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Target control of complex networks
Jianxi Gao1, Yang-Yu Liu1,2,3, Raissa M. D’Souza4,5 & Albert-László Barabási1,2,3

Controlling large natural and technological networks is an outstanding challenge. It is typically

neither feasible nor necessary to control the entire network, prompting us to explore target

control: the efficient control of a preselected subset of nodes. We show that the structural

controllability approach used for full control overestimates the minimum number of driver

nodes needed for target control. Here we develop an alternate ‘k-walk’ theory for directed tree

networks, and we rigorously prove that one node can control a set of target nodes if the path

length to each target node is unique. For more general cases, we develop a greedy algorithm

to approximate the minimum set of driver nodes sufficient for target control. We find

that degree heterogeneous networks are target controllable with higher efficiency than

homogeneous networks and that the structure of many real-world networks are suitable for

efficient target control.
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I
n the past decade network science offered deep insights into
the structure and dynamics of complex networked systems1–7.
Yet, we continue to lack tools to efficiently control the

dynamics of complex networks. According to control theory8–10,
a dynamic system is controllable if suitable external inputs can
move the internal state of the system from any initial state to an
arbitrary accessible final state in a finite time interval11. Recently,
we introduced an analytical framework to study the
controllability of complex networks via a combination of tools
from network science, control theory and statistical physics12. By
mapping the structural controllability problem13 to a maximum
matching problem14, we were able to identify a minimum set of
driver nodes of size ND, sufficient to control the whole
network12,15. For engineered systems, such as the auto-pilot
system of an airplane, full control is essential. However, many
biological, technological and social systems are massive in size
and complexity, hence it is neither feasible nor necessary to
control the full network. Instead, it is more realistic and sufficient
to achieve target control, that is, to control a subset of target
nodes (or a subsystem) that are essential for the system’s mission
pertaining to a selected task. While potential applications of target
control have been developed in domain-specific areas in
biology16, chemical engineering17, epidemics18 and economic
networks19, a principled approach to identify a minimum set of
driver nodes sufficient for the targeted control of an arbitrary
complex network remains an open problem.

We study two distinct schemes for choosing the subset of
nodes we wish to control. In the random scheme, a fraction f of
nodes are chosen uniformly at random. In the local scheme, the
chosen nodes form a connected component, capturing a well-
defined local network neighbourhood. To develop an efficiency
measure of target control, we compare PD, which is the minimum
number of driver nodes needed to control the fraction f of target
nodes, with fND, which is the corresponding relative fraction of
the driver nodes needed for full control. If PD is less than fND

then target control is more efficient than full control for a given f.
We also establish the overall target control efficiency by
considering the integrated efficiency across the entire range of
0ofr1. For both scale-free (SF)20 and Erdös–Rényi (ER)
networks21,22, we find that in general, local target control is
more efficient than random target control. More surprisingly, we
find that degree heterogeneous networks, such as SF networks,
have higher specific and overall target control efficiency than
degree homogeneous networks, for both random and local
schemes, when the average degree of the network is large. In
contrast, for full control, degree homogeneous networks, such as
ER networks, are more efficient than the corresponding degree
heterogeneous networks12. Finally, we apply our methods to real
data, confirming that many real-world networks display high
efficiency of target control.

Results
Model. The dynamics of most real systems is driven by nonlinear
processes. However, the dynamical rules of real-world networks
are so diverse that writing a general dynamical equation that
captures them all is plainly impossible. Moreover, for many
networks, especially biological networks, we do not even know
the dynamical rules. Thus, before we explore the fully nonlinear
dynamical problem, we have to understand the impact of the
topological characteristics on linear control, which naturally
serves as a prerequisite of the nonlinear controllability problem.
Furthermore, the controllability of nonlinear systems is often
structurally similar to and determined by the system’s linearized
dynamics23. Indeed, a basic starting point for exploring the
controllability of any nonlinear system is the study of the

linearized version of the nonlinear dynamical system. Therefore,
we start with the canonical linear time-invariant dynamics.

