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Abstract— Unattended ground sensors (UGS) are widely used
to monitor human activities, such as pedestrian motion and
detection of intruders in a secure region. Efficacy of UGS
systems is often limited by high false alarm rates, possibly due
to inadequacies of the underlying algorithms and limitations
of onboard computation. In this regard, this paper presents a
wavelet-based method for target detection and classification. The
proposed method has been validated on data sets of seismic and
passive infrared sensors for target detection and classification,
as well as for payload and movement type identification of
the targets. The proposed method has the advantages of fast
execution time and low memory requirements and is potentially
well-suited for real-time implementation with onboard UGS
systems.

Index Terms— Feature extraction, passive infrared sensor,
seismic sensor, symbolic dynamic filtering, target detection and
classification.

I. INTRODUCTION

UNATTENDED ground sensors (UGS) are widely used in

industrial monitoring and military operations. Such UGS

systems are usually lightweight devices that automatically

monitor the local activities in-situ, and transfer target detection

and classification reports to the processing center at a higher

level of hierarchy. Commercially available UGS systems make

use of multiple sensing modalities (e.g., acoustic, seismic,

passive infrared, magnetic, electrostatic, and video). Efficacy

of UGS systems is often limited by high false alarm rates

because the onboard data processing algorithms may not be

able to correctly discriminate different types of targets (e.g.,

humans from animals) [1]. Power consumption is a criti-

cal consideration in UGS systems. Therefore, power-efficient
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sensing modalities, low-power signal processing algorithms,

and efficient methods for exchanging information between the

UGS nodes are needed [2].

In the detection and classification problem at hand, the

targets usually include human, vehicles and animals. For

example, discriminating human footstep signals from other

targets and noise sources is a challenging task, because the

signal-to-noise ratio (SNR) of footsteps decreases rapidly

with the distance between the sensor and the pedestrian.

Furthermore, the footstep signals may vary significantly for

different people and environments. Often the weak and noise-

contaminated signatures of humans and light vehicles may not

be clearly distinguishable from each other, in contrast to heavy

vehicles that radiate loud signatures [3], [4].

Seismic sensors are widely used for personnel detection,

because they are relatively less sensitive to Doppler effects and

environment variations, as compared to acoustic sensors [5].

Current personnel detection methods, based on seismic signals,

are classified into three categories, namely, time domain [6],

frequency domain [3], [4], [7], and time-frequency domain [5],

[8]–[10]. Generally, time-domain analysis may not be able

to detect targets very accurately because of the interfering

noise, complicated signal waveforms, and variations of the

terrain [5]. On the other hand, accuracy of frequency domain

methods may be degraded due to underlying non-stationarity

in the observed signal. Therefore, recent research has relied on

time-frequency domain (e.g. wavelet transform-based) meth-

ods because of their denoising and localization properties. Pas-

sive Infrared (PIR) sensors have been widely used in motion

detectors, where the PIR signals are usually quantized into two

states, i.e., “on” and “off”. PIR signals contain discriminative

information in the time-frequency domain and are well-suited

for UGS systems due to low power consumption. Although

PIR sensors have been used for detection and localization

of moving targets [11], similar efforts for target classification

have not been apparently reported in open literature.

The work reported in this paper makes use of a wavelet-

based feature extraction method, called Symbolic Dynamic

Filtering (SDF) [12]–[14]. The SDF-based feature extraction

algorithm mitigates the noise by using wavelet analysis, cap-

tures the essential signatures of the original signals in the

time-frequency domain, and generates robust low-dimensional

feature vectors for pattern classification [15]. This paper

addresses the problem of target detection and classification

using seismic and PIR sensors that monitor the infiltration

of humans, light vehicles and domestic animals for border
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Fig. 1. Illustration of the test scenario with three sensor sites.

security. The major contributions of the paper are as follows:

1) Formulation of a hierarchical structure for target detec-
tion and classification.

2) Experimental validation of the SDF-based feature
extraction method on seismic and PIR sensor data.

3) Performance evaluation of using seismic and PIR sen-
sors in target payload and movement type identification.

The paper is organized into five sections including the
present one. Section II describes and formulates the problem
of target detection and classification. Section III presents
the procedure of feature extraction from sensor time-series.
Section IV describes the details of the proposed method
and the results of field data analysis. The paper is con-
cluded in Section V along with recommendations for future
research.

