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TARE1, a Mutated Copia-Like LTR Retrotransposon
Followed by Recent Massive Amplification in Tomato

Hao Yin1,2, Jing Liu1, Yingxiu Xu1, Xing Liu1,2, Shaoling Zhang2, Jianxin Ma3, Jianchang Du1*

1 Bioinformatics Group, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China, 2Center of Pear Engineering Technology Research, State

Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China, 3Department of Agronomy, Purdue University, West

Lafayette, Indiana, United States of America

Abstract

Long terminal repeat retrotransposons (LTR-RTs) are the major DNA components in flowering plants. Most LTR-RTs contain
dinucleotides ‘TG’ and ‘CA’ at the ends of the two LTRs. Here we report the structure, evolution, and propensity of a tomato
atypical retrotransposon element (TARE1) with both LTRs starting as ‘TA’. This family is also characterized by high copy
numbers (354 copies), short LTR size (194 bp), extremely low ratio of solo LTRs to intact elements (0.05:1), recent insertion
(most within 0.75,1.75 million years, Mys), and enrichment in pericentromeric region. The majority (83%) of the TARE1
elements are shared between S. lycopersicum and its wild relative S. pimpinellifolium, but none of them are found in potato.
In the present study, we used shared LTR-RTs as molecular markers and estimated the divergence time between S.
lycopersicum and S. pimpinellifolium to be ,0.5 Mys. Phylogenetic analysis showed that the TARE1 elements, together with
two closely related families, TARE2 and TGRE1, have formed a sub-lineage belonging to a Copia-like Ale lineage. Although
TARE1 and TARE2 shared similar structural characteristics, the timing, scale, and activity of their amplification were found to
be substantially different. We further propose a model wherein a single mutation from ‘G’ to ‘A’ in 39 LTR followed by
amplification is responsible for the origin of TARE1, thus providing evidence that the proliferation of a spontaneous
mutation can be mediated by the amplification of LTR-RTs at the level of RNA.
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Introduction

Retrotransposons are a class of transposable elements (TEs),

which initiate their transposition through a copy-and-paste

mechanism via RNA intermediates [1]. Retrotransposons can be

divided into at least five orders on the basis of their structural

features, namely, long terminal repeat retrotransposons (LTR-

RTs), Dictyostelium intermediate repeat sequence (DIRS)-like elements,

Penelope-like elements (PLEs), LINEs and SINEs [2]. Among these,

LTR-RTs are the major genomic components of plants, partic-

ularly in species with complex genomes. For example, approx-

imately, 20% of rice genome [3], 42% of soybean [4], 55% of

sorghum [5], and over 75% of the maize genomes [6] are

composed of LTR-RTs.

A typical intact LTR-RT element contains two identical LTRs,

a primer-binding site (PBS), a polypurine tract (PPT), as well as gag

and pol, two genes necessary for transpositional process [1]. LTRs

terminate in short inverted repeats, usually 59-TG-39 and 59-CA-

39, and they can be further divided into three parts, including U3,

R and U5 [1]. Since two LTRs of an element are identical at the

time of insertion, the insertion time of an element can be roughly

converted by the sequence divergence of two LTRs if an

appropriate mutation rate is employed [7]. For instance, the

majority of LTR-RTs in soybean were amplified within the last

one million years (Mys) [8]. The majority of LTR-RTs can be

classified into Copia-like and Gypsy-like superfamilies based on the

order of integrase (int), reverse transcriptase (rt) and RNase H (rh)

in pol [9]. While some LTR-RT families are randomly dispersed in

the host genome, most are concentrated in the recombination-

suppressed pericentromeric regions [10]. Moreover, a few Gypsy-

like LTR-RT families were found to be specific or enriched in

centromeric regions, such as CRR elements (CRR1 and CRR2) in

rice [11,12], CRM elements (CRM1, CRM2, and CRM3) in maize

[12], and two families (Gmr12 and Gmr17) in soybean [8].

Centromeric retrotransposons are considered to play an important

role in plant centromere evolution and function [13].

In addition to intact elements, solo LTRs and truncated

elements are another two forms of structural variations of LTR-

RTs, and are usually dispersed in plant genomes [8,14,15]. These

incomplete elements, together with numerous LTR remnants are

presumed to be the products of unequal recombination and

illegitimate recombination, which are two molecular mechanisms

counterbalancing genome expansion [14,15]. For instance, it was

estimated that .190 Mb of DNA had been removed from the rice

genome, leaving the current rice genome ,400 Mb with ,97 Mb

DNA of detectable LTR-RTs [15].

