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Abstract
Accurate and precise methods for estimating incorrect peptide and protein identifications are
crucial for effective large-scale proteome analyses by tandem mass spectrometry. The target-decoy
search strategy has emerged as a simple, effective tool for generating such estimations. This
strategy is based on the premise that obvious, necessarily incorrect “decoy” sequences added to
the search space will correspond with incorrect search results that might otherwise be deemed to
be correct. With this knowledge, it is possible not only to estimate how many incorrect results are
in a final data set but also to use decoy hits to guide the design of filtering criteria that sensitively
partition a data set into correct and incorrect identifications.
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1. Introduction
Peptide and protein identifications made in most mass spectrometry-based proteomic work
flows first involve acquiring a set of tandem mass (MS/MS) spectra and then interrogating
each spectrum against spectra predicted from a list of protein sequences by search engines,
such as SEQUEST (1), Mascot (2), OMSSA (3), and X!Tandem (4). The output of these
programs indicates the best theoretical peptide matches to the input spectra, which are then
used to infer the source protein that was present in the biological sample. Unfiltered sets of
peptide identifications produced in this manner are necessarily imperfect for three reasons:
(1) not all peptide species in a sample are represented in the search space; (2) spectra
derived from background nonpeptide species will often be given a peptide assignment; and
(3) incorrect candidate peptide sequences occasionally may outscore correct sequences. For
many search engines, nearly all input MS/MS spectra will be assigned a peptide match if
there are any that lie within the supplied mass tolerance. Thus, the primary task of
proteomics researchers is to distinguish incorrect from correct peptide assignments.

When working with very small data sets, such as those produced from a single spot on a 2D
gel or a gel band representing a component of an isolated protein complex, identifying
correct peptide identifications is almost trivial: they are the ones with the highest scores and
tend to map to the same protein. It is also reasonable and appropriate to manually examine
individual peptide-spectrum matches (PSMs) to verify that they are correct. However, the
increasingly large data sets created by modern tandem mass spectrometers in global
proteomic efforts are not amenable to these strategies. Simple filtering criteria based on
score magnitude or numbers of peptides per protein tend to be neither sensitive nor accurate
(5), and the staggering amount of information that can be produced in a single experiment
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renders the manual validation of peptide assignments impractical. Consequently, high-
throughput protein sequencing efforts must rely on methods for estimating the frequencies
of incorrect peptide and protein identifications among correct ones. The “target-decoy”
search strategy is a simple yet powerful way to deliver false positive estimations and can be
applied to nearly any MS/MS workflow. Here, we present several methods for preparing
decoy sequences and strategies for selecting correct peptide identifications.

2. Materials
2.1. MS/MS Spectra

MS/MS spectra can be acquired on any number of tandem mass spectrometers, including the
LTQ family of ESI-ion trap instruments from ThermoFisher, the QSTAR from Applied
Biosystems, and the FLEX family from Bruker Daltonics. Alternatively, several public
sources of MS/MS spectra are freely available on the internet, including PeptideAtlas (6)
and the Open Proteomics Database (7). It is recommended that the target-decoy approach be
applied to data sets consisting of several thousand MS/MS spectra (see Note 1).

2.2. Protein Sequences
MS/MS spectra are generally searched against peptides predicted from FASTA-formatted
protein sequence lists. Sequence lists should be chosen such that any peptide that may have
given rise to an observed spectrum is represented. For example, if a mouse-derived sample
was sequenced by MS/MS, the spectra should be searched against a list of all known mouse
proteins. Protein lists can be downloaded from numerous sources, including the International
Protein Index (8) and UniProt/SwissProt (9). It is useful to also include sequences of known
contaminants, such as trypsin and human keratins.

1It is important to emphasize that the target-decoy search strategy is a tool for estimating the number of incorrect target PSMs. It is
therefore useful to place confidence intervals on these estimations. If one assumes that target and decoy hits follow a binomial
distribution (27), the theoretical standard deviation σ of target-decoy estimations can be calculated explicitly, given estimated
precision and the observed number of PSMs being considered (N):

(6)

Given σ, precision and N, one can estimate the confidence interval C containing a given proportion of repeated measurements of the
precision, assuming a two-tailed normal distribution:

(7)

Combining Eqs. 5.6 and 5.7 gives

(8)