II. PROBLEM DESCRIPTION AND FORMULATION

The objective is to detect and classify different targets
(e.g., humans, vehicles, and animals led by human), where
seismic and PIR sensors are used to capture the characteristic
signatures. For example, in the movement of a human or an
animal across the ground, oscillatory motions of the body
appendages provide the respective characteristic signatures.

The seismic and PIR sensor data, used in this analysis,
were collected on multiple days from test fields on a wash
(i.e., the dry bed of an intermittent creek) and at a choke
point (i.e., a place where the targets are forced to go due
to terrain difficulties). During multiple field tests, sensor data
were collected for several scenarios that consisted of targets
walking along an approximately 150 meters long trail, and
returning along the same trail to the starting point. Figure 1
illustrates a typical data collection scenario.

The targets consisted of humans (e.g., male and female),
animals (e.g., donkeys, mules, and horses), and all-terrain
vehicles (ATVs). The humans walked alone and in groups
with and without backpacks; the animals were led by their
human handlers (simply denoted as “animal” in the sequel)
and they made runs with and without payloads; and ATVs
moved at different speeds (e.g., 5 mph and 10 mph). Examples
of the test scenarios with different targets are shown in Fig. 2.
There were three sensor sites, each equipped with seismic and
PIR sensors. The seismic sensors (geophones) were buried
approximately 15 cm deep underneath the soil surface, and
the PIR sensors were collocated with the respective seismic
sensors. All targets passed by the sensor sites at a distance of
approximately 5 m. Signals from both sensors were acquired
at a sampling frequency of 10 kHz.

(a) (b) (c)

Fig. 2. Examples of test scenarios with different targets. (a) Human.
(b) Vehicle. (c) Animal led by human.

Seismic
signals

Target
present

Vehicle

Detection

Classification

Walking/Running?

Carrying payload?

Carrying payload?

Human/Animal

Human

Feature
extraction

Target
absent

Animal

Fig. 3. Tree structure formulation of the detection & classification problem.

The tree structure in Fig. 3 shows how the detection and
classification problem is formulated. In the detection stage,
the pattern classifier detects the presence of a moving tar-
get against the null hypothesis of no target present; in the
classification stage, the pattern classifiers discriminate among
different targets, and subsequently identify the movement type
and/or payload of the targets. While the detection system
should be robust to reduce the false alarm rates, the classi-
fication system must be sufficiently sensitive to discriminate
among different types of targets with high fidelity. In this
context, feature extraction plays an important role in target
detection and classification because the performance of clas-
sifiers largely depends on the quality of the extracted features.

In the classification stage, there are multiple classes (i.e.,
humans, animals, and vehicles); and the signature of the
vehicles is distinct from those of the other two classes. There-
fore, this problem is formulated into a two-layer classification
procedure. A binary classification is performed to detect the
presence of a target and then to identify whether the target is
a vehicle or a human/animal. Upon recognizing the target as
a human/animal, another binary classification is performed to
determine its specific class. More information could be derived
upon recognition of the target type. For example, if the target
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Fig. 4. Overview of the SDF-based feature extraction algorithm. (a) Sensor time series data. (b) Partition of the wavelet coefficients. (c) Symbolized wavelet
image (a section). (d) Feature extraction from state image. (e) 4-state PFSA. (f) State probability vector.

is recognized as a human, then further binary classifications
are performed to identify if the human is running or walking,
and if the human is carrying a payload or not.

III. SYMBOLIC DYNAMICS-BASED FEATURE EXTRACTION

A key step in target detection and classification is feature
extraction from sensor signals, which is accomplished by
symbolic dynamic filtering (SDF) in this paper. While the
details of SDF have been reported in earlier publications [12]–
[15], this section briefly reviews the underlying concepts of
feature extraction from sensor time series for completeness of
this paper.

A. Transformation of Time Series to Wavelet Domain

A crucial step in SDF is partitioning of the transformed
data space for symbol sequence generation. In wavelet-based
partitioning, the time series is first transformed as a set of
wavelet coefficients at different time shifts and scales, where
the choice of the wavelet basis function depends on the time-
frequency characteristics of the underlying signal, and the
(finitely many) wavelet scales are calculated as follows:

αi =
Fc

f i
p �t

(1)

where Fc is the center frequency [16] that has the maximum
modulus in the Fourier transform of the signal; and f i

p’s are
obtained by choosing the locally dominant frequencies in the
Fourier transform.