Tomato (Solanum lycopersicum) is a major vegetable plant and is an

ideal model system for studying fruit development [16]. The
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availability of high-quality genome sequence of cultivated tomato

S. lycopersicum and the release of the draft genome of its wild relative

Solanum pimpinellifolium, provides unprecedented opportunities for

comparative analysis of transposable elements, evolutionary

history, and domestication process in this important Solanum

species. Using several sequenced BAC clones, two tomato LTR-

RT families have been identified and characterized in previous

studies, including Gypsy-like Jinling [17], and Copia-like Rider
elements [18,19,20]. In the present study, we have identified

and annotated .12,000 LTR-RT elements by screening the

assembled genome sequence of cultivated tomato S. lycopersicum.
Among these, one family, designated as TARE1, was of special

interest because (1) the intact elements in this family have both

LTRs starting as ‘TA’ instead of typical ‘TG’; (2) this family

contains very short LTRs (194 bp), and the ratio of solo LTRs to

intact element is extremely low (0.05:1), supporting the idea that

larger LTRs may facilitate solo LTRs formation; (3) over 60%

elements were inserted into the genome ,0.75–1.75 million years

ago (Mya), rather than,1 Mys observed for most families in other

species; (4) the elements in this family were amplified in S.

lycopersicum, most of which can be found in S. pimpinellifolium, but
not in other Solanum species; (5) we used shared elements as DNA

markers to estimate the divergence time (,0.5 Mya) between S.
lycopersicum and S. pimpinellifolium from their common ancestor; (6) a

single mutation from ‘G’ to ‘A’ in 39 LTR followed by

amplification, were found to be responsible for the formation of

the atypical structure in this family. Therefore, this study is the first

comprehensive investigation of a single tomato LTR-RT family at

a whole genome-wide level, and the data obtained provide insights

into the evolution, divergence and domestication process between

S. lycopersicum and its wild relative S. pimpinellifolium.

Results

Identification and Sequence Analysis of the Copia-like
Retrotransposon TARE1 in the Tomato Genome
Initially, 18 TARE1 LTR-RTs were identified by the program

LTR_STRUC [21]. However, the boundaries of these elements

were found to be incorrect and misannotated. The TARE1

sequence with its two flanking sequences (1 kb for each site) when

combined with another and aligned, showed an accurate insertion

site flanked by a perfect 5-bp target site duplication (TSD), an

important signature for LTR-RT insertion. A typical TARE1

LTR-RT has an element size ,4.7 kb with two short LTR

sequences (194 bp), a primer binding site (PBS) with the sequence

‘TGGTATCAAGAA’, a polypurine tract (PPT) site with a

conserved motif ‘TGAGGGGGGA’, as well as gag and pol genes

in the internal region (Figure 1A and Figure S1). The order of int,
rt and rh within the pol defined TARE1 as a Copia-like element

(Figure 1A). We also found that most two LTRs for each TARE1
element had accumulated a few mutations (Figure 1B), indicating

that these elements inserted into the tomato genome previously. It

is noteworthy that both LTRs of the TARE1 element terminate by

the two dinucleotides 59-TA.CA-39, instead of 59-TG.CA-39

usually found in previous studies [1].

Structural Characterization of TARE1 LTR
Retrotransposons in the Tomato Genome
We were curious to elucidate the structure of TARE1 elements

at a genome-wide level. By using a combination of structure-based

and homology-based approaches, as previously described [4,15],

we mined 760 Mb of assembled tomato genomic sequence for

TARE1 elements [16]. We found that this family contained 354

copies, including 180 intact elements with target site duplication

(TSDs), 12 intact elements without TSDs, 10 solo LTRs with

TSDs, 7 solo LTR without TSDs, and 145 truncated elements

with at least one LTR that was partially deleted (Table 1 and

Table S1). These elements, together with numerous related

unrecognizable fragments, make up 5.6 Mb of DNA, accounting

for ,1% of the assembled tomato genomic sequence.

Of the 354 TARE1 elements, only 17 (,5%) are solo LTRs.

The ratio of solo LTRs to intact elements (with TSDs) is ,0.05:1

(Table 1), which is much lower than in Arabidopsis (1.16:1) [14], rice

(1.46:1) [15], and soybean (1.29:1) [8]. This low ratio perhaps

represents the lowest value for a single LTR-RT family reported so

far. This ratio is also much lower than that for Jingling elements

(0.71:1) and Rider elements (0.92:1) in tomato [19], indicating that

the low ratio of solo LTRs to intact elements is family-dependant

rather than species-specific in tomato. Since the formation of solo

LTRs was presumed to be the products of unequal homologous

recombination between two LTRs of a single element [14,15], the

short LTRs (194 bp, Figure 1) of intact TARE1 elements may

inhibit the solo LTRs formation. This result corroborated our

previous report in soybean that the ratio of solo LTRs to intact

elements is positively correlated with LTR sizes [8].