For example, a confidence level of 0.99 indicates a Z value of 2.58; given an observed precision level of 0.9500, from 2000 PSMs, one
would calculate the confidence interval to be ±0.000288. However, for 200 PSMs, this interval would be wider at ±0.00288. If the
precision rate were decreased to 0.8000 from 2000 PSMs, this interval would also be larger at ±0.000576. Thus, these equations
indicate that estimation confidence increases with larger sample sizes and fewer incorrect spectra in the underlying data. Considering
more extreme values, the target-decoy approach is usually not very effective on small (tens) sets of PSMs or sets of PSMs that are
largely incorrect (14).
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2.3. Search Engine
Numerous MS/MS search engines are in common usage. Some are commercially available,
for example:

1. SEQUEST (http://www.thermo.com/com/cda/product/detail/0,1055,22209,00.html)

2. Mascot (http://www.matrixscience.com)

3. SpectrumMil (http://www.chem.agilent.com/scripts/pds.asp?lpage=7771) Other
search engines are freely-distributed via the internet:

4. OMSSA (http://pubchem.ncbi.nlm.nih.gov/omssa/)

5. X!Tandem (http://www.thegpm.org/tandem/)

All of these produce some form of a score indicating the degree to which observed and
predicted MS/MS spectra agree. Several of these search engines’ scores may be probability-
based. See refs. (10–13) for more detailed descriptions and comparisons of these search
engines. One principle benefit to target-decoy searching is its applicability to data generated
by any search engine.

3. Methods
One deceptively simple way to estimate false positives is to manufacture “decoy” sequences
that do not exist in nature, and then allow the search engine to consider these alongside
“target” sequences derived from the organism being studied. Necessarily, incorrect decoy
hits should be similar to incorrect but unknown hits derived from target sequences in terms
of length, amino acid composition, mass accuracy, and search engine-assigned scores.
Therefore, knowing the proportion of decoy versus target sequences in the search space
allows one to estimate the number of incorrect target sequences in a reasonably large
collection of PSMs. More than providing a means to estimate the number of incorrect target
hits in a collection of PSMs, decoy hits can be used to guide researchers in the design of
sensitive filtering criteria to precisely distinguish correct from incorrect PSMs.

Target-decoy searching is usually performed in the following steps:

1. Construct a concatenated target-decoy sequence list, marking decoy sequences with
a text flag in their annotation.

2. Use a MS/MS search engine to interpret input MS/MS spectra using target-decoy
sequence list.

3. Evaluate the relative proportion of target and decoy sequences in the search space
to derive the multiplicative factor required to estimate false positives, if necessary.

4. Estimate false positive-related statistics.

5. Use decoy hits to guide the establishment of filtering criteria.

6. Report statistics for filtered data set.

Each of these steps will be discussed in further details below.

3.1. Decoy Sequence Construction
Several methods for creating decoy sequences have been described (14–16). Each has
varying advantages and disadvantages, and it must be stressed that no single decoy type is
perfect. Ideal decoy sequences should have the following characteristics:

1. Similar amino acid distributions as target protein sequences.
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2. Similar protein length distribution as target protein sequence list.

3. Similar numbers of proteins as target protein list.

4. Similar numbers of predicted peptides as target protein list.

5. No predicted peptides in common between target and decoy sequence lists.

If each of these conditions are reasonably met, one can safely assume that decoy sequence
selected by the search engine are incorrect, and that there is a one-to-one correspondence
between incorrect target hits and decoy hits. By design or as a consequence of the decoy
sequence construction method, conditions 3 or 4 may not be met. In this case, one should
take into account the discrepancy between target and decoy sequences (see Subheading 3.3).
This is particularly true when using stochastic means to generate decoy sequences based on
target sequences demonstrating substantial amounts or repetition or homology.