_x ¼ AxþBu;
y ¼ Cx

�
ð1Þ

where x 2 RN , u 2 RM and y 2 RS represent the system’s state,
input and output vector, respectively. A 2 RN�N , B 2 RN�M and
C 2 RS�N denote the state, input and output matrices,
respectively. A captures the wiring diagram of the system; B
identifies the nodes that are controlled by an external controller
and u is the time-dependent input applied to the nodes in B; C is
the output matrix identifying the target nodes we want to control.
For a network with node set N ¼ f1; 2; :::;Ng, we are interested
in controlling a target node set C ¼ fc1; c2; :::; cSg of size
S ¼ j C j¼ fN . We set the output matrix C¼ [I(c1),
I(c2),... I(cS)], where I(i) denotes the ith row of an N�N
identity matrix I. The system (A, B, C) is said to be target
controllable with respect to a given target node set C if there
exists a time-dependent input vector u(t)¼ (u1(t),... uM(t))T that
can drive the state of the target nodes to any desired final state in
finite time. Target controllability can be viewed as a special type
of output controllability and the system (A, B, C) is target
controllable if and only if the dimension of the output
controllable subspace d(A, B, C) satisfies

dðA;B;CÞ � rank CB; CAB; CA2B;:::; CAN�1B
� �

¼ S; ð2Þ
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Figure 1 | Structural control theory versus the k-walk theory for target

control. To control the whole network, the structural control theory predicts

that we need at least three driver nodes. The possible choices for the sets of

driver nodes are shown in a–c. If instead we want to control a subset of

nodes, for example, {1, 2, 5, 7} (green nodes) with a minimum set of nodes,

we need to solve the target control problem. The upper bound obtained by

structural control theory indicates that we need at least three driver nodes

(the same sets are shown in a,b and c). (d) But, in reality, we only need one

driver node (node 1), which can be obtained from both the k-walk theory

and the greedy algorithm, because the length of the path from the node 1 to

each target node {1, 2, 5, 7} is unique.
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representing the mathematical condition for target
controllability24. Note that when S¼N, C is the identity matrix
and (2) reduces to the Kalman condition for full controllability11.
If (2) is satisfied, for initial condition x(0)¼ 0, we can compute
the optimal input vector u(t) such that we can reach the desired
final state �y with minimum energy cost in time �t40 (that is,
yð�tÞ � �y) (ref. 24).

uðtÞ ¼ BTeATð�t� tÞCT CXðtÞCT
� �� 1

�y; ð3Þ

where XðtÞ ¼
R t

0 eAdBBTeATddd (Supplementary Note 1).
In some ways the target control problem is more difficult than

the full control problem. Full control has a graphical condition,
which can be easily checked by exactly mapping the controll-
ability problem to the maximum matching problem. Target
control lacks such an exact mapping. Therefore, to solve the
target control problem in the single-input case, we develop a new
approach that we call the ‘k-walk theory’ (Fig. 1; Supplementary
Fig. 1; Supplementary Note 2). This theory is based on the
principle that a node can control a target set of nodes provided
that the length of the path from the control node to each target
node in the set is unique. Using the k-walk theory, we can identify
all sets of nodes that can be controlled by the given node.
We show that the k-walk theory is more powerful than the
standard approach as it can find controllable subsystems that the

structural control theory misses (Fig. 1; Supplementary Note 2).
We rigorously prove that the k-walk theory is correct for
directed tree-like networks, that is, networks with no loops
(Supplementary Note 2).

Although powerful, the k-walk theory is only applicable for the
single-input case. For networks that require 41 control input, we
formulate the target control problem in graph theoretic terms,
allowing us to develop a greedy algorithm (GA) that offers a good
approximation to the minimum set of inputs sufficient for target
control (Fig. 2). We rigorously prove that the input set selected by
our algorithm can indeed control all target nodes (Fig. 3;
Supplementary Note 3). Both the k-walk theory and the GA are
based on the structural control theory, that is, the system
parameters are either fixed at zero or are independent free
parameters. This approach has lead to several recent advances on
network control19,25–34. Structural control theory, in general,
relies on the canonical linear time-invariant dynamics of the
system as discussed in the Methods.