TARE1 Elements are Enriched in Pericentromeric
Heterochromatin but not in Centromeres
Although most LTR-RT families were found to insert into

highly heterochromatic regions [22,23,24], there are some

exceptions. For instance, SMARTs, the presumed smallest LTR-

RTs found to date, were distributed throughout the genomes and

were often located within or near genes [25]. Since the tomato

pericentromeric heterochromatin comprises,80% of the genomic

DNA [16,17], we were interested to see if the distribution patterns

of the TARE1 elements had any difference between the two

contrasting genomic environments, heterochromatic regions and

euchromatin regions. Thus, we calculated the density of TARE1

elements in the euchromatin, heterochromatin, and predicted

centromeres. As expected, most of the TARE1 elements were

found to be located in heterochromatin, and exhibited apparent

enrichment between the euchromatin and the heterochromatin

(p,4.061023, Figure 2). The difference between the density of

TARE1 elements within the euchromatin and the predicted

centromeric regions was not statistically significant (p=0.47,

Figure 2), indicating that the TARE1 elements are not enriched

in centromeres, and they do not belong to centromeric retro-

transposons.

Most TARE1 Elements are Shared between Cultivated
Tomato and Wild Tomato
The recent release of the draft sequence of S. pimpinellifolium, the

closest wild relative of cultivated tomato S. lycopersicum, allowed for

a comparative analysis of TARE1 elements between the two

genomes [26] (Figure S2). Assuming that each TARE1 insertion

site is unique, we should be able to estimate the status (presence/

absence) in its wild relative S. pimpinellifolium. For each TARE1

insertion in S. lycopersicum, two unique 100-bp sequences, each

composed of 50-bp of one retrotransposon terminal sequence and

50-bp of flanking DNA, were extracted and used to search against

the draft genome sequence of S. pimpinellifolium (see Materials and

Methods). The insertion of a TARE1 element was considered to be

shared between S. lycopersicum and S. pimpinellifolium if at least one

junction sequence could be found in the latter. Otherwise, the

insertion was considered to be unique in the former.

Using the above methodology, we analyzed 302 TARE1

elements, including 180 intact elements with TSDs, 10 solo LTRs

Mutated LTR Retrotransposon
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with TSDs, and 112 truncated elements with at least one complete

LTR (Table S1 and Figure S3). Other TARE1 elements without

TSDs were not analyzed, because these elements were believed to

have undergone one or more complex recombination events

[14,15]. The data showed that 252 (161 intact elements, 7 solo

LTRs, and 84 truncated elements) TARE1 insertions were shared

between S. lycopersicum and S. pimpinellifolium, indicating that the

majority of the TARE1 elements (,83%) were inserted before the

split of S. lycopersicum and S. pimpinellifolium from a common

ancestor (Figure S3). However, this value may still be underesti-

mated since the S. pimpinellifolium genome was not well assembled

and a large proportion of repetitive DNA may not be anchored to

the genome [16]. Thus we can not role out the possibility that a

small proportion of unshared TARE1 insertions may be actually

caused by the missing and/or wrong assembly of the S.

pimpinellifolium genomic DNA.

Variable Spectrum of Activity for Amplification of TARE1
Elements Over Evolutionary Time
Since the two LTR sequences of an LTR-RT element are

identical at the time of insertion, and then diverge and accumulate

mutations independently, the sequence divergence of two LTRs of

a retrotransposon can be converted to the insertion time of the

element [7]. As anticipated, most LTR-RTs were amplified in the

last 1 Mys, and LTR-RTs with age .5 Mys were rare [8,15], as

intact LTR-RTs have been rapidly changed to solo LTR,

truncated elements, or completely removed from the genome

over evolutionary time [2,8]. To determine the spectrum of

activity for TARE1, we employed the LTR-RT evolutionary rate

1.361028 per site per year, which has been used for monocot rice

[15], eudicot soybean [15], and wild tomato [26], and dated 171

intact elements in cultivated tomato. The data showed that most

TARE1 elements (66%) were inserted in the genome during 0.75–

1.75 Mys, and only a small part of the TARE1 elements could be

dated ,0.75 Mys (18%) or .1.75 Mys (16%) (Figure 3). A total of

40 TARE1 elements (23%) had the highest activity within the time

frame 1–1.25 Mys (Figure 3). These results suggest that TARE1

has variable activity for proliferation within the last 4 Mys, and it

has a relatively short burst of activity within the last 0.75–

1.75 Mys (Figure 3). Furthermore, we only found one TARE1

element with age 0 Mys (Table S1). However, there is a 14-bp

indel between the two LTRs, indicating that this element was not

inserted into the genome currently (Table S1). The evidence that

none of the tomato EST sequences match TARE1 further indicates

that this family may not be active now.

