY

VOLREND
OCEAN-C

OCEAN-NC FFT
RADIX LU-C

LU-NC

WATER-NSQ

WATER-SP
AVG

0.7

0.8

0.9

1.0

1.1

No
rm

. T
hr

pu
t.

0

1

2

3

4

No
rm

. T
ra

ffi
c

Ackwise Tardis period=100

(a) 16 Cores

FMM
BARNES

CHOLESKY

VOLREND
OCEAN-C

OCEAN-NC FFT
RADIX LU-C

LU-NC

WATER-NSQ

WATER-SP
AVG

0.7
0.8
0.9
1.0
1.1
1.2

No
rm

. T
hr

pu
t.

0
1
2
3
4
5

No
rm

. T
ra

ffi
c

Ackwise Tardis period=10 Tardis period=100

(b) 256 Cores
Fig. 8. Performance of Tardis on 16 and 256 cores.

because these two benchmarks heavily use spinning (busy

waiting) to synchronize between threads. If the period is too

large, the core spends a long time spinning on the stale value

in the private cache and cannot make forward progress.

Having a larger self increment period always reduces the

total network traffic because of fewer renewals. Given the

same performance, a larger period should be preferred due

to network traffic reduction. Our default self increment period

is 100 which has reasonable performance and network traffic.

Ideally, the self increment period should dynamically adjust

to the program’s behavior. For example, the period can be

smaller during spinning but larger for the rest of the program

where there is no need to synchronize. Exploration of such

schemes is deferred to future work.

3) Scalability: Fig. 8 shows the performance of Tardis on

16 and 256 cores respectively.

At 16 cores, the same configurations are used as at 64 cores.

On average, the throughput is within 0.2% of baseline MSI and

the network traffic is 22.4% more than the baseline MSI.

At 256 cores, two Tardis configurations are shown with

self increment period 10 and 100. For most benchmarks,

both Tardis configurations achieve similar performance. For

FMM, CHOLESKY, however, performance is worse when the

period is set to 100. As discussed in Section VI-C2, both

benchmarks heavily rely on spinning for synchronization. At

256 cores, spinning becomes the system bottleneck and period

= 100 significantly delays the spinning core from observing

the updated variable. It is generally considered bad practice to

heavily use spinning at high core count.

On average, Tardis with period = 100 performs 3.4% worse

than MSI with 19.9% more network traffic. Tardis with period

= 10 makes the performance 0.6% within baseline MSI with

46.7% traffic overhead.

Scalable storage is one advantage of Tardis over directory

protocols. Table VII shows the per cacheline storage overhead

in the LLC for two directory baselines and Tardis. Full-map

MSI requires one bit for each core in the system, which is

O(N) bits per cacheline. Both Ackwise and Tardis can achieve

TABLE VII
STORAGE OVERHEAD OF DIFFERENT COHERENCE PROTOCOLS (BITS PER

LLC CACHELINE) WITH 4 SHARERS FOR ACKWISE AT 16/64 AND 8
SHARERS AT 256 CORES.

cores (N) full-map MSI Ackwise Tardis

16 16 bits 16 bits 40 bits

64 64 bits 24 bits 40 bits

256 256 bits 64 bits 40 bits

FMM
BARNES

CHOLESKY

VOLREND
OCEAN-C

OCEAN-NC FFT
RADIX LU-C

LU-NC

WATER-NSQ

WATER-SP
AVG

0.90

0.95

1.00

1.05

1.10

No
rm

. T
hr

pu
t.

0

1

2

3

4

No
rm

. T
ra

ffi
c

14 bits 18 bits 20 bits 64 bits

Fig. 9. Performance of Tardis with different timestamp size.

O(logN) storage but Ackwise requires broadcasting support

and is thus more complicated to implement.

Different from directory protocols, Tardis also requires

timestamp storage for each L1 cacheline. But the per cacheline

storage overhead does not increase with the number of cores.

4) Timestamp Size: Fig. 9 shows Tardis’s performance with

different timestamp sizes. All numbers are normalized to the

baseline MSI. As discussed in Section IV-B, short timestamps

roll over more frequently, which degrades performance due

to the rebase overhead. According to the results, at 64 cores,

20-bit timestamps can achieve almost the same performance

as 64-bit timestamps (which never roll over in practice).