Figure 4 shows an illustrative example of transformation
of the time series (Fig. 4(a)) to a (two-dimensional) wavelet
image (Fig. 4(b)). The amplitudes of the wavelet coefficients
over the scale-shift domain are plotted as a surface. Subse-
quently, symbolization of this wavelet surface leads to the
formation of a symbolic image as shown in Fig. 4(c).

B. Symbolization of Wavelet Surface Profiles

This section presents partitioning of the wavelet surface
profile, as shown in Fig. 4(b), which is generated by the
coefficients over the two-dimensional scale-shift domain, for
construction of the symbolic image in Fig. 4(c). The x − y

coordinates of the wavelet surface profiles denote the shifts
and the scales respectively, and the z-coordinate denotes the
surface height as pixel values of the wavelet coefficients.

The wavelet surface profiles are partitioned such that the
ordinates between the maximum and minimum of the coef-
ficients along the z-axis are divided into regions by different
planes parallel to the x − y plane. For example, if the alphabet
is chosen as � = {a, b, c, d}, i.e., |�| = 4, then three
partitioning planes divide the ordinate (i.e., z-axis) of the
surface profile into four mutually exclusive and exhaustive
regions, as shown in Figure 4(b). These disjoint regions form
a partition, where each region is labeled with one symbol
from the alphabet �. If the intensity of a pixel is located in a
particular region, then it is coded with the symbol associated
with that region. As such, a symbol from the alphabet � is
assigned to each pixel corresponding to the region where its
intensity falls. Thus, the two-dimensional array of symbols,
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called symbol image, is generated from the wavelet surface
profile, as shown in Figure 4(c).

The surface profiles can be partitioned by using different
partitioning methods. If the partitioning planes are separated
by equal-sized intervals, then it is called the uniform partition-

ing (UP). However, the partitioning would be more reasonable
if the information-rich regions of a data set are partitioned
finer and those with sparse information are partitioned coarser.
To achieve this objective, the maximum entropy partitioning

(MEP) [13], [14] has been adopted such that the entropy of the
generated symbols is maximized. The procedure for selection
of the alphabet size |�|, followed by generation of a MEP, has
been reported in [13], [14]. In general, the choice of alphabet
size depends on specific data set. The partitioning of wavelet
surface profiles to generate symbolic representations enables
robust feature extraction, and symbolization also significantly
reduces the memory requirements.

For the purpose of pattern classification, the reference data
set is partitioned with alphabet size |�| and is subsequently
kept constant. In other words, the structure of the partition is
fixed at the reference condition and this partition serves as the
reference frame for subsequent data analysis [12].

C. Conversion of the Symbol Image to the State Image

This section presents construction of a probabilistic finite

state automaton (PFSA) for feature extraction based on the
symbol image generated from a wavelet surface profile.

For analysis of (one-dimensional) time series, the states of
a PFSA represent different combinations of blocks of symbols
on the symbol sequence and the edges represent the transition
probabilities between these blocks [12]. Therefore, for analysis
of (one dimensional) time series, the “states” denote all pos-
sible symbol blocks (i.e., words) within a window of certain
length. The notion of “states” is now extended for analysis
of wavelet surface profiles via construction of a “state image”
from a “symbol image”.

In general, the computational requirements increase with the
number Q of states, which must be constrained for real-time
applications. As |Q| increases with the window size |W| and
the alphabet size |�|, a probabilistic state compression method
is employed, which chooses m most probable symbols from
each state as a representation of that particular state. State
compression must preserve sufficient information as needed
for pattern classification, albeit possibly lossy coding of the
wavelet surface profile.