Divergence time between S. lycopersicum and S.

pimpinellifolium
Assuming that the genomic sequences of cultivated tomato (S.

lycopersicum) and wild tomato (S. pimpinellifolium) are identical when

the two species were split, the divergence time between them can

be roughly estimated on the base of the nucleotide divergence and

an appropriate neutral evolutionary rate. By using a rate of

Figure 1. Schematic TARE1 and the LTR sequence comparison. (A) Structural annotation for the TARE1 element. The U3, R and U5 regions of
LTR (Long terminal repeat) are shown in gray boxes; ‘TSD’ indicates the 5-bp target site duplication; ‘PBS’ means the primer binding site; ‘PPT’
indicates the polypurine tract; int, rt and rh are the abbreviations for integrase, reverse transcriptase and RNAase-H, respectively. (B) The sequence
alignment of two LTRs from a randomly selected intact TARE1 element. The identical nucleotides are shown with gray shadow. The insertions/
deletions are marked by dots. The physical positions of this element are located at Chromosome 1 from 27235875 to 27240535.
doi:10.1371/journal.pone.0068587.g001

Table 1. Structure of LTR Retrotransposons identified in
tomato.

Structure No. of elements

Intact elements with TSDs 180

Intact elements without TSDs 12

Solo LTRs with TSDs 10

Solo LTRs without TSDs 7

Truncated elements with 5’ end deleted 67

Truncated elements with 3’ end deleted 45

Truncated elements with both 5’ and 3’ ends deleted 33

Total 354

doi:10.1371/journal.pone.0068587.t001

Mutated LTR Retrotransposon
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6.0361029 synonymous substitutions per site per year [27],

Nesbitt and Tanksley (2002) suggested that the genus Lycopersicon

began its initial radiation .7 Mya and that S. lycopersicum and S.

pimpinellifolium diverged from a common ancestor ,1.3–1.4 Mya

depending on different cultivars investigated [28]. A recent study

also indicated that the divergence at SUN locus between the two

species occurred ,1.6 Mya [19]. However, these estimates might

have been overestimated since both genomes accumulated

mutations independently after split, and ‘2T’ time instead of ‘T’

time has elapsed since the divergence of two species from a

common ancestor (‘T’ indicates the divergence time from a

common ancestor, see Materials and Methods).

In an attempt to further understand the divergence time

between S. lycopersicum and S. pimpinellifolium, we first aligned the

orthologous LTR sequences for each shared TARE1 insertion.

Using the same LTR-RT substitution rate (1.361028 mutations

per site per year), we calculated the divergence time of 153 shared

orthologous LTRs. The data showed that 131 TARE1 loci (86%)

were dated ,0.5 Mys (Table S1). On an average, the divergence

time was estimated to be ,0.28 Mya. For comparison, we also

reanalyzed 120 intact Rider elements, 81 (67%) of which were

found to be shared between S. lycopersicum and S. pimpinellifolium

(Table S2). We found that a total of 71 (89%) shared Rider loci

could be dated ,1 Mys, and the average divergence time for 81

Rider loci was ,0.46 Mya (Table S2). These results are also

consistent with the analysis from the tomato whole genome level

[16]. Assuming that the average substitution rate for the tomato

genome sequence ranges from 6.0361029 mutations per site per

year (for nuclear genes, [27]) to 1.361028 mutations per site per

year (for LTR-RTs, [15]), the average 0.6% nucleotide divergence

between S. lycopersicum and S. pimpinellifolium [16] was converted to

0.23–0.5 Mya. These observations suggested that the split between

Figure 2. The distribution of TARE1 elements along 12 tomato chromosomes. Each chromosome is represented by a vertical blue box. The
insertions and the total repetitive DNA are marked by circles and purple regions, respectively. The potential centromeric regions are indicated by a
black blur in the middle [16].
doi:10.1371/journal.pone.0068587.g002

Mutated LTR Retrotransposon
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S. lycopersicum and S. pimpinellifolium occurred quite recently (most

likely ,0.5 Mys).

Although the domestication time of tomato is not clear yet, the

data from other species indicated that most cultivated crop species,

including rice [29,30], maize [31], and soybean [32], have only a

few thousand years history. Thus it is not difficult to conclude that

the divergence time between S. lycopersicum and S. pimpinellifolium

predated the domestication of tomato.