5) Lease: Finally, we sweep the lease in Fig. 10. Similar to

the self increment period, the lease controls when a cacheline

expires in the L1 cache. Roughly speaking, a large lease is

equivalent to a long self increment period. For benchmarks

using a lot of spinning, performance degrades since an update

is deferred longer. The network traffic also goes down as the

lease increases. For most benchmarks, however, performance

is not sensitive to the choice of lease. However, we believe

that intelligently choosing leases can appreciably improve

performance; for example, data that is read-only can be given

an infinite lease and will never require renewal. We defer the

exploration of intelligent leasing to future work.

VII. RELATED WORK

We discuss related works on timestamp based coherence

protocols (Section VII-A) and scalable directory coherence

protocols (Section VII-B).

A. Timestamp based coherence

To the best of our knowledge, none of the existing times-

tamp based coherence protocols is as simple as Tardis and

achieves the same level of performance as Tardis. In all of

these protocols, the timestamp notion is either tightly coupled

with physical time, or these protocols rely on broadcast or

snooping for invalidation.

Using timestamps for coherence has been explored in both

software [26] and hardware [27]. TSO-CC [28] proposed a

hardware coherence protocol based on timestamps. However,

it only works for the TSO consistency model, requires broad-

casting support and frequently self-invalidates data in private

caches. The protocol is also more complex than Tardis.

FMM
BARNES

CHOLESKY

VOLREND
OCEAN-C

OCEAN-NC FFT
RADIX LU-C

LU-NC

WATER-NSQ

WATER-SP
AVG

0.90

0.95

1.00

1.05

1.10

No
rm

. T
hr

pu
t.

0

1

2

3

4

No
rm

. T
ra

ffi
c

lease=5 lease=10 lease=20

Fig. 10. Performance of Tardis with different lease.

In the literature we studied, Library Cache Coherence (LCC)

[9] is the closest algorithm to Tardis. Different from Tardis,

LCC uses the physical time as timestamps and requires a glob-

ally synchronized clock. LCC has bad performance because a

write to a shared variable in LCC needs to wait for all the

shared copies to expire which may take a long time. This

is much more expensive than Tardis which only updates a

counter without any waiting. Singh et al. used a variant of LCC

on GPUs with performance optimizations [10]. However, the

algorithm only works efficiently for release consistency and

not sequential consistency.

Timestamps have also been used for verifying directory

coherence protocols [29], for ordering network messages in

a snoopy coherence protocol [30], and to build write-through

coherence protocols [31], [32]. None of these works built

coherence protocols purely based on timestamps. Similar to

our work, Martin et. al [30] give a scheme where processor and

memory nodes process coherence transactions in the same log-

ical order, but not necessarily in the same physical time order.

The network assigns each transaction a logical timestamp and

then broadcasts it to all processor and memory nodes without

regard for order, and the network is required to meet logical

time deadlines. Tardis requires neither broadcast nor network

guarantees. The protocol of [31] requires maintaining absolute

time across the different processors, and the protocol of [32]

assumes isotach networks [33], where all messages travel the

same logical distance in the same logical time.

B. Scalable directory coherence

Some previous works have proposed techniques to make

directory coherence more scalable. Limited directory schemes

(e.g., [34]) only track a small number of sharers and rely

on broadcasting [11] or invalidations when the number of

sharers exceeds a threshold. Although only O(logN) storage

is required per cacheline, these schemes incur performance

overhead and/or require broadcasting which is not a scalable

mechanism.

Other schemes have proposed to store the sharer information

in a chain [35] or hierarchical structures [36]. Hierarchical

directories reduce the storage overhead by storing the sharer

information as a k-level structure with logk N bits at each

level. The protocol needs to access multiple places for each

directory access and thus is more complex and harder to verify.

Previous works have also proposed the use of coarse

vectors [37], sparse directory [37], software support [38] or

disciplined programs [39] for scalable coherence. Recently,

some cache coherence protocols have been proposed for 1000-

core processors [40], [12]. These schemes are directory based

and require complex hardware/software support. In contrast,

Tardis can achieve similar performance with a very simple

protocol.

VIII. CONCLUSION

We proposed a new memory coherence protocol, Tardis,

in this paper. Tardis is directly derived from the sequential

consistency model. Compared to popular directory coherence

protocols, Tardis is simpler to implement and validate, and

has better scalability. Tardis matches the baseline directory

protocol in performance in the benchmarks we evaluated.