3.1.1. Reversed Proteins—Protein reversal is by far the simplest and most widely used
method for creating decoy sequences (see Note 2 for a simple Perl script to create a
concatenated target-decoy sequence list based on an input target sequence list) (17,18). By
switching the amino-carboxyl orientation of a protein’s amino acids, a negligible number of
peptide sequences are preserved, particularly when imposing in silico digestion constraints
with proteases like trypsin. Protein reversal has two main advantages: First, because it
preserves the general features of the target sequence list, reversed protein sequences will
share the same degree of interprotein redundancy as the input target sequences; Second,
since it is a defined transformation, multiple research groups can generate the same decoy
sequences. The main disadvantage to protein reversal is that it is not a random
transformation as some may prefer. Consequently, it can be argued that it does not strictly
represent a null random distribution, and for certain types of peptides (e.g., palendromic or
low sequence complexity), it may not be possible to create a suitable decoy counterpart. In

2A simple Perl script for generating a target-reversed decoy sequence list:

$NUM_COL = 80; ## set the column width of output file
$infile = shift; ## grab input sequence file name from command line
$outfile = “REV”. $infile; ## name output file, prepend with “REV”
open (IN, $infile);
open (OUT, >$outfile);
$/ = undef; ## allow entire input sequence file to be read into memory
my $text = <IN>; ## read input sequence file into memory
print OUT $text; ## output sequence file into new decoy sequence file
my @proteins = split (/>/, $text); ## put all input sequences into an array
for my $protein (@proteins) { ## evaluate each input sequence individually
 $protein =~ s/(^.*)\n//m; ## match and remove the first descriptive line of
   ## the FATA-formatted protein
 my $name = $1; ## remember the name of the input sequence
 print OUT “>#REV#$name\n”; ## prepend with #REV#; a # will help make the
   ## protein stand out in a list
 $protein =~ s/\n//gm; ## remove newline characters from sequence
 $protein = reverse($protein); ## reverse the sequence
 while (length ($protein) > $NUM_C0L) { ## loop to print sequence with set number of cols
   ## per line
  $protein =~ s/(.{$NUM_C0L})//;
  my $line = $1;
  print OUT “$line\n”;
 }
 print OUT “$protein\n”; ## print last portion of reversed protein
}
close (IN);
close (OUT);
print “done\n”;
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practice, however, protein reversal stands up to the five conditions listed above (14), and can
therefore be used to faithfully estimate the occurrences of incorrect identifications.

3.1.2. Shuffled Proteins—Protein shuffling is another method used for creating decoy
sequences (16) in which the amino acids of each input target protein are randomly
rearranged to yield a new decoy protein. Like protein reversal, shuffling is fairly simple to
implement programmatically, and it preserves both the amino acid composition and length
of each input target protein sequence. Unlike sequence reversal, this transformation has
desired stochastic properties. As is true of most random transformations though,
redundancies and homologies between protein entries will not be preserved, resulting in a
greater number of decoy peptides than originally present in the target sequence list. This
imbalance must be measured and then taken into account when generating estimations of
false positives.

3.1.3. Random Proteins—Proteins can also be generated in a completely random
fashion. This is the method internally implemented by some search engines, such as Mascot,
for performing target-decoy analyses. Ideally, randomized sequences should have the same
amino acid biases and protein length distribution as an input target sequence list. One way to
do this is to first evaluate the target sequence list to generate a frequency matrix of amino
acids and a histogram of protein lengths. Decoy proteins are then constructed by randomly
selecting amino acids according to the frequency matrix, and adding these to the growing
decoy protein until it reaches a specified length, randomly determined from the length
histogram.

Rather than relying on a simple amino acid frequency matrix, one can construct a Markov
chain model of amino acid frequencies to better replicate small scale patterns found in the
target sequence list, such as single or double amino acid repeats or highly basic or acidic
regions. Essentially, this is done by generating a frequency matrix reflecting the likelihood
of observing a particular amino acid given the preceding n amino acids (14). Another
frequency matrix should be constructed consisting of only the n amino acids that initiate the
protein sequence. After randomly selecting from the initiating sequence frequency matrix,
the protein can be extended by randomly selecting from the conditional frequency matrix
until the protein achieves a specified length.

With either randomization method, it is possible to modulate the number of decoy sequences
with respect to the number of target sequences considered. This has been done to examine
the effects of interrogating a set of MS/MS spectra against search spaces of varying sizes
(19). As with shuffled decoy proteins, random proteins do not preserve redundancies and
homologies, so care must be taken to measure the relative proportion of target and decoy
sequences, and then account for any observed bias when generating false positive
estimations (see Subheading 3.3).