In this method, each state consisting of ℓ × ℓ symbols
is compressed to a word of length m < ℓ2 symbols by
choosing the top m symbols that have the highest probability
of occurrence. (Note: If two symbols have the same probability
of occurrence, then either symbol may be preferred with
equal probability.) This procedure reduces the state set Q to
an effective smaller set O � {o1, o2, . . . , o|O|} that enables
mapping of two or more different configurations in a window
W to a single state. For example, if |�| = 4, |W| = 4 and
m = 2, then the state compression reduces the total number
of states to |O| ≤ |�|m = 16 instead of 256. The choice of
|�|, ℓ and m depends on application domains, noise level,

and the available computational power, and is made by an
appropriate tradeoff between robustness to noise and capability
to detect small changes. For example, a large alphabet may
be noise-sensitive while a small alphabet may miss the infor-
mation of signal dynamics. This issue is discussed further in
Subsection IV-A.2.

D. Construction of PFSA and Pattern Generation

A probabilistic finite state automaton (PFSA) is constructed
such that the states of the PFSA are elements of the com-
pressed state set O and the edges are transition probabil-
ities between these states. The transition probabilities are
defined as:

℘(ok|ol) =
N(ol , ok)

∑

k′=1,2,...,|O| N(ol , ok′)
∀ ol , ok ∈ O (2)

where N(ol , ok) is the total count of events when ok occurs
adjacent to ol in the direction of motion. The calculation of
these transition probabilities follows the principle of sliding
block code [17]. A transition from the state ol to the state
ok occurs if ok lies adjacent to ol in the positive direction
of motion. Subsequently, the counter moves to the right and
to the bottom (row-wise) to cover the entire state image,
and the transition probabilities ℘(ok|ol) ∀ ol, ok ∈ O are
computed using Eq. (2). Therefore, for every state on the state
image, all state-to-state transitions are counted, as shown in
Fig. 4(d). For example, the dotted box in the bottom-right
corner contains three adjacent pairs, implying the transitions
o1 → o2, o1 → o3, and o1 → o4 and the corresponding
counter of occurrences N(o1, o2), N(o1, o3), and N(o1, o4),
respectively, are increased by one. This procedure generates
the state-transition probability matrix of the PFSA given as:

� =

⎡

⎢

⎣

℘(o1|o1) . . . ℘ (o|O||o1)
...

. . .
...

℘ (o1|o|O|) . . . ℘ (o|O||o|O|)

⎤

⎥

⎦
(3)

where � ≡ [π j k] with π j k = ℘(ok|o j ). Note: π j k ≥ 0 ∀ j, k

∈ {1, 2, ...|O|} and
∑

k π j k = 1 ∀ j ∈ {1, 2, ...|O|}.
In order to extract a low-dimensional feature vector, the

stationary state probability vector p is obtained as the left
eigenvector corresponding to the unity eigenvalue of the
stochastic transition matrix �. The state probability vectors
p serve as the “feature vectors” and are generated from dif-
ferent data sets from the corresponding state transition matri-
ces. These feature vectors are denoted as “patterns” in this
paper.

IV. RESULTS OF FIELD DATA ANALYSIS

Field data were collected in the scenario illustrated in Fig. 1.
Multiple experiments were made to collect data sets of all
three classes, i.e., human, vehicle and animal. The data were
collected over three days at different sites. A brief summary
is given in Table I showing the number of runs of each class.

Each data set, acquired at a sampling frequency of 10 kHz,
has 1 × 105 data points that correspond to 10 seconds of
the experimentation time. In order to test the capability of
the proposed algorithm for target detection, another data set
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TABLE I

NUMBER OF FEATURE VECTORS FOR EACH TARGET CLASS

Day 1 Day 2 Day 3 Total

No target 50 36 32 118

Vehicle 0 8 0 8

Human 30 22 14 66

Animal 20 6 18 44

was collected with no target present. The problem of target
detection is then formulated as a binary pattern classification,
where no target present corresponds to one class, and target
present (i.e., human, vehicle or animal) corresponds to the
other class. The data sets, collected by the channel of seismic
sensors that are orthogonal to the ground surface and the
PIR sensors that are collocated with the seismic sensors, are
used for target detection and classification. For computational
efficiency, the data were downsampled by a factor of 10 with
no apparent loss of information.

Figure 5 depicts the flow chart of the proposed detection
and classification algorithm that is constructed based on the
theories of symbolic dynamic filtering (SDF) and support
vector machines (SVM) [18]. The proposed algorithm consists
of four main steps, namely, signal preprocessing, feature
extraction, detection, and classification, as shown in Fig. 5.