For these reasons, we believe Tardis to be a competitive

coherence protocol for future massive-core and large-scale

shared memory systems.

REFERENCES

[1] L. M. Censier and P. Feautrier, “A new solution to coherence problems
in multicache systems,” Computers, IEEE Transactions on, vol. 100,
no. 12, pp. 1112–1118, 1978.

[2] C. Tang, “Cache system design in the tightly coupled multiprocessor
system,” in Proceedings of the June 7-10, 1976, national computer

conference and exposition. ACM, 1976, pp. 749–753.

[3] “Tile-gx family of multicore processors,” http://www.tilera.com.

[4] Intel, “Intel Xeon Phi Coprocessor System Software Developers Guide,”
2014.

[5] D. Ziakas, A. Baum, R. A. Maddox, and R. J. Safranek, “Intel R©
quickpath interconnect architectural features supporting scalable system
architectures,” in High Performance Interconnects (HOTI), 2010 IEEE

18th Annual Symposium on. IEEE, 2010, pp. 1–6.

[6] D. Anderson and J. Trodden, Hypertransport system architecture.
Addison-Wesley Professional, 2003.

[7] K. Li and P. Hudak, “Memory coherence in shared virtual memory
systems,” ACM Transactions on Computer Systems (TOCS), vol. 7, no. 4,
pp. 321–359, 1989.

[8] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel, “Treadmarks:
Distributed shared memory on standard workstations and operating
systems,” in USENIX Winter, vol. 1994, 1994.

[9] M. Lis, K. S. Shim, M. H. Cho, and S. Devadas, “Memory coherence
in the age of multicores,” in Computer Design (ICCD), 2011 IEEE 29th

International Conference on. IEEE, 2011, pp. 1–8.

[10] I. Singh, A. Shriraman, W. W. L. Fung, M. O’Connor, and T. M. Aamodt,
“Cache Coherence for GPU Architectures,” in Proceedings of the 2013

IEEE 19th International Symposium on High Performance Computer

Architecture (HPCA), 2013, pp. 578–590.

[11] G. Kurian, J. Miller, J. Psota, J. Eastep, J. Liu, J. Michel, L. Kimerling,
and A. Agarwal, “ATAC: A 1000-Core Cache-Coherent Processor with
On-Chip Optical Network,” in International Conference on Parallel

Architectures and Compilation Techniques, 2010.

[12] D. Sanchez and C. Kozyrakis, “SCD: A scalable coherence directory
with flexible sharer set encoding,” in High Performance Computer

Architecture (HPCA), 2012 IEEE 18th International Symposium on.
IEEE, 2012, pp. 1–12.

[13] X. Yu, M. Vijayaraghavan, and S. Devadas, “A Proof of Correctness
for the Tardis Cache Coherence Protocol,” CoRR, vol. abs/1505.06459,
May 2015. [Online]. Available: http://arxiv.org/abs/1505.06459

[14] L. Lamport, “How to make a multiprocessor computer that correctly
executes multiprocess programs,” Computers, IEEE Transactions on,
vol. 100, no. 9, pp. 690–691, 1979.

[15] D. L. Weaver and T. Germond, “The SPARC Architecture Manual,”
1994.

[16] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

[17] K. Gharachorloo, A. Gupta, and J. Hennessy, “Two Techniques to
Enhance the Performance of Memory Consistency Models,” in In Pro-

ceedings of the 1991 International Conference on Parallel Processing,
1991, pp. 355–364.

[18] G. Kurian, O. Khan, and S. Devadas, “The locality-aware adaptive cache
coherence protocol,” in Proceedings of the 40th Annual International

Symposium on Computer Architecture. ACM, 2013, pp. 523–534.

[19] T. David, R. Guerraoui, and V. Trigonakis, “Everything you always
wanted to know about synchronization but were afraid to ask,” in Pro-

ceedings of the Twenty-Fourth ACM Symposium on Operating Systems

Principles. ACM, 2013, pp. 33–48.
[20] H. Hoffmann, D. Wentzlaff, and A. Agarwal, “Remote store program-

ming,” in High Performance Embedded Architectures and Compilers.
Springer, 2010, pp. 3–17.

[21] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker, “Staring
into the Abyss: An Evaluation of Concurrency Control with One
Thousand Cores,” Proceedings of the VLDB Endowment, vol. 8, no. 3,
pp. 209–220, 2014.