3.1.4. Decoy Peptides—Rather than generating entire decoy proteins from which decoy
peptides will be derived according to in silico enzymatic digestion rules, one can instead
generate decoy peptides directly by altering each peptide sequence derived from the target
sequence list. Alterations can take the form of reversals or shuffling. This procedure has the
advantage of creating decoy peptides exactly matching the masses of all target peptides
considered by the search engine. If reversal or nonrandom shuffling was the transformation
applied, the number of target and decoy sequences will match exactly both in number and in
mass distributions. Otherwise, decoy peptides may outnumber target peptides, as with
stochastically created proteins. Since in silico digestion is usually performed by the search
algorithm prior to querying observed spectra, the generation of decoy peptides directly is
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typically performed within the search algorithm. An example of a search engine with this
feature is the Sorcerer-SEQUEST platform from SAGE-N.

3.2. Spectrum Search
Once a target-decoy sequence list has been generated, the analysis of a set of MS/MS
spectra can begin. The generally accepted means to do this is to supply the search engine
with a single protein sequence list consisting of both target and decoy sequences. For each
spectrum, the search engine must then choose between target and decoy sequences.
Correctly-identified peptides will exclusively be selected from target protein sequences,
while incorrect peptide matches will be randomly drawn from target and decoy sequences. If
the number of target and decoy sequences considered by the search engine are equal, there
should be a one-to-one correlation between target and decoy sequences among incorrect
identifications. If the number of target and decoy sequences are unequal, the correlation
between target and decoy sequences should reflect this bias. It should be noted that some
groups advocate searching target sequences separately from decoy sequences. For a variety
of reasons, this procedure can lead to an overly conservative interpretation of search results
(14) (see Note 3).

3.3. Measuring Decoy Bias
In order to properly estimate the number of false positive identifications in a set of peptide
identifications, it is essential that one first knows the relative proportion of decoy to target
hits in the search space. For reversed-decoy databases, it can generally be assumed that there
is a 1:1 correlation between target and decoy sequences (14). For decoy sequence lists
generated with a stochastic component, there are usually more decoy sequences than target
sequences, particularly when there is a substantial degree of homology or redundancy
among target sequences. One computational approach for measuring this proportion is to
create in silico digests of each target and decoy component, and then ask how many peptides
from each component are within a specified tolerance near a given mass. For example, one
would determine how many target and decoy peptides are within 1.0 Da surrounding a mass
of 1,000 Da. The proportion of target and decoy peptides should be consistent across all
masses in the range of peptides one might consider (e.g., 600–5,000 Da).

More simply, one can examine the frequency with which a search engine returns target and
decoy hits for incorrect identifications. Since correct peptide identifications usually achieve
the top-ranked hit for a given MS/MS spectrum, it can be usually assumed that lower ranked
peptide hits are incorrect (14,20,21). Alternatively, if one shifts the precursor masses of
input MS/MS spectra outside of the specified mass tolerance, they cannot be correctly
matched (14,20). Comparing the frequencies of target and decoy hits for incorrect spectra

3Several groups recommend first searching MS/MS spectra against decoy sequences to derive a null distribution of scores, and then
basing filtering criteria on the null distribution. Furthermore, by restricting the target database search to just target sequences, scores
that are dependent on the search space will often be greater for correct identifications in comparison to the combined target-decoy
search. While the practice of separate searches is reasonable in principle, it creates a variety of situations that must be accounted for in
the final analysis. These include, but are not limited to:
(a) Correct/incorrect PSM noncompetition: A high-quality MS/MS spectrum will often receive an elevated score compared to a low-
quality spectrum, even if both corresponding PSMs are incorrect. When searching against a concatenated target-decoy sequence list, a
correct target PSM necessarily competes with an incorrect decoy PSM, and is then returned by the algorithm. Under the separate
searches paradigm, high-scoring decoy PSMs will indicate setting an exceptionally stringent filtering threshold that undermines
sensitivity, unless these PSMs are secondarily compared to their target PSM counterparts following the search.
(b) Imbalanced incorrect target and decoy numbers: Typical search results consist of a mixture of correct and incorrect PSMs. Under
the concatenated target-decoy paradigm, incorrect PSMs are distributed between target and decoy sequences according to their
background frequency (i.e., 1:1 for reversed sequences). When searching target and decoy sequences separately, decoy PSMs will
necessarily outnumber incorrect PSMs, since spectra that can be correctly assigned to target sequences will be matched to decoy
sequences. For example, if 20% of all spectra are correctly assigned, the proportion of incorrect target to incorrect decoy will be 0.8:1,
even if the underlying target and decoy sequences were equal in number. Further complicating matters, the larger decoy distribution
presents the opportunity for them to achieve a wider range of scores, inappropriately suggesting more stringent filtering thresholds.
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reveals the effective proportion of target and decoy sequences in the search space and
therefore the factor one should use to estimate the number of hidden incorrect target hits,
given the observed decoy hits (Fig. 1) (14).