Species-specific Amplification of TARE1 in Tomato, but
not in Potato
As we mentioned earlier, one feature of TARE1 is the presence

of dinucleotides ‘TA’ at the beginning of both LTRs. In an

attempt to track the origin of TARE1, we performed a

phylogenetic analysis using a conserved RT domain of intact

LTR-RTs in tomato, as well as Copia-like LTR-RTs in Arabidopsis,

rice and soybean, identified previously [8]. Interestingly we found

that two other families, TARE2 and TGRE1 were phylogenetically

close to TARE1 (Figure 4). The three families all belong to Ale

lineage, but formed a distinct sublineage, which was distinguish-

able from other families (Figure 4). Similar to TARE1, the two

LTRs of TARE2 also started as ‘TA’. Nevertheless, TGRE1 does

not share such a characteristic (Figure S4). In addition, detailed

annotation for the internal region revealed the complex structures

of TARE1. Although the majority of TARE1 elements contain a

full set of genes necessary for transposition, some lack gag, int, and/

or rt genes, indicating that these are incomplete copies of TARE1

(Figure S4).

Assuming that all elements in a LTR-RT family are generated

from a common ancestor, the sequence divergence level of LTRs

with the ancestor LTR can reflect the time elapsed since the last

common ancestor (the age of family) [23]. In practice, the ancestor

copy may not be recognizable, or could have been removed from

the genome. Thus the consensus sequence of all elements usually

represents the status of the common ancestor [23]. Using the same

LTR-RT evolutionary rate 1.361028 per site per year [15], we

estimated the age of all the three LTR-RT families. Our data

showed that TARE1 family was the youngest group, and was dated

at 1.71 Mya. TGRE1 and TARE2 families were relatively older, at

4.33 Mya and 4.69 Mya, respectively (Figure 4). The fact that

none of these three families can be found in potato, suggests that

they might have been specifically amplified in the tomato genome

after speciation.

Conservation, Divergence, and Differential Amplification
of TARE1, TARE2, and TGRE1
Phylogenetic tree usually reflects the relationship between

different families. Using the phylogenetically closest tomato family

TGRE2 as outgroup, the evolutionary relationship between

TARE1, TARE2, and TGRE1 has been established (Figure 4).

Following a unified classification for eukaryote transposable

elements, TARE1, TARE2, and TGRE1 were grouped into three

distinct families. As illustrated in Figure 4, TARE2 and TGRE1 are

closely related, not only because they have similar element size,

but also because they both share substantial sequence similarity in

LTR regions, internal polyprotein, primer binding site, and

polypurine tract (Figure 5). In contrast, TARE1 has a smaller

element size, and shares lower sequence similarity with TARE2

than TGRE1 does. However, LTR sequences generally diverge

faster than the coding polyprotein, since the former usually

exhibits lower sequence similarity (Figure 5).

Although the three families are closely related, the timing, scale,

and activity of amplification are quite different (Figure 4). For

instance, TGRE1 has the lowest copies; however, 4 out of 10 intact

elements have two identical LTRs, indicating that it may still be

active now (Figure 4, Table S3). In contrast, the youngest TARE2

was generated within the last 0.66 Mys, and ,50% of TARE2

elements had activity during the last 2–3.5 Mys (Table S3). It is

particularly interesting that only TARE1 has dramatically prolif-

erated in tomato within the last 2 Mys. However, the molecular

mechanism for the burst of TARE1 remains unclear, and needs

further clarification.

Discussion

TARE1, a Mutated LTR Retrotransposon in the Tomato
Genome
The annotation for LTR-RTs mainly relies on structure-based

programs, such as LTR_STRUC [21] or related programs

[33,34], particularly when the genome sequence is new and the

reference TE database is not available. However, LTR_STRUC

cannot detect more than one third of the LTR-RTs in a genome

[3]. In this study, only 18 out of 354 TARE1 elements (,5%) were

identified by the LTR_STRUC. In addition, the elements

identified without ‘‘TG..CA’’ in the termini were often regarded

as wrong annotations and were not analyzed further [35]. Thus, it

is not surprising to see that most LTR-RT families described in

plants share highly conserved structures, including dinucleotide

‘‘TG’’ at the beginning of both LTRs. One exception is Tos17, a

well investigated LTR-RT family in rice, which contains

‘‘TG..GA’’ at two LTRs [36]. However, Tos17 has only two

copies in the sequenced japonica rice genome, and while it contains

1–5 copies in other rice cultivars under normal growth condition

[37]. Thus, the impact of Tos17 on the structure and evolution of

the rice genome is limited. In this study, .300 TARE1 elements

share the same structure as ‘‘TA..CA’’, indicating that LTR-RTs

with atypical structure can be substantially amplified in the host

genome. The new data will provide a valuable addition to tens of

thousands of typical LTR-RTs in the tomato genome, and will

also provide hints for the complete annotation of other genomes.