[22] G. Kurian, “Locality-aware Cache Hierarchy Management for Multicore
Processors,” Ph.D. dissertation, Massachusetts Institute of Technology,
2014.

[23] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen, “x86-
TSO: a rigorous and usable programmer’s model for x86 multiproces-
sors,” Communications of the ACM, vol. 53, no. 7, pp. 89–97, 2010.

[24] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann,
C. Celio, J. Eastep, and A. Agarwal, “Graphite: A Distributed Par-
allel Simulator for Multicores,” in International Symposium on High-

Performance Computer Architecture, 2010.
[25] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The

SPLASH-2 Programs: Characterization and Methodological Consider-
ations,” in International Symposium on Computer Architecture, 1995.

[26] S. L. Min and J.-L. Baer, “A timestamp-based cache coherence scheme.”
Citeseer, 1989.

[27] S. Nandy and R. Narayan, “An Incessantly Coherent Cache Scheme for
Shared Memory Multithreaded Systems.” Citeseer, 1994.

[28] M. Elver and V. Nagarajan, “TSO-CC: Consistency directed cache
coherence for TSO,” in International Symposium on High Performance

Computer Architecture, 2014, pp. 165–176.
[29] M. Plakal, D. J. Sorin, A. E. Condon, and M. D. Hill, “Lamport clocks:

verifying a directory cache-coherence protocol,” in Proceedings of the

tenth annual ACM symposium on Parallel algorithms and architectures.
ACM, 1998, pp. 67–76.

[30] M. M. Martin, D. J. Sorin, A. Ailamaki, A. R. Alameldeen, R. M.
Dickson, C. J. Mauer, K. E. Moore, M. Plakal, M. D. Hill, and D. A.
Wood, “Timestamp snooping: an approach for extending SMPs,” ACM

SIGOPS Operating Systems Review, vol. 34, no. 5, pp. 25–36, 2000.
[31] R. Bisiani, A. Nowatzyk, and M. Ravishankar, “Coherent Shared Mem-

ory on a Distributed Memory Machine,” in In Proc. of the 1989 Int’l

Conf. on Parallel Processing (ICPP’89), 1989, pp. 133–141.
[32] C. Williams, P. F. Reynolds, and B. R. de Supinski, “Delta Coherence

Protocols,” IEEE Concurrency, vol. 8, no. 3, pp. 23–29, Jul. 2000.
[33] P. F. R. Jr., C. Williams, and R. R. W. Jr., “Isotach Networks,” IEEE

Trans. Parallel Distrib. Syst., vol. 8, no. 4, pp. 337–348, 1997.
[34] A. Agarwal, R. Simoni, J. Hennessy, and M. Horowitz, “An evaluation of

directory schemes for cache coherence,” in 25 years of the international

symposia on Computer architecture (selected papers). ACM, 1998, pp.
353–362.

[35] D. Chaiken, C. Fields, K. Kurihara, and A. Agarwal, “Directory-based
cache coherence in large-scale multiprocessors,” Computer, vol. 23,
no. 6, pp. 49–58, 1990.

[36] Y.-C. Maa, D. K. Pradhan, and D. Thiebaut, “Two economical di-
rectory schemes for large-scale cache coherent multiprocessors,” ACM

SIGARCH Computer Architecture News, vol. 19, no. 5, p. 10, 1991.
[37] A. Gupta, W.-D. Weber, and T. Mowry, “Reducing memory and traffic

requirements for scalable directory-based cache coherence schemes,” in
International Conference on Parallel Processing, 1990.

[38] D. Chaiken, J. Kubiatowicz, and A. Agarwal, “LimitLESS Directories:
A Scalable Cache Coherence Scheme,” in Proceedings of the Fourth

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS IV), 1991, pp. 224–234.
[39] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand,

S. V. Adve, V. S. Adve, N. P. Carter, and C.-T. Chou, “DeNovo:
Rethinking the memory hierarchy for disciplined parallelism,” in Parallel

Architectures and Compilation Techniques (PACT), 2011 International

Conference on. IEEE, 2011, pp. 155–166.
[40] J. H. Kelm, M. R. Johnson, S. S. Lumetta, and S. J. Patel, “WAYPOINT:

scaling coherence to thousand-core architectures,” in Proceedings of the

19th international conference on Parallel architectures and compilation

techniques. ACM, 2010, pp. 99–110.

http://www.tilera.com
http://arxiv.org/abs/1505.06459