Once the background frequencies of target and decoy hits are determined (t, d), one can
determine the multiplicative factor (f) used to estimate the total (target + decoy) number of
incorrect identifications:

(1)

where d = 1 − t. For reversed decoy sequences in which target and decoy search spaces are
nearly equal, it can be assumed that t and d are both equal to 0.5, and f is therefore equal to
2. One can then estimate the total number of incorrect peptides by doubling the number of
observed decoy hits. If t and d are determined to be 0.37 and 0.63, respectively, as can be the
case for randomly-created decoy sequences (14), then f should be 1.6.

3.4. False Positive Statistics
In order to fairly compare data sets collected in different laboratories, acquired on different
instruments, searched with different search engines, and representing different biological
samples, it is crucial that they meet similar false positive-related constraints. The first step in
this process is to estimate the total number of correct PSMs in the entire data set. One way to
do this is as follows:

1. Sort all peptide hits by score, descending.

2. Count how many target hits are greater than or equal to a given score

3. Count how many decoy hits are greater than or equal to a given score

4. Estimate the number of correct hits (true positive, TP) from total (T) and decoy hits
(d) greater than or equal to a given score:

(2)

5. Estimate the total number of correct hits in the data set from the maximum value of
TP observed across all score thresholds.

Given the total number of correct identifications in the data set, the number of identifications
being considered, and how many of these are incorrect, one can populate the Venn diagram
shown in Fig. 2. Given estimations of false positives (FP), true positives (TP), false
negatives (FN), and true negatives (TN), one can generate the measurements shown in Table
1. Of these, precision and sensitivity are often the most useful for evaluating and comparing
MS/MS data sets.

3.5. Designing Filtering Criteria
For several years, large MS/MS data sets were subject to predefined, general filtering
constraints to attempt to separate correct from incorrect peptide identifications. Often, these
constraints were learned from a training data set consisting of known proteins, and then
applied to experimental data sets that were often orders of magnitude larger than the training
data set. Through target-decoy searching, it was determined that the proportion of false
positive identifications that surpass standard criteria varies with individual data sets, as does
the proportion of correct identifications that fail to meet them (i.e., false negatives). Thus,
application of identical filtering criteria across multiple data sets does not necessarily yield
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data sets with comparable sensitivity or precision rates. It is often desirable, therefore, to
design filtering criteria that can accommodate the diversity of LC-MS/MS analyses while
yielding optimized, comparable error profiles.

Since decoy peptide matches and incorrect target matches have similar properties, one can
examine decoy hits to learn how all incorrect hits can be segregated from correct hits in a
sensitive and precise manner. This is fairly easy to accomplish when one considers a single
monotonic score provided by the search engines, such as SEQUEST’s XCorr, Mascot’s Ion
Score, and the E-value from OMSSA and X!Tandem, or composite scores, such as the
Discriminant Score, returned by Peptide Prophet’s linear discriminant function (5):

1. Sort all peptide hits by score, descending.

2. Count how many target hits are greater than or equal to a given score

3. Count how many decoy hits are greater than or equal to a given score

4. Estimate the total number of incorrect hits (false positive, FP) from observed decoy
hits (d) greater than or equal to a given score:

(3)

5. Calculate statistics related to FP for each given score threshold (see Subheading
3.5).

6. Select score threshold based on a desired statistic threshold.

Single scores are generally less able to sensitively separate correct from incorrect hits than
consideration of multiple peptide measurements, such as mass accuracy, enzyme specificity,
and alternate scoring methods. Composite scores are therefore superior to single scores,
since they can incorporate these multiple lines of evidence that influence the likelihood that
a peptide is correct. Another approach is to use the target-decoy strategy to examine multiple
peptide measurements in a holistic fashion without condensing them into a single composite
score. This is done by seeking an optimal (or several optimal) threshold combination(s) that
maximizes the number of peptide identifications while minimizing the number of false
positive identifications, or at least restricting them to a specified proportion of all positive
identifications (Fig. 3). Evaluating and optimizing multiple candidate score threshold
combinations can be tedious to perform manually; computational approaches for doing this
have been described, however (22,23).