Previous studies based on the structural control theory shed
some light on how to determine the upper bound of the
minimum number of driver nodes for target controllability35,36.
We can use the maximum matching method to find the
minimum set of driver nodes (ND nodes) for full control of the
network (Fig. 2a–c). This results in ND disjoint ‘cacti’
(Supplementary Note 3), each denoting the control region of a
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Figure 2 | Controlling a small network. (a) A directed network with seven nodes. (b) Maximum matching of the network in its bipartite representation.

Matching edges are shown in red, matched nodes {x2, x4, x6, x7} are green and unmatched nodes {x1, x3, x5} are white. (c) By controlling the three

unmatched nodes (driver nodes) and ensuring that there are no inaccessible nodes, the system is guaranteed to be structurally controllable. The underlying

control skeleton (or the cactus structure) is highlighted. (d) Greedy algorithm developed for target control. Here the target set is {x1, x2, x4, x6, x7}

(highlighted in red). In the first iteration, we match all target nodes by solving a maximum matching problem on an induced bipartite graph. Target nodes

{x2, x4, x6, x7} (in green) are matched by {x1, x3, x5, x6}, which are the new target nodes considered in iteration 2. After four iterations, we obtain that node

x1 is the driver node for the target set {x1, x2, x4, x6, x7}. (e) By controlling the unmatched node x1 calculated from the GA, the target set {x1, x2, x4, x6, x7} is

guaranteed to be controllable. The red lines are the matched links obtained in the first iteration of greedy algorithm. This can be proved by interpreting GA

as a backtracking process on the dynamic graph representation of the system (Supplementary Note 3). The upper bound of PD can be calculated by the

minimal number of disjoint cacti that cover all target nodes, that is, PUB
D ¼ 3 for the target nodes {1, 2, 4, 6, 7}. The lower bound of PD is just given by the

first iteration of the greedy algorithm, that is, PLB
D ¼ 1 for the target nodes {1, 2, 4, 6, 7}, because in the first iteration only node 1 is unmatched.
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Figure 3 | Full versus target control of the simple network shown in Fig. 1. (a,b) Full control. (a) The time-dependent input signals u1(t), u3(t) and

u5(t) predicted by equation (3) that can drive the state of the network from the initial state (x1¼ ...¼ x7¼0) to the final state (x1¼ ...¼ x7¼ 10).

(b) The state trajectories of all nodes from initial state to the desired final state. (c,d) Target control. (c) The input required for the driver node 1 to

control the state of the target nodes {1, 2, 4, 6, 7} from the initial state (x1¼ ...¼ x7¼0) to the final state (x1¼ x2¼ x4¼ x6¼ x7¼ 10). (d) The state

trajectories of all nodes for tA[0, 10], where the target nodes go from 0 to the desired state 10 (solid curves) and the uncontrolled nodes go from 0 to

other values (dotted curves) when t¼ 10. The inset in d shows the detail of the final state of all seven nodes, which clearly shows that all the target

nodes are controlled to be 10 and other uncontrolled nodes are not 10 and with finite values.
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Figure 4 | Random versus local target controllability of two canonical network models. (a–c) Random selection scheme. (a) Illustrating random selection

of f¼ 1/3 target nodes. (b) For ER networks with average degree /kS¼ 5.6, we show the normalized fraction of driver nodes (aD) in function of the

target node fraction f for the random selection scheme. (c) For SF networks with /kS¼ 5.6 and exponent g¼ 2.4, we show the normalized fraction

of driver nodes (aD) as a function of the target node fraction f for the random scheme. (d–f) Local selection scheme. (d) The selection of an

f¼ 1/3 target node with the local scheme. (e) For ER networks with the same average degree as in b, we show the normalized fraction of driver

nodes (aD) in function of the target node fraction f for the local scheme. (f) For SF networks with the same /kS and g as in c, we show the normalized

fraction of driver nodes (aD) as a function of the target node fraction f for the local scheme. The black line describes the neutral case, that is,

aD¼ f (or PD¼ fND) when the target control has the same efficiency as the full control. In each figure, we denote UB as the upper bound, GA as the

greedy algorithm and LB as the lower bound of the minimum number of driver nodes to control an f fraction of target nodes. For ER networks, random

target control is always less efficient than the full control, and for local target control efficiency depends on f. For SF networks random target control

is as efficient as full control, but significant gains in efficiency are observed for local target control. Furthermore, for ER and SF networks local target

control is more efficient than random target control. All results are averaged over 200 independent realizations of the networks with 104 nodes.
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particular driver node under one specific maximum matching.
We can then count the minimal number of disjoint cacti that
cover all target nodes, which yields an upper bound of PD for
target control (denoted as PUB