Using TE-junction Markers as an Alternative Approach to
Estimate the Divergence time between Tomato and its
Wild Relative
TEs are abundant and highly variable within species, subspe-

cies, and cultivars. For instance, transposon insertion polymor-

phisms contribute ,14% of the genomic DNA sequence

Figure 3. Timing and activities of TARE1 amplification in
tomato.
doi:10.1371/journal.pone.0068587.g003

Mutated LTR Retrotransposon
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differences in indica and japonica [38]. Recently, using a semi-

automated bioinformatics pipeline, Tian and his colleagues

identified 34154 non-redundant TE insertions in 31 resequenced

soybean genomes [10,39]. However, only 5731 TE insertions

(17%) were detected in the 14 cultivated accessions. On an

average, 2100 TE insertion differences occur per accession [10].

TEs are not only a valuable resource for structural variations in

plant genomes, but can also be used as molecular markers to track

the evolutionary history. They are also potentially useful for

estimation of the divergence time between cultivated and wild crop

species. Nevertheless, compared with using synonymous sites (Ks)

in coding genes as markers for calculation [16,28,37], the use of

TEs poses some difficulties in estimating the divergence time

between cultivated and wild species: (1) TEs are highly repetitive

in genomes, and the accurate assembly of TEs is not easy; (2) the

genomic sequence of the wild relative is often unavailable; (3) TEs

evolve very fast in a genome, and many of them are truncated or

unrecognizable. Thus, TE-based estimation for dating the split

Figure 4. Phylogenetic tree based on the nucleotide sequences from a conserved copia-like RT domain. The RT sequences from tomato,
rice, soybean and Arabidopsis were aligned using the MUSCLE program, and then the tree was reconstructed using the MEGA 5 program (see
Materials and Methods). For a better visualization, only the elements from tomato TARE1, TGRE1, and TARE2 families, and exemplars from other
species are shown.
doi:10.1371/journal.pone.0068587.g004

Figure 5. Phylogenetical relationship and sequence similarity between TGRE1, TARE2, and TARE1. The phylogenetically closest family
TGRE2 was set as an outgroup. The physical positions of each representative element are located at chromosome 1 from 27235875 to 27240535 for
TARE1, chromosome 7 from 61990209 to 61994987 for TARE2, chromosome 5 from 23621836 to 23626419 for TGRE1, and chromosome 11 from
7616310 to 7621220 for TGRE2, respectively.
doi:10.1371/journal.pone.0068587.g005
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time of two species should meet at least three qualifications: (1) the

availability of a high-quality assembled genome sequence for TE

identification; (2) enough information on genomic DNA of its wild

species for TE-junction comparison; (3) the presence of two closely

related species (ideally ,1 Mys), which could be used for shared

and unshared TE analysis. In this study, we performed the first

ever genome-wide searches for a single LTR-RT family in tomato,

and identified 354 TARE1 elements, ,83% of which were shared

between cultivated and wild tomato. Using the shared TARE1

elements, we estimated that the divergence time between the two

species was ,0.28 Mya. This value was about five times younger

than previously reported [19,28]; however it was close to the split

time (0.27 Mys) suggested between cultivated and wild soybean

[40]. We also compared our data with Ks-based estimation for the

split time between cultivated and wild tomato. In 31859

orthologous gene comparisons, the average synonymous substitu-

tion (Ks) for S. lycopersicum and S. pimpinellifolium is 0.0052 (range

from 0 to 0.1864) [16]. We applied an evolutionary rate of

6.0361029 substitution per site per year for Adh gene [27] to

estimate the split time based on Ks analysis between two species at

0.43 Mya, an estimate which is very close to the Rider TE-based

estimation in this study (0.46 Mya). Although the substitution rates

in different species may be slightly different [2], the nucleotide

divergence estimated from the whole genome level suggests a

relatively younger split time between S. lycopersicum and S.

pimpinellifolium during the last 0.23,0.5 Mya [16]. Therefore, the

divergence time between S. lycopersicum and S. pimpinellifolium had

occurred approximately ,0.5 Mys, which is much younger than

the previously estimated time [19,28].

Since the domestication for most major crops occurred only

within about ten thousand years, the domestication of tomato

might be more complicated than expected. The ancestor of the

cultivated tomato probably occurred and evolved for a long time,

particularly at an early stage after speciation, similar to the

domestication of soybean [40].