In the signal conditioning step, the DC component (i.e., the
constant offset) of a seismic signal is eliminated by subtracting
the average value and the resulting (zero-mean) signal is
normalized to unit-variance with division by its standard
deviation. The rationale for normalization to unit variance is to
make pattern classification independent of the signal amplitude
and any discrimination should be solely texture-dependent. For
example, the amplitude of the seismic signal of an animal with
a heavy payload walking far away could be comparable to that
of a pedestrian passing by at a closer distance, although these
two signals are of different texture. However, for PIR signals,
only the DC component is removed and the normalization is
not carried out because the range of the PIR signals is not
changed during the field test experiments.

In the feature extraction step, SDF captures the signatures of
the preprocessed sensor time-series for representation as low-
dimensional feature vectors. Based on the spectral analysis
of the ensemble of seismic data at hand, a series of pseudo-
frequencies from the 1-20 Hz bands have been chosen to
generate the scales for wavelet transform, because these bands
contain a very large part of the footstep energy [8]. Similarly,
a series of pseudo-frequencies from the 0.2-2.0 Hz bands have
been chosen for PIR signals to generate the scales. Upon
generation of the scales, continuous wavelet transforms (CWT)
are performed with an appropriate wavelet basis function on
the seismic and PIR signals. The wavelet basis db7 is used for
seismic signals since it matches the impulsive shape of seismic
signals very well, and db1 is used for the PIR case since
PIR signals are close to square waves. A maximum-entropy
wavelet surface partitioning is then performed. Selection of
the alphabet size |�| depends on the characteristics of the
signal; while a small alphabet is robust against noise and envi-
ronmental variations, a large alphabet has more discriminant

Sensor signal

Signal 
preprocessing

Feature
extraction

Detection

Classification
(Type)

Classification
(Details)

Remove DC component

Normalize to unit variance

Symbolic dynamic filtering

(SDF)

Pattern classifier # 1

Pattern classifier # 2

Human/Animal

Target present

Patterns

Time series

Pattern classifier # 3

Pattern 
classifier

Walking?

Running?

Human Animal

Vehicle

No target

Carrying

Payload?

Carrying

Payload?

Pattern 
classifier

Fig. 5. Flow chart of the problem of target detection and classification.

power for identifying different objects. The same alphabet is
used for both target detection and classification. The issues
of optimization of the alphabet size and data set partitioning
are not addressed in this paper. Subsequently, the extracted
low-dimensional patterns are used for target detection and
classification. One pattern is generated from each experiment,
and the training patterns are used to generate the separating
hyperplane in SVM.

A. Performance Assessment Using Seismic Data

This section presents the classification results using the
patterns extracted from seismic signals using SDF. The leave-
one-out cross-validation method [18] has been used in the per-
formance assessment of seismic data. Since the seismic sensors
are not site-independent, they require partial information of
the test site, which is obtained from the training set in the
cross-validation. Results of target detection and classification,
movement type and target payload identification are reported
in this section.

1) Target Detection and Classification: Figure 6 shows the
normalized seismic sensor signals (top row) and the corre-
sponding feature vectors (bottom row) extracted by SDF of
the three classes of targets and the no target case. In the top
row of Fig. 6, the unit of the ordinate axes is dimensionless due
to normalization of the seismic signals, where the original data
were recorded in the unit of volt by microphones for storage
in a digitized format. Each feature vector in the bottom row of
Fig. 6 consists of 8 elements since the alphabet size |�| = 8
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Fig. 6. (a) No target. (b) Vehicle. (c) Human. (d) Animal. Examples of seismic sensor measurements (top) and the corresponding feature vectors extracted
by SDF of the four classes (bottom).

TABLE II

CONFUSION MATRICES OF THE LEAVE-ONE-OUT CROSS-VALIDATION

RESULTS USING SDF AND KURTOSIS ANALYSIS

SDF No target Vehicle Human Animal

No target 114 1 1 2

Vehicle 0 7 1 0

Human 3 0 61 2

Animal 0 0 1 43

Kurtosis No target Vehicle Human Animal

No target 102 0 5 11

Vehicle 0 0 7 1

Human 1 0 47 18

Animal 1 0 30 13

and the sum of all the elements in each feature vector is 1. It
is observed that the feature vectors are quite different among
no target, vehicle and human/animal case. The feature vectors
of human and animal are similar and yet still distinguishable.
In the feature vector plots in Fig. 6, the states with small
index number corresponds to the wavelet coefficients with
large values, and vice versa.