D ) (see Fig. 2; Supplementary Note 3
for details). The lower bound of PD, denoted with PLB

D , can also be
obtained using maximum matching. We consider the maximum
matching in a bipartite graph connecting on one side (1) the
target nodes (C nodes), and on the other (2) the nodes that can
reach the target nodes via (3) the edges among them. If a target
node is unmatched, we must drive it directly, and the number of
unmatched target nodes is the lower bound of PD. Taking Fig. 2
for example, the lower bound of PD is given by the first iteration
of the GA, that is, PLB

D ¼ 1 for the target nodes {1, 2, 4, 6, 7},
because in the first iteration only node 1 is unmatched.

Target controllability. To quantify the efficiency of target control
for a specific fraction f, we define the target controllability para-
meter aD�PD/ND (Methods section) and investigate it for both
random and local control schemes, as shown in Fig. 4a,d,
respectively. Note that for f¼ 1, we have aD¼ 1 as target control
reduces to full control. In Fig. 4 the black lines denote the neutral
condition (aD¼ f) and serve as a benchmark because they mean
that controlling an f fraction of target nodes requires an f fraction
of the driver nodes needed for full control, that is, PD¼ fND. In
each figure, UB denotes the upper bound of the minimum
number of driver nodes needed to control an f fraction of target
nodes, predicted by the structural control theory (Supplementary
Note 3). Likewise, GA denotes the results of the greedy algorithm

and LB (Supplementary Note 3) denotes the lower bound, which
is obtained by the first step of the GA (Methods section).
Figure 4b shows the results of random target control of ER net-
works. Here the GA curve is above the neutral line (aD4f), which
indicates that the target control is less efficient than the neutral
expectation. Figure 4c shows the results of random target control
on SF networks and the GA curve is almost at the neutral line
(aDEf), which indicates that target control is as efficient as the
neutral expectation. If we apply the local target control scheme to
an ER network, we observe reduced efficiency for fo0.5 (minus
symbol in Fig. 4e) and enhanced efficiency for f40.5 (plus
symbol in Fig. 4e). Figure 4f shows the case of local target control
on SF networks, charactering that the target control is more
efficient (that is, aDof).

In general, we find that the local target control scheme requires
fewer driver nodes when compared with the random target
control scheme. This can be explained as follows. The GA helps
us obtain an approximately minimal set of driver nodes sufficient
to control the target nodes. Yet, the size of the controllable
subsystem (or equivalently, the dimension of the controllable
subspace) can be larger than the size of the target node set. In
other words, we may actually be able to control a larger
subsystem than necessary.

In Supplementary Fig. 3, we show that the random target
control scheme has larger controllable subsystems than the local
target control scheme. This is true for any fraction f of target
nodes. Hence the local control scheme is more efficient than the
random control scheme. Furthermore, we find that aD is robust to
changes in network size as shown in Supplementary Fig. 6.
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Figure 5 | Overall target control efficiency of model networks. (a,b) Random selection scheme. (a) The overall target control efficiency E (equation (4))

for SF networks in function of degree exponent g for different values of average degree /kS in the random scheme. (b) The overall target control

efficiency E (equation (4)) in function of the average degree /kS for different values of the degree exponent g for SF networks and ER networks for random

scheme. (c,d) Local selection scheme. (c) The overall target control efficiency E (equation (4)) for SF networks in function of degree exponent g for

different values of average degree /kS for local scheme. (d) The overall target control efficiency E (equation (4)) in function of the average degree /kS
for different values of degree exponent g of SF networks and ER networks for local scheme. From a and b we can see that for large /kS when g is small the

system has positive target control efficiency, but when g is greater than a certain value, the efficiency decreases monotonically with g becoming negative.