The Molecular Mechanism Responsible for the Unique
Structure and Proliferation of TARE1
It has been well documented that TEs are ubiquitous in plant

kingdoms; however, the majority of them turn out to be silent

under normal growth conditions, and are unable to amplify

further in their host genome. Only a small proportion of TEs have

transcriptional and/or translational activities. This is partially

because of the occurrence of substantial mutations, frameshifts,

and stop codons in the coding regions. Although the two LTRs of

an element do not contain any genes related with the transposi-

tional process, they do include three regions comprising cis-
elements for the transcription start and termination, and for the

integration of the element [19]. The transcription of a LTR-RT

element usually initiates at the 59 start of R in the 59LTR and

terminates in the 39 end of R in the 39 LTR [1]. Thus, the genetic

changes in LTR regions may affect their transcriptional activities.

Several lines of evidence indicate that TARE1 is a mutated

LTR-RT family, given the fact that the two LTRs of TARE1
terminate with ‘TA’ rather than ‘TG’, and the amplification of

TARE1 seems to be species-specific in tomato. Furthermore, the

TARE1 sublineage appears to evolve from other LTR-RT families

with dinucleotides ‘‘TG’’. The evidence that both LTRs of TARE1

contain ‘TA’’ and that TARE1 contains .300 copies, suggests that

neither transcriptional nor translational process was interrupted

after mutation. This finding is quite similar to our previous report

on SNRES subfamily in soybean, which carries a foreign solo LTR

in the internal part, but is dramatically amplified in the soybean

genome [41]. However, we are not certain whether this single

mutation has any correlation with the amplification of TARE1.
Since TARE1 is an autonomous element, and the majority of its

copies contain complete structure as other elements like Rider, thus,
its amplification does not need enzymes encoded by other

elements, as suggested for non-autonomous Dasheng in rice [23]

and SNRES in soybean [41].

There are several possible explanations regarding the origin of

TARE1, of which one might be the ‘‘genomic DNA mutation

hypothesis’’. Of course, a single mutation from ‘G’ to ‘A’ at both

LTRs would yield the structure of TARE1, as illustrated in

Figure 1. However, the chance of generating the same mutation at

the same site seems pretty low. The possibility that a few hundred

copies share the structure of TARE1 also appears unlikely. The

second hypothesis is the 59 LTR mutation from ‘G’ to ‘A’ followed

by the transposition of TARE1. Although there is no direct

experimental evidence about the regeneration of a LTR-RT in

plants, the process was believed to be quite similar to that of

retroviruses [2]. Nevertheless, based on the knowledge of

retrovirus transposition process, the following copies would be

recovered to the original ones, making this hypothesis impractical.

Alternatively, it could be caused by the 39 LTR mutation from ‘G’

to ‘A’ followed by the transposition of TARE1. According to this,

the following copies generated from the mutated TARE1, would all

carry this mutation at both LTRs, as was observed in this study

(Figure 6).

Theoretically, the ancestral copies of TARE1 elements without

mutation can continue to amplify following the mutation in one

copy. If this deduction were true, we would expect many or at least

a few copies of TARE1 with ‘TG..CA’’ at both LTRs. However, in

the entire tomato genome, no element shared such a structure,

even for partially deleted truncated copies. One possibility may be

that one ancestor copy without mutation had evolved into another

family, like the TGRE1 (Figure 4). The evidence that the two LTRs

of TARE2 also terminate with ‘‘TA .CA’’, indicates that at least two

copies with this G-.A mutation were regenerated via RNA

process.

Further investigation of atypical LTR-RTs in other sequenced

plant species might provide interesting insights into their structural

evolution. The ongoing comparative analysis from multiple species

will facilitate our understanding of the frequency of occurrence of

these mutated LTR-RTs, and the way they affect the gene and

genome evolution in the context of their evolutionary history.

Materials and Methods

Genome Sequence Data and Identification of LTR-RTs
The assembled tomato (S. lycopersicum) genome sequence

(V2.40), the scaffolds of wild tomato (S. pimpinellifolium) genome

sequence and the assembled potato genome sequence used in this

study are publicly available and downloadable at the SGN website

(http://solgenomics.net/). The LTR-RTs were identified by a

combination of structural analysis and sequence homologous

comparisons [4,15]. Initially the LTR_STRUC program was

employed to search the relatively young intact elements [21],

and the missed intact elements; the solo LTRs and truncated

elements were identified by the cross_match program with the

default parameters [4,15].