For the purpose of comparative evaluation, kurtosis analy-
sis [6], a benchmarking technique of footstep detection, is also
used for target detection and classification. Kurtosis analysis
is useful for footstep detection because the kurtosis value
is much higher in the presence of impulsive events (i.e.,
target present) than the case of no target [6]. The results
of SDF and kurtosis analysis are shown in Table II using
confusion matrices, where the rows are the actual classes
and the columns are the predicted classes. Similar notations
are followed in the sequel in Tables IV, V, and VI. The
shaded area in Table II represents the confusion matrices of
target classification. The detection and classification accuracy
is summarized in Table III. It is observed kurtosis analysis
has slightly worse but comparable performance with SDF

TABLE III

COMPARISON OF THE DETECTION AND CLASSIFICATION ACCURACY BY

USING SDF AND KURTOSIS ANALYSIS

Detection
Classification

Vehicle versus Others
Human versus

Animal

SDF 97.0% 99.1% 97.2%

Kurtosis 92.4% 93.1% 55.6%

TABLE IV

CONFUSION MATRICES OF THE LEAVE-ONE-OUT CROSS-VALIDATION

RESULTS FOR MOVEMENT TYPE IDENTIFICATION

Human Walking Human Running

Human Walking 47 1

Human Running 5 13

TABLE V

CONFUSION MATRICES OF THE LEAVE-ONE-OUT CROSS-VALIDATION

RESULTS FOR TARGET PAYLOAD IDENTIFICATION

Human Animal

no payload payload no payload payload

Human
no payload 45 4 1 0

payload 8 7 1 0

Animal
no payload 0 1 6 7

payload 0 0 2 28

in target detection and vehicle classification, whereas SDF
outperforms kurtosis analysis in distinguishing human from
animal.

The execution of the MATLAB code takes 2.27 seconds
and 43.73 MB of memory for SDF and SVM on a desktop
computer to process a data set of 1 × 104 points and perform
pattern classification with the following parameters: alphabet
size |�| = 8, number of scales |α| = 4, window size ℓ × ℓ =

2 ×2, number of most probable symbol m = 1, and quadratic
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TABLE VI

CONFUSION MATRIX OF THE THREE-WAY CROSS-VALIDATION

No target
Human

Animal
Walking Running

No target 110 0 0 0

Human
Walking 1 33 7 7

Running 0 5 13 0

Animal 0 2 0 42
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Fig. 7. Examples of seismic sensor measurements (top) and the corresponding
feature vectors extracted by SDF (bottom) for human walking and running.
(a) Walking. (b) Running.

kernel for SVM. Pattern classification consumes about 80%
of the total execution time because by using leave-one-out
cross-validation, the pattern classifier need to be trained with
all the remaining patterns (e.g., 235 in detection stage). The
choice of quadratic kernel in SVM improves the performance
of the classifier; however, it also increases the computation
in training the classifier. It is expected the execution time and
memory will be reduced significantly if fewer training patterns
are used.

2) Movement Type Identification: Upon recognition of
human, more information can be derived by performing
another binary classification to identify whether the human
is running or walking. The physical explanations are: i) the
cadence (i.e., interval between events) of human walking is
usually larger than the cadence of human running; ii) the
impact of running on the ground is much stronger than that
of walking, and it takes longer for the oscillation to decay.
Figure 7 shows the seismic signal and corresponding feature
vectors of human walking and running. The feature vectors
of human walking and running are very different from each
other, which is a clear indication that the SDF-based feature
extraction method is able to capture these features (cadence
and impact). It is noted that the feature vectors shown in
Fig. 7 are different from those in Fig. 6 because different
partitions are used in the target classification and movement
type identification stages.

Ideally, the identification of movement type should be per-
formed based on the results of human classification. However,
in order to assess the performance of SDF in this particular
application, a binary classification between human walking
and human running is directly performed. The results are listed
in Table IV, where the proposed feature extraction algorithm
and SVM are able to identify the human movement type with
an accuracy of about 91%.