Comparing a,b with (c,d), we find that the local control can enhance the target control efficiency. The results are obtained by averaging over 200

realizations of networks with 104 nodes.
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Finally, since the hubs play an important role in complex
networks, we study the case of controlling an f fraction of the
highest in- and out-degree nodes as target nodes (Supplementary
Fig. 5). In general, we find that controlling the high-degree nodes
reduces the minimum number of driver nodes.

Target control efficiency. The above observations raise a
fundamental question: what kind of network topology is more
efficient for target control and which control scheme (random or
local) facilitates target control for a general f fraction of target
nodes? To address this question, we define the overall target
control efficiency in the Methods. The overall target control
efficiency of two model networks (ER and SF) are shown in Fig. 5
as provided by simulations. When /kS¼ 0 (a network with N
isolated nodes), we have E ¼ 0. That is, if we wish to control an
f fraction of nodes we need to drive the same fraction of driver
nodes as in the case of full control. We observe a peak of target
control efficiency E for SF networks with degree exponent
gA[2, 3], which is the range of g relevant for many real-world
networks37,38 (Fig. 5a,c).

This optimal target control efficiency is likely due to the
presence of the hubs. Indeed, starting from an ER network, we
can fix the number of links and rewire the network to increase the
degree of a preselected node, turning it into a hub. We find that
the target control efficiency increases as we develop a hub
(Supplementary Fig. 4; Supplementary Note 4), explaining the
increase of efficiency as we lower g from g43 to gE2.5.

Overall, Fig. 5a suggests that many real-world networks
may have been optimized for efficient target controllability.
Interestingly, we find that networks, which are easier to control if
we wish to achieve full control, that is, those with large average
degree /kS or large degree exponent g12, do not show high
efficiency for target control. Moreover, SF networks with
2rgr3, which are harder to fully control than ER networks,
have high random target control efficiency (Fig. 5c). Compared
with ER networks, a SF network has lower local target control
efficiency when the average degree /kS is small but higher local
target control efficiency when the average degree /kS is large
(Fig. 5d). Figure 5d also indicates the existence of a critical /kSc

so that when /kS4/kSc SF networks are more efficient than
ER networks for target control. In general, sparse and
homogeneous networks display high efficiency for target
control, especially in the local scheme.

Target control of real networks. Next we apply the tools
developed above to several real networks divided into seven
categories, which are chosen for their diversity in applications and
scope (Fig. 6; Table 1). We find that networks from the same
category display similar target control efficiency (Fig. 6a,d).
Interestingly, only networks with large average degree
(/kS4/kSc42.4) are more efficient than their randomized
counterparts with respect to the local target control scheme, that
is, Erand

l oEreal
l (with values indicated in italics in Table 1, column

/kS and in Fig. 6f). This is in agreement with simulations
(Fig. 5d). We observe that local target control markedly increases
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Figure 6 | Target control of real-world networks. (a–c) show random selection scheme. (a) The normalized fraction of driver nodes (aD) in function of the

target node fraction f for the random scheme for 19 different real-world networks. Network labels are in Table 1. (b) The overall target control efficiency Er

(equation (4)) of the real-world networks for the random scheme. (c) Comparing the target control efficiency of real networks with their randomized

counterparts for the random scheme after, we randomly rewire each network using degree-preserving randomization. (d–f) Local selection scheme.

(d) The normalized fraction of driver nodes (aD) in function of the target node fraction f for the local scheme for different real-world networks.

(e) The overall target control efficiency E1 (equation (4)) of real-world networks for the local scheme. (f) Comparing the target control efficiency

of real networks with their randomized counterparts for the local scheme after, we randomly rewire each network using degree-preserving randomization.

The results are averaged over 500 realizations. In general, real networks and more efficient than their randomized counterparts with respect to

random target control.
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the control efficiency of neuronal networks (Fig. 6e). The opposite
result is obtained for the power grid, finding that random target
control is more efficient than the local control (Fig. 6b,e). This
implies that the structure of the power grid is not optimized to
facilitate local target control. For all gene networks target control
efficiency is close to 0, indicating that they have evolved towards a
topology that has comparable control efficiency within any
sub-segment. Also, in the random target control scheme, the
comparison between real networks and randomized networks
support our earlier conclusion: real networks are optimized to
have high random target control efficiency, because Er4Erand

r for
almost all of them. The two counter-examples are the trust
networks, which are extremely small, however, with only 32 and
67 nodes. The target control efficiency of real networks is
summarized in Table 1.