3.6. Report Statistics for Filtered Data Set
Increasingly, journals are requiring an assessment of data quality when publishing MS/MS
results (24–26). As previously stated, the most useful measurements are usually precision
(or FDR) and sensitivity. Although it is convenient to include decoy hits in a data set during
analysis (see Note 4), decoy hits should not contribute to the final tally of incorrect hits since
they can be easily recognized and removed. Thus, the reported number of FP and
corresponding precision rate should be:

(4)

4Even after a set of filtering criteria have been arrived at, it is often useful to leave decoy PSMs mixed among the target ones. Should
one choose to revisit the data analysis, one can derive further filtering/selection criteria involving additional parameters not considered
in the original analysis.
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(5)

It must be stressed that the above calculations apply to the aggregate of all identifications
that meet or exceed a given set of filtering criteria. The final precision rate represents the
proportion of the final data set that is likely to be correct; it does not indicate the likelihood
of any particular identification of being correct (see Note 5).

These statistics may also be applied at the protein level. However, protein inference from
multiple peptides poses additional challenges beyond the scope of this chapter (see Note 6).
Protein precision is often worse than the precision measured from PSMs. This usually can be
attributed to proteins that are incorrectly identified by just one peptide. In contrast, proteins
identified by multiple peptides are usually correct. Thus, correct peptide identifications map
to fewer proteins than incorrect peptides, reducing the final protein precision. This situation
can be addressed by paying specific attention to single peptide identifications (see Note 7).
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Fig. 1.
Decoy PSMs indicate incorrect target PSMs, depending on the underlying proportion of
target and decoy sequences. Under the reversed-decoy model, the proportion of target and
decoy peptides considered are approximately equal (5th-ranked, reversed-decoy). Thus, the
proportion of decoy PSMs observed in the presence of correct identifications equals the
proportion of target PSMs that are incorrect (Top-ranked, reversed-decoy). When the
underlying proportion of target and decoy sequences are not equal, as is usually the case
with randomly created protein sequence lists, one must first measure this proportion (5th-
ranked, random-decoy), and then apply it to the condition containing correct identifications
(top-ranked, random-decoy). See ref. 14 for further details
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Fig. 2.
Venn diagram of basic measurements related to estimated false positive identifications. The
total number of identifications are contained within the rectangle. All correct identifications
are contained within the white circle. All identifications passing a given set of selection
criteria (positive identifications) are contained within the black circle. The overlap between
these circles are true positives (TP). False positive identifications (FP) are the remaining
positive identifications, and false negative identifications (FN) are the remaining correct
identifications that do not meet the selection criteria. True negatives (TN) are the incorrect
identifications that are correctly classified as such by the selection criteria. This Venn
diagram scheme is elaborated in Fig. 3
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Fig. 3.
Considering multiple selection criteria enhances accuracy. Selection criteria applied to score
distributions (left) determine the form of the Venn diagrams (right). Venn diagram shapes
and colors correspond with those in Fig. 2. (a) Distribution of FP and TP hits sorted by an
arbitrary score. When no score criteria are applied, all selected correct identifications are
denoted in grey circle, and all selected incorrect identifications are denoted in black
rectangle. (b) Application of a single score threshold, which excludes most incorrect
identifications (lighter region), can yield an acceptable precision rate, but yields sub-optimal
sensitivity. (c) Considering two scores allows for greater separation between correct and
incorrect identifications. The distribution of incorrect identifications is indicated by the
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distribution of decoy hits. Application of global criteria that excludes most decoy hits in two
score dimensions (lighter region) provides greater sensitivity than one score alone. (d)
Designing selection criteria that take into account numerous peptide measurements, such as
mass accuracy, charge, enzymatic specificity, and peptides per protein, can yield far greater
sensitivity while maintaining acceptable precision
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Table 1

Measurements derived from target-decoy estimations of FP, TP, FN, TN

Measurement Formula Description

Precision Proportion of assignments passing selection criteria that are correct

False discovery rate (FDR)

, 1 - precision

Proportion of assignments passing selection criteria that are incorrect

Sensitivity Proportion of correct assignments passing selection criteria

Specificity Proportion of all incorrect assignments excluded by selection criteria

Accuracy Proportion of all assignments correctly classified by selection criteria
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