As stated in Subsection III-C as well as in earlier publica-
tions [13], [14], the alphabet � in the SDF algorithm plays
an important role for target detection and classification. An
example illustrating the effects of the alphabet size |�| on
human movement type identification is presented in Fig. 9,
where the human movement type identification was performed
with |�| varying from 2 to 20. It is seen that that the
classification accuracy is consistent within the range of |�|

from 2 to 20. The rationale is that the information loss
increases with a smaller |�| and robustness to noise decreases
with a larger |�|.

3) Target Payload Identification: Similar with the move-
ment type identification shown above, the target payload
information can also be derived by performing another binary
classification for both animal and human targets. Figure 8
shows the seismic signals and feature vectors of human/animal
with and without payload examples. It is observed that the
feature vectors extracted by SDF has large inter-class separa-
tion while small intra-class variance, and yet the intra-class
differences between the with payload and without payload
cases are still distinguishable.

Table V shows the results of the human/anmal payload
identification. The shaded area in Table V represents the
payload identification. It is seen that the proposed method is
able to distinguish human from animal with high accuracy
(97.3%). The payload identification result is also reasonable
(human: 81.3%, animal: 79.1%); however, more than half
samples in the human with payload and animal without
payload cases are incorrectly classified. Three factors may
contribute to low classification rate for these two classes: i) the
payloads are not the same throughout all the experiments;
ii) the weight of the payload is only a small fraction of
the weight of human/animal target, so difference between the
two classes (with payload/without payload) are not obvious;
iii) Unbalanced number of samples in each class. The first
two issues are related with data collection; the last issue may
be resolved by increasing the weight of the class with fewer
samples when generating the separating hyperplane in SVM.

B. Performance Assessment Using PIR Data

PIR sensors are widely used for motion detection. In most
applications, the signals from PIR sensors are used as discrete
variables (i.e., on or off). This may work for target detection,
but will not work well for target classification because the
time-frequency information is lost in the discretization. In
this paper, the PIR signals are considered to be continuous
signals, and continuous wavelet transform (CWT) is used to
reveal the distinction among different types of targets in the
time-frequency domain. Since a PIR sensor does not emit an
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Fig. 8. (a) Human without payload. (b) Human with payload. (c) Animal without payload. (d) Animal with payload. Examples of seismic sensor measurements
(top) and the corresponding feature vectors extracted by SDF (bottom) for payload identification.
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Fig. 9. Effect of alphabet size on human movement type identification.

infrared beam but merely passively accepts incoming infrared
radiation, it is less sensitive to environmental variations (i.e.,
variation in test sites) than the seismic sensor that is ground-
based. A three-way cross-validation [18] is used for the
performance assessment of PIR data. The data are divided
into three sets by date (i.e., Day 1, Day 2, and Day 3) and
three different sets of experiments are performed:

1) Training: Day 1 + Day 2; Testing: Day 3
2) Training: Day 1 + Day 3; Testing: Day 2
3) Training: Day 2 + Day 3; Testing: Day 1.

Training and testing on feature vectors from different days
is very meaningful in practice. In each run of the cross-
validation, no prior information is assumed for the testing site
or the testing data. The classifiers’ capability to generalize
to an independent data set is thoroughly tested in the three-
way cross-validation. In this section, four types of targets are
considered, namely, no target, human walking, human running,
and animal led by human. Following Fig. 5, the following
cases are tested:

1) Detection of target presence against target absence;
2) Classification of target type, i.e., Human vs. Animal;
3) Classification of target movement type (i.e., walking vs.

running) upon recognition of the target as human.

Figure 10 shows the PIR sensor measurements (top) and
the corresponding feature vectors extracted by SDF (bottom)
of the four classes. For the no target case, the PIR signal
fluctuates around zero and no information is embedded in the
wavelet coefficients, thus the states in the middle (i.e., states
3-10) are occupied; whereas for the target present cases, the
PIR sensors are excited by the presence of the targets, so states
1-2 and 11-12 that correspond to the crests and troughs in the
PIR signals are more populated than other states.

The following parameters are used in SDF and SVM for
processing the PIR signals: alphabet size |�| = 12, number
of scales |α| = 3, window size ℓ × ℓ = 2 × 2, number of
most probable symbol m = 1, and quadratic kernel for SVM.
The execution of SDF and SVM takes 1.13 seconds and 39.83
MB of memory on a desktop computer to process a data set
of 1 × 104 points, which is a clear indication of the real-time
implementation capability for onboard UGS systems.