Discussion
In this work, we studied the target controllability of complex
networks. We developed a new theoretical approach, the k-walk
theory, to identify the controllable sub-graph that one node can
control, and a GA to identify an approximately minimum set of
driver nodes to control a specified target set of nodes. We studied
both random and local target control schemes and analysed how the
network topology impacts the target control efficiency. The GA
proposed in this work is efficient in finding the driver nodes for
target control when the network structure is completely known.
In reality, we have very incomplete maps of many
real-world networks and the full controllability of networks with

missing links has been recently addressed in ref. 39. Note that if we
add the missing links back, they will only enhance the target
controllability of the system, unless the link weights satisfy some
particular algebraic constraints, which is a typical zero-measure event.

Our results raise several open questions: what higher-order
network characteristics (such as communities, degree correla-
tions) determine target controllability and target control
efficiency? How to design the control inputs to steer the target
nodes towards a desired final state? How to apply the GA to the
study the target control of link dynamics?

Finally, as discussed in the Methods section, our formulation
considers the canonical linear time-invariant dynamics of a system.
Extending these findings to networks with fully nonlinear dynamics
may require connecting our current work with complimentary
approaches that consider the basins of attraction that describe the
steady-state properties of nonlinear dynamics10,40. Understanding
these questions can significantly improve our understanding of the
control principles of complex systems.

Methods
Greedy algorithm. The GA we introduce here is based, in part, on iterating the
procedure for the lower-bound calculation to ultimately approximate the minimum
set of driver nodes (PGA

D ) for target control (Fig. 2d,e). The lower-bound of PD can
be calculated as follows: (1) Construct a bipartite graph B, where the right side R
consists of all the target nodes, and the left side L consists of all the nodes that can
reach the target nodes. There is a link between node u 2 L and v 2 R if there is a
link u! v in the original directed network G. (2) Find a maximum matching in B.
The number of unmatched nodes in R yields the lower-bound of PD. The greedy
algorithm works as follows. (1) Initialize the set PGA

D to be the set of the unmatched
nodes found from the lower-bound calculation. (2) Identify the set of nodes in L

Table 1 | The properties of the real network analysed in this paper.

Label Name N L /kS nD Er E1 Erand
r Erand

l

Regulatory
1 TRN-Yeast-1 4,441 12,873 2.9 0.965 0.0116 0.0127 �0.1322 �0.0334
2 TRN-Yeast-2 688 1,079 1.67 0.821 �0.0002 0.0077 �0.0523 0.0168
3 TRN-EC-1 1,550 3,340 2.15 0.891 0.0089 0.0021 �0.045 0.0393
4 TRN-EC-2 418 519 1.24 0.751 �0.0126 �0.0087 �0.0911 0.0289

Trust
5 College student 32 96 3 0.188 �0.1527 �0.0281 0.1848 0.2352
6 Prison inmate 67 182 2.72 0.134 �0.1015 0.0088 �0.057 0.0178

Food web
7 Ythan 135 601 4.45 0.511 �0.0925 �0.0469 �0.5 �0.5
8 Little rock 183 2,494 13.63 0.541 0.1364 0.0672 �0.5 �0.5
9 Grassland 88 137 1.56 0.523 �0.0747 �0.0312 �0.0997 0.0162
10 Seagrass 49 226 4.61 0.265 �0.0994 �0.0937 �0.5 �0.5

Power grid
11 TexasPowerGrid 4,889 5,855 1.2 0.325 0.0417 �0.0189 �0.0739 0.0501

Metabolic
12 E. coli 2,275 5,763 2.53 0.382 0.0984 0.0277 �0.0865 �0.0005
13 S. cerevisiae 1,511 3,833 2.54 0.329 0.1079 0.0266 �0.0837 �0.0011
14 C. elegans 1,173 2,864 2.44 0.302 0.1059 0.0318 �0.0877 0.0116