Strategy to Define Shared and Unshared LTR-RTs
between Species
To define shared and unshared LTR-RTs, a modified strategy

from a previous approach was employed [42]. Briefly, the process

included the following steps: (1) extracting one or two 100-bp

LTR-RT junction sequences for each element in S. lycopersicum,
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including 50-bp flanking sequences and 50-bp LTR-RT terminal;

(2) using the 100-bp sequences as queries, to do a cross_match with

the default parameters, and to search against the scaffold

sequences of S. pimpinellifolium; (3) a shared element was defined

when at least one site of 100-bp sequence could be found in S.

pimpinellifolium. Otherwise, the element was considered to be

unshared between two species.

Estimation of Insertion Time
Intact elements with two complete LTR sequences were aged by

comparing the divergence of their 59 and 39 LTRs. For each

element, two LTRs were aligned by using the program MUSCLE

with default parameters [43]. The insertion time (T) for a given

intact LTR-RT element was calculated using the formula: T=K/

2r. Kimura-2 parameter distances (K) between 59 and 39 LTRs

were calibrated by the Jukes-Cantor method [44]. The r represents

an average substitution rate of LTRs, which is 1.361028

substitution per site per year [45].

The ages or insertion times (T) of TARE1, TARE2 and TGRE1

(phylogenetic groups) since the divergence from each group’s

common ancestor, were estimated using the formula: T=K/r

[23]. The average Kimura 2-parameter distance (K) was

calculated by the alignment of each intact element in a group

with the consensus sequence of that group [46,47]. The cutoff of

consensus sequences was 50% which was determined from the

EMBL consensus sequence server (http://coot.embl.de/

Alignment//consensus.html). The average mutation rate of LTRs

is 1.361028 substitution per site per year [45].

Phylogenetic Analysis
A typical Copia-like conserved RT domain sequence was set as a

tblastn query, to search against the TARE1, TARE2 and TGRE1

intact element database (E-value ,1029). The cDNA sequences of

RT domains were extracted to align together with other 200 Copia-

like RT domain DNA sequences from soybean, rice and Arabidopsis

using MUSCLE program with default options. The phylogeny of

this alignment was reconstructed using the bootstrap neighbor-

joining method [48] with Kimura 2-parameter method imple-

mented in the MEGA 5 program [49].

Supporting Information

Figure S1 Alignment of LTR sequences and annotation

for the three parts of a TARE1 LTR. The predicted U3, R

and U5 regions are indicated between the arrows. The 6-bp

nucleotides within the R region were presumed to be related with

polyadenylation and the 4-bp nucleotides within the U5 region

were considered to be important in termination of RNA synthesis.

The 12 intact elements were selected randomly and the physical

positions for each element (from the top to the bottom) are

Chr7_13821723_13826394, Chr11_30046017_30050224,

Chr12_6018215_6022911, Chr3_14288754_14293444,

Chr9_8098937_8103667, Chr6_20486319_20490978,

Chr1_5417021_5421735, Chr5_9416240_9421026,

Chr8_7111971_7116630, Chr10_20942005_20946722,

Chr2_29429777_29434486, and Chr4_30724922_30729638.

(TIF)

Figure S2 Phylogenetic relationships and divergence

time between 4 Solanum species, Petunia inflate, and

Arabidopsis thaliana. The tree was modified based on a

previous study [26]. The divergence time between S. lycopersicum

and S. pimpinellifolium was suggested in this study.

(TIF)

Figure S3 Shared and unshared TARE1 elements be-

tween S. lycopersicum and S. pimpinellifolium. The intact

elements with TSDs (A), solo LTR with TSDs (B), and truncated

elements with at least one complete terminal (C) were investigated

(see Materials and Methods). As the S. pimpinellifolium genome has

not been well assembled yet, the unshared TARE1 elements in its

genome were not analyzed, and are indicated by the question

mark here.

(TIF)

Figure S4 Structural annotation for TARE1, TARE2 and

TGRE1. LTR, long terminal repeat; PBS, primer binding sites;

PPT, polypurine tracts; gag, group-specific antigen gene; int,
integrase; rt, reverse transcriptase; rh, RNAase-H.

(TIF)

Table S1 Summary of TARE1 elements identified in the

tomato genome.

(XLS)

Figure 6. A model for the evolution and amplification of TARE1. The horizontal arrows flanking the elements indicate the target site
duplications (TSDs). The black line within the U3 of LTR indicates the mutation from ‘G’ to ‘A’.
doi:10.1371/journal.pone.0068587.g006
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Table S2 Rider intact elements identified in this study.

(XLS)

Table S3 TARE2 and TGRE1 elements identified in this

study.

(XLS)
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