Table VI shows the confusion matrix of the three-way
cross-validation results using PIR sensors. The shaded area
represents the target classification stage. It is seen in Table VI
that the proposed feature extraction algorithm works very well
with the PIR sensor; the target detection accuracy is 99.5%, the
human/animal classification accuracy is 91.7%, and the human
movement type classification accuracy is 79.3%. Leave-one-
out cross-validation usually underestimates the error rate in
generalization because more training samples are available; it
is expected that the classification accuracy will further improve
for the PIR signals if leave-one-out cross-validation is used.

C. Field Deployment of Seismic and PIR Sensors

Seismic and PIR sensors have their own advantages and dis-
advantages for target detection and classification. The seismic
sensor is omnidirectional and has a long range of detection
(up to 70 m) [10], whereas a PIR sensor has a typical range
of less than 6 m and has a limited field of view (less than
180◦), which restricts the sensor from detecting target moving
behind it. The seismic sensor is not site-independent and is
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Fig. 10. Examples of PIR sensor measurements (top) and the corresponding feature vectors extracted by SDF (bottom) of the four classes. (a) No target.
(b) Human walking. (c) Human running. (d) Animal led by human.

vulnerable to variations in sensor sites, whereas a PIR sensor
merely passively accepts the incoming infrared radiation and
is independent of the sensor site. In order to improve the
detection and classification accuracy while reducing the false
alarm rate, it is recommended that the seismic and PIR sensor
should be used together to provide complementary information
to each other. Information fusion techniques are needed to
combine the outputs of the two sensing modalities, and this is
a topic of future research.

Field deployment of sensors largely depends on the tasks
and terrains. To enhance the perimeter security [7] in an
open field, the sensors are usually deployed linearly or in
circles. Since the intruder may approach the secure region from
any direction, the worst case scenario is when the intruder
approaches the secure region exactly half-way between two
adjacent sensors along a straight path perpendicular to the
sensor picket line. To ensure intruder detection, the maximum
sensor spacing should be less than the effective range of the
sensor. Therefore, sensor deployment could be very expensive,
because the detection range of PIR sensors is less than 6 m.
Another critical application is sensor deployment at choke
points; since the targets are forced to pass the choke point
due to the terrain difficulties, a single node of UGS system
can be sufficient to cover the entire region.

V. CONCLUSION

This paper presents a symbolic feature extraction method
for target detection and classification, where the features are
extracted as statistical patterns by symbolic dynamic modeling
of the wavelet coefficients generated from time series of
seismic and PIR sensors. By appropriate selection of wavelet
basis and scale range, the wavelet-transformed signal is de-
noised relative to the original time-domain signal. In this
way, the symbolic images generated from wavelet coefficients
capture the signal characteristics with larger fidelity than
those obtained directly from the time domain signal. The
symbolic images are then modeled using probabilistic finite
state automata (PFSA) that, in turn, generate low-dimensional

statistical patterns, also called feature vectors. A distinct
advantage of the proposed feature extraction method is that the
low-dimensional feature vectors can be computed in-situ and
communicated in real time over a limited-bandwidth wireless
sensor network with limited-memory nodes.

The proposed method has been validated on a set of field
data collected from different locations on multiple days. A
comparative evaluation is performed on the seismic signals
between SDF and kurtosis analysis using leave-one-out cross-
validation. Results show that SDF has superior performance
over kurtosis analysis, especially in the human/animal clas-
sification. In addition, the capabilities for identifying move-
ment type and target payload are examined for the seismic
sensor. A three-way cross-validation has been used to assess
the performance of PIR sensors for target detection and
classification. Results show that PIR sensors are very good
for target detection, and has comparable performance with
seismic sensors for target classification and movement type
identification.

While there are many research issues that need to resolved
before exploring commercial applications of the proposed
method, the following topics are under active research:

1) Enhancement of target detection and classification per-
formance by fusion of seismic and PIR sensor signals

2) Real-time field implementation of the proposed method
on low-cost low-power microprocessors for different
types of deployment (e.g., UGS fencing to secure a
region).
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