Electronic circuits
15 s838 512 819 1.6 0.232 0.0372 0.0340 �0.0593 0.0362
16 s420 252 399 1.58 0.234 0.0340 0.0325 �0.0411 0.0358
17 s208 122 189 1.55 0.238 0.0227 0.0238 �0.0604 0.0256

Neuronal
18 C. elegans.Op 297 2,345 7.9 0.165 �0.0516 0.1623 �0.5 �0.5
19 C. elegans.Ne 297 2,345 7.9 0.165 �0.0295 0.1927 �0.5 �0.5

For each network, we show its type, name, number of nodes (N), edges (L), average degree /kS, fraction of driver nodes for full control (nD), random and local target control efficiency Er and E1 of the
original network and the corresponding randomized Erand

r and Erand
1 . For some networks the randomized target control efficiency is �0.5, because these networks are small and dense, hence after

randomization one node can control the whole network. Networks with large average degree (/kS42.4) are more efficient than their randomized counterparts with respect to the local target control
scheme, with values indicated in italics, column /kS.
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that match the nodes in R, and let this node set to be the new R set and get a new
bipartite graph. (3) Calculate a maximum matching in the updated bipartite graph
and add unmatched nodes in R to the set PGA

D . (4) Repeat (2) and (3) until all
nodes have been matched or are in the set PGA

D . In Fig. 2d,e, we offer a specific
example and the details of the GA. The proof of its sufficiency for target con-
trollability is provided in Supplementary Fig. 2 and Supplementary Note 2.
Figure 2e can also be obtained by the k-walk theory, because the length of the path
from the node 1 to each target node {1, 2, 4, 6, 7} is unique. Note that if the GA
converges after only one iteration, we obtain the exact number for the minimum
number of driver nodes for target control.

A direct illustration of our algorithm’s utility is illustrated in Fig. 3, where we
consider control of the network shown in Fig. 2. To control the entire network, we
need at least three driver nodes. Indeed, as we show in Fig. 3a,b using these three nodes
we can move the state of all nodes to the desired final state xi¼ 10. But if we just want
to control a subsystem {1, 2, 4, 6, 7} (highlighted in red in Fig. 2e), the GA predicts that
we need a single driver node, node 1. Indeed, as we show in Fig. 3c,d we can now move
the state of the target nodes to the desired final state through an input to node 1 only.
The nodes outside of the target list take arbitrary values as we do not control them.

Target control efficiency. We define the overall target control efficiency of an
arbitrary network as

E ¼ 0:5�
Z1

0

aDðf Þdf ; ð4Þ

denoting the efficiency of random and local target control scheme by Er and E1,
respectively. For example, for E ¼ 0 the overall network efficiency is neutral, that is, to
control an f fraction of target nodes we need fND driver nodes. When Eo0ðE40Þ,
the network is less (or more) efficient than neutral expectation. Furthermore,
E 2 ½� 0:5; 0:5�, so E ¼ 0:5 corresponds to the most efficient case and E ¼ � 0:5
shows the least efficient case. One example of the least efficient case is when only one
driver node is needed to control the whole network. If we control any fraction of
nodes, we still need one driver node, thus E ¼ � 0:5 (observed for Food Web and
Neuronal networks in Table 1). Note that target controllability for a specific fraction,
aD(f), depends on the fraction f of driver nodes, but overall target control efficiency, E,
is a property of the whole network, independent of the fraction of target nodes.
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bovis bacillus calmette-guérin infection. Immunology 118, 39–49 (2006).

17. Baldea, M. & Daoutidis, P. Model reduction and control of reactor-heat
exchanger networks. J Process Contr. 16, 265–274 (2006).

18. Cohen, R., Havlin, S. & ben Avraham, D. Efficient immunization strategies for
computer networks and populations. Phys. Rev. Lett. 91, 247901 (2003).

19. Galbiati, M., Delpini, D. & Battiston, S. The power to control. Nat. Phys. 9,
126–128 (2013).

20. Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. Science
286, 509–512 (1999).

21. Erd+os, P. R. A. On random graphs. I. Publ. Math. 6, 290–297 (1959).
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